
Under review as a conference paper at ICLR 2023

TOWARDS EQUIVARIANT GRAPH CONTRASTIVE
LEARNING VIA CROSS-GRAPH AUGMENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Leading graph contrastive learning (GCL) frameworks conform to the invariance
mechanism by encouraging insensitivity to different augmented views of the same
graph. Despite the promising performance, invariance worsens representation
when augmentations cause aggressive semantics shifts. For example, dropping
the super-node can dramatically change a social network’s topology. In this case,
encouraging invariance to the original graph can bring together dissimilar pat-
terns and hurt the task of instance discrimination. To resolve the problem, we
get inspiration from equivariant self-supervised learning and propose Equivari-
ant Graph Contrastive Learning (E-GCL) to encourage the sensitivity to global
semantic shifts. Viewing each graph as a transformation to others, we ground
the equivariance principle as a cross-graph augmentation – graph interpolation –
to simulate global semantic shifts. Without using annotation, we supervise the
representation of cross-graph augmented views by linearly combining the rep-
resentations of their original samples. This simple but effective equivariance
principle empowers E-GCL with the ability of cross-graph discrimination. It
shows significant improvements over the state-of-the-art GCL models in unsuper-
vised learning and transfer learning. Further experiments demonstrate E-GCL’s
generalization to various graph pre-training frameworks. Code is available at
https://anonymous.4open.science/r/E-GCL/

1 INTRODUCTION

Graph contrastive learning (GCL) (You et al., 2020; Suresh et al., 2021; Xu et al., 2021) is a prevailing
paradigm for self-supervised learning (Chen et al., 2020; Zbontar et al., 2021) on graph-structured
data. It typically pre-trains a graph neural network (GNN) (Dwivedi et al., 2020) without labeled
data, in an effort to learn generalizable representations and boost the fine-tuning on downstream tasks.
The common theme across recent GCL studies is instance discrimination (Dosovitskiy et al., 2014;
Purushwalkam & Gupta, 2020) — viewing each graph as a class of its own, and differing it from
other graphs. It galvanizes representation learning to capture discriminative characteristics of graphs.

Towards this end, leading GCL works usually employ two key modules: graph augmentation and
contrastive learning. Specifically, graph augmentation adopts the “intra-graph” strategy to create
multiple augmented views of each graph, such as randomly dropping nodes (You et al., 2020) or
adversarially perturbing edges (Suresh et al., 2021). The views stemming from the same graph
constitute the positive samples of this class, while the views of other graphs are treated as negatives.
Consequently, contrastive learning encourages the agreement between positive samples and the
discrepancy between negatives. This procedure essentially imposes “invariance” (Purushwalkam
& Gupta, 2020; Dangovski et al., 2022) upon representations — making the anchor graph’s repre-
sentation invariant to its intra-graph augmentations (Figure 1a). Formally, let g be the anchor graph,
P be the groups of intra-graph augmentations, and ϕ(·) be the GNN encoder. The “invariance to
intra-graph augmentations” mechanism states ϕ(g) = ϕ(Tp(g)), ∀p ∈ P — the representation ϕ(g)
is insensitive to the changes in augmentation p, where Tp(g) is the action of augmentation p on graph
g. We refer to works adopting this mechanism as Invariant Graph Contrastive Learning (I-GCL).

However, we argue that invariance to intra-graph augmentations alone is insufficient to improve the
semantic quality of graph representations and boost the downstream performance:

1

https://anonymous.4open.science/r/E-GCL/

Under review as a conference paper at ICLR 2023

<latexit sha1_base64="G0XCydthVvZSM9aDf4rVDBqn8AQ=">AAAB63icbVC7SgNBFL0bXzG+opZpBkPAKuyKaMqAjWUE84AkyOxkNjtkZnaZmRXCks7axkIRW3/FD7DTD/AL/ABnkxSaeODC4Zx7ufceP+ZMG9f9cHIrq2vrG/nNwtb2zu5ecf+gpaNEEdokEY9Ux8eaciZp0zDDaSdWFAuf07Y/usj89i1VmkXy2oxj2hd4KFnACDaZ1ItDdlMsu1V3CrRMvDkp10uVu++3r8/GTfG9N4hIIqg0hGOtu54bm36KlWGE00mhl2gaYzLCQ9q1VGJBdT+d3jpBFasMUBApW9Kgqfp7IsVC67HwbafAJtSLXib+53UTE9T6KZNxYqgks0VBwpGJUPY4GjBFieFjSzBRzN6KSIgVJsbGU7AheIsvL5PWSdU7q55e2TRqMEMeSnAEx+DBOdThEhrQBAIh3MMjPDnCeXCenZdZa86ZzxzCHzivPxjdkrg=</latexit>

�

<latexit sha1_base64="G0XCydthVvZSM9aDf4rVDBqn8AQ=">AAAB63icbVC7SgNBFL0bXzG+opZpBkPAKuyKaMqAjWUE84AkyOxkNjtkZnaZmRXCks7axkIRW3/FD7DTD/AL/ABnkxSaeODC4Zx7ufceP+ZMG9f9cHIrq2vrG/nNwtb2zu5ecf+gpaNEEdokEY9Ux8eaciZp0zDDaSdWFAuf07Y/usj89i1VmkXy2oxj2hd4KFnACDaZ1ItDdlMsu1V3CrRMvDkp10uVu++3r8/GTfG9N4hIIqg0hGOtu54bm36KlWGE00mhl2gaYzLCQ9q1VGJBdT+d3jpBFasMUBApW9Kgqfp7IsVC67HwbafAJtSLXib+53UTE9T6KZNxYqgks0VBwpGJUPY4GjBFieFjSzBRzN6KSIgVJsbGU7AheIsvL5PWSdU7q55e2TRqMEMeSnAEx+DBOdThEhrQBAIh3MMjPDnCeXCenZdZa86ZzxzCHzivPxjdkrg=</latexit>

�
<latexit sha1_base64="t8Js8zp7a2kADg5d2elWPt3VR3c=">AAAB7nicbZDLSgMxFIbP1Kq13qou3USLUDdlpoh2IxTcuKxgL9IOJZNm2tBMJiQZoQx9CDcuFHHrY/gM7nwb08tCW38IfPz/OeScE0jOtHHdbyezll3f2Mxt5bd3dvf2CweHTR0nitAGiXms2gHWlDNBG4YZTttSURwFnLaC0c00bz1SpVks7s1YUj/CA8FCRrCxVqsrh6w0OO8Vim7ZnQmtgreAYg1di+znw0m9V/jq9mOSRFQYwrHWHc+Vxk+xMoxwOsl3E00lJiM8oB2LAkdU++ls3Ak6s04fhbGyTxg0c393pDjSehwFtjLCZqiXs6n5X9ZJTFj1UyZkYqgg84/ChCMTo+nuqM8UJYaPLWCimJ0VkSFWmBh7obw9gre88io0K2Xvsnxx5xVrVZgrB8dwCiXw4ApqcAt1aACBETzBC7w60nl23pz3eWnGWfQcwR85Hz+wfZFa</latexit>

�(g)

<latexit sha1_base64="0kiBn4BsdNmHrLDjQd23x7EAoG8=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZcFF7qsYB/QDiWTZtrQTGZI7ghl6Ge4caGIW7/GnX9jpq2grQcCh3PuJeeeIJHCoOt+OYW19Y3NreJ2aWd3b/+gfHjUMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2Mb3K//ci1EbF6wEnC/YgOlQgFo2ilbi+iOGJUZrfTfrniVt0ZyCrxFqRShzka/fJnbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctVTTixs9mkafkzCoDEsbaPoVkpv7eyGhkzCQK7GQe0Sx7ufif100xvPYzoZIUuWLzj8JUEoxJfj8ZCM0ZyokllGlhsxI2opoytC2VbAne8smrpHVR9S6rtftapf5TRxFO4BTOwYMrqMMdNKAJDGJ4ghd4ddB5dt6c9/lowVnsHMMfOB/f0sCRpA==</latexit>G

<latexit sha1_base64="1CPgZhYAQv3ukE0+WFhrNlGH2Fo=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSLUTUmkqMuCC11WsA9oQplMJ+3QySTMTJQS+yluXCji1i9x5984aSto64GBwzn3cs+cIOFMacf5slZW19Y3Ngtbxe2d3b19u3TQUnEqCW2SmMeyE2BFORO0qZnmtJNIiqOA03Ywusr99j2VisXiTo8T6kd4IFjICNZG6tklLxmyihdhPSSYZ9eT055ddqrOFGiZuHNSrsMMjZ796fVjkkZUaMKxUl3XSbSfYakZ4XRS9FJFE0xGeEC7hgocUeVn0+gTdGKUPgpjaZ7QaKr+3shwpNQ4CsxknlEtern4n9dNdXjpZ0wkqaaCzA6FKUc6RnkPqM8kJZqPDcFEMpMVkSGWmGjTVtGU4C5+eZm0zqruebV2WyvXf+oowBEcQwVcuIA63EADmkDgAZ7gBV6tR+vZerPeZ6Mr1nznEP7A+vgGM06T/w==</latexit>

�(G)

<latexit sha1_base64="SnVd6K1rYJmhzhdaAZPzCw8Cm4k=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKiDkGvHhMwDwgWcLspDcZMzu7zMwKYckXePGgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipORoUS27ZXYBsEm9FSnVYojEofvWHMUsjlIYJqnXPcxPjZ1QZzgTOCv1UY0LZhI6wZ6mkEWo/Wxw6I1dWGZIwVrakIQv190RGI62nUWA7I2rGet2bi/95vdSENT/jMkkNSrZcFKaCmJjMvyZDrpAZMbWEMsXtrYSNqaLM2GwKNgRv/eVN0r4pe9VypVkp1WurOPJwAZdwDR7cQh3uoQEtYIDwDK/w5jw6L86787FszTmrmXP4A+fzByNwjSo=</latexit>g

<latexit sha1_base64="LXemwC7qSXvDxrmNfwDpJqp96hw=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DuXhMwDwgWcLspDcZMzu7zMwKYckXePGgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJfe53nlBpHssHM03Qj+hI8pAzaqzUrA+KJbfsLkA2ibcipRos0RgUv/rDmKURSsME1brnuYnxM6oMZwJnhX6qMaFsQkfYs1TSCLWfLQ6dkSurDEkYK1vSkIX6eyKjkdbTKLCdETVjve7Nxf+8XmrCOz/jMkkNSrZcFKaCmJjMvyZDrpAZMbWEMsXtrYSNqaLM2GwKNgRv/eVN0q6UvZtytVkp1aqrOPJwAZdwDR7cQg3uoQEtYIDwDK/w5jw6L86787FszTmrmXP4A+fzB+r9jQA=</latexit>

C

<latexit sha1_base64="LXemwC7qSXvDxrmNfwDpJqp96hw=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DuXhMwDwgWcLspDcZMzu7zMwKYckXePGgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJfe53nlBpHssHM03Qj+hI8pAzaqzUrA+KJbfsLkA2ibcipRos0RgUv/rDmKURSsME1brnuYnxM6oMZwJnhX6qMaFsQkfYs1TSCLWfLQ6dkSurDEkYK1vSkIX6eyKjkdbTKLCdETVjve7Nxf+8XmrCOz/jMkkNSrZcFKaCmJjMvyZDrpAZMbWEMsXtrYSNqaLM2GwKNgRv/eVN0q6UvZtytVkp1aqrOPJwAZdwDR7cQg3uoQEtYIDwDK/w5jw6L86787FszTmrmXP4A+fzB+r9jQA=</latexit>

C

<latexit sha1_base64="IiYni4SMw6/Km5OrcF+NkoGznNo=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYhByCrshqMdALjlGMA/YLGF20kmGzM4sM71iWPIZXjwo4tWv8ebfOHkcNLGgoajqprsrSgQ36Hnfztb2zu7efu4gf3h0fHJaODtvG5VqBi2mhNLdiBoQXEILOQroJhpoHAnoRJP63O88gjZcyQecJhDGdCT5kDOKVgp6CE+Y1RuzfqVfKHplbwF3k/grUqyRJZr9wldvoFgag0QmqDGB7yUYZlQjZwJm+V5qIKFsQkcQWCppDCbMFifP3GurDNyh0rYkugv190RGY2OmcWQ7Y4pjs+7Nxf+8IMXhXZhxmaQIki0XDVPhonLn/7sDroGhmFpCmeb2VpeNqaYMbUp5G4K//vImaVfK/k25el8t1kqrOHLkklyREvHJLamRBmmSFmFEkWfySt4cdF6cd+dj2brlrGYuyB84nz9q+5FM</latexit>

CH2

<latexit sha1_base64="IiYni4SMw6/Km5OrcF+NkoGznNo=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYhByCrshqMdALjlGMA/YLGF20kmGzM4sM71iWPIZXjwo4tWv8ebfOHkcNLGgoajqprsrSgQ36Hnfztb2zu7efu4gf3h0fHJaODtvG5VqBi2mhNLdiBoQXEILOQroJhpoHAnoRJP63O88gjZcyQecJhDGdCT5kDOKVgp6CE+Y1RuzfqVfKHplbwF3k/grUqyRJZr9wldvoFgag0QmqDGB7yUYZlQjZwJm+V5qIKFsQkcQWCppDCbMFifP3GurDNyh0rYkugv190RGY2OmcWQ7Y4pjs+7Nxf+8IMXhXZhxmaQIki0XDVPhonLn/7sDroGhmFpCmeb2VpeNqaYMbUp5G4K//vImaVfK/k25el8t1kqrOHLkklyREvHJLamRBmmSFmFEkWfySt4cdF6cd+dj2brlrGYuyB84nz9q+5FM</latexit>

CH2

<latexit sha1_base64="IiYni4SMw6/Km5OrcF+NkoGznNo=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYhByCrshqMdALjlGMA/YLGF20kmGzM4sM71iWPIZXjwo4tWv8ebfOHkcNLGgoajqprsrSgQ36Hnfztb2zu7efu4gf3h0fHJaODtvG5VqBi2mhNLdiBoQXEILOQroJhpoHAnoRJP63O88gjZcyQecJhDGdCT5kDOKVgp6CE+Y1RuzfqVfKHplbwF3k/grUqyRJZr9wldvoFgag0QmqDGB7yUYZlQjZwJm+V5qIKFsQkcQWCppDCbMFifP3GurDNyh0rYkugv190RGY2OmcWQ7Y4pjs+7Nxf+8IMXhXZhxmaQIki0XDVPhonLn/7sDroGhmFpCmeb2VpeNqaYMbUp5G4K//vImaVfK/k25el8t1kqrOHLkklyREvHJLamRBmmSFmFEkWfySt4cdF6cd+dj2brlrGYuyB84nz9q+5FM</latexit>

CH2

<latexit sha1_base64="IiYni4SMw6/Km5OrcF+NkoGznNo=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYhByCrshqMdALjlGMA/YLGF20kmGzM4sM71iWPIZXjwo4tWv8ebfOHkcNLGgoajqprsrSgQ36Hnfztb2zu7efu4gf3h0fHJaODtvG5VqBi2mhNLdiBoQXEILOQroJhpoHAnoRJP63O88gjZcyQecJhDGdCT5kDOKVgp6CE+Y1RuzfqVfKHplbwF3k/grUqyRJZr9wldvoFgag0QmqDGB7yUYZlQjZwJm+V5qIKFsQkcQWCppDCbMFifP3GurDNyh0rYkugv190RGY2OmcWQ7Y4pjs+7Nxf+8IMXhXZhxmaQIki0XDVPhonLn/7sDroGhmFpCmeb2VpeNqaYMbUp5G4K//vImaVfK/k25el8t1kqrOHLkklyREvHJLamRBmmSFmFEkWfySt4cdF6cd+dj2brlrGYuyB84nz9q+5FM</latexit>

CH2

<latexit sha1_base64="LXemwC7qSXvDxrmNfwDpJqp96hw=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DuXhMwDwgWcLspDcZMzu7zMwKYckXePGgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJfe53nlBpHssHM03Qj+hI8pAzaqzUrA+KJbfsLkA2ibcipRos0RgUv/rDmKURSsME1brnuYnxM6oMZwJnhX6qMaFsQkfYs1TSCLWfLQ6dkSurDEkYK1vSkIX6eyKjkdbTKLCdETVjve7Nxf+8XmrCOz/jMkkNSrZcFKaCmJjMvyZDrpAZMbWEMsXtrYSNqaLM2GwKNgRv/eVN0q6UvZtytVkp1aqrOPJwAZdwDR7cQg3uoQEtYIDwDK/w5jw6L86787FszTmrmXP4A+fzB+r9jQA=</latexit>

C<latexit sha1_base64="LXemwC7qSXvDxrmNfwDpJqp96hw=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DuXhMwDwgWcLspDcZMzu7zMwKYckXePGgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJfe53nlBpHssHM03Qj+hI8pAzaqzUrA+KJbfsLkA2ibcipRos0RgUv/rDmKURSsME1brnuYnxM6oMZwJnhX6qMaFsQkfYs1TSCLWfLQ6dkSurDEkYK1vSkIX6eyKjkdbTKLCdETVjve7Nxf+8XmrCOz/jMkkNSrZcFKaCmJjMvyZDrpAZMbWEMsXtrYSNqaLM2GwKNgRv/eVN0q6UvZtytVkp1aqrOPJwAZdwDR7cQg3uoQEtYIDwDK/w5jw6L86787FszTmrmXP4A+fzB+r9jQA=</latexit>

C

<latexit sha1_base64="LXemwC7qSXvDxrmNfwDpJqp96hw=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DuXhMwDwgWcLspDcZMzu7zMwKYckXePGgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJfe53nlBpHssHM03Qj+hI8pAzaqzUrA+KJbfsLkA2ibcipRos0RgUv/rDmKURSsME1brnuYnxM6oMZwJnhX6qMaFsQkfYs1TSCLWfLQ6dkSurDEkYK1vSkIX6eyKjkdbTKLCdETVjve7Nxf+8XmrCOz/jMkkNSrZcFKaCmJjMvyZDrpAZMbWEMsXtrYSNqaLM2GwKNgRv/eVN0q6UvZtytVkp1aqrOPJwAZdwDR7cQg3uoQEtYIDwDK/w5jw6L86787FszTmrmXP4A+fzB+r9jQA=</latexit>

C <latexit sha1_base64="WKuzwCv4nZVmBXcuZ17eKfhI434=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKiB4DXjxJAuYByRJmJ73JmNnZZWZWCEu+wIsHRbz6Sd78GyePgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8MJME/YgOJQ85o8ZKjft+seSW3TnIOvGWpFSDBer94ldvELM0QmmYoFp3PTcxfkaV4UzgtNBLNSaUjekQu5ZKGqH2s/mhU3JhlQEJY2VLGjJXf09kNNJ6EgW2M6JmpFe9mfif101NeONnXCapQckWi8JUEBOT2ddkwBUyIyaWUKa4vZWwEVWUGZtNwYbgrb68TlpXZa9arjQqpVplGUcezuAcLsGDa6jBHdShCQwQnuEV3pxH58V5dz4WrTlnOXMKf+B8/gD8SY0N</latexit>

N<latexit sha1_base64="IiYni4SMw6/Km5OrcF+NkoGznNo=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYhByCrshqMdALjlGMA/YLGF20kmGzM4sM71iWPIZXjwo4tWv8ebfOHkcNLGgoajqprsrSgQ36Hnfztb2zu7efu4gf3h0fHJaODtvG5VqBi2mhNLdiBoQXEILOQroJhpoHAnoRJP63O88gjZcyQecJhDGdCT5kDOKVgp6CE+Y1RuzfqVfKHplbwF3k/grUqyRJZr9wldvoFgag0QmqDGB7yUYZlQjZwJm+V5qIKFsQkcQWCppDCbMFifP3GurDNyh0rYkugv190RGY2OmcWQ7Y4pjs+7Nxf+8IMXhXZhxmaQIki0XDVPhonLn/7sDroGhmFpCmeb2VpeNqaYMbUp5G4K//vImaVfK/k25el8t1kqrOHLkklyREvHJLamRBmmSFmFEkWfySt4cdF6cd+dj2brlrGYuyB84nz9q+5FM</latexit>

CH2

<latexit sha1_base64="IiYni4SMw6/Km5OrcF+NkoGznNo=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYhByCrshqMdALjlGMA/YLGF20kmGzM4sM71iWPIZXjwo4tWv8ebfOHkcNLGgoajqprsrSgQ36Hnfztb2zu7efu4gf3h0fHJaODtvG5VqBi2mhNLdiBoQXEILOQroJhpoHAnoRJP63O88gjZcyQecJhDGdCT5kDOKVgp6CE+Y1RuzfqVfKHplbwF3k/grUqyRJZr9wldvoFgag0QmqDGB7yUYZlQjZwJm+V5qIKFsQkcQWCppDCbMFifP3GurDNyh0rYkugv190RGY2OmcWQ7Y4pjs+7Nxf+8IMXhXZhxmaQIki0XDVPhonLn/7sDroGhmFpCmeb2VpeNqaYMbUp5G4K//vImaVfK/k25el8t1kqrOHLkklyREvHJLamRBmmSFmFEkWfySt4cdF6cd+dj2brlrGYuyB84nz9q+5FM</latexit>

CH2

<latexit sha1_base64="LXemwC7qSXvDxrmNfwDpJqp96hw=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DuXhMwDwgWcLspDcZMzu7zMwKYckXePGgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJfe53nlBpHssHM03Qj+hI8pAzaqzUrA+KJbfsLkA2ibcipRos0RgUv/rDmKURSsME1brnuYnxM6oMZwJnhX6qMaFsQkfYs1TSCLWfLQ6dkSurDEkYK1vSkIX6eyKjkdbTKLCdETVjve7Nxf+8XmrCOz/jMkkNSrZcFKaCmJjMvyZDrpAZMbWEMsXtrYSNqaLM2GwKNgRv/eVN0q6UvZtytVkp1aqrOPJwAZdwDR7cQg3uoQEtYIDwDK/w5jw6L86787FszTmrmXP4A+fzB+r9jQA=</latexit>

C<latexit sha1_base64="LXemwC7qSXvDxrmNfwDpJqp96hw=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DuXhMwDwgWcLspDcZMzu7zMwKYckXePGgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJfe53nlBpHssHM03Qj+hI8pAzaqzUrA+KJbfsLkA2ibcipRos0RgUv/rDmKURSsME1brnuYnxM6oMZwJnhX6qMaFsQkfYs1TSCLWfLQ6dkSurDEkYK1vSkIX6eyKjkdbTKLCdETVjve7Nxf+8XmrCOz/jMkkNSrZcFKaCmJjMvyZDrpAZMbWEMsXtrYSNqaLM2GwKNgRv/eVN0q6UvZtytVkp1aqrOPJwAZdwDR7cQg3uoQEtYIDwDK/w5jw6L86787FszTmrmXP4A+fzB+r9jQA=</latexit>

C

<latexit sha1_base64="LXemwC7qSXvDxrmNfwDpJqp96hw=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DuXhMwDwgWcLspDcZMzu7zMwKYckXePGgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJfe53nlBpHssHM03Qj+hI8pAzaqzUrA+KJbfsLkA2ibcipRos0RgUv/rDmKURSsME1brnuYnxM6oMZwJnhX6qMaFsQkfYs1TSCLWfLQ6dkSurDEkYK1vSkIX6eyKjkdbTKLCdETVjve7Nxf+8XmrCOz/jMkkNSrZcFKaCmJjMvyZDrpAZMbWEMsXtrYSNqaLM2GwKNgRv/eVN0q6UvZtytVkp1aqrOPJwAZdwDR7cQg3uoQEtYIDwDK/w5jw6L86787FszTmrmXP4A+fzB+r9jQA=</latexit>

C <latexit sha1_base64="WKuzwCv4nZVmBXcuZ17eKfhI434=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKiB4DXjxJAuYByRJmJ73JmNnZZWZWCEu+wIsHRbz6Sd78GyePgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8MJME/YgOJQ85o8ZKjft+seSW3TnIOvGWpFSDBer94ldvELM0QmmYoFp3PTcxfkaV4UzgtNBLNSaUjekQu5ZKGqH2s/mhU3JhlQEJY2VLGjJXf09kNNJ6EgW2M6JmpFe9mfif101NeONnXCapQckWi8JUEBOT2ddkwBUyIyaWUKa4vZWwEVWUGZtNwYbgrb68TlpXZa9arjQqpVplGUcezuAcLsGDa6jBHdShCQwQnuEV3pxH58V5dz4WrTlnOXMKf+B8/gD8SY0N</latexit>

N

<latexit sha1_base64="IiYni4SMw6/Km5OrcF+NkoGznNo=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYhByCrshqMdALjlGMA/YLGF20kmGzM4sM71iWPIZXjwo4tWv8ebfOHkcNLGgoajqprsrSgQ36Hnfztb2zu7efu4gf3h0fHJaODtvG5VqBi2mhNLdiBoQXEILOQroJhpoHAnoRJP63O88gjZcyQecJhDGdCT5kDOKVgp6CE+Y1RuzfqVfKHplbwF3k/grUqyRJZr9wldvoFgag0QmqDGB7yUYZlQjZwJm+V5qIKFsQkcQWCppDCbMFifP3GurDNyh0rYkugv190RGY2OmcWQ7Y4pjs+7Nxf+8IMXhXZhxmaQIki0XDVPhonLn/7sDroGhmFpCmeb2VpeNqaYMbUp5G4K//vImaVfK/k25el8t1kqrOHLkklyREvHJLamRBmmSFmFEkWfySt4cdF6cd+dj2brlrGYuyB84nz9q+5FM</latexit>

CH2

<latexit sha1_base64="IiYni4SMw6/Km5OrcF+NkoGznNo=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYhByCrshqMdALjlGMA/YLGF20kmGzM4sM71iWPIZXjwo4tWv8ebfOHkcNLGgoajqprsrSgQ36Hnfztb2zu7efu4gf3h0fHJaODtvG5VqBi2mhNLdiBoQXEILOQroJhpoHAnoRJP63O88gjZcyQecJhDGdCT5kDOKVgp6CE+Y1RuzfqVfKHplbwF3k/grUqyRJZr9wldvoFgag0QmqDGB7yUYZlQjZwJm+V5qIKFsQkcQWCppDCbMFifP3GurDNyh0rYkugv190RGY2OmcWQ7Y4pjs+7Nxf+8IMXhXZhxmaQIki0XDVPhonLn/7sDroGhmFpCmeb2VpeNqaYMbUp5G4K//vImaVfK/k25el8t1kqrOHLkklyREvHJLamRBmmSFmFEkWfySt4cdF6cd+dj2brlrGYuyB84nz9q+5FM</latexit>

CH2

<latexit sha1_base64="IiYni4SMw6/Km5OrcF+NkoGznNo=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYhByCrshqMdALjlGMA/YLGF20kmGzM4sM71iWPIZXjwo4tWv8ebfOHkcNLGgoajqprsrSgQ36Hnfztb2zu7efu4gf3h0fHJaODtvG5VqBi2mhNLdiBoQXEILOQroJhpoHAnoRJP63O88gjZcyQecJhDGdCT5kDOKVgp6CE+Y1RuzfqVfKHplbwF3k/grUqyRJZr9wldvoFgag0QmqDGB7yUYZlQjZwJm+V5qIKFsQkcQWCppDCbMFifP3GurDNyh0rYkugv190RGY2OmcWQ7Y4pjs+7Nxf+8IMXhXZhxmaQIki0XDVPhonLn/7sDroGhmFpCmeb2VpeNqaYMbUp5G4K//vImaVfK/k25el8t1kqrOHLkklyREvHJLamRBmmSFmFEkWfySt4cdF6cd+dj2brlrGYuyB84nz9q+5FM</latexit>

CH2

<latexit sha1_base64="IiYni4SMw6/Km5OrcF+NkoGznNo=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYhByCrshqMdALjlGMA/YLGF20kmGzM4sM71iWPIZXjwo4tWv8ebfOHkcNLGgoajqprsrSgQ36Hnfztb2zu7efu4gf3h0fHJaODtvG5VqBi2mhNLdiBoQXEILOQroJhpoHAnoRJP63O88gjZcyQecJhDGdCT5kDOKVgp6CE+Y1RuzfqVfKHplbwF3k/grUqyRJZr9wldvoFgag0QmqDGB7yUYZlQjZwJm+V5qIKFsQkcQWCppDCbMFifP3GurDNyh0rYkugv190RGY2OmcWQ7Y4pjs+7Nxf+8IMXhXZhxmaQIki0XDVPhonLn/7sDroGhmFpCmeb2VpeNqaYMbUp5G4K//vImaVfK/k25el8t1kqrOHLkklyREvHJLamRBmmSFmFEkWfySt4cdF6cd+dj2brlrGYuyB84nz9q+5FM</latexit>

CH2

<latexit sha1_base64="dGiXgCejlq2KIbqKmwWPmj3/GZg=">AAAB8nicbZDLSgMxFIYzrZdab1WXblKLUDdlRkS7LLhxWaE3mA5DJs20oZlkSDJCGerOR3DjQhG3PocP4M5HcWem7UJbfwh8/P855JwTxIwqbdtfVi6/tr6xWdgqbu/s7u2XDg47SiQSkzYWTMhegBRhlJO2ppqRXiwJigJGusH4Osu7d0QqKnhLT2LiRWjIaUgx0sZyW34a+860Ojwr+qWKXbNngqvgLKDSKH+X8w8f902/9NkfCJxEhGvMkFKuY8faS5HUFDMyLfYTRWKEx2hIXIMcRUR56WzkKTw1zgCGQprHNZy5vztSFCk1iQJTGSE9UstZZv6XuYkO615KeZxowvH8ozBhUAuY7Q8HVBKs2cQAwpKaWSEeIYmwNlfKjuAsr7wKnfOac1m7uHUqjTqYqwCOwQmoAgdcgQa4AU3QBhgI8AiewYulrSfr1Xqbl+asRc8R+CPr/QdN3JOY</latexit>

Tp1(g)

<latexit sha1_base64="D6tB+XInLzevV7d2AI7P43r1StU=">AAAB8nicbZDLSgMxFIYz1kutt6pLN6lFqJsyU0S7LLhxWaE3mA5DJs20oZlkSDJCGerOR3DjQhG3PocP4M5HcWem7UJbfwh8/P855JwTxIwqbdtf1lpufWNzK79d2Nnd2z8oHh51lEgkJm0smJC9ACnCKCdtTTUjvVgSFAWMdIPxdZZ374hUVPCWnsTEi9CQ05BipI3ltvw09mvTyvC84BfLdtWeCa6Cs4Byo/Rdyj183Df94md/IHASEa4xQ0q5jh1rL0VSU8zItNBPFIkRHqMhcQ1yFBHlpbORp/DMOAMYCmke13Dm/u5IUaTUJApMZYT0SC1nmflf5iY6rHsp5XGiCcfzj8KEQS1gtj8cUEmwZhMDCEtqZoV4hCTC2lwpO4KzvPIqdGpV57J6ceuUG3UwVx6cgFNQAQ64Ag1wA5qgDTAQ4BE8gxdLW0/Wq/U2L12zFj3H4I+s9x9PZZOZ</latexit>

Tp2(g)<latexit sha1_base64="HL38iiYqwqN0y33kaRbG0v0owfo=">AAAB73icbZC7SgNBFIbPJl5ivEUtbSYGwSrsBtGUARvLCLlBEpbZyWwyZHZ2nZkVwhI7X8DGQhFbX8QHsPNR7JxNUmjiDwMf/38Oc87xIs6Utu0vK5NdW9/YzG3lt3d29/YLB4ctFcaS0CYJeSg7HlaUM0GbmmlOO5GkOPA4bXvjqzRv31GpWCgaehLRfoCHgvmMYG2sTsNNIrcyzbuFkl22Z0Kr4CygVCt+F7MPH/d1t/DZG4QkDqjQhGOluo4d6X6CpWaE02m+FysaYTLGQ9o1KHBAVT+ZzTtFp8YZID+U5gmNZu7vjgQHSk0Cz1QGWI/Ucpaa/2XdWPvVfsJEFGsqyPwjP+ZIhyhdHg2YpETziQFMJDOzIjLCEhNtTpQewVleeRValbJzUT6/cUq1KsyVg2M4gTNw4BJqcA11aAIBDo/wDC/WrfVkvVpv89KMteg5gj+y3n8AwBiSww==</latexit>

Tp2

<latexit sha1_base64="cQkVA/sjvo1J+OKm/lVmF7UCJLg=">AAAB73icbZC7SgNBFIbPGi8x3qKWNhODYBV2RTRlwMYyQm6QLMvsZDYZMju7zswKYYmdL2BjoYitL+ID2Pkods4mKTTxh4GP/z+HOef4MWdK2/aXtZJbXVvfyG8WtrZ3dveK+wctFSWS0CaJeCQ7PlaUM0GbmmlOO7GkOPQ5bfujqyxv31GpWCQaehxTN8QDwQJGsDZWp+GlsedMCl6xbFfsqdAyOHMo10rfpdzDx33dK372+hFJQio04ViprmPH2k2x1IxwOin0EkVjTEZ4QLsGBQ6pctPpvBN0Ypw+CiJpntBo6v7uSHGo1Dj0TWWI9VAtZpn5X9ZNdFB1UybiRFNBZh8FCUc6QtnyqM8kJZqPDWAimZkVkSGWmGhzouwIzuLKy9A6qzgXlfMbp1yrwkx5OIJjOAUHLqEG11CHJhDg8AjP8GLdWk/Wq/U2K12x5j2H8EfW+w++kpLC</latexit>

Tp1

(a) Invariance.

<latexit sha1_base64="OJ5dyR2Y8Mv/B/jcSK0rqjbhJiM=">AAAB8HicbVDLSgNBEOyNUWN8RT16GQ1CvIRdEc1FCHjxGMG8SJYwO5lNhszMLjOzQljyFV48KOLVr/AbvPk3Th4HTSxoKKq66e4KYs60cd1vJ7OWXd/YzG3lt3d29/YLB4cNHSWK0DqJeKRaAdaUM0nrhhlOW7GiWAScNoPR7dRvPlKlWSQfzDimvsADyUJGsLFSuxsPWWnQ8857haJbdmdAq8RbkGIV3cjsZ/uk1it8dfsRSQSVhnCsdcdzY+OnWBlGOJ3ku4mmMSYjPKAdSyUWVPvp7OAJOrNKH4WRsiUNmqm/J1IstB6LwHYKbIZ62ZuK/3mdxIQVP2UyTgyVZL4oTDgyEZp+j/pMUWL42BJMFLO3IjLEChNjM8rbELzll1dJ46LsXZUv720aFZgjB8dwCiXw4BqqcAc1qAMBAU/wAq+Ocp6dN+d93ppxFjNH8AfOxw/ZpZH9</latexit>

�(g1)<latexit sha1_base64="0kiBn4BsdNmHrLDjQd23x7EAoG8=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZcFF7qsYB/QDiWTZtrQTGZI7ghl6Ge4caGIW7/GnX9jpq2grQcCh3PuJeeeIJHCoOt+OYW19Y3NreJ2aWd3b/+gfHjUMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2Mb3K//ci1EbF6wEnC/YgOlQgFo2ilbi+iOGJUZrfTfrniVt0ZyCrxFqRShzka/fJnbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctVTTixs9mkafkzCoDEsbaPoVkpv7eyGhkzCQK7GQe0Sx7ufif100xvPYzoZIUuWLzj8JUEoxJfj8ZCM0ZyokllGlhsxI2opoytC2VbAne8smrpHVR9S6rtftapf5TRxFO4BTOwYMrqMMdNKAJDGJ4ghd4ddB5dt6c9/lowVnsHMMfOB/f0sCRpA==</latexit>G
<latexit sha1_base64="1CPgZhYAQv3ukE0+WFhrNlGH2Fo=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSLUTUmkqMuCC11WsA9oQplMJ+3QySTMTJQS+yluXCji1i9x5984aSto64GBwzn3cs+cIOFMacf5slZW19Y3Ngtbxe2d3b19u3TQUnEqCW2SmMeyE2BFORO0qZnmtJNIiqOA03Ywusr99j2VisXiTo8T6kd4IFjICNZG6tklLxmyihdhPSSYZ9eT055ddqrOFGiZuHNSrsMMjZ796fVjkkZUaMKxUl3XSbSfYakZ4XRS9FJFE0xGeEC7hgocUeVn0+gTdGKUPgpjaZ7QaKr+3shwpNQ4CsxknlEtern4n9dNdXjpZ0wkqaaCzA6FKUc6RnkPqM8kJZqPDcFEMpMVkSGWmGjTVtGU4C5+eZm0zqruebV2WyvXf+oowBEcQwVcuIA63EADmkDgAZ7gBV6tR+vZerPeZ6Mr1nznEP7A+vgGM06T/w==</latexit>

�(G)

<latexit sha1_base64="pp9xfBmgFzws+/HXdVciswv09Es=">AAAB6nicbVDLSsNAFL2pr1pfVZfdDJaCq5KIaJcFNy4rmrbQhjKZTtKhk0mYmQgldOfWjQtF3PotfoA7/QC/wA9w+lho64ELh3Pu5d57/IQzpW37w8qtrK6tb+Q3C1vbO7t7xf2DpopTSahLYh7Lto8V5UxQVzPNaTuRFEc+py1/eDHxW7dUKhaLGz1KqBfhULCAEayNdB32nF6xbFftKdAyceakXC9V7r7fvj4bveJ7tx+TNKJCE46V6jh2or0MS80Ip+NCN1U0wWSIQ9oxVOCIKi+bnjpGFaP0URBLU0Kjqfp7IsORUqPIN50R1gO16E3E/7xOqoOalzGRpJoKMlsUpBzpGE3+Rn0mKdF8ZAgmkplbERlgiYk26RRMCM7iy8ukeVJ1zqqnVyaNGsyQhxIcwTE4cA51uIQGuEAghHt4hCeLWw/Ws/Uya81Z85lD+APr9Qf3EJII</latexit> g1

<latexit sha1_base64="N0oqi0eHBrxyXdjRhTSlzHwu9Wc=">AAAB6nicbVC7SgNBFL0bXzG+opZpBkPAKuwGiSkDNpYRzQOSJcxOZjdDZmeXmVkhLOlsbSwUsfVb/AA7/QC/wA9w8ig08cCFwzn3cu89XsyZ0rb9YWXW1jc2t7LbuZ3dvf2D/OFRS0WJJLRJIh7JjocV5UzQpmaa004sKQ49Ttve6GLqt2+pVCwSN3ocUzfEgWA+I1gb6TroV/r5ol22Z0CrxFmQYr1Quvt++/ps9PPvvUFEkpAKTThWquvYsXZTLDUjnE5yvUTRGJMRDmjXUIFDqtx0duoElYwyQH4kTQmNZurviRSHSo1Dz3SGWA/VsjcV//O6ifZrbspEnGgqyHyRn3CkIzT9Gw2YpETzsSGYSGZuRWSIJSbapJMzITjLL6+SVqXsVMtnVyaNGsyRhQKcwCk4cA51uIQGNIFAAPfwCE8Wtx6sZ+tl3pqxFjPH8AfW6w/4lJIJ</latexit> g2

<latexit sha1_base64="Nj7KURJseFlru7tU2jTMsd8dKtU=">AAAB8HicbVBLSgNBEK2Jvxh/UZfZNIaAqzAjolkG3LiMYD6ShNDT05M06e4ZunuEMGTnDdy4UMStB/EA7vQAnsAD2PksNPFBweO9Kqrq+TFn2rjuh5NZWV1b38hu5ra2d3b38vsHDR0litA6iXikWj7WlDNJ64YZTluxolj4nDb94cXEb95SpVkkr80opl2B+5KFjGBjpZuOYTygaX/cyxfdsjsFWibenBSrhdLd99vXZ62Xf+8EEUkElYZwrHXbc2PTTbEyjHA6znUSTWNMhrhP25ZKLKjuptODx6hklQCFkbIlDZqqvydSLLQeCd92CmwGetGbiP957cSElW7KZJwYKslsUZhwZCI0+R4FTFFi+MgSTBSztyIywAoTYzPK2RC8xZeXSeOk7J2VT69sGhWYIQsFOIJj8OAcqnAJNagDAQH38AhPjnIenGfnZdaaceYzh/AHzusPLt2VGg==</latexit>

g̃ <latexit sha1_base64="6I3RK528PgjZrBbq6Ms5bEpJ1LE=">AAAB+HicbVDLSsNAFL2pVWt9NOrSzWgR6qYkItqNUHDjsoJ9SBPKZDpph04mYWYi1NAvceNCEbd+gd/gzr9x+lho9cCFwzn3cu89QcKZ0o7zZeVW8qtr64WN4ubW9k7J3t1rqTiVhDZJzGPZCbCinAna1Exz2kkkxVHAaTsYXU399j2VisXiVo8T6kd4IFjICNZG6tklLxmyiqcZ79NsMDnp2WWn6syA/hJ3Qcp1dCnyH3eHjZ796fVjkkZUaMKxUl3XSbSfYakZ4XRS9FJFE0xGeEC7hgocUeVns8Mn6NgofRTG0pTQaKb+nMhwpNQ4CkxnhPVQLXtT8T+vm+qw5mdMJKmmgswXhSlHOkbTFFCfSUo0HxuCiWTmVkSGWGKiTVZFE4K7/PJf0jqtuufVsxuTRg3mKMABHEEFXLiAOlxDA5pAIIVHeIYX68F6sl6tt3lrzlrM7MMvWO/fluOVQA==</latexit>

�(g̃)

<latexit sha1_base64="rnrtwe4FqV+ZdWV9b9/pIdnFn3w=">AAAB8HicbVDLSgNBEOzVqDG+oh69jAYhXsJuEM1FCHjxGMG8SJYwO5lNhszMLjOzQljyFV48KOLVr/AbvPk3Th4HTSxoKKq66e4KYs60cd1vZ209s7G5ld3O7ezu7R/kD48aOkoUoXUS8Ui1AqwpZ5LWDTOctmJFsQg4bQaj26nffKRKs0g+mHFMfYEHkoWMYGOldjcesuKgV77o5QtuyZ0BrRJvQQpVdCMzn+3TWi//1e1HJBFUGsKx1h3PjY2fYmUY4XSS6yaaxpiM8IB2LJVYUO2ns4Mn6NwqfRRGypY0aKb+nkix0HosAtspsBnqZW8q/ud1EhNW/JTJODFUkvmiMOHIRGj6PeozRYnhY0swUczeisgQK0yMzShnQ/CWX14ljXLJuypd3ts0KjBHFk7gDIrgwTVU4Q5qUAcCAp7gBV4d5Tw7b877vHXNWcwcwx84Hz/bKpH+</latexit>

�(g2)

<latexit sha1_base64="e9JH+quwPh7jXscQCTYj8Wle8MU=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgxjIjRbssuHFZwdZKO5RMJtOG5jEkGaEM/Qo3LhRx6+e4829MHwttPRA4nHMuufdEKWfG+v63V1hb39jcKm6Xdnb39g/Kh0dtozJNaIsornQnwoZyJmnLMstpJ9UUi4jTh2h0M/Ufnqg2TMl7O05pKPBAsoQRbJ30GFz0uAvHuF+u+FV/BrRKggWpNGCOZr/81YsVyQSVlnBsTDfwUxvmWFtGOJ2UepmhKSYjPKBdRyUW1IT5bOEJOnNKjBKl3ZMWzdTfEzkWxoxF5JIC26FZ9qbif143s0k9zJlMM0slmX+UZBxZhabXo5hpSiwfO4KJZm5XRIZYY2JdRyVXQrB88ippX1aDq2rtrlZp1Bd1FOEETuEcAriGBtxCE1pAQMAzvMKbp70X7937mEcL3mLmGP7A+/wBbt2QLg==</latexit>

1 � �
<latexit sha1_base64="e9JH+quwPh7jXscQCTYj8Wle8MU=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgxjIjRbssuHFZwdZKO5RMJtOG5jEkGaEM/Qo3LhRx6+e4829MHwttPRA4nHMuufdEKWfG+v63V1hb39jcKm6Xdnb39g/Kh0dtozJNaIsornQnwoZyJmnLMstpJ9UUi4jTh2h0M/Ufnqg2TMl7O05pKPBAsoQRbJ30GFz0uAvHuF+u+FV/BrRKggWpNGCOZr/81YsVyQSVlnBsTDfwUxvmWFtGOJ2UepmhKSYjPKBdRyUW1IT5bOEJOnNKjBKl3ZMWzdTfEzkWxoxF5JIC26FZ9qbif143s0k9zJlMM0slmX+UZBxZhabXo5hpSiwfO4KJZm5XRIZYY2JdRyVXQrB88ippX1aDq2rtrlZp1Bd1FOEETuEcAriGBtxCE1pAQMAzvMKbp70X7937mEcL3mLmGP7A+/wBbt2QLg==</latexit>

1 � �

<latexit sha1_base64="btjGN37odafvN88LSfYFF+PvyVQ=">AAAB7nicbVDLSgMxFL1TX7W+qi7dBIvgqsxIqV0W3LisYB/QDiWTybShmcyQ3BHK0I9w40IRt36PO//G9LHQ1gOBwznnkntPkEph0HW/ncLW9s7uXnG/dHB4dHxSPj3rmCTTjLdZIhPdC6jhUijeRoGS91LNaRxI3g0md3O/+8S1EYl6xGnK/ZiOlIgEo2il7kDaaEiH5YpbdRcgm8RbkUoTlmgNy1+DMGFZzBUySY3pe26Kfk41Cib5rDTIDE8pm9AR71uqaMyNny/WnZErq4QkSrR9CslC/T2R09iYaRzYZExxbNa9ufif188wavi5UGmGXLHlR1EmCSZkfjsJheYM5dQSyrSwuxI2ppoytA2VbAne+smbpHNT9erV2kOt0mys6ijCBVzCNXhwC024hxa0gcEEnuEV3pzUeXHenY9ltOCsZs7hD5zPH5Oxj7w=</latexit>

�
<latexit sha1_base64="btjGN37odafvN88LSfYFF+PvyVQ=">AAAB7nicbVDLSgMxFL1TX7W+qi7dBIvgqsxIqV0W3LisYB/QDiWTybShmcyQ3BHK0I9w40IRt36PO//G9LHQ1gOBwznnkntPkEph0HW/ncLW9s7uXnG/dHB4dHxSPj3rmCTTjLdZIhPdC6jhUijeRoGS91LNaRxI3g0md3O/+8S1EYl6xGnK/ZiOlIgEo2il7kDaaEiH5YpbdRcgm8RbkUoTlmgNy1+DMGFZzBUySY3pe26Kfk41Cib5rDTIDE8pm9AR71uqaMyNny/WnZErq4QkSrR9CslC/T2R09iYaRzYZExxbNa9ufif188wavi5UGmGXLHlR1EmCSZkfjsJheYM5dQSyrSwuxI2ppoytA2VbAne+smbpHNT9erV2kOt0mys6ijCBVzCNXhwC024hxa0gcEEnuEV3pzUeXHenY9ltOCsZs7hD5zPH5Oxj7w=</latexit>

�

<latexit sha1_base64="G0XCydthVvZSM9aDf4rVDBqn8AQ=">AAAB63icbVC7SgNBFL0bXzG+opZpBkPAKuyKaMqAjWUE84AkyOxkNjtkZnaZmRXCks7axkIRW3/FD7DTD/AL/ABnkxSaeODC4Zx7ufceP+ZMG9f9cHIrq2vrG/nNwtb2zu5ecf+gpaNEEdokEY9Ux8eaciZp0zDDaSdWFAuf07Y/usj89i1VmkXy2oxj2hd4KFnACDaZ1ItDdlMsu1V3CrRMvDkp10uVu++3r8/GTfG9N4hIIqg0hGOtu54bm36KlWGE00mhl2gaYzLCQ9q1VGJBdT+d3jpBFasMUBApW9Kgqfp7IsVC67HwbafAJtSLXib+53UTE9T6KZNxYqgks0VBwpGJUPY4GjBFieFjSzBRzN6KSIgVJsbGU7AheIsvL5PWSdU7q55e2TRqMEMeSnAEx+DBOdThEhrQBAIh3MMjPDnCeXCenZdZa86ZzxzCHzivPxjdkrg=</latexit>

�

<latexit sha1_base64="G0XCydthVvZSM9aDf4rVDBqn8AQ=">AAAB63icbVC7SgNBFL0bXzG+opZpBkPAKuyKaMqAjWUE84AkyOxkNjtkZnaZmRXCks7axkIRW3/FD7DTD/AL/ABnkxSaeODC4Zx7ufceP+ZMG9f9cHIrq2vrG/nNwtb2zu5ecf+gpaNEEdokEY9Ux8eaciZp0zDDaSdWFAuf07Y/usj89i1VmkXy2oxj2hd4KFnACDaZ1ItDdlMsu1V3CrRMvDkp10uVu++3r8/GTfG9N4hIIqg0hGOtu54bm36KlWGE00mhl2gaYzLCQ9q1VGJBdT+d3jpBFasMUBApW9Kgqfp7IsVC67HwbafAJtSLXib+53UTE9T6KZNxYqgks0VBwpGJUPY4GjBFieFjSzBRzN6KSIgVJsbGU7AheIsvL5PWSdU7q55e2TRqMEMeSnAEx+DBOdThEhrQBAIh3MMjPDnCeXCenZdZa86ZzxzCHzivPxjdkrg=</latexit>

�

<latexit sha1_base64="G0XCydthVvZSM9aDf4rVDBqn8AQ=">AAAB63icbVC7SgNBFL0bXzG+opZpBkPAKuyKaMqAjWUE84AkyOxkNjtkZnaZmRXCks7axkIRW3/FD7DTD/AL/ABnkxSaeODC4Zx7ufceP+ZMG9f9cHIrq2vrG/nNwtb2zu5ecf+gpaNEEdokEY9Ux8eaciZp0zDDaSdWFAuf07Y/usj89i1VmkXy2oxj2hd4KFnACDaZ1ItDdlMsu1V3CrRMvDkp10uVu++3r8/GTfG9N4hIIqg0hGOtu54bm36KlWGE00mhl2gaYzLCQ9q1VGJBdT+d3jpBFasMUBApW9Kgqfp7IsVC67HwbafAJtSLXib+53UTE9T6KZNxYqgks0VBwpGJUPY4GjBFieFjSzBRzN6KSIgVJsbGU7AheIsvL5PWSdU7q55e2TRqMEMeSnAEx+DBOdThEhrQBAIh3MMjPDnCeXCenZdZa86ZzxzCHzivPxjdkrg=</latexit>

�

view1
view2

<latexit sha1_base64="mqqgzKID3Hsh2yDAVtA3/PJAgXc=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKiB4DuXhMwDwgWcLspDcZMzu7zMwKYckXePGgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJfe53nlBpHssHM03Qj+hI8pAzaqzUrA+KJbfsLkA2ibcipRos0RgUv/rDmKURSsME1brnuYnxM6oMZwJnhX6qMaFsQkfYs1TSCLWfLQ6dkSurDEkYK1vSkIX6eyKjkdbTKLCdETVjve7Nxf+8XmrCOz/jMkkNSrZcFKaCmJjMvyZDrpAZMbWEMsXtrYSNqaLM2GwKNgRv/eVN0r4pe9VypVkp1SqrOPJwAZdwDR7cQg3uoQEtYIDwDK/w5jw6L86787FszTmrmXP4A+fzB+udjQI=</latexit>

C <latexit sha1_base64="mqqgzKID3Hsh2yDAVtA3/PJAgXc=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKiB4DuXhMwDwgWcLspDcZMzu7zMwKYckXePGgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJfe53nlBpHssHM03Qj+hI8pAzaqzUrA+KJbfsLkA2ibcipRos0RgUv/rDmKURSsME1brnuYnxM6oMZwJnhX6qMaFsQkfYs1TSCLWfLQ6dkSurDEkYK1vSkIX6eyKjkdbTKLCdETVjve7Nxf+8XmrCOz/jMkkNSrZcFKaCmJjMvyZDrpAZMbWEMsXtrYSNqaLM2GwKNgRv/eVN0r4pe9VypVkp1SqrOPJwAZdwDR7cQg3uoQEtYIDwDK/w5jw6L86787FszTmrmXP4A+fzB+udjQI=</latexit>

C
<latexit sha1_base64="mqqgzKID3Hsh2yDAVtA3/PJAgXc=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKiB4DuXhMwDwgWcLspDcZMzu7zMwKYckXePGgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJfe53nlBpHssHM03Qj+hI8pAzaqzUrA+KJbfsLkA2ibcipRos0RgUv/rDmKURSsME1brnuYnxM6oMZwJnhX6qMaFsQkfYs1TSCLWfLQ6dkSurDEkYK1vSkIX6eyKjkdbTKLCdETVjve7Nxf+8XmrCOz/jMkkNSrZcFKaCmJjMvyZDrpAZMbWEMsXtrYSNqaLM2GwKNgRv/eVN0r4pe9VypVkp1SqrOPJwAZdwDR7cQg3uoQEtYIDwDK/w5jw6L86787FszTmrmXP4A+fzB+udjQI=</latexit>

C
<latexit sha1_base64="mqqgzKID3Hsh2yDAVtA3/PJAgXc=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKiB4DuXhMwDwgWcLspDcZMzu7zMwKYckXePGgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJfe53nlBpHssHM03Qj+hI8pAzaqzUrA+KJbfsLkA2ibcipRos0RgUv/rDmKURSsME1brnuYnxM6oMZwJnhX6qMaFsQkfYs1TSCLWfLQ6dkSurDEkYK1vSkIX6eyKjkdbTKLCdETVjve7Nxf+8XmrCOz/jMkkNSrZcFKaCmJjMvyZDrpAZMbWEMsXtrYSNqaLM2GwKNgRv/eVN0r4pe9VypVkp1SqrOPJwAZdwDR7cQg3uoQEtYIDwDK/w5jw6L86787FszTmrmXP4A+fzB+udjQI=</latexit>

C
<latexit sha1_base64="mqqgzKID3Hsh2yDAVtA3/PJAgXc=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKiB4DuXhMwDwgWcLspDcZMzu7zMwKYckXePGgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJfe53nlBpHssHM03Qj+hI8pAzaqzUrA+KJbfsLkA2ibcipRos0RgUv/rDmKURSsME1brnuYnxM6oMZwJnhX6qMaFsQkfYs1TSCLWfLQ6dkSurDEkYK1vSkIX6eyKjkdbTKLCdETVjve7Nxf+8XmrCOz/jMkkNSrZcFKaCmJjMvyZDrpAZMbWEMsXtrYSNqaLM2GwKNgRv/eVN0r4pe9VypVkp1SqrOPJwAZdwDR7cQg3uoQEtYIDwDK/w5jw6L86787FszTmrmXP4A+fzB+udjQI=</latexit>

C

<latexit sha1_base64="mqqgzKID3Hsh2yDAVtA3/PJAgXc=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKiB4DuXhMwDwgWcLspDcZMzu7zMwKYckXePGgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJfe53nlBpHssHM03Qj+hI8pAzaqzUrA+KJbfsLkA2ibcipRos0RgUv/rDmKURSsME1brnuYnxM6oMZwJnhX6qMaFsQkfYs1TSCLWfLQ6dkSurDEkYK1vSkIX6eyKjkdbTKLCdETVjve7Nxf+8XmrCOz/jMkkNSrZcFKaCmJjMvyZDrpAZMbWEMsXtrYSNqaLM2GwKNgRv/eVN0r4pe9VypVkp1SqrOPJwAZdwDR7cQg3uoQEtYIDwDK/w5jw6L86787FszTmrmXP4A+fzB+udjQI=</latexit>

C

<latexit sha1_base64="mqqgzKID3Hsh2yDAVtA3/PJAgXc=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKiB4DuXhMwDwgWcLspDcZMzu7zMwKYckXePGgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJfe53nlBpHssHM03Qj+hI8pAzaqzUrA+KJbfsLkA2ibcipRos0RgUv/rDmKURSsME1brnuYnxM6oMZwJnhX6qMaFsQkfYs1TSCLWfLQ6dkSurDEkYK1vSkIX6eyKjkdbTKLCdETVjve7Nxf+8XmrCOz/jMkkNSrZcFKaCmJjMvyZDrpAZMbWEMsXtrYSNqaLM2GwKNgRv/eVN0r4pe9VypVkp1SqrOPJwAZdwDR7cQg3uoQEtYIDwDK/w5jw6L86787FszTmrmXP4A+fzB+udjQI=</latexit>

C

<latexit sha1_base64="mqqgzKID3Hsh2yDAVtA3/PJAgXc=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKiB4DuXhMwDwgWcLspDcZMzu7zMwKYckXePGgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJfe53nlBpHssHM03Qj+hI8pAzaqzUrA+KJbfsLkA2ibcipRos0RgUv/rDmKURSsME1brnuYnxM6oMZwJnhX6qMaFsQkfYs1TSCLWfLQ6dkSurDEkYK1vSkIX6eyKjkdbTKLCdETVjve7Nxf+8XmrCOz/jMkkNSrZcFKaCmJjMvyZDrpAZMbWEMsXtrYSNqaLM2GwKNgRv/eVN0r4pe9VypVkp1SqrOPJwAZdwDR7cQg3uoQEtYIDwDK/w5jw6L86787FszTmrmXP4A+fzB+udjQI=</latexit>

C

<latexit sha1_base64="01L3kmZfyZLNjUnTcLUS8oU0MCM=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKiB4DXnJMwDwgWcLspDcZMzu7zMwKYckXePGgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ/dzvPKHSPJYPZpqgH9GR5CFn1FipWR8US27ZXYBsEm9FSjVYojEofvWHMUsjlIYJqnXPcxPjZ1QZzgTOCv1UY0LZhI6wZ6mkEWo/Wxw6I1dWGZIwVrakIQv190RGI62nUWA7I2rGet2bi/95vdSEd37GZZIalGy5KEwFMTGZf02GXCEzYmoJZYrbWwkbU0WZsdkUbAje+subpH1T9qrlSrNSqlVWceThAi7hGjy4hRrUoQEtYIDwDK/w5jw6L86787FszTmrmXP4A+fzB/MxjQc=</latexit>

H

<latexit sha1_base64="01L3kmZfyZLNjUnTcLUS8oU0MCM=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKiB4DXnJMwDwgWcLspDcZMzu7zMwKYckXePGgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ/dzvPKHSPJYPZpqgH9GR5CFn1FipWR8US27ZXYBsEm9FSjVYojEofvWHMUsjlIYJqnXPcxPjZ1QZzgTOCv1UY0LZhI6wZ6mkEWo/Wxw6I1dWGZIwVrakIQv190RGI62nUWA7I2rGet2bi/95vdSEd37GZZIalGy5KEwFMTGZf02GXCEzYmoJZYrbWwkbU0WZsdkUbAje+subpH1T9qrlSrNSqlVWceThAi7hGjy4hRrUoQEtYIDwDK/w5jw6L86787FszTmrmXP4A+fzB/MxjQc=</latexit>

H

<latexit sha1_base64="mqqgzKID3Hsh2yDAVtA3/PJAgXc=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKiB4DuXhMwDwgWcLspDcZMzu7zMwKYckXePGgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJfe53nlBpHssHM03Qj+hI8pAzaqzUrA+KJbfsLkA2ibcipRos0RgUv/rDmKURSsME1brnuYnxM6oMZwJnhX6qMaFsQkfYs1TSCLWfLQ6dkSurDEkYK1vSkIX6eyKjkdbTKLCdETVjve7Nxf+8XmrCOz/jMkkNSrZcFKaCmJjMvyZDrpAZMbWEMsXtrYSNqaLM2GwKNgRv/eVN0r4pe9VypVkp1SqrOPJwAZdwDR7cQg3uoQEtYIDwDK/w5jw6L86787FszTmrmXP4A+fzB+udjQI=</latexit>

C

<latexit sha1_base64="mqqgzKID3Hsh2yDAVtA3/PJAgXc=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKiB4DuXhMwDwgWcLspDcZMzu7zMwKYckXePGgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJfe53nlBpHssHM03Qj+hI8pAzaqzUrA+KJbfsLkA2ibcipRos0RgUv/rDmKURSsME1brnuYnxM6oMZwJnhX6qMaFsQkfYs1TSCLWfLQ6dkSurDEkYK1vSkIX6eyKjkdbTKLCdETVjve7Nxf+8XmrCOz/jMkkNSrZcFKaCmJjMvyZDrpAZMbWEMsXtrYSNqaLM2GwKNgRv/eVN0r4pe9VypVkp1SqrOPJwAZdwDR7cQg3uoQEtYIDwDK/w5jw6L86787FszTmrmXP4A+fzB+udjQI=</latexit>

C <latexit sha1_base64="mqqgzKID3Hsh2yDAVtA3/PJAgXc=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKiB4DuXhMwDwgWcLspDcZMzu7zMwKYckXePGgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJfe53nlBpHssHM03Qj+hI8pAzaqzUrA+KJbfsLkA2ibcipRos0RgUv/rDmKURSsME1brnuYnxM6oMZwJnhX6qMaFsQkfYs1TSCLWfLQ6dkSurDEkYK1vSkIX6eyKjkdbTKLCdETVjve7Nxf+8XmrCOz/jMkkNSrZcFKaCmJjMvyZDrpAZMbWEMsXtrYSNqaLM2GwKNgRv/eVN0r4pe9VypVkp1SqrOPJwAZdwDR7cQg3uoQEtYIDwDK/w5jw6L86787FszTmrmXP4A+fzB+udjQI=</latexit>

C
<latexit sha1_base64="mqqgzKID3Hsh2yDAVtA3/PJAgXc=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKiB4DuXhMwDwgWcLspDcZMzu7zMwKYckXePGgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJfe53nlBpHssHM03Qj+hI8pAzaqzUrA+KJbfsLkA2ibcipRos0RgUv/rDmKURSsME1brnuYnxM6oMZwJnhX6qMaFsQkfYs1TSCLWfLQ6dkSurDEkYK1vSkIX6eyKjkdbTKLCdETVjve7Nxf+8XmrCOz/jMkkNSrZcFKaCmJjMvyZDrpAZMbWEMsXtrYSNqaLM2GwKNgRv/eVN0r4pe9VypVkp1SqrOPJwAZdwDR7cQg3uoQEtYIDwDK/w5jw6L86787FszTmrmXP4A+fzB+udjQI=</latexit>

C

(b) Equivariance

Figure 1: (a) invariance to intra-graph augmentations; (b) equivariance to cross-graph augmentations.

• Limiting the augmentations to local substructures of an individual graph is aggressive (Purush-
walkam & Gupta, 2020; Wang et al., 2022) insofar as the augmented views fragmentarily or even
wrongly describe the characteristics of the anchor graph. Take a molecule graph as an example.
After randomly dropping some nodes, one view could hold a cyano group (-C≡N) that determines
the property of molecule hypertoxic, while another could corrupt this functional group. Thus,
intra-graph augmentations are inadequate for presenting a holistic view of the anchor graph.

• Worse still, aggressive augmentations easily make two positive views far from each other, but the
invariance mechanism blindly forces their representations to be invariant. Considering the molecule
graph’s views again (cf. Figure 1a), invariance-guided contrastive learning simply maximizes their
representation agreement, regardless of the changes in the hypertoxic property. Therefore, it might
amplify the negative impact of aggressive intra-graph augmentations and restrain representations
from reflecting the instance semantics faithfully.

To mitigate these negative influences, we get inspiration from the recent work on equivariant self-
supervised learning (E-SSL) (Dangovski et al., 2022). It splits the augmentations into two parts, to
which representations should be insensitive and sensitive, and then establishes the invariance and
equivariance mechanisms correspondingly. The idea of “equivariance” is our focus, which makes
representations aware of semantic changes caused by certain augmentations H. Here we formulate it
as ϕ(Th(g)) = T ′

h(ϕ(g)), ∀h ∈ H, where Th(g) and T ′
h(ϕ(g)) are the actions of augmentation h on

graph g and representation ϕ(g), respectively. Jointly learning equivariance to sensitive augmentations
H and invariance to insensitive augmentations P is promising to shield representations from the
harms of aggressive augmentations. Nonetheless, it is hard, without domain knowledge (Dangovski
et al., 2022; Chuang et al., 2022) or extensive testing (Dangovski et al., 2022), to tell apart sensitive
and insensitive augmentations.

To embody equivariance in GCL, we propose a simple but effective approach of Equivariant Graph
Contrastive Learning (E-GCL). E-GCL is an instantiation of E-SSL for graphs. Unlike previous E-SSL
works, E-GCL leaves existing intra-graph augmentations untouched, and creates new augmentations
through the “cross-graph” strategy. Concretely, inspired by mixup (Guo & Mao, 2021; Zhang
et al., 2018), the cross-graph augmentation interpolates the raw features of two graphs (i.e., Th),
while employing the same interpolation strategy on the graph labels that are portrayed by graph
representations (i.e., T ′

h). The augmentations across graphs not only maintain the holistic information
on self-discrimination, but also are orthogonal to the intra-graph augmentations. On the top of intra-
and cross-graph of augmentations, E-GCL separately builds the invariance and equivariance principles
to guide the representation learning. The equivariance to cross-graph augmentations diminishes
the harmful invariance to aggressive augmentations that change global semantics. Integrating two
principles enables representations to be sensitive to global semantic shifts across different graphs
and insensitive to local substructure perturbations of single graphs. Experiments show that E-
GCL achieves promising performances to surpass current state-of-the-art GCL models, across
diverse settings. We also demonstrate E-GCL’s generalization to various SSL frameworks, including
BarlowTwins (Zbontar et al., 2021), GraphCL (You et al., 2020) and SimSiam (Chen & He, 2021).

2 PRELIMINARIES: INVARIANT GRAPH CONTRASTIVE LEARNING

We begin by presenting the instance discrimination task and the invariance mechanism of I-GCL, and
then introduce two key ingredients: graph augmentations and contrastive learning.

2

Under review as a conference paper at ICLR 2023

Instance Discrimination. Let G = {gn}Nn=1 be the set of unlabeled graph instances. We denote a
graph instance g ∈ G by (V, E) involving the node set V and the edge set E . This graph structure can
be represented as an adjacency matrix A ∈ {0, 1}|V|×|V|, where Auv = 1 if the edge (u, v) ∈ E from
node u to node v holds, otherwise Auv = 0. Moreover, each node v ∈ V could have d1-dimensional
features xv ∈ Rd1 , while each edge (u, v) ∈ E might have d2-dimensional features euv ∈ Rd2 .

On the graph data G without annotations, contrastive self-supervised learning (SSL) aims to pre-train
a graph encoder ϕ : G → Rd that projects the graph instances to a d-dimensional space, so as
to enhance the encoder’s representation ability and facilitate its fine-tuning in downstream tasks.
Towards this end, a prevailing task of pre-training is instance discrimination (Dosovitskiy et al., 2014;
Purushwalkam & Gupta, 2020; Li et al., 2021) — treating each graph instance as one single class,
and distinguishing it from the other graph instances.

Invariance. A leading solution to instance discrimination is to maximize the representation agreement
between augmented views of the same graph, while minimizing the representation agreement between
views of two different graphs. It essentially encourages each instance’s representation to be invariant
to the augmentations (Dangovski et al., 2022; Grill et al., 2020; Zbontar et al., 2021). Mathematically,
invariance can be described by groups (Dangovski et al., 2022; Kondor & Trivedi, 2018; Maron et al.,
2019a). Let P be a group of augmentations (aka. transformations). Invariance makes the encoder ϕ
insensitive to the actions T : P × G → G of the group P on the graphs G, formally:

ϕ(g) = ϕ(Tp(g)), ∀p ∈ P, ∀g ∈ G, (1)
where Tp(g) := T (p, g) is an action of applying the augmentation p on the instance g. Dictating
invariance to the encoder will output the same representations for the original and augmented graphs.
Probing into Equation (1), we find two key ingredients: intra-graph augmentation and contrastive
learning, and will present their common practices in prior studies.

Intra-graph Augmentation. Typically, the augmentation group P is pre-determined to imply prior
knowledge of graph data. Early studies (Hu et al., 2020; Qiu et al., 2020; You et al., 2020; Zhu et al.,
2020) instantiate augmentations as randomly corrupting the topological structure, node features, or
edge features of individual graph instances. For example, AttrMasking (Hu et al., 2020) masks node
and edge attributes, and applies an objective to reconstruct them. GCC (Qiu et al., 2020) explores
random walks over the anchor graph to create different subgraph views. GraphCL (You et al., 2020)
systematically investigates the combined effect of various random augmentations. Despite the success,
random corruptions are too aggressive to maintain the semantic consistency (Guo & Mao, 2021)
between the anchor graph and its augmented views. The invariance principle blindly ignores the
semantic shift, thus easily pushing dissimilar patterns together and making a pernicious impact on
the representation learning. Some follow-on studies (Zhu et al., 2021; Subramonian, 2021; Suresh
et al., 2021; Xu et al., 2021) learn augmentations instead to underscore salient substructures, so as to
mitigate the semantic shift. For instance, GCA (Zhu et al., 2021) applies node centralities to discover
important substructures in social networks. MICRO-Graph (Subramonian, 2021) learns chemically
meaningful motifs to help the informative subgraph sampling. More recently, AD-GCL (Suresh et al.,
2021) adopts the idea of information bottleneck to adversarially learn the salient subgraphs.

Contrastive Learning. Upon the augmented views, the contrastive learning objective is to classify
whether they come from identical instances. Specifically, it pulls the augmented views derived from
the same instance (i.e., positive samples) together and pushes the views of different instances (i.e.,
negative samples) apart (Chen et al., 2020; He et al., 2020). The common practices of this objective are
InfoNCE (van den Oord et al., 2018), NCE (Misra & van der Maaten, 2020), and NT-Xent (Chen et al.,
2020). Here we consider the NT-Xent adopted by GraphCL. Given a minibatch of graph instances
{gi}Ni=1, it first generates two different augmented views, denoted as {g1i |g1i = Tp1

(g), p1 ∼ P}Ni=1

and {g2i |g2i = Tp2
(g), p2 ∼ P}Ni=1, and then feeds them into the encoder to yield the representations

as {z1i |z1i = ρ(ϕ(g1i))}Ni=1 and {z2i |z2i = ρ(ϕ(g2i))}Ni=1, where ρ(·) is an MLP projection head.
Formally, the loss of NT-Xent is:

ℓ({z1i }Ni=1, {z2i }Ni=1) = − 1

N

N∑
i=1

log
exp(s(z1i , z

2
i)/τ)∑N

j=1,j ̸=i exp(s(z
1
i , z

2
j)/τ)

, (2)

where s(·) is the function of cosine similarity, and τ is a temperature hyperparameter.

In a nutshell, the interplay between intra-graph augmentation and contrastive learning is tailor-made
for invariance to make the encoder insensitive to differences between the anchor and augmented

3

Under review as a conference paper at ICLR 2023

Projector Projector

Equivariance

Feature
interpolation

Representation
interpolation

Projector Projector

Invariance

Intra-graph augmentation

Cross-graph augmentation

GNN encoder GNN encoder GNN encoder GNN encoder

Figure 2: The framework of E-GCL. The GNN encoder learns invariance for intra-graph augmentation
of dropNode and equivariance for cross-graph augmentation of graph interpolation.

views. In this work, we explore equivariance on cross-graph augmentations to make the encoder
sensitive to the changes in self-discriminative information.

3 METHODOLOGY: EQUIVARIANT GRAPH CONTRASTIVE LEARNING

Here we present the E-GCL framework, which imposes two principles — invariance to intra-graph
augmentations (Figure 2 left) and equivariance to cross-graph augmentations (Figure 2 right) — on
the representation learning, aiming to mitigate the potential limitations of I-GCL. Next, we start with
the concepts of equivariance and cross-graph augmentations.

3.1 EQUIVARIANCE

Inspired by the recent E-SSL studies (Dangovski et al., 2022; Chuang et al., 2022), we aim to patch
invariance’s potential limitations with equivariance. Mathematically, with a group of augmentations H,
the encoder ϕ(·) is said to be H-equivariant w.r.t. the actions T : H×G → G and T ′ : H×Rd → Rd

of the group H applied on the graph space G and the representation space Rd, if

ϕ(Th(g)) = T ′
h(ϕ(g)), ∀h ∈ H, ∀g ∈ G, (3)

where Th(g) is the action of applying the transformation h on the graph instance g, while T ′
h(ϕ(g))

is the action of h on the representation ϕ(g). H-equivariant requires that, given a transformation
h ∈ H, h’s influence on the graph should be faithfully reflected by the change of the graph’s
representation. Taking Figure 1b as an example, given the graph’s global semantics are perturbed
by graph interpolation, the representation yielded by the equivariant encoder should transform in a
definite way. Jointly analyzing Equations (1) and (3), it can be shown that invariance is a special case
of equivariance when setting T ′

h as the identity mapping. However, generalizing GCL to equivariance
remains unexplored, thus a focus of our work.

Furthermore, as suggested in the recent E-SSL studies (Dangovski et al., 2022; Chuang et al., 2022),
jointly imposing invariance to some transformations P and equivariance to other transformations H is
promising to result in better representations than relying solely on one of them. Here we term P and
H as insensitive and sensitive transformations, respectively. For example, in computer vision, E-SSL
(Dangovski et al., 2022) sets grayscale of images as P , while treating rotations as H; in natural
language processing, DiffCSE (Chuang et al., 2022) treats the model dropout as P , while using the
word replacement as H. Clearly, it is of crucial importance to partition augmentations into P and
H. Nonetheless, these studies either conduct extensive testings on the impact of different partitions
(Dangovski et al., 2022) which is time-consuming, or exploit domain knowledge to heuristically
partition (Chuang et al., 2022) which might generalize poorly to other domains. Hence, it is infeasible
to apply these strategies on graph augmentations. Worse still, different graph augmentations stem
mostly from the perturbation of graph structures, thus highly likely to corrupt the same attributes of
graphs. Taking the graph g in Figure 1a as an example, masking the nitrogen N atom or dropping the
C ≡ N bond will both corrupt the cyano group and break the corresponding molecular properties. In
a nutshell, owing to (1) the common paradigm of structure corruption and (2) the risk of categorizing

4

Under review as a conference paper at ICLR 2023

them all as insensitive augmentations, we conservatively argue that it is hard to partition graph
augmentations into sensitive H and insensitive parts P .

In this work, leaving partitioning untouched, we remain intra-graph augmentations as the insensitive
transformations P and propose new augmentations across graphs as the sensitive transformations H.

3.2 CROSS-GRAPH AUGMENTATION

We first introduce graph interpolation (Guo & Mao, 2021) to create cross-graph augmentations as H.
Different from previous work, we propose an extension of graph interpolation for SSL (Section 3.3).
We also connect it to group theory and address its limitation of sensitivity to the relative permutation.

Interpolating Graphs as Cross-graph Augmentations. Given two graph instances g ∈ G and
g′ ∈ G, we employ mixup (Zhang et al., 2018), a simple yet effective linear interpolation approach,
on the input features and class labels, respectively:

g̃ = λg + (1− λ)g′, ỹ = λy + (1− λ)y′, (4)
where y and y′ separately denote the one-hot encodings to indicate the instance identities of g and g′
in the instance discrimination task; λ ∼ Beta(α, α) ∈ [0, 1] is the interpolation ratio sampled from
a Beta distribution, in which α is a hyperparameter. This mixup strategy is initially proposed for
supervised learning, aiming to put the interpolated samples in-between different classes and make
the decision boundary robust to slightly corrupted samples (Verma et al., 2019; Zhang et al., 2018;
2021). Despite the success of mixing image and text, it is challenging to interpolate graphs due to the
structural differences between graph instances (e.g., varying topologies and sizes).

To this end, we draw inspiration from the recent work (Guo & Mao, 2021) to perform linear
interpolation between graphs. Specifically, with g = (V, E) and g′ = (V ′, E ′), we mitigate their
structural differences by padding virtual nodes and edges, which are associated with zero features
0. Assuming |V| ≤ |V ′|, g can be updated as a new graph with |V ′| nodes, where the original node
set V remains unchanged but adds |V ′| − |V| dummy virtual nodes, and the original nodes connect
the virtual nodes with dummy virtual edges. Having padded two graphs to the same size, now we
can directly add them up. Before the interpolation, we first merge two node and edge sets as the new
ones: Ṽ = V ∪ V ′, Ẽ = E ∪ E ′. Then, g̃ = λg + (1− λ)g′ in Equation (4) is achieved by exerting
linear interpolation on the adjacency matrices, node features, and edge features:

Ã = λA+ (1− λ)A′, x̃v = λxv + (1− λ)x′
v, ẽuv = λeuv + (1− λ)e′uv, (5)

where A and A′ are the adjacency matrices of g and g′ after padding; xv and x′
v are the features

of node v ∈ Ṽ , which separately come from g and g′; similarly, euv and e′uv separately denote the
features of edge (u, v) ∈ Ẽ from g and g′. Consequently, we generate a cross-graph augmentation.

Connecting Cross-graph Augmentations to Groups. In the language of groups, we can describe the
cross-graph augmentation in Equation (4) as a group of transformations. Given the input (λ, g, g′), we
can systemize the graph interpolation as two steps: (1) feature rescaling: ĝ = λg, which rescales the
node and edge features of g with the ratio λ; (2) instance composition: g̃ = C(ĝ, ĝ′) = ĝ+ ĝ′, which
adds the other rescaled graph ĝ′ = (1 − λ)g′. To construct a closed space for graph interpolation,
we first define Ĝ = {ĝ|λ ∈ [−1, 1], g ∈ G} by performing feature rescaling on G to enable direct
sampling of rescaled graphs. We allow λ < 0 to include the inverse elements of graphs. Then, we
generate I =< Ĝ > by combining the graphs in Ĝ via instance composition. We show that (I, C)
forms a group in Appendix A.1. It is worth noting that each instance can be viewed as a transformation
to others, i.e., C(g, ·) := Cg(·), such that semantic shifts can be described via algebraic operators.

Group Averaging for Insensitivity to Relative Permutation. Note that Equation (5) can output
different interpolations, when the node orders of one graph or padding positions of dummy nodes
change. We ascribe operations on “node orders” and “padding positions” to the “relative permutation”
between two input graphs. Unlike images and texts, the canonical permutations (orderings) of nodes in
graphs are unlabeled. The default node permutations encode nothing useful about graph semantics (Xu
et al., 2019; Hamilton et al., 2017). Thus, we enforce insensitivity to relative permutations by
randomly permuting nodes in the bigger graph before graph interpolation. Next, we justify and
develop this design with group averaging.

Group averaging can make known architectures invariant to new symmetries (Puny et al., 2022;
Yarotsky, 2022). It can be used for strict invariance to relative permutations. Let P ∼ Sn be a random

5

Under review as a conference paper at ICLR 2023

permutation, and TP ◦ g be permuting graph g by P . Assuming |g| ≥ |g′|, we obtain the graph
interpolation as λTP ◦ g + (1− λ)g′ and its representation as ϕ(λTP ◦ g + (1− λ)g′). To achieve
strict invariance to relative permutations, we apply group averaging on the permutation operators:

Φ(λ, g, g′) =
1

|Sn|
∑
P∈Sn

ϕ(λTP−1 ◦ g + (1− λ)g′), (6)

where Φ is the function of group averaging. Φ is invariant to relative permutations between g and g′,
in the sense that Φ(λ, g, g′) = Φ(λ, TP ◦ g, g′) = Φ(λ, g, TP ′ ◦ g′) for all P, P ′ ∼ Sn. Intuitively, it
is achieved by averaging over all relative permutations. See Appendix A.2 for the proof. However,
the intractability of averaging over Sn naturally arises as a problem. Following Murphy et al. (2019),
our random permutation strategy ϕ(λTP ◦ g + (1− λ)g′) is an unbiased estimator of Φ. Further, this
strategy optimizes ρ◦ϕ toward an optima insensitive to the relative permutation. By Proposition 1, we
conclude that using random permutation is a tractable surrogate for optimizing an invariant network
to relative permutation. Appendix D.2 shows the influence of sampled permutation numbers. For
simplicity, we still use λg + (1− λ)g′ to represent graph interpolation in the rest text.
Proposition 1. The contrastive loss with ϕ(λTP ◦g+(1−λ)g′) upper bounds the loss of an invariant
network to relative permutation 1

|Sn|
∑

P∈Sn
ρ(ϕ(λiTP ◦ gi + (1− λi)g

′
i)).

3.3 EQUIVARIANCE TO CROSS-GRAPH AUGMENTATIONS

Revisiting Equation (4), we can find the two terms of interpolation strategy align with the equivariance
mechanism in Equation (3). The semantic change caused by the feature interpolation is equivalently
reflected by the label interpolation. Hence, we can instantiate the equivariance mechanism based on
the feature and label interpolations. In the SSL setting, we interpolate graph representations as the
alternative for label interpolation. Graph representations are derived from the encoder ϕ(·) with a
global readout layer to summarize the graphs’ global semantics. Hence, as shown by the right side of
Figure 2, we can parameterize equivariance approximately as:

ϕ(λg + (1− λ)g′) ≈ λϕ(g) + (1− λ)ϕ(g′). (7)

Minimizing the distance between Equation (7)’s two sides allows the encoder to improve sensitivity
to the global semantic shifts caused by cross-graph augmentations.

Although the strict equivariance is hardly guaranteed, experiments show that approaching Equation
(7) can boost the performance on downstream tasks (cf. Section 4.2). Furthermore, if the encoder is
powerful enough to distinguish the interpolated graphs, it has a deterministic reflection in the repre-
sentation space ϕ(G) for a fixed transformation C(g, ·) in graph space G (Non-trivial Equivariance
(Dangovski et al., 2022)). See Appendix A.1 for the proof.
Proposition 2. Assuming the encoder can detect the isomorphism of interpolated graphs, there exists
a GNN encoder ϕ that is non-trivially equivariant to the graph interpolation transformation.

3.4 IMPLEMENTING E-GCL

This section details our implementation of E-GCL (Figure 2). Specifically, given a minibatch of
graph instances {gi}Ni=1, we impose (1) invariance to intra-graph augmentation and (2) equivariance
to cross-graph augmentation simultaneously on the shared encoder.

Invariance. For the invariance principle, we follow the I-GCL paradigm to resort to the standard
intra-graph augmentations P (e.g., randomly dropping nodes in GraphCL), and create two augmented
views of individual graphs: {g1i |g1i = Tp1

(g), p1 ∼ P}Ni=1 and {g2i |g2i = Tp2
(g), p2 ∼ P}Ni=1.

Consequently, the encoder ϕ(·) brings forth two representation lists: {z1i |z1i = ρ(ϕ(g1i))}Ni=1 and
{z2i |z2i = ρ(ϕ(g2i))}Ni=1, in which ρ(·) is an MLP projector.

Equivariance. For the equivariance principle, we first randomly shuffle the graphs in {g2i }Ni=1,
termed as {g2π(i)}Ni=1, where π : [N] → [N] is the function of random shuffling. Following the left
side of Equation (7) and applying random permutations Pi ∼ Sn for all i ∈ [N], we create the feature
interpolations and then generate their representations as {z3i |z3i = ρ(ϕ(λTPi◦g1i+(1−λ)λg2π(i)))}Ni=1.
Meanwhile, according to the right side of Equation (7), we arrive at the representation interpolations
as {z4i |z4i = ρ(λϕ(g1i) + (1− λ)ϕ(λg2π(i)))}Ni=1.

6

Under review as a conference paper at ICLR 2023

Table 1: Main experiment performances. ∗ denotes our reproduced results using the released codes.
Other baseline results are borrowed from the original papers. Bold indicates the best performance
and underline indicates the second best performance.

(a) Unsupervised learning accuracies (%) on the TU datasets.

Dataset NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B AVG GAIN

No Pre-train* 72.67±1.16 73.81±0.30 77.01±0.90 84.26±1.16 62.92±0.02 72.45±0.47 45.32±0.30 67.54±0.27 69.50 -
InfoGraph* 78.27±0.64 74.56±0.57 77.01±0.90 87.87±1.85 70.73±0.48 83.22±2.78 55.82±0.29 70.96±0.60 74.81 5.31
GraphCL* 79.25±0.40 74.50±0.85 78.24±0.99 87.65±1.66 71.59±0.52 90.54±0.30 55.67±0.45 71.38±0.40 76.10 6.60
JOAO* 78.55±0.17 74.39±0.80 77.44±0.85 88.85±1.51 70.52±0.63 88.49±0.76 56.04±0.24 71.44±0.52 75.72 6.22
AD-GCL* 72.95±0.45 73.62±0.63 76.06±0.44 89.25±1.29 70.70±0.46 87.03±1.18 54.81±0.42 71.62±0.66 74.51 5.01
GraphMAE* 75.00±0.95 73.92±0.97 76.15±0.99 87.17±1.02 72.92±3.88 81.27±2.51 49.63±1.67 71.96±0.65 73.50 4.00
R-GCL* 78.79±0.42 74.60±0.71 79.14±0.39 88.12±1.38 71.44±0.60 90.11±0.41 55.96±0.42 71.84±0.76 76.25 6.75
E-GCL 79.95±0.25 75.18±0.40 77.83±0.52 88.20±0.85 74.63±0.28 90.71±0.57 56.90±0.29 72.02±0.90 76.93 7.43

(b) Transfer learning ROC-AUC (%) scores on the MoleculeNet. GTS denotes GraphTrans.

Dataset BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE AVG GAIN

No Pre-train* 67.8±1.6 73.9±0.9 62.4±0.4 58.3±1.5 62.6±4.4 73.4±2.7 76.5±1.7 76.8±2.8 69.0 -
Infomax* 68.5±1.1 75.4±0.3 62.6±0.3 58.6±0.7 71.2±2.5 73.1±1.9 76.8±1.0 74.4±1.1 70.1 1.1
ContextPred* 72.2±1.1 75.6±0.6 63.5±0.3 60.6±0.9 70.2±2.6 74.3±1.4 77.6±0.5 79.0±0.9 71.6 2.6
GraphCL 69.7±0.7 73.9±0.7 62.4±0.6 60.5±0.9 76.0±2.6 69.8±2.7 78.5±1.2 75.4±1.4 70.8 1.8
JOAO 71.4±0.9 74.3±0.6 63.2±0.5 60.5±0.7 81.0±1.6 73.7±1.0 77.5±1.2 75.5±1.3 72.1 3.1
ADGCL* 70.5±1.8 74.5±0.7 63.0±0.5 59.1±0.9 78.5±3.7 71.5±2.2 75.9±1.4 74.0±2.2 70.9 1.9
GraphLOG* 71.0±1.1 74.9±0.4 62.8±0.5 59.7±0.9 76.9±1.9 70.8±2.0 75.8±1.4 82.9±0.9 71.8 2.8
GraphMAE* 72.2±0.9 75.1±0.4 63.0±0.3 58.5±0.7 80.5±2.0 75.7±1.2 76.4±0.8 81.3±1.0 72.8 3.8
RGCL* 71.2±0.9 75.3±0.5 63.1±0.3 61.2±0.6 85.0±0.8 73.1±1.2 77.3±0.8 75.7±1.3 72.7 3.7
E-GCL 72.3±0.6 74.9±0.7 64.0±0.3 62.8±0.5 83.1±2.5 78.8±0.8 76.3±0.6 78.1±1.1 73.8 4.8
E-GCL, GTS 72.3±0.8 77.9±0.6 66.0±0.6 62.4±1.0 80.7±3.0 79.4±2.1 77.8±1.1 79.7±2.4 74.5 5.5

Cooperative Game between Invariance and Equivariance. Based on the representations, we
optimize the invariance and equivariance losses together with a weighting hyperparameter ω ∈ [0, 1]:

LE-GCL = (1− ω) · ℓ({z1i }Ni=1, {z2i }Ni=1)︸ ︷︷ ︸
invariance loss

+ω · ℓ({z3i }Ni=1, {z4i }Ni=1)︸ ︷︷ ︸
equivariance loss

, (8)

where ℓ(·, ·) is the loss encouraging the insensitivity between augmented views of the same graph,
which is determined by the SSL backbone, such as NT-Xent (cf. Equation (2)) adopted by the
GraphCL. Beyond contrastive learning, E-GCL is also applicable to various other SSL backbones,
including BarlowTwins and SimSiam. In a nutshell, the invariance loss underscores the insensitivity
to intra-graph augmentations, while the equivariance loss induces the sensitivity to cross-graph
augmentations. The cooperative game between these two losses helps resolve the potential limitations
of the conventional I-GCL paradigm, thus improving the expressive power of the encoder.

4 EXPERIMENT

In this section, we conduct experiments to answer the following research questions: RQ1: How
effective is the proposed E-GCL in graph representation learning, and how does it generalize to
existing SSL frameworks? RQ2: What are the properties of E-GCL and the effects of its components?

In Appendix D.1, we present more ablation studies about 1) using G-mixup (Han et al., 2022), 2)
interpolating representations at different positions, and 3) interpolating large and small graphs.

4.1 EXPERIMENTAL SETUP

Here we briefly introduce the baselines, datasets and evaluations. Details are in Appendix E. For a
fair comparison, E-GCL uses the same intra-graph augmentation as GraphCL. If not noted, E-GCL
employs a BarlowTwins backbone. We study E-GCL’s generalization to other SSL frameworks later.

Baselines. We compare E-GCL with the following state-of-the-art graph pre-training methods:
Infomax (Veličković et al., 2019), InfoGraph (Sun et al., 2020), ContextPred (Hu et al., 2020),
GraphCL (You et al., 2020), JOAO (You et al., 2021), AD-GCL (Suresh et al., 2021), GraphLOG (Xu
et al., 2021), GraphMAE (Hou et al., 2022), and RGCL (Li et al., 2022).
Unsupervised Learning evaluates the pre-trained GNNs for prediction on the same dataset. Follow-
ing (You et al., 2020), we evaluate E-GCL on the eight TU datasets, including biochemical graphs

7

Under review as a conference paper at ICLR 2023

Table 2: Generalization to diverse SSL frameworks. Red denotes equivariance improves performance.

(a) Unsupervised learning accuracies (%).

Dataset NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B AVG GAIN

GraphCL 79.25±0.40 74.50±0.85 78.24±0.99 87.65±1.66 71.59±0.52 90.54±0.30 55.67±0.45 71.38±0.40 76.10 -
+Equivariance 80.22±0.38 74.57±0.46 79.15±0.98 89.79±1.07 72.75±0.66 91.28±0.32 55.80±0.24 71.70±0.49 76.91 0.81

BarlowTwins 79.60±0.42 74.90±0.47 77.22±0.91 86.92±1.87 72.94±0.62 90.11±0.85 55.40±0.47 71.28±0.58 76.05 -
+Equivariance 79.95±0.25 75.18±0.40 77.83±0.52 88.20±0.85 74.63±0.28 90.71±0.57 56.90±0.29 72.02±0.90 76.93 0.88

(b) Transfer learning ROC-AUC (%) scores. GTS denotes GraphTrans.

Dataset BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE AVG GAIN

GraphCL 69.7±0.7 73.9±0.7 62.4±0.6 60.5±0.9 76.0±2.6 69.8±2.7 78.5±1.2 75.4±1.4 70.8 -
+Equivariance 71.8±0.5 75.5±0.4 63.5±0.4 60.6±0.4 74.0±2.1 74.7±0.7 76.5±0.7 78.7±0.8 71.9 1.1

SimSiam 70.5±1.3 74.4±0.5 63.3±0.3 60.8±0.6 77.4±1.6 70.5±1.0 77.3±0.7 76.2±1.6 71.3 -
+Equivariance 71.4±0.8 75.0±0.6 63.2±0.6 59.3±0.9 81.4±2.4 73.5±1.4 77.6±1.0 75.8±1.2 72.2 0.9

BarlowTwins 70.6±1.6 74.3±0.4 63.8±0.3 61.3±0.6 82.0±1.6 73.0±0.7 77.1±1.2 73.9±0.2 72.0 -
+Equivariance 72.3±0.6 74.9±0.7 64.0±0.3 62.8±0.5 83.1±2.5 78.8±0.8 76.3±0.6 78.1±1.1 73.8 1.8

BarlowTwins, GTS 71.0±1.1 77.0±0.9 65.0±0.7 61.9±1.7 76.9±5.2 79.4±1.8 78.1±1.5 77.5±2.1 73.4 -
+Equivariance 72.3±0.8 77.9±0.6 66.0±0.6 62.4±1.0 80.7±3.0 79.4±2.1 77.8±1.1 79.7±2.4 74.5 1.1

and social networks. Specifically, we pre-train a three-layer GIN (Xu et al., 2019) and feed the
generated graph representations into SVMs for evaluation. We report the average values and standard
deviations of accuracies (%) of five different runs, each of which corresponds to a 10-fold evaluation.
Following (You et al., 2021), we report test accuracy of the epoch selected by validation set.

Transfer Learning tests the pre-trained GNN’s transferability to downstream tasks. Following (Hu
et al., 2020), we use the two million molecule samples from the ZINC15 dataset (Sterling & Irwin,
2015) for pre-training and eight multi-label classification datasets derived from the MoleculeNet (Wu
et al., 2018) for fine-tuning. Fine-tuning datasets are divided by scaffold split to create distribution
shifts among the train/valid/test sets, so as to provide more realistic estimations of the molecule
property prediction performance. Following (Hu et al., 2020), we implement E-GCL with a five-layer
GINE. Further, we push the limits of E-GCL with the GraphTrans (Wu et al., 2021) backbone. Graph-
Trans stacks a four-layer Transformer (Vaswani et al., 2017) on top of the GINE to learn long range
interactions. For evaluation, we pre-train a model and repeatedly fine-tune it on downstream datasets
ten times. We report the averages and standard deviations of ROC-AUC (%) scores. Following (You
et al., 2020), we report test set performance of the last epoch.

4.2 MAIN RESULTS (RQ1)

Unsupervised Learning Results. Table 1a presents the unsupervised learning performance in TU
datasets. The last column denotes the improvement compared to a randomly initialized GNN. E-GCL
achieves the best performance in six out of eight datasets and the top three performances in the
other two datasets. It also achieves the best average improvement of 7.43% compared to a randomly
initialized GNN. We attribute E-GCL’s good performances to the equivariance principle of cross-
graph augmentation. Other methods apply only the invariance principle of intra-graph augmentation,
thus failing to generate representations as discriminative as E-GCL.

Transfer Learning Results. Table 1b presents the fine-tuning performances in transfer learning. E-
GCLs have achieved the best performances among all methods. Specifically, E-GCL with GraphTrans
achieves the best performances in four out of eight datasets and the best average improvement of 5.5%
compared to a randomly initialized GNN. When using the GINE backbone, E-GCL continues to show
improvements over all the baseline models in average performance. It shows that the equivariant
pre-training of cross-graph augmentation gives E-GCL a better starting point for fine-tuning. Previous
models apply only the intra-graph augmentation, which might bring together dissimilar patterns.
Notice that, E-GCL and other models’ improvements over previous works are not consistent across
fine-tuning datasets. We attribute the inconsistency to the Out of Distribution (OOD) evaluation
setting in MoleculeNet. The validation set does not overlap the test set, which makes preventing
overfitting and underfitting troublesome. We follow the evaluation protocol of previous works (You
et al., 2020; Xu et al., 2021), which, however, does not guarantee the convergence of performance.
We leave a more stable fine-tuning for the OOD evaluation as future work.

In summary, E-GCL establishes a new state-of-the-art in unsupervised learning and transfer learning.

8

Under review as a conference paper at ICLR 2023

0.1 0.4 1 2 4
BarlowTwins (= 0.4)

76.0

76.5

77.0

A
cc

ur
ac

y
(%

) 76.93
76.68 76.5576.43

76.47

0.1 0.4 1 2 4
GraphCL (= 0.3)

76.91
76.75

76.45 76.34
76.38

Backbone
E-GCL

(a) Different Beta(α, α) distributions.

0.1 0.2 0.3 0.4 0.5 1.0
BarlowTwins (= 0.1)

76.55 76.63 76.69
76.93

76.68

76.23

0.1 0.2 0.3 0.4 0.5 1.0
GraphCL (= 0.1)

76.70 76.65
76.91

76.75 76.82
76.45

Backbone
E-GCL

(b) Different equivariance and invariance trade-off.

Figure 3: Hyper-parameter sensitivity study in unsupervised learning.

Generalization to Different SSL Frameworks. To highlight E-GCL’s improvement and generaliza-
tion ability, we apply the equivariance principle to three representative SSL frameworks of different
flavors: GraphCL – GCL, SimSiam (Chen & He, 2021) – asymmetric Siamese Networks, and
BarlowTwins – decorrelating feature dimensions (Table 2). We observe that equivariance consistently
improves about 1% of SSL backbones’ average performances in both unsupervised learning and
transfer learning. The results demonstrate the effectiveness of equivariance and its generalization
ability to diverse SSL frameworks and different experimental settings.

4.3 ANALYZING THE PROPERTIES OF E-GCL (RQ2)

Hyper-parameter Sensitivity. Figure 3 presents E-GCL’s sensitivity with respect to the shape
parameter α of Beta(α, α) distribution and the trade-off factor ω between invariance and equivariance.
Shown by Figure 3a, α = 0.1 gives the best average performance for both the BarlowTwins and
GraphCL backbones in unsupervised learning. We also observe that the optimal ω value differs for
SSL backbones (Figure 3b). The best ω for BarlowTwins and GraphCL are 0.4 and 0.3, respectively.
When ω = 1, the invariance loss vanishes and the performances drop to the lowest. This demonstrates
that the invariance mechanism and equivariance mechanism are complementary to each other and
their cooperation makes for better graph representation learning.

3.875 3.850 3.825 3.800 3.775 3.750 3.725 3.700 3.675
uniform loss

0.2

0.3

0.4

0.5

0.6

0.7

al
ig

n
lo

ss

I-GCL intra-aug
I-GCL cross-aug
E-GCL intra-aug
E-GCL cross-aug
E-GCL intra+cross aug

Figure 4: The alignment and uniformity losses when
pre-training with chemical molecules. Losses are eval-
uated every 100 pre-train steps and lower numbers are
better. Arrows denote the losses’ changing directions.

Training Dynamics of Alignment and Uni-
formity. To understand how E-GCL im-
proves over I-GCL, we study their behaviors
through the lens of alignment and uniformity
losses (Wang & Isola, 2020), which consti-
tute the asymptotic objective of contrastive
learning. On a unit hypersphere, Alignment
measures the closeness of the positive pairs
and uniformity measures the evenness of
the sample distribution. We apply the con-
trastive backbone GraphCL with dropNode
as the intra-graph augmentation and graph
interpolation as the cross-graph augmenta-
tion. Figure 4 shows the losses on each type
of augmented samples and their concatenations (i.e., intra+cross aug). Compared to E-GCL cross-aug,
E-GCL intra+cross aug has better uniform loss but worse alignment loss. E-GCL achieves much
better alignment and uniformity on cross-graph augmentations ⋆ than I-GCL, with a slight sacrifice
of alignment on intra-augmentations . This is in expectation as E-GCL applies equivariance to
explicitly optimize the cross-graph augmentations and trade-off the optimization of intra-graph aug-
mentations. Combining intra- and cross-graph augmentations, E-GCL achieves better alignment
and uniformity than I-GCL , which explains the better performance.

5 CONCLUSION AND FUTURE WORKS

In this paper, we propose Equivariant Graph Contrastive Learning (E-GCL) that combines equivari-
ance and invariance to learn better graph representations. E-GCL encourages the sensitivity to global
semantic shifts by grounding the equivariance principle as a cross-graph augmentation of graph
interpolation. This equivariance principle protects GNNs from aggressive intra-graph augmentations
that can harmfully align dissimilar patterns and enables GNNs to discriminate cross-graph augmented
samples. Extensive experiments in unsupervised learning and transfer learning demonstrate E-GCL’s
significant improvements over state-of-the-art methods and its generalization ability to different SSL
frameworks. In the future, we will explore more groundings of the equivariance principle in graphs.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Waiss Azizian and Marc Lelarge. Expressive power of invariant and equivariant graph neural networks.
In ICLR, 2021.

Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regularization
for self-supervised learning. In ICLR, 2022.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Velickovic. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. CoRR, abs/2104.13478, 2021.

Sourav Chatterjee. Matrix estimation by universal singular value thresholding. The Annals of
Statistics, 43(1):177–214, 2015.

Haiwei Chen, Shichen Liu, Weikai Chen, Hao Li, and Randall Hill. Equivariant point network for 3d
point cloud analysis. In CVPR, pp. 14514–14523, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework for
contrastive learning of visual representations. In ICML, pp. 1597–1607, 2020.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In CVPR, 2021.

Yung-Sung Chuang, Rumen Dangovski, Hongyin Luo, Yang Zhang, Shiyu Chang, Marin Soljacic,
Shang-Wen Li, Wen-tau Yih, Yoon Kim, and James Glass. DiffCSE: Difference-based contrastive
learning for sentence embeddings. In NAACL, 2022.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In ICML, 2016.

Taco S. Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical cnns. In ICLR, 2018.

Rumen Dangovski, Li Jing, Charlotte Loh, Seungwook Han, Akash Srivastava, Brian Cheung, Pulkit
Agrawal, and Marin Soljacic. Equivariant contrastive learning. In ICLR, 2022.

Sander Dieleman, Kyle W. Willett, and Joni Dambre. Rotation-invariant convolutional neural
networks for galaxy morphology prediction. CoRR, abs/1503.07077, 2015.

Alexey Dosovitskiy, Jost Tobias Springenberg, Martin A. Riedmiller, and Thomas Brox. Discrimina-
tive unsupervised feature learning with convolutional neural networks. In NeurIPS, pp. 766–774,
2014.

Vijay Prakash Dwivedi, Chaitanya K. Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks. CoRR, abs/2003.00982, 2020.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Ávila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own latent - A
new approach to self-supervised learning. In NeurIPS, 2020.

Hongyu Guo and Yongyi Mao. Ifmixup: Towards intrusion-free graph mixup for graph classification.
arXiv, 2021.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
NIPS, volume 30, 2017.

Xiaotian Han, Zhimeng Jiang, Ninghao Liu, and Xia Hu. G-mixup: Graph data augmentation for
graph classification. CoRR, 2022.

10

Under review as a conference paper at ICLR 2023

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick. Momentum contrast for
unsupervised visual representation learning. In CVPR, pp. 9726–9735, 2020.

Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang.
Graphmae: Self-supervised masked graph autoencoders. In KDD, pp. 594–604, 2022.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
Strategies for pre-training graph neural networks. In ICLR, 2020.

Risi Kondor and Shubhendu Trivedi. On the generalization of equivariance and convolution in neural
networks to the action of compact groups. In ICML, volume 80, pp. 2752–2760, 2018.

AA Leman and Boris Weisfeiler. A reduction of a graph to a canonical form and an algebra arising
during this reduction. Nauchno-Technicheskaya Informatsiya, pp. 12–16, 1968.

Haoyang Li, Xin Wang, Ziwei Zhang, Zehuan Yuan, Hang Li, and Wenwu Zhu. Disentangled
contrastive learning on graphs. In NeurIPS, pp. 21872–21884, 2021.

Sihang Li, Xiang Wang, An Zhang, Yingxin Wu, Xiangnan He, and Tat-Seng Chua. Let invariant
rationale discovery inspire graph contrastive learning. In ICML, pp. 13052–13065, 2022.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. In ICLR, 2019a.

Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant
networks. In ICML, 2019b.

Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-invariant representations.
In CVPR, pp. 6706–6716, 2020.

Ryan L. Murphy, Balasubramaniam Srinivasan, Vinayak A. Rao, and Bruno Ribeiro. Janossy
pooling: Learning deep permutation-invariant functions for variable-size inputs. In ICLR (Poster).
OpenReview.net, 2019.

Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen, Yang Liu,
and Shantanu Jaiswal. graph2vec: Learning distributed representations of graphs. CoRR,
abs/1707.05005, 2017.

Omri Puny, Matan Atzmon, Heli Ben-Hamu, Edward J Smith, Ishan Misra, Aditya Grover, and Yaron
Lipman. Frame averaging for invariant and equivariant network design. In ICLR, 2022.

Senthil Purushwalkam and Abhinav Gupta. Demystifying contrastive self-supervised learning:
Invariances, augmentations and dataset biases. In NeurIPS, 2020.

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang,
and Jie Tang. GCC: graph contrastive coding for graph neural network pre-training. In KDD, pp.
1150–1160, 2020.

Teague Sterling and John J. Irwin. ZINC 15 - ligand discovery for everyone. J. Chem. Inf. Model., 55
(11):2324–2337, 2015.

Arjun Subramonian. Motif-driven contrastive learning of graph representations. In AAAI, pp.
15980–15981, 2021.

Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and semi-
supervised graph-level representation learning via mutual information maximization. In ICLR,
2020.

Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. Adversarial graph augmentation to improve
graph contrastive learning. In NeurIPS, pp. 15920–15933, 2021.

Yuandong Tian, Xinlei Chen, and Surya Ganguli. Understanding self-supervised learning dynamics
without contrastive pairs. In ICML, pp. 10268–10278, 2021.

11

Under review as a conference paper at ICLR 2023

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. CoRR, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, pp. 5998–6008, 2017.

Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In ICLR, 2019.

Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, David Lopez-Paz,
and Yoshua Bengio. Manifold mixup: Better representations by interpolating hidden states. In
ICML, 2019.

Vikas Verma, Meng Qu, Kenji Kawaguchi, Alex Lamb, Yoshua Bengio, Juho Kannala, and Jian Tang.
Graphmix: Improved training of gnns for semi-supervised learning. In AAAI, pp. 10024–10032,
2021.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. In ICML, pp. 9929–9939, 2020.

Yifei Wang, Qi Zhang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. Chaos is a ladder: A new
theoretical understanding of contrastive learning via augmentation overlap. In ICLR, 2022.

Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, and Bryan Hooi. Mixup for node and graph
classification. In WWW, pp. 3663–3674, 2021.

Zhanghao Wu, Paras Jain, Matthew A. Wright, Azalia Mirhoseini, Joseph E. Gonzalez, and Ion Stoica.
Representing long-range context for graph neural networks with global attention. In NeurIPS, pp.
13266–13279, 2021.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning.
Chemical science, 9(2):513–530, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? ICLR, 2019.

Minghao Xu, Hang Wang, Bingbing Ni, Hongyu Guo, and Jian Tang. Self-supervised graph-level
representation learning with local and global structure. In ICML, volume 139, pp. 11548–11558,
2021.

Dmitry Yarotsky. Universal approximations of invariant maps by neural networks. Constructive
Approximation, pp. 407–474, 2022.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. In NeurIPS, 2020.

Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning automated.
In ICML, Proceedings of Machine Learning Research, pp. 12121–12132, 2021.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. In NeurIPS, 2017.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised
learning via redundancy reduction. In ICML, 2021.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In ICLR, 2018.

Yifan Zhang, Bryan Hooi, Dapeng Hu, Jian Liang, and Jiashi Feng. Unleashing the power of
contrastive self-supervised visual models via contrast-regularized fine-tuning. In NeurIPS, pp.
29848–29860, 2021.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep graph contrastive
representation learning. CoRR, 2020.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph contrastive learning
with adaptive augmentation. In WWW, pp. 2069–2080, 2021.

12

Under review as a conference paper at ICLR 2023

A PROOF

A.1 PROOFS ON GRAPH INTERPOLATION

Proof of that (I, C) forms a group. We first recall of the definition of (I, C) as follows:

When viewing g as the anchor being augmented, we can systemize the mixup as a combination of
two steps: (1) feature rescaling: ĝ = λg, which rescales the node and edge features of g with the
ratio λ; (2) instance composition: g̃ = C(ĝ, ĝ′) = ĝ + ĝ′, which adds another rescaled graph ĝ′. Let
Ĝ = {ĝ|λ ∈ [0, 1], g ∈ G} be the enlarged set of graphs via feature rescaling, I =< Ĝ > be the
generated group by combining the graphs in Ĝ via instance composition. We show that (I, C) forms
a group.

Proof. I is a set of graphs and C(·, ·) is a binary instance composition operation on I. It suffices to
show that (I, C) is a group if it satisfies the following conditions:

• Associativity Law. C(g1, C(g2, g3)) = g1+(g2+g3) = (g1+g2)+g3 = C(C(g1, g2), g3)
for all g1, g2, g3 ∈ I. Notice that, both resulting node feature matrices and adjacency
matrices of both sides are equivalent.

• Existence of Identity. Let e be the empty graph with no nodes and no edges, then C(g, e) =
g = C(e, g) for all g ∈ I, then the empty graph e is the identity.

• Existence of Inverse. For any graph g ∈ I, there exists a graph g−1 ∈ I who has the same
structure of g but with inverse values of node features and edge weights, aka. Xg−1 = −Xg

and Ag−1 = −Ag , such that C(g, g−1) = g + g−1 = e.

Proposition 2. Assuming the encoder can detect the isomorphism of interpolated graphs, there exists
a GNN encoder ϕ that is non-trivially equivariant to the graph interpolation transformation.

Proof. For proof, it suffices to show that graph interpolation transformation satisfies the assumption
of E-SSL’s (Dangovski et al., 2022) Non-trivial Equivariance Proposition. We can then apply the
Non-trivial Equivariance Proposition to conclude the proof.

The assumption states that, “given P as the group of our interest, if ϕ(Tp(g)) = ϕ(T ′
p(g

′)), then
g = g′ and p = p′ for all p, p′ ∈ P and g, g′ ∈ G.” We rewrite the assumption with the graph
interpolation formulation of equivariance: for all λg1, (1− λ)g2, λ

′g′1, (1− λ′)g′2 ∈ Ĝ with λ, λ′ ∈
[0, 1], if ϕ(λg1+(1−λ)g2) = ϕ(λ′g′1+(1−λ′)g′2), then either 1) λg1 = λ′g′1, (1−λ)g2 = (1−λ′)g′2,
or 2) λg1 = (1− λ′)g2, (1− λg2) = λ′g1. We now prove this assumption.

We consider graphs without edge features. We have assumed that GNN encoder can detect graph
isomorphism of interpolated graphs. Therefore, we can infer the equivalence of the graphs based on
the equivalence of graph embeddings. Let g̃ = λg1 + (1 − λ)g2 and g̃′ = λ′g′1 + (1 − λ′)g′2, we
have g̃ = g̃′ because of ϕ(g̃) = ϕ(g̃′).

Using the Intrusion-Freeness Theorem in (Guo & Mao, 2021), the graph interpolation transformation
is invertible and the resulting original graph pair and mixup coefficient is unique, aka. the equivalence
of the interpolated graphs infers the equivalence of the original graphs and the interpolation coefficient
λ. Thus, we have either 1) λ = λ′, g1 = g′1, g2 = g′2, or 2) λ = 1− λ′, g1 = g′2, g2 = g1. In either
case, the assumption holds.

Discussion. Proposition 2 relies on a powerful GNN encoder that can detect the isomorphism of
interpolated graphs. This powerful GNN encoder exists both in theory and practice: 1) in theory, the
universality of GNNs has been proved that they can approximate any function on graphs (Azizian &
Lelarge, 2021); 2) in practice, Puny et al. (2022) have proposed a family of universal GNNs. The
possible limitation lies in the complexity of these methods (Puny et al., 2022; Maron et al., 2019b).
We have tested E-GCL with the GIN and GraphTrans architectures. GIN is at most as powerful as the

13

Under review as a conference paper at ICLR 2023

1-WL test (Leman & Weisfeiler, 1968; Azizian & Lelarge, 2021) and GraphTrans improves its ability
to model long range interactions. Our experiments show that GIN and GraphTrans is sufficient to
demonstrate the improvement of E-GCL over previous methods. Therefore, we leave the adoption of
universal GNNs (Puny et al., 2022) as future work.

The Intrusion-Freeness Theorem (Guo & Mao, 2021) relies on the assumption in either Lemma 2 or
Lemma 3 of their paper. The assumption of their Lemma 2 states that: “The node feature vectors
for all graphs take values from a finite set and the values in the set are linearly independent”. This
assumption holds strictly for chemical molecules (Hu et al., 2020), in which the node features are atom
types that are finite and linearly independent (i.e., you cannot combine two atoms to form another).
It is also automatically satisfied by anonymous social networks without any node information, i.e.,
COLLAB, RDT-B, RDT-M5K, IMDB-B in experiments. For other graphs with continuous node
features such as word vectors, Lemma 3 provides a much weaker condition. Lemma 3 requires the
linear independence of the entire node feature matrix for each graph in the dataset, which is more
likely to hold in practice.

A.2 PROOFS ON GROUP AVERAGING

Proof of that Φ(λ, g, g′) is invariant to the relative permutation between g and g′ in the sense
that Φ(λ, g, g′) = Φ(λ, TP ◦ g, g′) = Φ(λ, g, TP ′ ◦ g′) for all P, P ′ ∼ Sn.

Proof. For all P ′ ∈ Sn, we have

Φ(λ, TP ′ ◦ g, g′) = 1

|Sn|
∑
P∈Sn

ϕ(λTP−1 ◦ TP ′ ◦ g + (1− λ)g′) (9)

=
1

|Sn|
∑
P∈Sn

ϕ(λTP−1P ′ ◦ g + (1− λ)g′) (10)

Let P ′′−1 = P−1P ′, we have P = P ′P ′′ and

Φ(λ, TP ′ ◦ g, g′) = 1

|Sn|
∑

P ′P ′′∈Sn

ϕ(λTP ′′−1 ◦ g + (1− λ)g′) (11)

=
1

|Sn|
∑

P ′′∈P ′−1Sn

ϕ(λTP ′′−1 ◦ g + (1− λ)g′) (12)

=
1

|Sn|
∑

P ′′∈Sn

ϕ(λTP ′′−1 ◦ g + (1− λ)g′) (13)

= Φ(λ, g, g′) (14)

We can similarly prove Φ(λ, g, g′) = Φ(λ, g, TP ′ ◦ g′).
Proposition 1. The contrastive loss with ϕ(λTP ◦g+(1−λ)g′) upper bounds the loss of an invariant
network to relative permutation 1

|Sn|
∑

P∈Sn
ρ(ϕ(λiTP ◦ gi + (1− λi)g

′
i)).

Proof. The loss of NT-Xent is:

ℓ({z3i }Ni=1, {z4i }Ni=1) = − 1

N

N∑
i=3

log
exp(s(z3i , z

4
i)/τ)∑N

j=1,j ̸=i exp(s(z
3
i , z

4
j)/τ)

(15)

= − 1

N

N∑
i=1

s(z3i , z
4
i)/τ︸ ︷︷ ︸

ℓpos

+
1

N

N∑
i=1

log

N∑
j=1,j ̸=i

exp(s(z3i , z
4
j)/τ) (16)

where ℓpos aims to minimize the distance between positive views.

Let {(λ1, g1, g′1), (λ2, g2, g′2), ..., (λN , gN , g′N)} be the batch of original graph pairs and the mixup
coefficients. If we use MSE to minimize the distance between the feature interpolation view and

14

Under review as a conference paper at ICLR 2023

representation interpolation view and omit the temperature hyperparameter τ , ℓpos can be written as:

ℓpos =
1

N

N∑
i=1

||ρ(ψ(λi, TPi
◦ gi, g′i))− ρ(λiϕ(gi) + (1− λi)ϕ(g

′
i))||2 (17)

where Pi ∼ Sn for all i ∈ [N]. We have

EP∼Sn
[ℓpos] = EP∼Sn

[
1

N

N∑
i=1

||ρ(ψ(λi, TP ◦ gi, g′i))− ρ(λiϕ(gi) + (1− λi)ϕ(g
′
i))||2

]
(18)

=
1

N

N∑
i=1

1

|Sn|
∑

Pj∈Sn

||ρ(ψ(λi, TPj
◦ gi, g′i))− ρ(λiϕ(gi) + (1− λi)ϕ(g

′
i))||2 (19)

≥ 1

N

N∑
i=1

|| 1

|Sn|
∑

Pj∈Sn

ρ(ψ(λi, TPj
◦ gi, g′i))− ρ(λiϕ(gi) + (1− λi)ϕ(g

′
i))||2 (20)

where the last step is by Jensen’s inequality.

Notice that, the contrastive loss upper bounds the distance between ρ(λiϕ(gi) + (1 − λi)ϕ(g
′
i))

and 1
|Sn|

∑
Pj∈Sn

ρ(ψ(λi, TPj
◦ gi, g′i)), which is the group averaging of ρ ◦ ψ. By the prop-

erty of group averaging (Puny et al., 2022; Yarotsky, 2022; Murphy et al., 2019), it follows that
1

|Sn|
∑

Pj∈Sn
ρ(ψ(λi, TPj ◦ gi, g′i)) is invariant to relative permutation as well.

B RELATED WORKS

We have briefly introduced GCL methods in Section 2. In this section, we first discuss E-GCL’s
connections and differences with E-SSL and IfMixup. Then, we present E-GCL’s relations to other
graph mixup methods and geometric deep learning.

E-SSL. E-GCL is inspired by the pioneer E-SSL works (Dangovski et al., 2022; Chuang et al.,
2022) in CV and NLP. Dangovski et al. (2022) find that, when the previous insensitive objective
fail on certain augmentations, applying a sensitive objective to the same augmentations can improve
performance. Specifically, they apply a sensitive objective on the four-fold rotations of images to
improve existing SSL methods. In NLP, Chuang et al. (2022) implement the sensitive objective
as discriminating word replacement to improve sentence level embedding. Adapting E-SSL for
graphs is challenging because existing intra-graph augmentations share the common paradigm of
structure corruption, making it hard to categorize them into sensitive and insensitive augmentations.
This works is different from previous E-SSL works that we introduce cross-graph augmentation to
create global semantic shifts. By encouraging the sensitivity to cross-graph augmentation, we protect
representations from the harmful aggressive intra-graph augmentations.

IfMixup. In this work, we extend IfMixup (Guo & Mao, 2021) for cross-graph augmentation in SSL.
IfMixup mitigates the structural differences by padding virtual nodes for graph interpolation. It is
previously developed for supervised learning. For SSL, we propose to supervise mixed graphs by the
interpolation of the original graphs’ representations. We also connect graph mixup to group theory
and address its limitation of sensitivity to the relative permutation.

Graph Mixup. Graph mixup has been a challenging task due to graphs’ irregular structures.
GraphMix (Verma et al., 2021) sidesteps the structural differences by mixing only node features.
Wang et al. (2021) mixup the graph representations for graph classification. G-Mixup (Han et al.,
2022) samples adjacency matrices from the mixed graphons of two classes as graph mixup. We opt
out G-Mixup in our method due to its following limitations:

• G-mixup does not support node feature mixup. Their paper has no experiments on attributed graphs.
Moreover, their instruction for sampling mixed node features is vague: the instruction does not
describe the sampling strategy and the used distribution.

• G-mixup does not scale to large graphs due to its O(N3) complexity (N is the number of nodes).
The high complexity is due to the SVD (Chatterjee, 2015) in graphon estimation. In comparison,
IfMixup is scalable to large graphs with a linear complexity to edge and node numbers O(E +N).

15

Under review as a conference paper at ICLR 2023

• G-mixup requires class labeling to estimate the graphon in each class. In SSL, class labeling is
unavailable. If we were to take risks and treated each graph as a class, the obtained graphon would
be suboptimal due to the limited sample. In this case, it is outperformed by IfMixup (Table 3).

Geometric Deep Learning. Invariance and equivariance have been heavily studied under the scope
of geometric deep learning (Bronstein et al., 2021). The goal is to explore geometric symmetries
in neural architecture designs for effective weight sharing to reduce sample complexity (Cohen &
Welling, 2016). For example, generalizing the convolution operation from the Z2 grids to the p4
group makes convolution equivariant to the four-fold rotation (Cohen & Welling, 2016); the message
passing operation in GNNs maintains the node-level output equivariant to the permutation group
Sn (Battaglia et al., 2018). Exploring geometric symmetries like rotation and permutation have
greatly improved performances in various applications, including galaxy morphology (Dieleman
et al., 2015), point clouds (Chen et al., 2021; Zaheer et al., 2017), and spherical images (Cohen
et al., 2018). Our work is different from geometric deep learning because we do not study neural
architectures. We study transformations that change the underlying semantics of graphs rather than
their “poses” in the geometric space.

C LIMITATIONS

SSL is limited in that it has little knowledge of the downstream tasks. Each type of intra-graph
augmentation represents a human prior that performs differently on different downstream datasets (Pu-
rushwalkam & Gupta, 2020). Our work grounds the equivariance mechanism as a domain agnostic
cross-graph augmentation to facilitate representations with the sensitivity to global semantic shifts.

Previous E-SSL works (Dangovski et al., 2022; Chuang et al., 2022) in CV and NLP divide existing
data augmentations into two sets of sensitive augmentations and insensitive augmentations. Our
limitation is that we leave the existing intra-graph augmentations untouched as the insensitive aug-
mentations, although the insensitivity to some aggressive intra-graph augmentations might diminish
the sensitivity to cross-graph augmentations. However, disentangling the aggressive augmentations
from the others requires extensive tests or domain knowledge. We leave it as future work. Further,
our equivariance branch is a patch to the limitations of the invariance branch. In future, we will
explore GCL of the complete focus on equivariance without the invariance branch.

Equivariance is a high-level mathematical concept unifying sensitivity and insensitivity. It has
promising potential in graph representation learning. Our work is limited that we explore the
equivariance to a simple cross-graph augmentation of graph mixup. We believe there are other
equivariance principles worth exploring.

The limitations and assumptions of the theoretical results have been discussed in Appendix A.

D EXPERIMENT

D.1 ABLATION STUDIES FOR GRAPH INTERPOLATION

Table 3: Unsupervised learning accuracies (%) on the TU datasets.

Dataset COLLAB RDT-B RDT-M5K IMDB-B AVG

BarlowTwins 72.94±0.62 90.11±0.85 55.40±0.47 71.28±0.58 72.40
BarlowTwins + G-Mixup (discrete) 71.11±1.19 91.08±0.54 55.90±0.13 71.58±0.31 72.42
BarlowTwins + IfMixup (continuous) 74.63±0.28 90.71±0.57 56.90±0.29 72.02±0.90 73.57

Comparison with G-mixup. Our E-GCL framework is agnostic to the graph mixup strategy for cross-
graph augmentation. We also exploit G-Mixup (Han et al., 2022) for the cross-graph augmentation.
Different from the linear interpolation strategy of IfMixup (Guo & Mao, 2021), G-Mixup yields
discrete adjacency matrices by sampling from the mixed graphons of two classes. To adapt G-Mixup
to the SSL setting, we use their source code and treat each graph as a class. Grid search is conducted
to tune the hyperparameters: α and ω. Table 3 shows the performance comparison between different
graph mixup strategies. We do not compare performances on attributed graph datasets because

16

Under review as a conference paper at ICLR 2023

Table 4: Average fine-tuning performances (ROC-AUC (%)) in transfer learning downstream datasets.

Interpolation Position GraphCL BarlowTwins

No Equivariance 70.8 72.0
Before Projector 71.9 73.8
After Projector 71.8 72.5
Similarity Score 71.5 -

Table 5: Unsupervised learning accuracies (%) of E-GCL on the TU datasets.

NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B AVG

E-GCL 79.95±0.25 75.18±0.40 77.83±0.52 88.20±0.85 74.63±0.28 90.71±0.57 56.90±0.29 72.02±0.90 76.93
+Mixup different sizes 78.54±0.47 74.86±0.52 79.05±0.58 89.74±1.38 73.70±0.46 90.74±0.68 56.17±0.35 72.30±0.33 76.89

G-Mixup does not support mixing node features. We have discussed the limitations of G-mixup in
the related works section (Appendix B).

Our linear interpolation strategy substantially outperforms G-mixup in three out of four TU datasets.
IfMixup also shows 1.15% better average accuracy than G-mixup. While G-mixup improves over the
BarlowTwins baseline in the last three datasets, it performs worse in the COLLAB dataset.

Interpolation Position. The cross-graph augmentation is supervised by the interpolation of the
original graphs’ representations. We interpolate the representations before the projector to let the
gradient mainly optimize the equivariance of the GNN encoder ϕ. With this design, the encoder
is trained to approach Equation (7), which is equivariance to cross-graph augmentation. However,
strict equivariance is hardly achieved by GNNs. Therefore, we have the projector learn to ignore
the subtle difference between the two sides of Equation (7) and reduce the task’s difficulty. Table 4
compares the performances of not using equivariance and the performances of E-GCL when applying
representation interpolation at different positions: before projector, after projector, and interpolating
the cosine similarity scores. We verify that 1) before the projector is the optimal choice for both
GraphCL and BarlowTwins, and 2) using equivariance at all positions consistently outperforms No
Equivariance. More than better performance, before projector also allows our equivariance principle
to work with a broader family of SSL frameworks (Zbontar et al., 2021; Bardes et al., 2022).

Influence of Mixing Dummy Nodes. We pad dummy nodes to the original graphs to the same size
before mixup. As dummy nodes have zero features, adding them to original graphs does not introduce
any noise into the interpolations. We demonstrate the neutral effect of dummy nodes by comparing
the performances of mixing graphs with very different sizes and the original E-GCL in Table 5. The
performance difference is only 0.04%.

We deliberately create size differences between mixed graphs in the different size experiment.
Specifically, we sort the in-batch graphs by their sizes {g1, g2, ..., gN}, such that |g1| ≤ |g2| ≤
... ≤ |gN |. Then, we mix the i-th graph with the (N − i+ 1)-th graph. In this way, we create size
differences in every batch such that the smallest graph g1 will be mixed with the largest graph gN .
We use the BarlowTwins SSL framework for the experiments.

D.2 INFLUENCE OF SAMPLED PERMUTATION NUMBERS

Experimental Settings. In the existing experiments (cf. Section 4), we randomly permute one of the
input graphs before graph interpolation. This strategy is a 1-sample estimator of the group averaging
and shows improvements over the state-of-the-art baselines. Here we conduct ablation experiments
to show that: 1) using random permutation improves performance; 2) using more samples to
approximate group averaging improves performance, and 3) the improvement of using more samples
is only marginal and comes at the cost of increased complexity. We conduct unsupervised learning
experiments using the TU datasets. We employ E-GCL with BarlowTwins framework, set α = 0.1,
and perform 5 experiments of different ω = {0.1, 0.2, 0.3, 0.4, 0.5} values. We report the average
and max values of the mean accuracies (%) of these 5 different experiments. The forward time is
measured across 100 batches of size 128 on the COLLAB dataset.

17

Under review as a conference paper at ICLR 2023

Table 6: Unsupervised learning performance in TU datasets. We ablate E-GCL using different
numbers of samples to approximate group averaging. We report the average and max of mean
accuracies for E-GCL with different ω = {0.1, 0.2, 0.3, 0.4, 0.5}. We set α = 0.1.

No rand. perm. 1-sample 3-sample 10-sample

Average 76.65 76.70 76.73 76.80
Max 76.85 76.92 76.95 76.97
Forward time (ms) 10.5±2.4 10.7±2.1 15.1±3.1 29.4±8.0

Table 7: ACR with GraphCL backbone. Lower is better

Before pre-training After pre-training

GraphCL 0.983 0.463
+Equivariance 0.424

Experimental Results. Table 6 shows that using random permutation consistently outperforms
not using random permutation (No rand. perm.). Specifically, the 1-sample estimator shows better
performance and adds no computational cost compared to No rand. perm.. Further, it shows that
using more samples to estimate the group averaging improves performance. The 10-sample estimator
gives the best performance. However, the 10-sample estimator’s improvement is only marginal
(0.05% ∼ 0.11%) compared to the 1-sample estimator, but leads to almost three times increase in
time complexity. Thus, we recommend the 1-sample estimator in implementation.

D.3 INFLUENCE OF EQUIVARIANCE ON AGGRESSIVE AUGMENTATIONS.

Intra-graph augmentations are problematic that they sometimes harmfully enforce insensitivity to
semantically shifted graphs (i.e., aggressive augmentations). To patch the problem, cross-graph
augmentations always enforce sensitivity to semantically shifted graphs that are generated by graph
interpolation. Consequently, the equivariance to cross-graph augmentations diminish the harmful
invariance of aggressive intra-graph augmentations that change global semantics, leading to better
performance.

To justify that equivariance can mitigate the negative effect of aggressive augmentations, we conduct
experiments w.r.t. Average Confusion Ratio (ACR) (Wang et al., 2022). ACR is the metric to measure
the ratio that the anchor graph’s nearest neighbors are the views of different graphs, rather than the
other views of the same anchor. Higher ACR indicates that the graph representations are less powerful
to distinguish different graphs, thus reflecting worse negative influences of aggressive augmentations.
We use the GraphCL checkpoints from Table 2b and report the ACR scores on the ZINC15 dataset.

As shown by Table 7, applying equivariance to cross-graph augmentation improves the ACR for
GraphCL. This demonstrates that the equivariance principle mitigates the negative influences of
aggressive augmentations, thus leading to better graph discrimination performance.

D.4 RESULTS IN THE FIRST SUBMISSION.

We include the results from our first submission for your reference (Table 8). We use Table 1 to
replace Table 8 to report baseline performances under a consistent evaluation protocol.

E IMPLEMENTATION DETAILS

E.1 E-GCL PSEUDO CODE

Algorithm 1 presents the pseudo code of E-GCL.

18

Under review as a conference paper at ICLR 2023

Table 8: Main experiment performances. † denotes results borrowed from (Li et al., 2022). ∗ denotes
reproduced results using the released codes. Other baseline results are borrowed from (You et al.,
2021). Bold indicates the best performance and underline indicates the second best performance.

(a) Unsupervised learning accuracies (%) on the TU datasets.

Dataset NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B AVG GAIN

No Pre-train† 65.40±0.17 72.73±0.51 75.67±0.29 87.39±1.09 65.29±0.16 76.86 ±0.25 48.48±0.28 69.37±0.37 70.15 -
graph2vec 73.22±1.81 73.30±2.05 - 83.15±9.25 - 75.78±1.03 47.86±0.26 71.10±0.54 - -
InfoGraph 76.20±1.06 74.44±0.31 72.85±1.78 89.01±1.13 70.05±1.13 82.50±1.42 53.46±1.03 73.03±0.87 74.02 3.87
GraphCL 77.87±0.41 74.39±0.45 78.62±0.40 86.80±1.34 71.36±1.15 89.53±0.84 55.99±0.28 71.14±0.44 75.71 5.56
JOAO 78.36±0.53 74.07±1.10 77.40±1.15 87.67±0.79 69.33±0.34 86.42±1.45 56.03±0.27 70.83±0.25 75.01 4.86
ADGCL† 73.91±0.77 73.28±0.46 75.79±0.87 88.74±1.85 72.02±0.56 90.07±0.85 54.33±0.32 70.21±0.68 74.79 4.64
GraphMAE* 75.00±0.95 73.92±0.97 76.15±0.99 87.17±1.02 72.92±3.88 81.27±2.51 49.63±1.67 71.96±0.65 73.50 3.35
RGCL† 78.14±1.08 75.03±0.43 78.86±0.48 87.66±1.01 70.92±0.65 90.34±0.58 56.38±0.40 71.85±0.84 76.15 6.00
E-GCL 77.93±0.41 75.05±0.60 79.07±0.53 88.70±2.20 73.84±0.33 91.59±0.54 56.48±0.35 72.10±0.76 76.85 6.70

(b) Transfer learning ROC-AUC (%) scores on the MoleculeNet. GTS denotes GraphTrans.

Dataset BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE AVG GAIN

No Pre-train 65.8±4.5 74.0±0.8 63.4±0.6 57.3±1.6 58.0±4.4 71.8±2.5 75.3±1.9 70.1±5.4 67.0 -
Infomax 68.8±0.8 75.3±0.5 62.7±0.4 58.4±0.8 69.9±3.0 75.3±2.5 76.0±0.7 75.9±1.6 70.3 3.3
ContextPred 68.0±2.0 75.7±0.7 63.9±0.6 60.9±0.6 65.9±3.8 75.8±1.7 77.3±1.0 79.6±1.2 70.9 3.9
GraphCL 69.7±0.7 73.9±0.7 62.4±0.6 60.5±0.9 76.0±2.6 69.8±2.7 78.5±1.2 75.4±1.4 70.8 3.8
JOAO 71.4±0.9 74.3±0.6 63.2±0.5 60.5±0.7 81.0±1.6 73.7±1.0 77.5±1.2 75.5±1.3 72.1 5.1
ADGCL† 68.3±1.0 73.6±0.7 63.1±0.7 59.2±0.9 77.6±4.2 74.9±2.5 75.4±1.3 75.0±1.9 70.9 3.9
GraphLOG† 71.0±1.9 74.6±0.6 62.3±0.5 57.9±1.4 78.7±2.6 75.0±2.0 75.2±2.0 82.6±1.2 72.2 5.2
GraphMAE* 72.2±0.9 75.1±0.4 63.0±0.3 58.5±0.7 80.5±2.0 75.7±1.2 76.4±0.8 81.3±1.0 72.8 5.8
RGCL† 71.4±0.7 75.2±0.3 61.4±0.6 61.4±0.6 83.4±0.9 76.7±1.0 77.9±0.8 76.0±0.8 73.2 6.2
E-GCL 72.3±0.6 74.9±0.7 64.0±0.3 62.8±0.5 83.1±2.5 78.8±0.8 76.3±0.6 78.1±1.1 73.8 6.8
E-GCL, GTS 72.3±0.8 77.9±0.6 66.0±0.6 62.4±1.0 80.7±3.0 79.4±2.1 77.8±1.1 79.7±2.4 74.5 7.5

E.2 IMPLEMENTATION

We implement GNNs with the PyTorch Geometric library (Fey & Lenssen, 2019), which is open-
source under the MIT license. We conduct experiments using an NVIDIA V100 GPU (32 GB
memory) on a server with a 40-core Intel CPU.

Baselines. For comparison, we report the performances of the following baseline methods:

• graph2vec (Narayanan et al., 2017) treats each graph as a document and employs a document
embedding approach to learn graph embeddings.

• Infomax (Veličković et al., 2019) maximizes the mutual information between the patch representa-
tions that summarize the subgraphs centered around nodes and the global readout of graphs.

• ContextPred (Hu et al., 2020) aims to predict the surrounding graph structures using the embed-
dings of the local subgraphs. The prediction problem is formulated as a binary prediction with
negative samples to resolve the intractability of predicting graph structures.

• InfoGraph (Sun et al., 2020) learns representations by maximizing the mutual information between
graph-level representations and graph substructures of different scales, e.g., nodes and edges.

• GraphCL (You et al., 2020) explores the combination of intra-graph augmentations, such as node
dropping, edge dropping, and subgraph, for contrastive graph representation learning.

• AD-GCL (Suresh et al., 2021) trains an augmenter to adversarially drop edges to remove redundant
information.

• GraphLOG (Xu et al., 2021) utilizes clustering to contrast local instances and the corresponding
hierarchical prototypes at every clustering layer.

• JOAO (You et al., 2021) aims to automate the selection of graph augmentations via solving a
bi-level optimization problem.

• GraphMAE (Hou et al., 2022) explores GNN pretraining by reconstructing node features using a
masked autoencoder.

• RGCL (Li et al., 2022) learns a rationale generator to protect the salient features during data
augmentation.

19

Under review as a conference paper at ICLR 2023

Algorithm 1 PyTorch-style pseudocode for E-GCL

phi: GNN encoder backbone
rho: MLP projector network
ssl_loss: loss function that encourages insensitivity of positive views
alpha: shape parameter of beta distribution
omega: weight hyper-parameter of equivariance

for g in loader:
intra-graph augmentation
g1 = augment(g)
g2 = augment(g)

cross-graph augmentation
lamb = random.beta(alpha, alpha, size=len(g)) # sample interpolation coefficients
perm = random.randperm(len(g)) # generate random permutation of graph list
mix_g = mix_graph_list(g1, g2[perm], lamb) # interpolate between g1[i] and g2[perm[i]]

invariance loss
h1 = phi(g1)
h2 = phi(g2)
inv_loss = ssl_loss(rho(h1), rho(h2))

equivariance loss
h3 = phi(mix_g) # feature interpolation output
h4 = lamb * h1 + (1-lamb) * h2[perm] # representation interpolation output
eqv_loss = ssl_loss(rho(h3), rho(h4))

cooperation loss of invariance mechanism and equivariance mechanism
loss = (1-omega) * inv_loss + omega * eqv_loss

optimization step
loss.backward()
optimizer.step()

def mix_graph_list(g_list1, g_list2, lamb_list):
minimal graph mixup implementation without edge features
mix_g_list = []
for g1, g2, lamb in zip(g_list1, g_list2, lamb_list):

pad node features and adjacency matrices to the same size
N = max(size(g1), size(g2))
x1, x2 = pad_x(g1.x, size=N), pad_x(g2.x, size=N) # shape = (N, D)
adj1, adj2 = pad_adj(g1.adj, size=N), pad_adj(g2.adj, size=N) # shape = (N, N)

mix node features and adjacency matrices
mix_x = lamb * x1 + (1-lamb) * x2 # shape = (N, D)
mix_adj = lamb * adj1 + (1-lamb) * adj2 # shape = (N, N)

create mixed graph instance
mix_g = Graph(mix_x, mix_adj)
mix_g_list.append(mix_g)

return mix_g_list

We do not compare with DGCL (Li et al., 2021) because their experiments follow a different protocol.
DGCL selects GNN layers, dimension sizes and batch sizes based on the test set performance on
each dataset. However, other baselines and our methods stick to the same GNN configuration for all
the datasets. Also, re-implementation is hard because the source code has not been released.

Augmentations. Our intra-graph augmentation follows GraphCL (You et al., 2020). We use dropNode
for the unsupervised learning experiments and use both dropNode and subgraph for the transfer
learning experiments. For the cross-graph augmentation of graph mixup, we include the self-loops
of virtual nodes in the adjacency matrix due to better empirical performance. Before graph mixup,
we randomly shuffle the node order of one of the input graphs to have random relative permutations
between input graphs, which leads to slightly better empirical performance.

Implementation to Different SSL Frameworks. For the BarlowTwins and SimSiam backbones,
which use no negative samples, E-GCL follows strictly to their original loss functions. For the
contrastive backbone GraphCL, E-GCL uses both intra-graph augmentations and cross-graph aug-
mentations as negative samples to facilitate better cross-graph discrimination. Specifically, we
have two types of embeddings for cross-graph augmentations: the feature interpolation embed-
dings {z3i |z3i = ρ(ϕ(λg1i + (1 − λ)λg2π(i)))}Ni=1 and representation interpolation embeddings
{z4i |z4i = ρ(λϕ(g1i) + (1 − λ)ϕ(λg2π(i)))}Ni=1. To avoid overfitting to one type of cross-graph
augmentations, we use half of each type as the anchor graphs and the other half as the negative

20

Under review as a conference paper at ICLR 2023

Table 9: Hyper-parameters in unsupervised learning.

Backbones learning rate batch size weight decay epochs α ω Projector dimensions

GraphCL 0.001 128 0 60 0.1 0.2 [32, 32, 32]
BarlowTwins 0.001 128 0 60 0.1 0.4 [32, 128, 128, 128]

Table 10: Hyper-parameters in transfer learning.

Backbones learning rate batch size weight decay epochs α ω Projector dimensions

GraphCL 0.001 256 0 80 1 0.1 [300, 300, 300]
SimSiam 0.0005 2048 0.00001 100 4 0.3 [300, 300, 300, 300]
BarlowTwins 0.001 2048 0 100 2 0.5 [300, 1200, 1200, 1200]
BarlowTwins, GraphTrans 0.0001 2048 0 100 2 0.3 [128, 1200, 1200, 1200]

Table 11: GNN configurations in transfer learning.

Model Training Time #Parameters GNN Layers Transformer Layers GNN dim Transformer dim Pooling

GINE 16.3 hours 1.85M 5 - 300 - Mean
GraphTrans 32.5 hours 2.73M 5 4 300 128 <CLS>

samples. Define m3
j = z

3+1(j>N/2)
j and m4

j = z
4−1(j≤N/2)
j , where 1(·) is a binary indicator that

returns 1 when the condition holds and returns 0 otherwise. {m3
j}Nj=1 contains half of the feature

interpolation embeddings and half of the representation interpolation embeddings; {m4
j}Nj=1 contains

the other half. The loss function when using GraphCL backbone can be written as:

invariance: ℓ({z1
i }

N
i=1, {z

2
i }

N
i=1) = −

1

N

N∑
i=1

log
exp(s(z1

i , z
2
i)/τ)∑N

j=1,j ̸=i exp(s(z
1
i , z

2
j)/τ) +

∑N
j=1,j /∈{i,π(i)} exp(s(z1

i ,m
4
i)/τ)

,

equivariance: ℓ({m3
i }

N
i=1, {m

4
i }

N
i=1)

= −
1

N

N∑
i=1

log
exp(s(m3

i ,m
4
i)/τ)∑N

j=1,j /∈{i,π(i)} exp(s(m3
i ,m

4
j)/τ) +

∑N
j=1,j /∈{i,π(i)} exp(s(m3

i , z
2
i)/τ)

,

LE-GCL = (1 − ω) · ℓ({z1
i }

N
i=1, {z

2
i }

N
i=1) + ω · ℓ({m3

i }
N
i=1, {m

4
i }

N
i=1) (21)

Notice that, we treat sample pairs that share partial graph identities (e.g., (m3
j , z1j) and (m3

j , m4
π(j)))

as semi-positives and exclude them from negative samples.

Alignment and Uniformity Loss. We use dropNode as the intra-graph augmentation and graph
interpolation as the cross-graph augmentation. We pre-train GraphCL for 1000 steps before evaluation.
The GraphCL setup follows that in Table 10. We split the original pre-training dataset into two
subsets. The 80% subset is used for pre-training, and 51200 samples from the other 20% subset are
used for loss evaluation.

E.3 HYPER-PARAMETERS

Unsupervised Learning. The hyper-parameters are shown in Table 9. We use the same three-layer
GIN from (You et al., 2020). Following Zbontar et al. (2021), the BarlowTwins backbone uses a three-
layer MLP projector with hidden dimensions that are four times the input dimension. Following You
et al. (2020), we use a learning rate 0.01, batch size 128 and no weight decay. For E-GCL, we conduct
grid search for α and ω in the following ranges α = {0.1, 0.4, 1, 2, 4}, ω = {0.1, 0.2, 0.3, 0.4, 0.5}.
We train the GNN for 60 epochs and evaluate the generated embedding using non-linear SVMs
every 10 epochs. Following You et al. (2020), we search for the regularization parameter of SVMs
in {0.001, 0.01, 0.1, 1, 10, 100, 1000}. Following (You et al., 2021), we report test accuracy of the
epoch selected by validation set.

Transfer Learning. The hyper-parameters are shown in Table 10. We use a large batch size 2048 for
BarlowTwins and SimSiam to speed up pre-training. The large batch size increases no complexity
because Barlowwins and SimSiam use no negative samples. Following Zbontar et al. (2021), the
BarlowTwins uses a three-layer MLP projector with hidden dimensions that are four times the input

21

Under review as a conference paper at ICLR 2023

Table 12: Hyperparameters for reproducing baselines. Parentheses include the original range of
hyperparameters if they are different from our reproduction.

(a) Hyperparameters for unsupervised learning baselines.

GNN layers h-dim Max Epochs Learning rate Metric Epoch selection

InfoGraph 4 (4,8,12) 32 60 (100) 1e-3 (1e-2,1e-3,1e-4) Accuracy Validation set
GraphCL 3 32 60 (20) 1e-2 Accuracy Validation set
JOAO 3 32 60 (40) 1e-3 Accuracy Validation set
ADGCL 5 32 60 (150) 1e-3 (1e-2,5e-3,1e-3) Accuracy Validation set
GraphMAE 3 (2,3,5) 32 (32,256,512) 60 (300) 1.5e-4 (1.5e-4,5e-4,1e-3) Accuracy (F1) Validation set (Last epoch)
RGCL 3 32 60 (40) 1e-2 Accuracy Validation set

(b) Hyperparameters for transfer learning baselines.

GNN layers h-dim Pretrain epochs Pretrain learning rate Fine-tune epochs Epoch selection

Infomax 5 300 100 1e-3 100 Last epoch (Validation set)
ContextPred 5 300 100 1e-3 100 Last epoch (Validation set)
ADGCL 5 300 100 (20,50,80,100) 1e-3 100 Last epoch (Validation set)
GraphLOG 5 300 1 local + 10 global 1e-3 100 Last epoch
GraphMAE 5 300 100 1e-3 100 Last epoch
RGCL 5 300 100 1e-3 100 Last epoch

Table 13: Statistics of unsupervised learning datasets.

Dataset Category #Graphs #Avg. Node #Avg. Edges

NCI1 Biochemical Molecules 4110 29.87 64.6
PROTEINS Biochemical Molecules 1113 39.06 145.63
DD Biochemical Molecules 1178 284.32 1431.32
MUTAG Biochemical Molecules 188 17.93 39.59
COLLAB Social Networks 5000 74.49 4914.43
RDT-B Social Networks 2000 429.63 995.51
RDT-M Social Networks 4999 508.52 1189.75
IMDB-B Social Networks 1000 19.77 193.06

Table 14: Statistics of biochemical graph datasets for transfer learning.

Datasets Utilization #Graphs #Avg. Node #Avg. Edges

ZINC-2M Pre-training 2000000 26.62 57.72
BBBP Fine-tuning 2039 24.06 51.91
Tox21 Fine-tuning 7831 18.57 38.59
ToxCast Fine-tuning 8576 18.78 38.52
SIDER Fine-tuning 1427 33.64 70.72
ClinTox Fine-tuning 1477 26.15 55.77
MUV Fine-tuning 93087 24.23 52.56
HIV Fine-tuning 41127 25.51 54.94
BACE Fine-tuning 1513 34.08 73.72

dimension. The SimSiam (Chen & He, 2021) uses a two-layer MLP projector and a two-layer MLP
predictor. Following Tian et al. (2021), we let the predictor network use a learning rate that is ten
times that for the GNN encoder and the projector. The SimSiam backbone does not perform well with
the default learning rate of 0.001 and weight decay of 0. Thus, we search for the SimSiam backbone’s
learning rate and weight decay values in the following ranges: learning rate = {1e − 3, 5e − 4},
weight decay = {1e− 4, 1e− 5, 5e− 5}. We then fix the learning rate and weight decay and add the
equivariance mechanism. For E-GCL, we search for α and ω from a random subset of the following
ranges α = {0.1, 0.4, 1, 2, 4}, ω = {0.1, 0.2, 0.3, 0.4, 0.5}. We do not conduct a grid search because
the dataset is large. For fine-tuning, the pre-trained model are re-trained 100 epochs on the transferred
dataset. The fine-tuning learning rate is 1e− 3 for GINE and 1e− 4 for GraphTrans. Following (You
et al., 2020), we report test performance of the last epoch.

Table 11 shows the configuration details of our used GNNs, in which the GINE is from (Hu et al.,
2020) and the GraphTrans is from the Molpcba experiment of (Wu et al., 2021).

22

Under review as a conference paper at ICLR 2023

Table 15: Complexity of E-GCL and representative GCL baselines. O(X) = O(2BL(NF 2+EF)).

GraphCL BarlowTwins SimSiam RGCL E-GCL

GNN encoding O(X) O(X) O(X) O(2X) O(2X)
Loss function O(B2F) O(BF 2) O(BF) O(2B2F) O(2BF 2)

Table 16: Complexity of graph augmentations.

Drop Node Drop Edge Subgraph G-mixup Graph Interpolation (Ours)

O(N + E) O(E) O((1 + kD)N + E) O(N3) O(NF + EF)

Baseline Hyperparameters. We have re-evaluated some baselines to present a consistent experi-
mental comparison with E-GCL. In the re-evaluation, we report the test performance selected by
validation set for unsupervised learning; we report the last epoch test performance for transfer learning.
When reproducing baselines, we change only the evaluation setting and leave other hyperparameters
unchanged as much as possible. Table 12 summarizes hyperparameter details. We now describe the
process of selecting the baseline hyperparameters. For unsupervised learning, we use the validation
set to make decisions when a range of hyperparameters are provided in the original paper. We use the
same set of hyperparameters for all datasets. For transfer learning, we fine-tune the same pre-training
checkpoint for all downstream datasets for fair comparison.

E.4 DATASET STATISTICS

Table 13 and Table 14 present the statistics of our used datasets.

F COMPLEXITY ANALYSIS

The equivariant principle is computationally affordable. In this section, we analyze the complexity of
GCL methods in two parts: 1) neural computation, and 2) data augmentation.

Symbols. Formally, we define the symbols as follows: B ∈ Z+ is the batch size; N ∈ Z+ is the
number of nodes in a graph; E ∈ Z+ is the number of edges in a graph; L ∈ Z+ is the number of
GNN layers; k ∈ (0, 1) is the ratio of the cutted subgraph for subgraph augmentation; D ∈ Z+ is the
maximum degree of nodes in graph; F ∈ Z+ is the dimension of features of nodes and edges. For
graph interpolation of two graphs, let N , E, and D refer to the values of the bigger graph.

Complexity of Neural Computation. We consider the complexity of GNN encoding and SSL loss
function. Here, we analyze the complexity when using the GIN architecture. The E-GCL uses the
BarlowTwins framework. Let O(X) = O(2BL(NF 2 + EF)) be the complexity of encoding two
batches of intra-graph augmentation graphs.

Shown by Table 15, E-GCL’s complexity is comparable to RGCL. E-GCL’s complexity is at most
twice of BarlowTwin. The additional O(X) complexity of GNN encoding comes from encoding the
cross-graph augmentation batch, whose size is at most the sum of the two intra-graph augmentations
batches. Similarly, E-GCL’s complexity of loss function is twice of that of BarlowTwins.

Complexity of Graph Augmentation. Table 16 shows the complexity of some popular graph
augmentations (You et al., 2020; Han et al., 2022). Note that the complexity of our Graph Interpolation
is linear to the graph size times the feature dimension. It is lower than G-mixup and scalable to
large graphs with thousands of nodes. Although the complexity of graph interpolation is higher than
Drop Node and Drop Edge, it is scalable to large datasets. In practice, a PyTorch dataloader with
4 multiprocessing workers can process graph interpolation of 2048 chemical molecules in batches
without putting GPU on wait.

23

	Introduction
	Preliminaries: Invariant Graph Contrastive Learning
	Methodology: Equivariant Graph Contrastive Learning
	Equivariance
	Cross-graph Augmentation
	Equivariance to Cross-graph Augmentations
	Implementing E-GCL

	Experiment
	Experimental Setup
	Main Results (RQ1)
	Analyzing the Properties of E-GCL (RQ2)

	Conclusion and Future Works
	Proof
	Proofs on Graph Interpolation
	Proofs on Group Averaging

	Related Works
	Limitations
	Experiment
	Ablation Studies for Graph Interpolation
	Influence of Sampled Permutation Numbers
	Influence of Equivariance on Aggressive Augmentations.
	Results in the First Submission.

	Implementation Details
	E-GCL Pseudo Code
	Implementation
	Hyper-parameters
	Dataset Statistics

	Complexity Analysis

