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ABSTRACT

Recent progress in large language models (LLMs) highlights the power of scal-
ing test-time compute to achieve strong performance on complex tasks, such as
mathematical reasoning and code generation. This raises a critical question: how
should model training be modified to optimize performance under a subsequent
test-time compute strategy and budget? To explore this, we focus on pass@N,
a simple test-time strategy that searches for a correct answer in N independent
samples. We show, surprisingly, that training with cross-entropy (CE) loss can be
misaligned with pass@N in that pass@N accuracy decreases with longer training.
We explain the origins of this misalignment in terms of model overconfidence in-
duced by CE, and experimentally verify our prediction of overconfidence as an
impediment to scaling test-time compute via pass@N. Furthermore we suggest
a principled, modified training loss that is better aligned to pass@N by limiting
model confidence and rescuing pass@N test performance. Our algorithm demon-
strates improved mathematical reasoning on MATH and MiniF2F benchmarks un-
der several scenarios: (1) providing answers to math questions; and (2) proving
theorems by searching over proof trees. Overall our work underscores the im-
portance of co-designing two traditionally separate phases of LLM development:
training-time protocols and test-time search and reasoning strategies.

1 INTRODUCTION

Scaling test-time compute has been integral to unprecedented improvements in LLMs’ reasoning
skills for complex tasks such as math and coding. Thus, test-time compute has emerged as a new di-
mension for improving LLMs, leading to a key tradeoff between allocating additional compute to in-
ference versus pretraining (Snell et al., 2024). Diverse test-time strategies include Chain-of-Thought
(CoT) (Wei et al., 2022), tree-of-thought (Yao et al., 2023), self-consistency (Wang et al., 2023), self-
reflection (Shinn et al., 2023), self-critique (Saunders et al., 2022), self-verification (Weng et al.,
2023) and Monte-Carlo tree search (Zhao et al., 2023). These have shown great success in boost-
ing model performance in the post-training phase or at inference time. More recently, OpenAI’s
O1 model (OpenAI, 2024) and DeepSeek’s R1 model (DeepSeek-AI: Daya Guo et al., 2025) have
combined some of these strategies with reinforcement learning to generate high-quality reasoning
traces for problems of various difficulty levels, demonstrating clear performance improvements as
more test-time compute is allocated.

These successes fit into a broader paradigm in which a frontier model is first fine-tuned on a rea-
soning task with supervised fine-tuning (SFT) (Wei et al., 2022; Ouyang et al., 2022; Chung et al.,
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2022), and then a test-time algorithm is applied to further improve its performance (Yao et al., 2023;
Wang et al., 2023; Chen et al., 2021). Many test-time algorithms are independent of the fine-tuning
process. As a result, the fine-tuning is agnostic to and thus decoupled from the test-time algo-
rithm (Chow et al., 2024). However, for a given choice of test-time strategy and compute budget, it
is not a priori clear which fine-tuning approach, including the loss objective, would be best aligned
with the test-time strategy so as to maximize the test accuracy under the overall strategy.

Our work studies the problem of aligning fine-tuning and test-time algorithms. We consider what
is perhaps the simplest setting, supervised fine-tuning with CE loss under the pass@N test-time
strategy. This setting reveals a case of misalignment: standard SFT is not the right choice for
maximizing performance under pass@N. We believe that this kind of misalignment presents itself
in several combinations of fine-tuning/test-time approaches, motivating our thorough study in this
paper. Our main contributions are,

• We identify a misalignment between standard fine-tuning with CE loss and the pass@N cover-
age metric at test time. (Sec. 4.1)

• We develop and experimentally verify a framework that suggests this misalignment arises from
overconfidence induced by training on CE loss. (Sec. 4.2 and 4.3)

• We propose a new loss function that directly optimizes the pass@N coverage metric, demon-
strating consistent improvement over the CE loss objective, achieving superior accuracy fron-
tiers in MATH and MiniF2F. (Sec. 5.1 to 5.3)

• We extend our algorithm to more complex test-time scenarios including searching over proof-
trees of varying shapes to improve automated theorem proving, and answering math ques-
tions using Chain-of-Thought reasoning traces, demonstrating improved mathematical reason-
ing performance in both cases. (Sec. 5.3 and 5.4)

2 RELATED WORKS

Test-time compute and pass@N strategy. Multiple works have looked into the interaction between
training and test-time strategies. Jones (2021) demonstrates a tradeoff between train- and test-time
compute in the toy model of a board game. OpenAI’s O1 model demonstrates remarkable perfor-
mance gains when scaling test-time compute (OpenAI, 2024). Closely related to our work, Brown
et al. (2024) observed an exponentiated power law between coverage and the number of samples for
in-context-learning evaluation. Snell et al. (2024), in turn, have explored compute-optimal strategies
for effectively scaling test-time compute. This paper focuses primarily on pass@N test-time strat-
egy. Gui et al. (2024) showed that the best-of-N sample distribution is nearly optimal for alignment
with a reward model. To mitigate the excessive test-time compute costs associated with best-of-N
sampling, Gui et al. (2024); Sessa et al. (2024) proposed alignment algorithms to distill this best-
of-N sample distribution. Li et al. (2024) found that fine-tuning with cross-entropy loss can limit
output diversity and proposed a maximum entropy-based method to address this issue.

Post-training for mathematical reasoning. Multiple post-training techniques have been proposed
to improve mathematical reasoning in LLMs. Instruction-tuning and reinforcement learning with
human feedback have been shown to boost model performance on math (Yue et al., 2024; Light-
man et al., 2024; Uesato et al., 2022), while continued training on math- or code-specific domain
data enhances models’ reasoning abilities for downstream mathematical tasks (Lewkowycz et al.,
2022; Azerbayev et al., 2024; Yang et al., 2024; Shao et al., 2024; Ying et al., 2024). Rejection-
sampling (Zelikman et al., 2022) and self-improvement techniques (Qi et al., 2024), in turn, are
useful to augment the training data for SFT. More recent approaches (OpenAI, 2024; DeepSeek-AI:
Daya Guo et al., 2025) have incorporated reinforcement learning and achieved exceptional reason-
ing capabilities in various domains, such as math and coding. Although our paper primarily focuses
on supervised fine-tuning to enhance pretrained models’ math capabilities, our loss function can be
applied to other settings that train under CE loss, such as continual training, instruction-tuning, and
data augmentation.

Data pruning and hard example mining. The interpretation of the loss function we derive below
can be related to data pruning and hard example mining. Data selection is often applied to curate
high-quality datasets for pretraining (Marion et al., 2023), where Sorscher et al. (2022) shows that
pruning easy samples can improve pretraining loss scaling as a function of dataset size. Zhou et al.
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(2023); Ye et al. (2025) demonstrate that supervised fine-tuning on even a very small dataset can
yield remarkably strong performance in alignment and reasoning tasks. On the other hand, hard
example mining focuses on identifying and emphasizing challenging samples to improve model
performance (Shrivastava et al., 2016). In the domain of mathematical reasoning, Tong et al. (2024)
found a difficulty imbalance in rejection-sampled datasets and showed that more extensive training
on difficult samples improves model performance.

Our paper is closely related to a concurrent paper by Chow et al. (2024), which derives a similar
training objective for RL to directly optimize for the best-of-N test-time strategy.

3 PROBLEM SETUP

Given a vocabulary set W , we consider a dataset D = {(x(i), y(i))}Mi=1, where x(i) ∈ Wni is a
prompt, y(i) ∈ Wmi is its ground-truth completion, and ni and mi are the prompt and completion
lengths. In the context of math, x(i) is the problem statement and y(i) is its solution. To model
the conditional distribution p(y(i)|x(i)) we use an autoregressive transformer model (Vaswani et al.,
2017), which is traditionally trained by minimizing the cross-entropy loss.

LCE = − E
(x,y)∼D

log p̂(y|x) (1)

where p̂ denotes the model’s distribution. To use and evaluate the model at test time, we assume the
existence of an efficient oracle verifier V which takes as input an (x, y) pair and returns V (x, y) = 1
if y is a correct completion of x and otherwise returns V (x, y) = 0. Practical examples of verifiers
include compilers or pre-defined unit tests for coding problems, or automatic proof checkers in
mathematical theorem proving. In such applications, a simple method, known as pass@N, for trad-
ing test-time compute for accuracy involves sampling N completions from p̂ given the test prompt x
and applying the verifier V to all of them to search for a correct solution. The probability of a correct
answer is then no longer the probability that 1 completion is correct, but rather the probability that at
least one of N is correct. This probability, for a dataset D, is given by the pass@N coverage metric

CN
D = E

x∼D
{yi}i∈[N]

i.i.d.∼ p̂(·|x)

P(∃j ∈ [N ] s. t. V (x, yj) = 1). (2)

Minimizing the CE loss in Eq. (1) is equivalent to maximizing the pass@1 metric C1
D on a training

set D. But if we scale up test-time compute so that the pass@N metric CN
D on a test set D for N ≫ 1

is the relevant performance metric, is LCE still a good training loss, or can we do better?

4 MISALIGNMENT BETWEEN CE LOSS AND PASS@N

4.1 THE CE LOSS INDUCES OVERFITTING FOR PASS@N

To understand the impact of training with CE loss on pass@N test performance, we fine-tune Llama-
3-8B-base (Grattafiori et al., 2024) on the MATH (Hendrycks et al., 2021) dataset. We start from
the base model rather than LLama-3-8B-Instruct to avoid potential leakage of the MATH dataset
into LLama-3-8B-Instruct through post-training. We follow Lightman et al. (2024) and use 12, 000

Table 1: Pass@N coverage metric on the MATH test set for a Llama-3-8B-base model fine-tuned
with CE loss on direct answers from the MATH training set. Surprisingly, Pass@N test accuracy at
large N decreases with number of training epochs.

PASS@1 PASS@16 PASS@256 PASS@4K

EPOCH 1 4.4% 30.0% 65.2% 82.5%
EPOCH 2 5.3% 31.4% 64.5% 80.0%
EPOCH 3 6.5% 28.7% 54.5% 79.2%
EPOCH 4 7.4% 22.9% 44.5% 63.0%
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problems for training and the remaining 500 for testing. Here we train the model to provide a direct
answer. We will discuss training with CoT in Sec. 5.4 for MATH reasoning traces.

Table 1 reveals that the pass@N performance CN
D on a test set monotonically increases with the

number of training epochs only for N = 1, when minimizing CE loss is equivalent to maximizing
C1
D. However, for N ≥ 16, minimizing CE loss during training does not monotonically increase CN

D
at test; indeed for N ≥ 256, pass@N test performance, remarkably, monotonically decreases with
the number of training epochs, despite the fact that pass@1 performance monotonically increases.
This corresponds to a novel type of overfitting, in which test performance degrades over training,
likely due to a mismatch between the test time (pass@N) and training time (pass@1) strategies.

4.2 OVERFITTING, CONFIDENCE, AND EXPLORE-EXPLOIT TRADEOFF

What are the origins of this overfitting? First, we show that in the simple case of a single problem
x, overfitting cannot occur. Let p̂(x) denote the probability assigned by the model to all correct
answers for problem x. Then the pass@1 coverage is C1 = p̂(x) while the pass@N coverage is
CN = 1− (1− p̂(x))N = 1− (1− C1)N . This formula for CN in the single problem case obeys:

Lemma 1. ∀N, N ′ > 0, CN is monotonic in CN ′
.

Thus increasing pass@N′ coverage implies increasing pass@N coverage for any N and N ′. When
N ′ = 1, this implies minimizing CE loss maximizes pass@N coverage.

However, lemma 1 can fail when there is more than one problem. To understand this in a simple
setting, consider a test set with two problems x1 and x2 with corresponding unique correct an-
swers y1 and y2. Consider two models. The first model assigns probabilities p̂1(y1|x1) = 1 and
p̂1(y2|x2) = 0. If we think of the probability a model assigns to an answer as its confidence in that
answer, this model is highly confident and correct for problem x1, but highly confident and wrong
for x2. Its pass@1 coverage is thus 50%. Moreover, since it always gets x1 right and x2 wrong, its
pass@N coverage remains at 50%. In contrast, consider a second model which assigns probabilities
p̂2(y1|x1) = p̂2(y2|x2) = 0.1. This model has high confidence (0.9) but unfortunately on incorrect
answers. Therefore its pass@1 accuracy is only 10%. However, it is willing to explore or hedge by
placing some low confidence (0.1) on the other answer, which happens to be correct. Thus if this
model samples N times, the pass@N coverage increases with N , eventually approaching 100% as
N → ∞. Thus the first model outperforms the second in terms of pass@1 but not pass@N for large
N . This indicates a tradeoff amongst policies: those that do better on pass@1 may not do better at
pass@N. Of course the best one can do is be confident and correct, corresponding to the optimal
model with p∗(y1|x1) = p∗(y2|x2) = 1. However, this toy example reveals that if one cannot guar-
antee correctness, it can be beneficial to limit confidence and explore more solutions, especially if
one can sample at large N .

To demonstrate more generally the existence of tradeoffs between confident exploitation of a few
answers versus unconfident exploration of many answers, as a function of the number of passes
N , we prove two lemmas. To set up these lemmas, given any problem, let p̂i denote the model
probability or confidence assigned to answer i, and assume answers are sorted from highest to lowest
confidence so that p̂i ≥ p̂i+1,∀ i ≥ 1. Thus p̂1 is the model’s maximal confidence across all answers.
Moreover, let pi be the probability that answer i is actually correct for the problem. Assume the
model policy is approximately well calibrated so that higher confidence implies higher or equal
probability of being correct, i.e. pi ≥ pi+1,∀ i ≥ 1. We empirically verify that the model trained
with CE loss on the MATH dataset approximately satisfies this assumption (Fig. 6). Indeed, optimal
policies maximizing pass@N coverage in Eq. (2) are approximately well calibrated (See lemma 4).
Thus p1 is the model’s maximal accuracy across all answers. We prove:

Lemma 2 (Upper bound on max confidence). Assume a max accuracy p1, and assume
∑k

i=1 pi ≥
1 − ϵ for some 0 < ϵ < 1. Then optimal policies maximizing pass@N coverage in Eq. (2), subject
to above accuracy and calibration constraints, must have max confidence upper bounded as

p̂1 ≤ 1− k − 1

(k − 1)
N

N−1 p
1

N−1

1 (1− p1 − ϵ)
1

1−N + 1
.
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This upper bound is monotonically decreasing in N , implying that at large N , an optimal policy
for pass@N must limit its max confidence to be low, thereby favoring exploration and discouraging
exploitation. Furthermore, we prove:

Lemma 3 (Lower bound on max confidence). Assume top two accuracies p1 > p2. Then opti-
mal policies maximizing pass@N coverage in Eq. (2), subject to above accuracy and calibration
constraints, must have max confidence obeying

p̂1 ≥ 1− (1− p1 + p2)p
1

1−N

1 p
1

N−1

2

1− p1 + p2 + p
1

1−N

1 p
N

N−1

2

.

This lower bound is a monotonically decreasing function of N , implying that at small N , optimal
policies for pass@N must have high max confidence, thereby favoring exploitation and discouraging
exploration. Note in the limit N → 1+, the lower bound is always 1, recovering the intuitive result
that the optimal policy for pass@1 is to place 100% confidence on the highest accuracy answer.

4.3 OVERCONFIDENCE PREVENTS IMPROVEMENTS FROM SCALING TEST-TIME COMPUTE

To summarize the consequences of our lemmas above, among the space of approximately well
calibrated policies in which higher model confidence on an answer is correlated with higher accuracy
on the answer, lemma 2 suggests that at large N it is beneficial to unconfidently explore by assigning
low model confidence to many answers, while lemma 3 suggests that at small N it is beneficial to
confidently exploit by assigning high model confidence to one or a few answers. These lemmas make
a prediction that could explain the empirical observation in Table 1 that pass@N test performance for
large N degrades over epochs when pass@1 is maximized at training time: namely, maximization
of pass@1 makes the model overconfident, thereby preventing good performance on pass@N.

To test this theoretical prediction of model overconfidence, we estimated the max confidence of
the model as p̂(ygreedy|x) where ygreedy is the greedy completion to x obtained by sampling au-
toregressively from the model p̂, and at each step selecting the token with the highest probability.
p̂(ygreedy|x) approximates the max confidence p̂1 in lemmas 2 and 3. For the model fine-tuned on
MATH with CE loss, we plot the distribution of p̂(ygreedy|x) over the test set in Fig. 1 (a). This
demonstrates the model becomes progressively more confident about its greedy completion over
training, thereby confirming our theoretical insights. In Fig. 1 ((b)) we see why this is a problem:
only some of the model’s highly confident answers are correct. Thus the model becomes overcon-
fident and largely wrong. Scaling test-time compute cannot easily rescue such a model, as over
multiple samples, it is likely to confidently provide the same wrong answers, explaining the origins
of poor pass@N test performance.

4.4 EASY DATA DRIVES OVERCONFIDENCE

We have shown above that overconfidence limits performance gains from scaling test-time compute.
Here we investigate whether all training data contribute equally to the drop in pass@N test perfor-
mance. To quantify this effect, we define the test loss as the negative log-probability of coverage,
LN

test = −
∑

(x,y)∈Dtest log CN
(x,y), where CN

(x,y) denotes the coverage for a single test example (x, y).
To measure how a training batch B influences the final test loss, we compute the directional deriva-
tive ∇gLN

test for the gradient direction g = −
∑

(xi,yi)∈B ∇ℓCE(xi, yi), where ℓCE is the standard
CE loss on a single example. A negative value, ∇gLN

test < 0, indicates that a gradient step in the
direction of g decreases the test loss.

To analyze the impact of data difficulty, we group training data by difficulty level (as specified in
the MATH dataset) and use the directional derivative to examine how a batch of previously unseen
data from a given difficulty level would affect LN

test at different stages of training. Early in training,
we observe that ∇gLN

test is negative across all difficulty levels, indicating that data from all difficulty
levels contribute positively to reducing the test loss (Fig. 2, left). However, near the end of the first
epoch, training on easier examples (difficulty levels 1 and 2) no longer improves performance, and
the easiest examples (level 1) actively degrade pass@N test performance (Fig. 2, right). This shows
how continued training on easy data can harm test performance when scaling test-time compute.
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(a) (b) (c) (d)

Figure 1: A model trained with CE loss becomes overconfident in its greedy completions, which
harms its pass@N coverage; our proposed DCO objective limits this overconfidence. We fine-
tune a Llama-3-8B base model on the MATH dataset to produce direct answers without CoT. ŷgreedy
is the model’s greedy completion. (a) The model trained with CE loss assigns progressively larger
confidences p̂(ŷgreedy|x) to its greedy completions over the course of training. (b) At the end of the
training, only a small portion of the model’s highly confident completions are correct. This will
harm the model’s pass@N performance when scaling up N . (c) Same as (a) but shown for the
DCO loss with N = 256. Relative to the CE loss, the model trained on DCO shows a much milder
overconfidence effect. (d) The confidence distribution of the greedy completions after 4 epochs with
DCO for various choices of N . As N increases, the model’s confidence on the greedy completion
is more stringently limited, directly as a consequence of the overconfidence regularizer F .

1 2 3 4 5
Difficulty Level

4

2

0

2

g
N te

st

Early in 1st epoch

1 2 3 4 5
Difficulty Level

4

2

0

2

Late in 1st epoch

Figure 2: Easy data drives overconfidence and degrades performance when scaling test-time
compute. For the experiments in Fig. 1, we compute the directional derivative ∇gLN

test at two points
during the first training epoch: 11% (early) and 86% (late). At each stage, the gradient direction
g = −

∑
(xi,yi)∈B ∇ℓCE(xi, yi) is evaluated on batches of previously unseen training data of each

difficulty level defined in the MATH dataset. Early in training, data from all difficulty levels con-
tribute to decreasing the test loss (left). However, later in training, easier examples (difficulty level
2) provide no further benefit, while the easiest examples (difficulty level 1) actively degrade test
performance (right). The plotted ∇gLN

test is an average over batches of unseen data, and we use
N = 256, corresponding to pass@256, for these plots.

5 DIRECT COVERAGE OPTIMIZATION

5.1 A SOLUTION THAT NATURALLY PREVENTS OVERCONFIDENCE

The misalignment between CE loss and pass@N coverage suggests a simple solution: directly op-
timize pass@N coverage at training time when the pass@N strategy is to be used at test-time. We
thus propose the Direct Coverage Optimization (DCO) objective, LN

DCO = E(x,y)∼D ℓNDCO(x, y).
Assuming each prompt x has a unique best completion y, the pass@N coverage is given by
CN = 1− (1− p̂(y|x))N . From this, we define the loss for a single example (x, y) as,

ℓNDCO(x, y) = − log
(
1− (1− p̂(y|x))N

)
, (3)

This loss naturally prevents model overconfidence, as can be seen via its gradient

∇θℓ
N
DCO(x, y) = F (N, p̂(y|x))∇θℓCE(x, y) (4)

where F (N, p̂(y|x)) = N(1−p̂(y|x))N−1p̂(y|x)
1−(1−p̂(y|x))N is an overconfidence regularization factor that multi-

plies the standard CE gradient. Note that F (N, p̂(y|x)) = 1 for N = 1, so DCO reduces to CE for
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(a) (b) (c)

Figure 3: (a) The DCO objective limits overconfidence by attenuating gradients for examples
on which the model is highly confident. We plot the confidence regularization factor F (N, p̂(y|x))
in Eq. (4) which attenuates CE loss gradients to obtain DCO loss gradients. (b) DCO improves on
CE for pass@N test coverage over a broad range of N and traces a Pareto-optimal frontier. We
fine-tune Llama-3-8B base models on the MATH dataset to produce direct answers. We fine-tune
one model for 4 epochs using CE loss, and several models under the LN ′

DCO objective, for choices of
N ′ indicated by color. We plot pass@N test coverage as a function of N , with each curve (solid
red or faint blue-green) corresponding to one fine-tuned model. The black curve is a Pareto-optimal
frontier traced by the max of coverage curves for DCO over all N ′. (c) Overconfidence persists
in CoT fine-tuning with CE loss, which DCOa successfully limits. We fine-tune a Llama-3-8B
base model on the MATH dataset on CoT traces. We plot the distribution of the estimated model
confidences p̂(ymode|x) over samples in the test set at various points in training. For CE loss ((b)),
the model becomes more confident in its most likely answers, as the confidence distribution shifts
slightly to the right as training progresses. For DCOa loss ((c)), the rightward shift in the confidence
distribution of the most likely answer over training time is more limited less; DCOa again limits
overconfidence relative to CE loss.

pass@1. Furthermore, F (N, p̂(y|x)) monotonically decreases in the model confidence p̂(y|x) (see
Fig. 3 (a)). Thus, gradients for examples (x, y) on which the model is more confident are attenu-
ated, and this attenuation is stronger for larger N . This justifies the interpretation of F (N, p̂(y|x))
as a regularizer that prevents model overconfidence. Indeed, for large N , F (N, p̂(y|x)) ≈ 0 for
confidence p̂(y|x) ≳ 1/N . As soon as model confidence on an example exceeds 1/N , its gradi-
ent becomes negligible. Thus interestingly, aligning training and test better through DCO naturally
yields a simple emergent regularization of model overconfidence, which was itself identified as an
impediment to performance gains through scaling test-time compute in Fig. 1 (a).

We note in practice, the introduction of F can lead to some samples in a batch contributing minimally
to the current gradient step, thereby reducing the effective batch size. To maintain a stable effective
batch size, we introduce a threshold ϵ, and if for a given example, (x, y), F (N, p̂(y|x)) < ϵ, we
replace the example with a new one.

5.2 DCO CAN PREVENT OVERCONFIDENCE AND RESCUE TEST-TIME SCALING

We next test whether DCO can rescue test-time scaling by preventing model overconfidence. We
first perform experiments on the MATH dataset in this section, and then in the next section we
perform experiments on the LeanDojo automated theorem proving benchmark (Yang et al., 2023), a
dataset extracted from the math library of LEAN4 (mathlib Community, 2020).

We fine-tune the LLama-3-8B-base model for 4 epochs on the MATH training set using DCO for
N = 256 and confirm that the model is far less confident on its greedy completion than when trained
with CE loss after multiple training epochs (compare Fig. 1 (c) and Fig. 1 (a)). Moreover, training
with DCO at larger N yields lower model greedy confidences at the end of training (Fig. 1 (d)),
consistent with lemma 2.

We next assess pass@N test performance as a function of N for a variety of models trained by
minimizing LN ′

DCO for different values of N ′ (Fig. 3 (b)). For any given N in pass@N, there is
an optimal N ′ for the training loss LN ′

DCO that maximizes pass@N test coverage, yielding a Pareto
optimal performance frontier (black curve) that is achieved when N ′ is close to N . In particular
the model trained with CE loss (equivalent to pass@1 maximization at training) performs poorly
relative to the Pareto frontier at large N when the pass@N strategy is used at test time (red curve
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below black at large N ). Conversely, models trained with DCO at large N ′ perform poorly relative
to the Pareto frontier when the pass@N strategy is used at test time with small N (green curves
below black at small N ).

Together these results indicate that the alignment of the training loss LN ′

DCO with the test time strategy
pass@N, with N ′ close to N , is crucial for obtaining Pareto optimal performance. Moreover, these
results once again confirm the tradeoff between exploration and exploitation, with good performance
using pass@N test-time strategies requiring high (low) exploration with low (high) confidence at
large (small) N . Indeed, this tradeoff prevents achieving Pareto optimality using pass@N at test-
time for all N via training with DCO at any single value of N ′.

5.3 IMPROVED THEOREM PROVING VIA ENSEMBLED TREE SEARCH THROUGH A MODIFIED
STEP-WISE DCO

To further test our method in realistic settings with a verifier, we conduct experiments in theorem
proving using an interactive proof assistant on the LeanDojo benchmark (Yang et al., 2023) extracted
from the math library of LEAN4 (mathlib Community, 2020). In this task, at each step i of the
proof, the model is prompted with the current proof state x[i], and it outputs a proof tactic y[i] with
a trainable model probability p̂(y[i]|x[i]). Example tactics are: “simplify”, “prove by contradiction”,
etc. with their associated arguments. The proof assistant then takes the sampled tactic y[i], verifies
whether it is a valid tactic, and if so, returns the next proof state x[i+1] after the tactic y[i] is applied.
The model then samples the next tactic y[i + 1]. At test time this interactive process between the
model and the assistant continues until either: (1) it terminates in an invalid tactic; (2) hits a maximal
allowed search depth set by computational constraints; or (3) terminates in a successful proof of the
initial proof goal as verified by the proof assistant.

In our experiments, we use LEAN4 (Moura & Ullrich, 2021) as the formal proof language. We
start from the model Qwen2.5-Math-1.5B (Yang et al., 2024), and fine-tune it on the LeanDojo
benchmark (Yang et al., 2023). In contrast to solving math problems above where the model first
autoregressively generates an entire answer y according to p̂(y|x) and then the entire y is verified
for correctness, in theorem proving we must obtain all correct tactics y[i], as verified by the proof
assistant, at every proof step i. A straightforward application of DCO fine-tuning in this setting
then involves replacing the model confidence p̂(y|x) in Eq. (3) on a single math answer y, with
the model confidence on an entire successful, complete k step proof p̂(y[0], ..., y[k − 1]|x[0]) =∏k−1

i=0 p̂(y[i]|x[i]). Because of the chain rule, the DCO gradient on a single proof has the same form
as in Eq. (4) but with F (N, p̂(y|x)) replaced with F (N,

∏k−1
i=0 p̂ (y[i]|x[i])).

We naively applied this DCO fine-tuning method with N = 4k and evaluated the resulting model,
as well as a baseline model trained with CE loss, on MiniF2F. As a test strategy, we used pass@4k.
The baseline model fine-tuned with CE loss achieves a proof success rate of 37.4%, while model
fine-tuned with DCO at N =4k achieves a 38.7% success rate. Thus, a naive application of DCO
to theorem proving by matching the parameter N in DCO to the parameter N in pass@N achieves
only a modest improvement.

However, in theorem proving, since every single intermediate proof step tactic y[i] must be valid, it
is natural to consider a step-wise generalization of DCO. For example, at each step i, the model
chooses a tactic y[i] with confidence p̂(y[i]|x[i]). Our proposed step-wise DCO optimizes this
single-step confidence according to Eq. (4) as before, except now the step-wise confidence regular-
izer is given by F (Neff, p̂(y[i]|x[i])). Here one can think of Neff as a step-wise DCO hyperparameter
that controls the exploration width at every proof step. In essence, the confidence regularizer pre-
vents the confidence of any chosen tactic from becoming much higher than 1/Neff. Since the sum of
the confidences over all tactics at each step must be 1, this means that at test time, model exploration
at each step corresponds to searching on a search tree in which each proof state x[i] allows the ex-
ploration of approximately only Neff tactics. Thus using Neff in step-wise DCO during fine-tuning
selects the approximate branching factor Neff of the model’s proof search tree at test time.

In particular, a valid (partial) proof of length k will have probability of order N−k
eff . Thus small Neff

limits the exploration at test time to a tree with small branching factor, but allows longer proofs with
larger numbers of steps k to have higher sampling probability. This limited width search strategy
should work well at test time using pass@N as long as two conditions hold: (1) a successful proof
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Table 2: Proof success rate testing with pass@4k on Mathlib and MiniF2F, training with DCOstep

for various choices of Neff.

Neff 1 (CE loss) 4 8 16 32 Ensemble of Neff = 1
all Neff ’s (5x test compute)

Mathlib 55.6% 56.4% 56.1% 56.5% 55.8% 62.2% 57.0%
MiniF2F 37.4% 39.0% 39.5% 37.0% 37.4% 43.6% 39.5%

of length k is present in the search tree of branching factor Neff; and (2) the N in pass@N at test
time is large enough that this proof of probability O(N−k

eff ) is selected with high probability in N

passes (which starts to occur as soon as N ≳ Nk
eff).

Conversely, larger Neff allows for more exploration at test time using a wider search tree of larger
branching factor, but it makes finding longer proofs with large k harder, since the approximate
success condition for pass@N of N > Nk

eff is harder to satisfy at fixed N and large Neff and k.
However, this wide exploration strategy can work well for short proofs with small k if a successful
short proof does not lie in the limited width search tree obtained at small Neff, but does lie in a wider
search tree at larger Neff.

We note that the mean and median lengths of the proofs in the training set is 4.2 and 2 respec-
tively. Thus we explore fine-tuning on LeanDojo with the step-wise DCO algorithm DCOstep with
Neff ranging from 1 (corresponding to standard CE-loss training) to Neff = 32. We evaluated the
pass@N test performance for N = 4k of each of the resulting models on Mathlib and MiniF2F
test sets, finding improved performance at larger Neff compared to the baseline Neff = 1 CE loss
training (Table 2). Interestingly, we find that the optimal Neff increases with more passes at test time
(Table 4), similar to the Pareto frontier in Fig. 3 (b).

Since different choices of Neff correspond to very different search strategies at test time, special-
izing in finding short proofs on wide search tress for large Neff and long proofs on narrow search
trees for small Neff, we hypothesized that ensembling these methods could significantly boost per-
formance. We found this was indeed the case (ensemble entry in Table 2). Of course the Ensemble
strategy samples 5 × 4k times, so a proper baseline is CE loss with the same test-time compute of
pass@N with N = 20k. We obtained the proof success rate for this baseline to be 57.0% on Mathlib
and 39.5% on MiniF2F. The ensemble strategy outperforms this stringent baseline with significant
excesses of 5.2% on Mathlib and 4.1% on MiniF2F.

Overall, these results indicate that varying Neff in step-wise DCO at training time allows a diversity
of tree search strategies trading depth and breadth that can be effectively exploited by simply scaling
test time compute via pass@N.

5.4 APPROXIMATE DCO ALSO IMPROVES MATH ANSWERING WITH CHAIN-OF-THOUGHT
REASONING

In Sec. 5.2 on solving problems in MATH, the model is trained to directly give an answer y to a
problem x. In this case, one can implement DCO at training time by explicitly computing the model
confidence p̂(y|x) and using it in Eq. (4). However, in an alternate powerful Chain-of-Thought
(CoT) training paradigm, the training data consists of triplets (x, c, y) where x and y are the problem
and answer as before, but now c is a CoT reasoning trace that explains how to derive y from x. The
model is trained on the triplet (x, c, y), and at test time, when given a new problem x′, it generates
a reasoning trace c′ and then gives answer y′. Importantly, the model is evaluated on whether its
answer y′ is correct independent of whatever reasoning trace c′ it emits.

Thus, to estimate the probability p̂(y|x) that the model assigns to any answer y, one can no longer
compute it directly as in the direct answer case in Sec. 5.2. Instead, one must marginalize over
all possible reasoning traces c to obtain p̂(y|x) =

∑
c p̂(y, c|x). Because exact marginalization

is intractable, to employ DCO in Eq. (4) in the CoT setting, we replace the marginalization with a
Monte Carlo estimate of p̂(y|x), and insert this estimate into the overconfidence regularization factor
F in Eq. (4). We call this algorithm approximate DCO, denoted by DCOa. We also compute Monte
Carlo estimates of the probability the model assigns to its most likely final answer, p̂(ymode|x), as a
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Table 3: Pass@N test coverage on MATH obtained from fine-tuning Llama-3-8B-base on CoT traces
using CE or DCOa loss with N = 64. ± error is standard error of the mean.

EPOCH 1 EPOCH 3 EPOCH 5

PASS@N CE DCOa CE DCOa CE DCOa

PASS@1 4.3±0.1% 5.0±0.1% 9.0±0.1% 8.3±0.1% 9.9±0.1% 7.8±0.1%
PASS@16 30.2±0.7% 34.2±0.6% 41.6±0.4% 42.6±0.6% 40.9±0.4% 42.8±0.5%
PASS@64 51.2±1.2% 55.3±1.0% 61.7±0.4% 63.1±0.8% 60.9±0.6% 64.3±0.6%

proxy for the greedy completion probability p̂(ygreedy|x) used to study overconfidence in the direct
answer setting in Sec. 5.2. Note that in the CoT setting the greedy answer would correspond to
a single most likely reasoning trace, but we want the probability of the most likely final answer
obtained by marginalizing over all reasoning traces.

We conduct experiments on the MATH dataset. For the baseline experiment, we first fine-tune a
Llama-3-8B-base model with CE loss on the golden CoT solutions. We find in Table 3 that pass@1
coverage robustly improves over the course of CE loss training. Intriguingly, in the CoT setting,
overfitting induced by the misalignment of CE loss at training time with the pass@N strategy at test
time, is not as severe as in the direct answer setting in Table 1. If overfitting indeed arises from the
model overconfidence induced by CE loss, we would expect that minimizing CE loss in the CoT
setting does not make the model as overconfident as it does in the direct answer case. This is indeed
confirmed in Fig. 3 (b)=, where the confidence of the modal answer shifts slightly to the right over
epochs, whereas it shifts much further right over epochs in the direct answer case in Fig. 3 (a).

We next explore the properties of DCOa with N = 64. We find that training with DCOa (N ′ = 64)
underperforms relative to training with CE loss for pass@1 at test time, but outperforms when the
test strategy is pass@N for larger N (Table 3). This is similar to what happens in Fig. 3 (b) in the
direct answer case. The largest improvement occurs when training with DCOa at N ′ = 64 is aligned
with pass@N at N = 64. Furthermore, with our understanding developed in Sec. 4.2, we expect that
DCOa training should lower model confidence relative to CE loss training, thereby explaining the
improved pass@64 performance. We confirm this in Fig. 3 (c), which reveals that DCOa successfully
prevents the model from becoming overconfident in its most likely answer ymode.

Overall these results once again validate our algorithmic approaches and understanding, now in
a CoT reasoning setting. In essence, improved performance by scaling test time compute via a
pass@N strategy at large N can be best obtained by aligning the training strategy via choosing
DCOa with the same N , and the origin of the performance improvement comes from limiting model
overconfidence.

6 DISCUSSION

In summary, all of our results suggest the need for a tight co-design of two traditionally separate
phases of LLM development: (1) model training or fine-tuning and (2) test-time search/reasoning
strategies and budget. If the former is misaligned with the latter, then more training can actually
impair performance gains from scaling test-time compute. On the other hand, if they are properly
co-designed, end-to-end training and test time performance can be far more effective. We have
shown how to modify standard cross-entropy loss for training to be better aligned to a pass@N
strategy for large N at testing. Moreover, we have suggested and empirically confirmed why this
co-design of training loss and pass@N strategy is essential, because optimal policies for pass@N
at large N should unconfidently explore while the optimal policies for pass@N at small N should
confidently exploit.

This notion of co-design opens up many more theoretical and empirical questions associated with
different test-time strategies such as self-verification and MCTS. Furthermore, one can go beyond
test-time search to recursive self-improvement, where new solutions found by search are filtered and
then used to retrain the model. A theoretical understanding of the capabilities achievable by recur-
sive self-improvement through co-design of training, search, and filtering, remains an outstanding
research problem.
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A PROOFS

A.1 PROOF OF APPROXIMATELY WELL CALIBRATION UNDER OPTIMAL POLICY

Lemma 4. Given any problem, let p̂i denote the model probability or confidence assigned to answer
i, and assume answers are sorted from highest to lowest confidence so that p̂i ≥ p̂i+1,∀ i ≥ 1.
Let pi be the probability that answer i is actually correct for the problem. Then optimal policies
maximizing pass@N coverage in Eq. (2) is approximately well calibrated. Higher confidence implies
higher or equal probability of being correct, i.e. pi ≥ pi+1,∀ i ≥ 1.

Proof. For a given problem, let M be the total number of answers the model can generate. Let p̂i
denote the model probability or confidence assigned to answer i under optimal policy maximizing
pass@N coverage in Eq. (2), and assume answers are sorted from highest to lowest confidence so
that p̂i ≥ p̂i+1,∀ i ≥ 1. Let pi be the probability that answer i is actually correct for the problem.
Let Ai be the event that the ith ranked answer is not chosen in the N tries and Bi be the event that
ith ranked answer is chosen in the N tries. Let 1Bi

be the indicator function of Bi. Then, given an
event ω, the probability of getting the correct answer is

M∑
i=1

pi1Bi
(ω). (5)

Hence, the expected probability of getting the correct answer is

E(
M∑
i=1

pi1Bi
) =

M∑
i=1

piP(Bi) =

M∑
i=1

pi(1−P(Ai)) = 1−
M∑
i=1

piP(Ai) = 1−
M∑
i=1

pi(1− p̂i)
N , (6)

If the current strategy is already optimal, any small change of (p̂1, ..., p̂M ) would not increase the
expected probability of getting the correct answer. Now suppose we don’t always have pi ≥ pi+1,
in other words, pj < pj+1 for some j ≥ 1. If p̂j < p̂j+1, we have

E(
M∑
i=1

pi1Bi
) < 1−

j−1∑
i=1

pi(1− p̂i)
N −

j+1∑
i=1

pi(1− p̂i)
N − pj+1(1− p̂j)

N − pj(1− p̂j+1)
N , (7)

where the last inequality says that we can increase the expected probability of getting the correct
answer by swapping the confidence on answer originally labeled as j and j + 1, which is a contra-
diction. If p̂j = p̂j+1, then for all δ > 0 small enough we always have

E(
M∑
i=1

pi1Bi) < 1−
j−1∑
i=1

pi(1−p̂i)
N−

j+1∑
i=1

pi(1−p̂i)
N−pj(1−p̂j−δ)N−pj+1(1−p̂j+1+δ)N , (8)

which also contradict with the current policy being optimal.

A.2 PROOF OF LEMMA 4.2

Proof. Let M be the total number of answers the model can generate, pi be the probability that the
ith ranked response is correct and N be the number of tries the model can make. We assume that
pi ≥ pi+1,∀i ≥ 1. Let Ai be the event that the ith ranked answer is not chosen in the N tries and
Bi be the event that ith ranked answer is chosen in the N tries. Let 1Bi

be the indicator function of
Bi. Then, given an event ω, the probability of getting the correct answer is

M∑
i=1

pi1Bi
(ω). (9)

Hence, the expected probability of getting the correct answer is

E(
M∑
i=1

pi1Bi
) =

M∑
i=1

piP(Bi) =

M∑
i=1

pi(1− P(Ai)) = 1−
M∑
i=1

piP(Ai) (10)
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Now, let ai be the probability of choosing the ith ranked response in a single try. Then

P(Ai) = (1− ai)
N . (11)

Hence the expected probability of choosing the correct answer is

E(
M∑
i=1

pi1Bi
) = 1−

M∑
i=1

pi(1− ai)
N . (12)

Optimal strategy maximizes Eq. (12). Let

π1(p̂1, ..., p̂m) = p̂1, (13)

be the projection onto the first entry, then

p̂1 = π1(argmin{
M∑
i=1

pi(1− ai)
N}). (14)

It is worth noting that first

π1(argmin{
M∑
i=1

pi(1− ai)
N}) ≤ π1(argmin{

k∑
i=1

pi(1− ai)
N +

M∑
i=k+1

pi}). (15)

Second, given p1 and
∑k

i=1 pi ≥ 1− ϵ, π1(argmin{
∑k

i=1 pi(1− ai)
N +

∑M
i=k+1 pi}) is bounded

from above by

π1(argmin{p1(1− a1)
N +

k∑
i=2

1− p1 − ϵ

k − 1
(1− ai)

N +

M∑
i=k+1

pi}). (16)

Third, fix a1, Jensen’s inequality tells us that

p1(1− a1)
N +

k∑
i=2

1− p1 − ϵ

k − 1
(1− ai)

N ≥ p1(1− a1)
N +

k∑
i=2

1− p1 − ϵ

k − 1
(1− 1− a1

k − 1
)N . (17)

Combining all three inequalities above we have

p̂1 = π1(argmin{
M∑
i=1

pi(1−ai)
N}) ≤ argmin{p1(1−a1)

N+

k∑
i=2

1− p1 − ϵ

k − 1
(1−1− a1

k − 1
)N}. (18)

The right hand side of Eq. (18) can be easily computed, and argmin{p1(1−a1)
N+

∑k
i=2

1−p1−ϵ
k−1 (1−

1−a1

k−1 )
N} equals

1− k − 1

(k − 1)
N

N−1 p
1

N−1

1 (1− p1 − ϵ)
1

1−N + 1
. (19)

This concludes the proof of Lemma 4.2.

A.3 PROOF OF LEMMA 4.3

Proof. Let s be the smallest integer such that p1 + sp2 ≥ 1. We have first,

p̂1 = π1(argmin{
M∑
i=1

pi(1− ai)
N}) ≥ π1(argmin{p1(1− a1)

N +

s+1∑
i=2

p2(1− ai)
N}). (20)

Second, for a fixed a1, Jensen’s inequality tells us that

p1(1− a1)
N +

s+1∑
i=2

p2(1− ai)
N ≥ p1(1− a1)

N +

s+1∑
i=2

p2(1−
1− a1

s
)N (21)
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Therefore, we have

π1(argmin{p1(1−a1)
N+

s+1∑
i=2

p2(1−ai)
N}) = argmin{p1(1−a1)

N+

s+1∑
i=2

p2(1−
1− a1

s
)N} (22)

The right hand side of Eq. (22) is

argmin{p1(1− a1)
N +

s+1∑
i=2

p2(1−
1− a1

s
)N} = 1− sp

1
1−N

1 p
1

N−1

2

s+ p
1

1−N

1 p
1

N−1

2

(23)

Hence we have

p̂1 ≥ 1− sp
1

1−N

1 p
1

N−1

2

s+ p
1

1−N

1 p
1

N−1

2

(24)

Since s is the smallest integer such that p1 + sp2 ≥ 1, we have

1 + p2 > p1 + sp2, (25)

Combining Eq. (25) and Eq. (24) we arrive at

p̂1 ≥ 1− (1− p1 + p2)p
1

1−N

1 p
1

N−1

2

1− p1 + p2 + p
1

1−N

1 p
N

N−1

2

. (26)
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B EXPERIMENTAL DETAILS

All experiments are performed on machines with 8 NVIDIA H100 GPUs or 8 NVIDIA A100 GPUs.
Our codebase uses PyTorch (Ansel et al., 2024), Accelerate (Gugger et al., 2022), and deepspeed
(https://github.com/microsoft/DeepSpeed) to enable efficient training with memory
constraints, and vllm (Kwon et al., 2023) for efficient inference. Code to reproduce the results in the
paper are available at https://github.com/allanraventos/refine.

MATH For experiments with MATH dataset, we fine-tune the LLama-3-8B-base (Grattafiori et al.,
2024) on the MATH (Hendrycks et al., 2021) dataset. We start from the base model rather than
LLama-3-8B-Instruct to avoid potential leakage of the MATH dataset into LLama-3-8B-Instruct
through post-training process. We follow Lightman et al. (2024) and use 12, 000 problems for
training and the remaining 500 for testing. In Sec. 4 and 5.2 and Figs. 1 and 3, we fine-tune the
model for 4 epochs with a learning rate of 2e-5 and batch size 64. We adopt a linear learning rate
warmup in the first 20 steps. For experiments with DCO, some of the data may have an extreme
factor value, if the model is already quite confident in the problem. To maintain an approximately
fixed batch size, we set a threshold of 0.3 on the factor. Training data with a factor lower than the
threshold will be replaced. For the CoT experiments in Sec. 5.4, we use learning rate 2e-5 and batch
size 128, with the same learning rate warmup.

Theorem proving We adopt the random train and test split as introduced in Yang et al. (2023).
The random test set includes 2,000 theorems. We fine-tune the model Qwen2.5-Math-1.5B (Yang
et al., 2024) on the training set for 3 epochs with learning rate 1e-5 and batch size 64. We adopt
a linear learning rate warmup in the first 20 steps. To evaluate the model, we use LeanDojo (Yang
et al., 2023) to interact with the proof assistant. We impose a maximum clock-time budget for each
theorem, in addition to limiting the number of passes per problem. For experiments with 4k passes,
the clock-time budge is fixed at 5,000 seconds. In order to avoid model going infinitely deep in the
searching tree, we limit the maximum proof steps to be under 50 steps.

DCOa objective. The DCOa introduced in Sec. 5.4 is an approximation for the DCO.To construct
a batch of size B with DCOa, we process batches of samples sequentially; for each batch, we run
online inference on each of the samples and discard all samples with probability of success rate
larger than the pthresh depending on N ′. We choose to discard the samples which has a factor lower
than 0.01, corresponding to pthresh = 0.1 for N ′ = 64. This process continues until we have enough
training data for a single batch. In Fig. 4, we plot the number of discarded samples as a function of
training step for our DCOa experiments (same ones as in Table 3).
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Figure 4: Number of discarded samples as a function of training step for the DCOa experiments.
The step structure reflects the model revisiting examples it has seen previously in training, where
each step closely matches the start of a new epoch.

Implementing online inference. Throughout our experiments and analysis, we extensively use
the open-source vllm package (Kwon et al., 2023) for efficient inference. Integrating inference
into the training loop to enable training under the DCOa objective, as in Sec. 5.4, poses a chal-
lenging implementation problem. We solve this problem by placing vllm worker processes, that
together perform inference on all GPUs, in a separate process group and use Ray (https:
//github.com/ray-project/ray) to isolate them from the training loop. This enables run-
ning concurrent training and inference on the same set of GPUs. We believe this inference in the
loop setup will be useful to the community, as it enables straightforward implementation of all sorts
of online data filtering approaches for LLM training.
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C ADDTIONAL RESULTS

C.1 THEOREM PROVING

In Table 4, we show additional results for model performance under the DCOSTEP objective. We
find that the optimal Neff grows with increasing passes, agreeing with results in Sec. 5.2 and 5.4. We
also conduct expert iteration (Anthony et al., 2017; Polu et al., 2023) on Mathlib with theorems that
do not have proof traces in the training set. We use pass@1k to prove those theorems. We find that
our algorithm achieves a stronger improvement over the baseline for pass@4k after the 1st iteration.
This improvement might result from the fact that the models can prove more easy theorems where
the model has a higher confidence. As a result, we believe our method will perform better with
expert iteration.

Table 4: Success rate on lean-dojo benchmark random test set trained with DCOstep.

EXPERT ITERATION 0 EXPERT ITERATION 1
DCOSTEP PASS@16 PASS@64 PASS@256 PASS@1K PASS@4K PASS@16 PASS@256 PASS@4K

Neff = 1 (CE) 30.0% 38.75% 46.05 50.75% 55.55% 40.3% 52.65% 58.55%
Neff = 4 30.15% 39.5% 47.2% 52.95% 56.35% 40.8% 53.05% 59.45%
Neff = 8 30.2% 38.9% 47.15% 52.7% 56.1% 40.1% 53.25% 59.5%
Neff = 16 28.65% 46.7% 46.45% 52.9% 56.5% 39.05% 52.8% 60.05%
Neff = 32 26.05% 46.7% 45.6% 51.5% 55.8% 37.05% 52.2% 59.15%
ENSEMBLE 40.6% 49.15% 54.6% 59.0% 62.15% 49.05% 59.3% 64.8%

C.2 PLOT OF THE UPPER BOUND AND THE LOWER BOUND
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Figure 5: Plot of the upper bound (Eq. (18)) and the lower bound (Eq. (24)). We plot the upper
bound (blue) and lower bound (orange) for p1 = 1

2 , p2 = 1
4 , ϵ = 1

4 and k = 2. Both the upper
bound and the lower decrease monotonically in N and they both tends to 1 as N → 1+.
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C.3 EMPIRICAL EVALUATION OF THE APPROXIMATELY WELL CALIBRATED ASSUMPTION
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Figure 6: We empirically verify the assumption that models are approximately well-calibrated. To
do this, we fine-tune a Llama-3-8B-base model with CE loss on the MATH dataset and perform beam
search with a width of 256 to obtain the top 16 most probable completions. We then measure the
accuracy of these completions at each confidence rank. The results demonstrate that test accuracy
decreases approximately monotonically with model confidence rank, supporting the assumption.

C.4 THE DATA DEPENDENCY OF CONFIDENCE AND FACTOR
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Figure 7: Model is more confident on easy problems; DCO improves test-time scaling by regu-
larizing the easy examples. We fine-tune a Llama-3-8B-base model on the MATH dataset with CE
loss and plot the model confidence p(y|x) and the factor F (N, p(y|x)) at 86% of the first training
epoch. Both model confidence and factor are evaluated on the unseen data grouped by difficulty
level from the MATH dataset. Model confidence decreases with increasing difficulty, whereas the
regularization factor increases with problem difficulty. As a result, DCO effectively regularizes
contribution from easy examples. This regularization mitigates the potential detrimental effects of
overconfidence from easy examples as discussed in Sec. 4.4. We use N = 256 corresponding to
pass@256 for the plots.
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