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Abstract
We present a one-shot method for compressing
large labeled graphs called Random Edge Coding.
When paired with a parameter-free model based
on Pólya’s Urn, the worst-case computational and
memory complexities scale quasi-linearly and lin-
early with the number of observed edges, making
it efficient on sparse graphs, and requires only
integer arithmetic. Key to our method is bits-back
coding, which is used to sample edges and ver-
tices without replacement from the edge-list in a
way that preserves the structure of the graph. Op-
timality is proven under a class of random graph
models that are invariant to permutations of the
edges and of vertices within an edge. Experiments
indicate Random Edge Coding can achieve com-
petitive compression performance on real-world
network datasets and scales to graphs with mil-
lions of nodes and edges.

1. Introduction
Network data, such as social networks and web graphs (New-
man, 2018), can be represented as large graphs, or multi-
graphs, with millions of nodes and edges corresponding to
members of a population and their interactions. To preserve
the underlying community structure, as well as other rela-
tional properties, algorithms for compressing and storing
network graphs must be lossless.

Entropy coding is a popular lossless compression technique
that makes use of a probabilistic model over the observed
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Figure 1: A diagram of our method, Random Edge Coding,
compressing a single edge. The ANS stack is represented in
blue. First, a random edge is sampled without replacement
from the edge-list using an ANS decode. Then, a binary
indicator b is decoded that defines the order in which vertices
will be encoded: first edge[b] then edge[1− b].

data. The main advantage of this approach over ad hoc
methods is that it enables the use of existing domain knowl-
edge on statistical modelling, which in the case of graphs
is a well studied field (see Section 4.1). Bridging network
modeling and data compression has yielded significant gains
in compression performance with little additional effort by
the research community (Steinruecken, 2014). For example,
BB-ANS (Townsend et al., 2019) allowed powerful latent
variable models to be easily repurposed for lossless data
compression including variational autoencoders (Townsend
et al., 2019), diffusion models (Kingma et al., 2021), and
integer discrete flows (Hoogeboom et al., 2019; Berg et al.,
2020), leading to state-of-the-art compression performance
on image, speech (Havtorn et al., 2022) and smart meter
time-series (Jeong et al., 2022) data. In many domains, cur-
rent state-of-the-art compression algorithms such as CMIX
(Knoll & de Freitas, 2012) and DeepZip (Goyal et al., 2019)
use entropy coding together with a powerful neural network
model.

Compressing a single network is a one-shot lossless com-
pression problem. This precludes the use of methods that
require amortizing over repeated independent observations
to reach the fundamental lower bound on lossless compres-
sion: the entropy (Cover, 1999). To minimize the average
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compression rate in the one-shot setting, the optimal number
of bits to allocate for a single instance is equal to the nega-
tive log-likelihood (also known as the information content)
under the estimated model.

The entropy coding of a network can, in general, be done
in quadratic time with respect to the number of vertices by
storing binary variables indicating the absence or presence
of each possible edge in the graph. However, most real-
world networks are sparse in the sense that the number of
edges is significantly lower than the maximum number of
possible edges. Therefore, algorithms with sub-quadratic
complexity in the number of observed edges are more at-
tractive for compressing network data than those that scale
quadratically with the number of nodes.

In this work we present a one-shot entropy coder for large
labeled graphs called Random Edge Coding (REC). Our
method is optimal under a broad class of distributions re-
ferred to as edge-permutation invariant (Definition 5.1) and
can achieve competitive performance on real-world net-
works as we show in Section 6. When paired with Pólya’s
Urn (Mahmoud, 2008), a parameter-free model described
in Section 5.2, our method requires only integer arithmetic
and the worst-case computational and memory complexities
scale quasi-linearly and linearly with the number of ob-
served edges in the graph. REC is applicable to both simple
and non-simple labeled graphs, with directed or undirected
edges, as well as hyper-graphs

REC uses bits-back coding (Frey & Hinton, 1996; Townsend
et al., 2019) to sample edges and vertices without replace-
ment from the graph’s edge-list, similarly to (Severo et al.,
2021a;b). Sampling is done by decoding from a shared ran-
dom seed, which also stores the final message (i.e. the bits
of the graph).

Recent methods for lossless compression of graphs are re-
viewed in Section 2. We define the notation used throughout
the paper in Section 3. In Section 4 we discuss parameter-
efficient models that yield good likelihood values on large
sparse networks for which REC is optimal, as well as give
an introduction to entropy coding. REC is introduced in Sec-
tion 5 and, together with Pólya’s Urn, is shown to achieve
compression results competitive with the state-of-the-art on
real-world network datasets in Section 6.

2. Related Work
To the best of our knowledge there is no previous entropy
coding method that can scale to large graphs and is opti-
mal for the broad class of edge-permutation invariant (EPI)
graphs of Definition 5.1.

A number of previous works have presented adhoc meth-
ods for lossless compression of large graphs including Pool

Compression (Yousuf & Kim, 2022), SlashBurn (Lim et al.,
2014), List Merging (Grabowski & Bieniecki, 2014), Back-
Links (Chierichetti et al., 2009), and Zuckerli (Versari et al.,
2020). In sum, these methods attempt to exploit local statis-
tics of the graph edge-list by defining an ordering of the ver-
tex sequence that is amenable to compression. See Yousuf
& Kim (2022) for an overview of the methods. Re-ordering
techniques would yield no effect for EPI models as all per-
mutations of the edge sequence have the same likelihood, as
discussed in Section 5.1. In Section 6, Table 2 we compare
the performance of these methods with that of entropy cod-
ing under Pólya’s Urn model using our method and show
that it performs competitively and can even outperform pre-
vious methods on sparser datasets.

Chen et al. (2021) develop a deep latent variable model
where the edges are observations and the ordering of the
vertices are latent. This could be made into a compression
algorithm for a dataset of graphs by combining it with the
entropy coder developed in (Townsend et al., 2019). It
is unclear if this could be used for one-shot compression,
where only a single graph is available. Furthermore, the
authors present results on small graphs with a few hundred
nodes and edges, while our setting is that of millions.

Another machine learning method for lossless graph com-
pression is Partition and Code (Bouritsas et al., 2021). The
method decomposes the graph into a collection of subgraphs
and performs gradient descent to learn a dictionary code
over subgraphs. While achieving good compression perfor-
mance on small graph datasets, it is unclear if these methods
can scale to networks with millions of nodes and edges.

Our work draws upon a large body of work on the statistical
modeling of networks (Newman, 2018; Bloem-Reddy, 2017;
Crane & Dempsey, 2018) which is reviewed in Section 4.1.

3. Notation and Setup
We use [n] to represent a set of integers {1, . . . , n} and use
superscript to represent sequences such as xn = x1, . . . , xn.

All graphs in this work are labeled, have a fixed number
of nodes (n), a variable number of edges (m), and are in
general non-simple (i.e., allow loops and repeated edges).

Graph sequences are represented similarly to (Bloem-Reddy,
2017). A graph sequence of n nodes, where an edge is
added at each step, can be represented as a sequence of
vertex elements vi taking on values in the alphabet [n] with
the i-th edge defined as ei = (v2i−1, v2i). We refer to the
edge and vertex sequences interchangeably. The i-th graph
is taken to be Gi = {{v1, v2}, . . . , {v2i−1, v2i}} and the
k-th vertex of an edge is indicated by e[k].

The likelihood, and hence the information content, of v2m

and em are the same, but they differ from that of Gm. A
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sequence of vertices or edges carries the information regard-
ing the order in which the vertices and edges appeared in
the graph sequence, which may be significantly larger than
that of the graph.

The ascending factorial function a : R× N 7→ R is defined
by a(x, k) = x(x + 1)(x + 2) . . . (x + k − 1), for k > 0,
with a(x, 0) = 1 for all x, and is abbreviated as x↑k.

All distributions are discrete, logarithms are base 2, and
we refer to the probability mass function and cumulative
distribution function as the PMF and CDF.

4. Background
4.1. Modeling Real-World Networks

Most real-world networks are sparse in the sense that the
number of edges m is significantly smaller than the maxi-
mum number of possible edges

(
n
2

)
in a simple graph (New-

man, 2018). A graph that is not sparse is known as a dense
graph. Compression algorithms with complexity that scales
with the number of edges instead of nodes are therefore
more efficient for real-world network graphs.

Some networks exhibit small-world characteristics where
most nodes are not connected by an edge but the degree of
separation of any 2 nodes is small (Newman, 2018). The
degree distributions are heavy-tailed due to the presence
of hubs, i.e., vertices with a high degree of connectivity.
Random graph models that assign high likelihood to graphs
with small-world characteristics are thus preferred to model
and compress these network types.

4.2. Random Graph Models

Modeling random graphs is a well studied field dating back
to the early work of Erdős, Rényi, and Gilbert (Erdős et al.,
1960) where either graphs with the same number of edges
are equally likely or an edge is present in the graph with
a fixed probability p. The field has since evolved to in-
clude the stochastic block model (Holland et al., 1983),
where the edge probability is allowed to depend on its end-
points, as well as its mixed-membership variant (Airoldi
et al., 2008). More recently, (Caron & Fox, 2017; Cai et al.,
2016; Crane & Dempsey, 2018) have found some success
in modeling real-world network graphs. These models have
been used in a number of applications including clustering
(Sewell, 2020), anomaly detection (Luo et al., 2021), link-
prediction (Williamson, 2016), community detection (Zhang
& Dempsey, 2022), and have been extended to model hier-
archical networks (Dempsey et al., 2021).

The model used in this work assigns likelihood to a vertex-
or edge-sequence autoregressively. Neural network mod-
els have also been used for autoregressive graph modeling
such as (You et al., 2018; Bacciu et al., 2020; Goyal et al.,

2020). See (Zhu et al., 2022) for a survey. The likelihood
assigned by these models usually depend on the order in
which vertices or edges were added to the graph, in contrast
to the Pólya’s Urn based-model used in this work which is
order-invariant.

4.3. Lossless Compression with Entropy Coding

Given a discrete distribution P over alphabet X , the
objective of lossless compression is to find a code
C : X 7→ {0, 1}⋆ that minimizes the average code-length
Ex∼P [ℓ(C(x))]. Shannon’s source coding theorem (Cover,
1999) guarantees that the average code-length is lower
bounded by the entropy H(P ) = Ex∼P [− logP (x)]. A
code with average code-length within 1 bit of the entropy
is called optimal and assigns a code-word to x ∈ X
with length close to its information content ℓ(C(x)) ≈
− logP (x).

Asymmetric Numeral Systems (ANS) is an algorithm that
can implement an optimal code for (X , P ) (Duda, 2009).
ANS maps an instance x ∈ X to an integer state s via an
encoding function. The instance can be losslessly recovered
from the state via a decoding function which inverts the
encoding procedure. Both encoding and decoding functions
require access to the PMF and CDF as well as the current
state. The last symbol encoded during compression is the
first to be decoded during decompression implying ANS is
stack-like (in contrast to most other entropy coders which
are queue-like). For a more detailed discussion on ANS see
(Townsend, 2020; 2021).

A key point to our method is that ANS can be used as a
sampler by initializing the state to a random integer and
performing successive decode operations with the distribu-
tion one wishes to sample from. This operation is invertible
in the sense that the random seed can be fully recovered
by performing an ANS encode with the sampled symbols.
Decoding with distribution P reduces the size of the ANS
state by approximately log 1/P (x) bits, where x is the sam-
pled symbol, while encoding increases the state by the same
amount. This is illustrated in Figure 1.

4.4. Bits-Back coding with ANS

Bits-Back coding with ANS (BB-ANS) is a general entropy
coding method for latent variable models (Townsend et al.,
2019). Given a model with observations x and latents z
defined by an approximate posterior Q(z |x), conditional
likelihood P (x | z) and prior P (z), BB-ANS can perform
tractable lossless compression of a sequence of observations.

In sum, BB-ANS projects the data x into the extended state-
space (x, z) by sampling fromQ(z |x) while using the ANS
state as a random seed and then encoding (x, z) with the
joint distribution P (x | z)P (z) (Ruan et al., 2021). The re-
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sulting ANS state is then used as a random seed to compress
the next observation using the same procedure. Sampling
with Q(z |x) results in a reduction of the number of bits
in the ANS state. The average number of bits achieved by
BB-ANS is a well known quantity called the (negative) Ev-
idence Lower Bound (ELBO) which is an upper bound on
the entropy of the data (Jordan et al., 1999). This method
has been extended to hierarchical latent variable models
(Kingma et al., 2019) and state space models (Townsend &
Murray, 2021).

Our method can be understood under this framework as
constructing a latent variable model with an exact approx-
imate posterior, i.e., Q(z |x) = P (z |x). The distribution
of the latent variable in our method is a Markov chain of
sub-graphs of the graph being compressed.

The first step to encode a symbol is to decode a latent vari-
able with the approximate posterior. As mentioned, this
yields a savings of approximately log 1/Q(z |x) bits per
observation. However, when encoding the first observation,
the ANS stack is initially empty and therefore log 1/Q(z |x)
bits must be encoded into the ANS state to allow for sam-
pling. This initial overhead is known as the initial bits
problem (Townsend et al., 2019) and in general is amortized
by compressing multiple observations.

4.5. Entropy Coding for Large Alphabets

A large alphabet can render entropy coding intractable even
if the PMF is tractable. For example, the alphabet size |X |
of a graph grows exponentially with the number of nodes.
Storing the PMF and CDF values in a hashtable provides
fast look-ups but will in general require O(|X |) memory
which is impractical.

A common strategy to trade-off computational and memory
complexity is to avoid compressing (X , P ) directly and in-
stead construct a one-to-many mapping, possibly a bijection,
between X and an alphabet of proxy sequences ym. For
example, we can decompose a graph into a sequence of

(
n
2

)
edge incidence variables each with alphabet sizes |Yi| = 2.
Compression is then performed autoregressively with yi
conditioned on the history yi−1 and only the CDF and PMF
of the current variable are stored in memory. The worst-case
computational complexity is O (

∑m
i=1 ci), where ci repre-

sents the complexity of computing the PMF and CDF of yi,
while memory is O(1). If ci’s can be kept small then the
trade-off can be made useful for practical applications.

Our method can be seen as an instance of this technique
where the graph is mapped to its edge-sequence with a
random order.

Figure 2: Example of the correspondence between vertex
sequences and graph. Middle: 4 vertex sequences all cor-
responding to the same graphs. The vertices are labeled
by single-digit integers and have been grouped to highlight
the edge they belong to. Right: The graph corresponding
to all 4 sequences. Left: The graph corresponding to the
sub-sequences made up of the first 2 edges. In this particular
case, all elements of the equivalence class of the graph are
shown (i.e., all 4 sub sequences 53 33, 35 33, 33 53, and 33
35). For edge-permutation invariant models (Definition 5.1),
equivalent sequences are assigned the same likelihood.

5. Method
In this section we present our entropy coder Random Edge
Coding (REC) which is, to the best of our knowledge, the
first to perform optimal one-shot compression of a broad
class of large graphs.

Our method is optimal for any model over graphs satisfying
edge-permutation invariance (Definition 5.1). Section 5.2
discusses an example of such a model, known as Pólya’s
Urn (Mahmoud, 2008), which is parameter-free. This model
is used in Section 6 to achieve competitive performance on
network data.

See Section 3 for a review of the notation used.

5.1. Vertex- and Edge-Permutation Invariance

REC is an optimal entropy coder for PMFs over vertex
sequences that are invariant to permutations of the edges and
of vertices within an edge. This is characterized formally
by the following definition.

Definition 5.1 (Edge-Permutation Invariance (EPI)). Let
v2m be a vertex sequence with edges defined as ei =
(v2i−1, v2i) and σ an arbitrary permutation function over
m elements. Given a collection (πk)

m
k=1 of permutation

functions over 2 elements, each over integers (2k − 1, 2k),
we say that a model is edge-permutation invariant if the
following holds

Pr(e1, . . . , em) = Pr(ẽσ(1), . . . , ẽσ(m)), (1)

where

ẽk = (vπk(2k−1), vπk(2k)). (2)
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A stronger property that implies EPI is that of vertex-
permutation invariance, which coincides with the common
definition of finite exchangeability of sequences.
Definition 5.2 (Vertex-Permutation Invariance (VPI)). Let
v2m be a vertex sequence and π an arbitrary permutation
function over 2m elements. We say that a model is vertex-
permutation invariant if the following holds

Pr(v1, . . . , v2m) = Pr(vπ(1), . . . , vπ(2m)), (3)

for all permutations π.

The model we present next is VPI and therefore also EPI.

5.2. Pólya’s Urn Model

Pólya’s Urn (PU) model (Mahmoud, 2008) defines a joint
probability distribution over a vertex sequence vk that is
VPI. The generative process of PU is as follows. An urn
is initialized with n vertices labeled from 1 to n. At step i,
a vertex is sampled from the urn, assigned to vi, and then
returned to the urn together with an extra copy of the same
vertex.

The joint PMF is defined via a sequence of conditional
distributions

Pr(vi+1 | vi) ∝ dvi(vi+1) + 1, (4)

where dvi(v) =
∑i

j=1 1{v = vj} is the degree of vertex v
in vi. The joint distribution can be expressed as

Pr(vk) =
1

n↑k

∏
v∈[n]

dvk(v)!, (5)

where equation (5) depends only on the degrees of the ver-
tices in the final sequence vk, guaranteeing VPI. We provide
a complete derivation in Appendix A.1.

Although the generative process is fairly simple, the result-
ing joint distribution can achieve competitive likelihood
values for real-world networks with small-world character-
istics as indicated in Table 2. To understand why, note that
equation (5) assigns higher likelihood to graphs with non-
uniform degree distributions. The product of factorial terms
is the denominator of the multinomial coefficient, and hence
is largest when some vertex dominates all others in degree.

PU is parameter-free and therefore requires 0 bits to be
stored and transmitted. The PMF and CDF of PU, needed
for entropy coding with ANS, can be computed with integer
arithmetic. It therefore does not suffer from floating-point
rounding errors, which is common in neural compression
algorithms (Yang et al., 2023; Ballé et al., 2019).

5.3. Random Edge Coding (REC)

In this section we describe our method for the case of simple
graphs (i.e., no loops or repeated edges). The extension to

non-simple graphs is explained in Section 5.4, while hyper
and direct graphs are handled in Section 5.5.

Compressing the graph with entropy coding requires com-
puting the PMF and CDF of the graph from the PMF of
the vertex sequence. Although the PMF of the graph for
PU has a closed form expression, the alphabet size grows
exponentially with the number of nodes which makes direct
entropy coding infeasible (see Section 4.5).

We employ the technique discussed in Section 4.5 to trade-
off computational and memory complexity by mapping the
graph to a sequence of equivalence classes containing vertex
sequences.

The vertex equivalence class [v2m] of a graph G with m
edges is the set of all vertex sequences that map to G (see
Figure 2 for an example). Models satisfying Definition 5.1
assign equal likelihood to sequences in the same equivalence
class. Therefore, the negative loglikelihood ofG, [v2m], and
v2m are related by

log 1/Pr(G) = log 1/Pr([v2m]) (6)

= log 1/Pr(w2m)− log|[w2m]|, (7)

for any equivalent w2m, v2m that map to graph G. The
size of the equivalence class can be computed by counting
the number of edge-permutations and vertex-permutations
within an edge, which add up to

log|[w2m]| = m+ logm!. (8)

The relationship between the likelihoods implies that we can
reach the information content of the graph by compressing
one of its vertex sequences if we can somehow get a number
of bits back equal to log|[w2m]|. This leads to the naive
Algorithm 1, which we describe below, that suffers from the
initial bits issue (see Section 4.4).

Algorithm 1 Naive Random Edge Encoder

Input: Vertex sequence v2m and ANS state s.
1) Edge-sort the vertex sequence v2m

2) Decode a permutation σ uniformly w/ prob. 1/|[v2m]|
3) Apply the permutation to the vertex sequence
4) Encode the permuted vertex sequence
5) Encode m using logm bits

At step 1) we sort the vertex sequence without destroying
the edge information by first sorting the vertices within an
edge and then sorting the edges lexicographically. For ex-
ample, edge-sorting sequence (34 12 32) yields (12 23 34).
In step 2) an index is decoded that corresponds to a per-
mutation function agreed upon by the encoder and decoder,
which is applied to the sequence in step 3). Note these per-
mutations do not destroy the edge information by design.
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Finally, in step 4), the permuted sequence is encoded us-
ing Pr(vi+1 | vi) from Section 5 followed by the number
of edges. Decoding a permutation reduces the number of
bits in the ANS state by exactly log|[v2m]|, while encoding
the vertices increases it by log 1/Pr(v2m). From (6), the
net change is exactly the information content of the graph:
log 1/Pr(G).

The decoder acts in reverse order and perfectly inverts the
encoding procedure, restoring the ANS state to its initial
value. First, m is decoded. Then the sequence is decoded
and the permutation is inferred by comparing it to its sorted
version. Finally, the permutation is encoded to restore the
ANS state.

Unfortunately, this method suffers from the initial bits prob-
lem (Townsend et al., 2019), as the decode step happens
before encoding, implying there needs to be existing infor-
mation in the ANS stack for the bit savings to occur. It
is possible to circumvent this issue by incrementally sam-
pling a permutation, similarly to (Severo et al., 2021a;b).
This yields Algorithm 2, which we describe below, and is
illustrated in Figure 1.

Algorithm 2 Random Edge Encoder

Input: Vertex sequence v2m and ANS state s.
1) Edge-sort the vertex sequence v2m

repeat
2) Decode an edge ek uniformly from the sequence
3) Remove ek from the vertex sequence
4) Decode a binary vertex-index b uniformly in {0, 1}
5) Encode ek[b]
6) Encode ek[1− b]

until The vertex sequence is empty
7) Encode m using logm bits.

REC progressively encodes the sequence by removing edges
in a random order until the sequence is depleted. As before,
we edge-sort the vertex sequence in step 1) without destroy-
ing the edge information. Then, in steps 2) and 3), an edge
is sampled without replacement from the sequence by de-
coding an integer k between 1 and the size of the remaining
sequence. Since the graph is undirected, we must destroy
the information containing the order of the vertices in the
edge. To do so, in step 4), we decode a binary index b and
then encode vertices ek[b], ek[1− b] in steps 5) and 6) using
Pr(vi+1 | vi). Finally, m is encoded.

The initial bits overhead is amortized as the number of edges
grows. This makes REC an optimal entropy coder for large
EPI graphs, as characterized by the proposition below.

Proposition 5.3. Random Edge Coding is an optimal en-
tropy coder for any edge-permutation invariant graph model
(Definition 5.1) as m→ ∞.

Proof. An optimal entropy coder compresses an object to
within one bit of its information content (i.e., negative
log-likelihood). Encoding steps add log 1/Pr(vi+1 | vi)
bits to the ANS state resulting in a total increase of
log 1/Pr(v2m) bits. Each decoding operation removes bits
from the ANS state and together save

∑m
i=1(1 + log i) =

log 1/Pr(|[v2m]|). From (6), the net change is exactly the
information content of the graph: log 1/Pr(G). The ini-
tial and logm bits (needed to encode m) are amortized as
m → ∞. Therefore, the number of bits in the ANS state
approaches (6), which concludes the proof.

In Section 6 and Table 1 we show empirical evidence for the
optimality of REC by compressing networks with millions
of nodes and edges down to their information content under
Pólya’s Urn model.

5.4. Extension to Non-Simple Graphs

If the graph is non-simple then the size of the equivalence
class [w2m] will be smaller. The savings in (8) must be re-
calculated by counting the number of valid permutations of
edges, and vertices within an edge, that can be performed on
the sequence. Furthermore, Algorithm 2 must be modified
to yield the correct savings. Handling repeated loops and
repeated edges requires different modifications which we
discuss below.

Each non-loop edge doubles the size of the equivalence
class, while loops do not as the vertices are indistinguishable
and thus permuting them will not yield a different sequence.
This can be handled by skipping step 4) and setting b = 0 if
ek[0] = ek[1].

In general, the number of possible edge-permutations in a
non-simple graph Gm with m undirected edges is equal to
the multinomial coefficient(

m

c1, c2, . . .

)
=

m!∏
e∈Gm

ce!
≤ m!, (9)

where ce is the number of copies of edge e and e ∈ Gm

iterates over the unique edges in Gm. Equality is reached
when there are no repeated edges (ce = 1 for all edges).

To achieve this saving, Algorithm 2 must be modified to
sample edges uniformly from the graph without replacement.
In other words, step 2) is generalized to sample ek = e with
probability cke/k, where cke are the number of remaining
copies of edge e at step k. The count cke is non-increasing for
all e due to step 3) which, together with step 2), implements
sampling without replacement. Furthermore, since all edges
will eventually be decoded, the product of counts

∏m
k=1 c

k
ek

contains all terms appearing in the factorial ce! for all edges
e. The saving at each step is − log ckek/k and together will
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equal the log of the multinomial coefficient

− log

m∏
k=1

ckek
k

= log
m!∏

e∈G ce!
. (10)

These modifications together guarantee that REC is optimal
for non-simple graphs.

5.5. Extension to Hypergraphs and Directed Graphs

REC can be trivially extended to hypergraphs, where edges
can have more than 2 nodes, directed graphs, and directed
hypergraphs.

For directed graphs, we need only ignore step 4) in Algo-
rithm 2 and fix b = 0. This guarantees the order information
between vertices in an edge is preserved.

For hypergraphs, steps 4-6) are generalized to the same
sampling-without-replacement mechanism of step 3). After
decoding an edge, the algorithm decodes vertices without
replacement until the edge is depleted and encodes them in
the order they appear. It then proceeds to decode another
edge and repeats these 2 steps until the sequence is depleted.

5.6. Complexity Analysis

For a graph with m edges, the worst-case computational
complexity of encoding and decoding with REC under
Pólya’s Urn model is quasi-linear in the number of edges,
O(m logm), while the memory is linear: O(m).

We discuss only encoding with REC as decoding is anal-
ogous. The first step during encoding is to sort the edge-
sequence which has worst-case complexity O(m logm).
Then, the edge-list is traversed and the frequency count of
all vertices are stored in a binary search tree (BST) with at
most 2m elements (O(m) memory). The BST allows for
worst-case look-ups, insertions, and deletions in O(logm),
which are all necessary operations to construct Pr(vi+1 | vi),
as well as the CDF, used during entropy coding. Traversing
the edge-list, together with the updates to the BST, require
O(m logm) computational complexity in the worst-case.

5.7. Random Edge Coding with Non-EPI Models

While REC is only optimal for EPI models, it can still be
paired with any probability model over vertex sequences
that have well defined conditional distributions such as (4).

For models that are not EPI the order of the vertices will af-
fect the likelihood assigned to the graph. REC in its current
form will discount at most m + logm! bits (with equality
when the graph is simple) and all vertex sequences will have
equal probability of appearing. The selected sequence vk

will be determined by the initial bits present in the ANS
stack (see Section 4.4). The number of bits needed to store

the graph (i.e. information content) will therefore be,

log 1/Pr(v2m)−
(
m̃+ log

(
m

c1, c2, . . .

))
, (11)

where m̃ is the number of non-loop edges and v2m

the random sequence selected via the sampling-without-
replacement mechanism of REC.

6. Experiments
In this section, we showcase the optimality of REC on large
graphs representing real-world networks.

We entropy code with REC using Pólya’s Urn (PU) model
and compare the performance to state-of-the-art compres-
sion algorithms tailored to network compression. We report
the average number of bits required to represent an edge in
the graph (i.e., bits-per-edge) as is common in the literature.

We used datasets containing simple network graphs with
small-world statistics (see Section 4.1) such as YouTube,
FourSquare, Gowalla, and Digg (Rossi & Ahmed, 2015)
which are expected to have high likelihood under PU. As
negative examples, we compress Skitter and DBLP net-
works (Leskovec & Krevl, 2014), where we expect the re-
sults to be significantly worse than the state of the art, as
these networks lack small-world statistics. The smallest
network (Gowalla) has roughly 200 thousand nodes and 1
million edges, while the largest (YouTube) has more than 3
million nodes and almost 10 million edges.

We use the ANS implementation available in Craystack
(Townsend et al., 2020; 2021). The cost of sending the
number of edges m is negligible but is accounted for in the
calculation of the bits-per-edge by adding 32 bits.

To compress a graph, the edges are loaded into memory
as a list where each element is an edge represented by a
tuple containing two vertex elements (integers). At each
step, an edge is sampled without replacement using an ANS
decode operation as described in Algorithm 2. Encoding
is performed in a depth-first fashion, where an edge is en-
coded to completion before moving on to another. Then, a
vertex is sampled without replacement from the edge and
entropy-encoded using (4). The process repeats until the
edge is depleted, and then starts again by sampling another
edge without replacement. The process terminates once the
edge-list is empty, concluding the encoding of the graph.
Decoding is performed in reverse order and yields a vertex
sequence that is equivalent (i.e., maps to the same graph as)
the original graph.

Code implementing Random Edge Coding, Pólya’s Urn
model, and experiments are available at https://
github.com/dsevero/Random-Edge-Coding.
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Table 1: Optimality of Random Edge Coding (REC) with Polya’s Urn (PU) model. REC achieves
the optimal theoretical value for one-shot lossless compression under PU for various datasets.
Compressing the vertex sequence under the same model without REC would require a significantly
higher number of bits-per-edge as indicated by the sequence’s negative log-likelihood (NLL). All
units are in bits-per-edge.

NETWORK SEQ. NLL REC (OURS) GRAPH NLL (OPTIMAL) GAP (%)

YOUTUBE 37.91 15.19 15.19 0.0
FOURSQUARE 31.14 9.96 9.96 0.0

DIGG 32.67 10.62 10.62 0.0
GOWALLA 32.11 12.19 11.69 4.3

SKITTER 37.22 14.26 14.26 0.0
DBLP 35.48 15.92 15.92 0.0

Table 2: Lossless compression of real-world networks. Pólya’s Urn (PU) model, together with Random Edge
Coding (REC), achieves competitive performance on some datasets and can even outperforms the current
state-of-the-art on sparser social networks (black columns to the left). The last 2 columns (in gray) highlight
the situations where PU is expected to under-perform. While the compression with REC is optimal, the final
results depend on the likelihood assigned to the graph under PU, which is why ad hoc methods can achieve
a better performance. The best results are highlighted in bold. Results for methods beyond ours are the ones
reported by (Yousuf & Kim, 2022) in Table 4. Units for the bottom section are in bits-per-edge and lower
numbers indicate better performance.

SOCIAL NETWORKS OTHERS
YOUTUBE FOURSQ. DIGG GOWALLA SKITTER DBLP

# NODES 3,223,585 639,014 770,799 196,591 1,696,415 317,080
# EDGES 9,375,374 3,214,986 5,907,132 950,327 11,095,298 1,049,866

106×DENSITY 1.8 15.8 19.8 50.2 7.7 20.9

(OURS) PU W/ REC 15.19 9.96 10.62 12.19 14.26 15.92
POOL COMP. 15.38 9.23 11.59 11.73 7.45 8.78
SLASHBURN 17.03 10.67 9.82 11.83 12.75 12.62
BACKLINKS 17.98 11.69 12.56 15.56 11.49 10.79

LIST MERGING 15.80 9.95 11.92 14.88 8.87 14.13

6.1. Optimality of Random Edge Coding

We showcase the optimality of REC by compressing real-
world graphs to the information content under the Pólya’s
Urn (PU) model (see Section 4.3).

Table 1 shows the negative loglikelihood (NLL) of the ver-
tex sequence and graph under PU. As discussed in Sec-
tion 4.3 the graph’s NLL is the value an optimal entropy
coder should achieve to minimize the average number of
bits with respect to the model. REC can compress the graph
to its NLL (as indicated by the last column of Table 1) in
all datasets except Gowalla. Compressing the graph as a
sequence of vertices (i.e., without REC) would require a
number of bits-per-edge equal to the sequence’s NLL, which
is significantly higher than the NLL of the graph as can be
seen by the first column of Table 1.

As these methods evolve to achieve better likelihood val-
ues the compression performance is expected to improve
automatically due to the optimality of REC.

6.2. Compressing Real-World Networks

In Table 2 we compare the bits-per-edge achieved by PU us-
ing REC with current state-of-the-art algorithms for network
data. PU performs competitively on all social networks and
can even outperform previous works on networks such as
YouTube (Rossi & Ahmed, 2015).

The likelihood assigned by PU for non-social networks is
expected to be low, resulting in poor compression perfor-
mance, as indicated by the last 2 gray columns of Table 2.
The performance of PU deteriorates as the edge density
increases and is visible from Table 2.

While the compression with REC is optimal for PU, the
final results depend on the likelihood assigned to the graph
under PU, which is why ad hoc methods can achieve better
performance. Nonetheless, the bits-per-edge of PU with
REC is close to that of current methods.

The graph NLL for the Gowalla network under PU shown
in Table 1 (11.68) is less than the best compression result
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(11.73) achieved by Pool Compression (Yousuf & Kim,
2022). Assuming the network will grow with similar statis-
tics, PU may eventually surpass Pool Compression as there
would be more edges to amortize the overheads in compres-
sion.

7. Conclusion
In this paper we developed the first algorithm capable of
performing tractable one-shot entropy coding of large edge-
permutation invariant graphs: Random Edge Coding (REC).
We provide an example use case with the self-reinforcing
Pólya’s Urn model (Mahmoud, 2008) which performs com-
petitively with state of the art methods despite having 0
parameters and being void of floating-point arithmetic.

Our method can be seen as an extension of the Bits-Back
with ANS method (Townsend et al., 2019) that is applicable
to one-shot compression, i.e., when only a single sample
from the data distribution is available. REC can be trivially
extended to hypergraphs and directed edges as mentioned
in Section 5.5.

Any model satisfying edge-permutation invariance (Defini-
tion 5.1) can be used for optimal compression with REC,
including neural network based models. Learning exchange-
able models has been explored in the literature (Niepert
& Domingos, 2014; Bloem-Reddy & Teh, 2020) but, to
the best of our knowledge, using them for compression of
graphs and other structured data is an under-explored field.

Pólya’s Urn satisfies edge-permutation invariance through
the invariance of the PMF to permutations of the vertices,
which is a sufficient, but not necessary, condition. An inter-
esting direction to investigate is if there are similar models
that are strictly edge-permutation invariant, that is, the PMF
is invariant to permutations of edges and vertices within an
edge, but not to permutation of vertices from different edges.
Appendix B discusses this direction further.

In general, a trade-off exists between the model performance
and the complexity required to compute the conditional dis-
tributions. Pólya’s Urn model lies on an attractive point of
this trade-off curve, but there might exist other methods that
perform better without increasing complexity significantly.
We think this is a promising line of work that can yield
better likelihood models for network data and can provide a
principled approach to lossless compression of these data
types.
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A. Proofs
A.1. Pólya’s Urn Model is Edge-Permutation Invariant (Definition 5.1)

In this section we prove Pólya’s Urn model is vertex-permutation invariant (a sufficient, but not necessary, condition for
edge-permutation invariance) and thus can be used for optimal compression with Random Edge Coding. The proof follows
from directly computing the joint Pr(vk) from the conditionals Pr(vi+1 | vi) and showing that it depends on factors that are
invariant to permutations of the vertices in vk.

The conditional is proportional to the degree and is biased by the parameter β (which in our case was fixed to β = 1),

Pr(vi+1 | vi) ∝ dvi(vi+1) + β, (12)

with normalizing constant ∑
vi+1∈[n]

(dvi(vi+1) + β) = i+ nβ. (13)

The joint is defined as the product of the conditionals,

Pr(vk) =

k−1∏
i=0

dvi(vi+1) + β

i+ nβ
. (14)

At step i, the generative process appends a vertex to the existing sequence resulting in the product of non-decreasing degrees
(plus the bias β) in the numerator. We can regroup the degree terms and rewrite it as a function of the final degree dvk . For
example, consider the following sequence and its joint distribution

vk = 12 23 21 (15)

Pr(vk) =

v1=1︷︸︸︷
β

nβ
·

v2=2︷︸︸︷
β

1 + nβ
·

v3=2︷ ︸︸ ︷
1 + β

2 + nβ
·

v4=3︷︸︸︷
β

3 + nβ
·

v5=2︷ ︸︸ ︷
2 + β

4 + nβ
·

v6=1︷ ︸︸ ︷
1 + β

5 + nβ
(16)

=
1∏k−1

i=0 (i+ nβ)
· β · (1 + β)︸ ︷︷ ︸

v1=v6=1

·β · (1 + β) · (2 + β)︸ ︷︷ ︸
v2=v3=v5=2

· β︸︷︷︸
v4=3

. (17)

In general, the joint takes on the form

Pr(vk) =
1∏k−1

i=0 (i+ nβ)

∏
v∈[n]

(β)(1 + β) . . . (dvk(v)− 1 + β) (18)

=
1

(nβ)↑k

∏
v∈[n]

β↑d
vk (v), (19)

(20)

where x↑k = x(x + 1) . . . (x + k − 1) is the ascending factorial. The expression on the right is clearly invariant to
permutations of the elements in vk, which concludes the proof.

B. Other Edge-Permutation Invariant Models
B.1. Extended Pólya’s Urn Model

Note that assigning a unique bias βv to each vertex v will not break the edge-permutation invariance of the Pólya’s Urn
model, as can be seen from

Pr(vi+1 | vi) =
dvi(vi+1) + βvi+1

i+
∑

v∈[n] βv
, (21)
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with corresponding joint distribution

Pr(vk) =
1

(
∑

v∈[n] βv)
↑k

∏
v∈[n]

(βv)
↑d

vk (v). (22)

(23)

The parameters {βv}v∈[n] can be learned via gradient descent methods as the gradient of the joint is easily computable.
However, this model has n parameters, one for each vertex, which would need to be transmitted together with the model
depending on how the model generalizes as the network grows. We did not explore this direction.

B.2. Strictly Edge-Permutation Invariant Models via nested Deep Sets (Zaheer et al., 2017)

In this section we outline a general framework based on (Zaheer et al., 2017; Hartford et al., 2018; Meng et al., 2019)
to construct joint distributions that are edge-permutation (EPI) invariant, but are not invariant to permutations of vertices
between different edges. We refer to these models as strictly EPI.

Let ψ : [n]2 7→ R and Ψ:
⋃

k∈N Rk 7→ R+ be functions invariant to permutation of their arguments, possibly parameterized
by some neural network. The following joint distribution is clearly EPI,

Pr(v2m) ∝ Ψ(ψ(v1, v2), ψ(v3, v4), . . . , ψ(v2m−1, v2m)). (24)

However, the joint distribution may not be invariant to permutations of vertices between different edges (as intended, making
it strictly EPI). As a concrete example, take

ψ(v, w) = ⟨θv, θw⟩ (25)

Ψ(ϕ1, . . . , ϕ2m) =
∑

i∈[2m]

exp(ϕi), (26)

where θv, θw ∈ Rℓ are embeddings that can be learned and ⟨·, ·⟩ is the inner-product.

To apply Random Edge Coding, we need to define the conditional distributions

Pr(v2i, v2i−1 | v2(i−1)) =
Pr(v2i)∑

v2i,v2i−1
Pr(v2i)

. (27)

This model can also be learned via stochastic gradient descent but quickly becomes intractable in the form presented for
graphs with millions of edges. We did not explore this direction.
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