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Abstract
A wide range of empirical and theoretical works
have shown that overparameterisation can amplify
the performance of neural networks. According
to the lottery ticket hypothesis, overparameterised
networks have an increased chance of containing
a sub-network that is well-initialised to solve the
task at hand. A more parsimonious approach,
inspired by animal learning, consists in guiding
the learner towards solving the task by curating
the order of the examples, i.e. providing a
curriculum. However, this learning strategy
seems to be hardly beneficial in deep learning
applications. In this work, we undertake an
analytical study that connects curriculum learning
and overparameterisation. In particular, we
investigate their interplay in the online learning
setting for a 2-layer network in the XOR-like
Gaussian Mixture problem. Our results show that
a high degree of overparameterisation—while
simplifying the problem—can limit the benefit
from curricula, providing a theoretical account of
the ineffectiveness of curricula in deep learning.

1. Introduction
The ineffectiveness of curriculum learning in training deep
networks is a puzzling empirical observation. Simple exper-
iments (Bengio et al., 2009) and recent theoretical results
(Weinshall et al., 2018; Abbe et al., 2021; Saglietti et al.,
2022; Sorscher et al., 2022; Cornacchia & Mossel, 2023;
Tong et al., 2023) point out several potential benefits from
adopting this learning paradigm in a machine learning con-
text, including learning speed-ups and better asymptotic
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generalisation. However, curriculum learning has not en-
tered the standard pipeline of deep learning applications, and
large-scale studies show that indeed for these models the
curriculum benefits seem to be marginal (Wu et al., 2021).

The apparent contradiction between theory and applications
is at the centre of this study. We address this issue by identi-
fying a potential cause: the high degree of overparameteri-
sation, an ever-present feature of deep learning, which can
erode the margin of improvement of curriculum learning. In
particular, we provide an extensive analytical study of cur-
riculum learning and over-parameterisation in the XOR-like
Gaussian mixture model (Refinetti et al., 2021; Ben Arous
et al., 2023). As we will see, this learning problem encapsu-
lates a crucial ingredient of hard learning problems —the
coexistence of a few relevant features hidden among many
irrelevant ones. From our study, we obtain the following
main contributions:

• We disentangle the advantages of curriculum learning,
giving a detailed account of its impact on relevant
manifold discovery and labelling rule identification,
and we show that curriculum can compensate for a
wide range of poor initialisations;

• We connect these results with the observation that—
according to the lottery ticket hypothesis (Frankle &
Carbin, 2019)—a similar role can be played by overpa-
rameterisation.

• We investigate whether overparameterisation and cur-
riculum can create a positive synergy in boosting learn-
ing performance, and find that eventually—if the de-
gree of overparameterisation is sufficiently high—the
effect of curricula vanishes;

• Finally, we test our predictions in realistic datasets,
empirically confirming the results.

Related works. The theory of curriculum learning in ML
is still in its early stages of development. In Weinshall et al.
(2018); Weinshall & Amir (2020), the authors analysed the
effects on convergence speed of presenting easy vs. hard
samples, showing that easy samples lead to faster learning.
However, these studies did not account for the importance of
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ordering within a dataset. In Abbe et al. (2021), in the con-
text of a function approximation task with neural networks,
it was shown that when the target function is a high-degree
polynomial, guiding the neural networks using lower-degree
cues can drastically speed up learning. Similarly, Abbe et al.
(2024); Cornacchia & Mossel (2023) showed that present-
ing samples non-uniformly in a parity learning task can also
lead to a remarkable speed-up. The observation of a dynam-
ical effect without strong asymptotic generalisation benefits
was also found in a convex learning setting in Saglietti et al.
(2022), where the authors analysed a simple model of cur-
riculum proposed in Bengio et al. (2009). To improve the
generalisation gain, the authors proposed the introduction
of an ad hoc memory term in the loss function.

In the present work, we move beyond convex learning set-
tings and consider a more complex task-learner pair, where
a curriculum protocol can in principle achieve a large per-
formance gap at long times without loss alterations. Here,
we introduce the crucial ingredient of overparameterisation
into the mix, and analyse its interaction with the curriculum
strategy.

2. XOR-like Gaussian Mixture and the effect
of over-parametrisation

We revisit the XOR-like Gaussian Mixture (XGM) setting
previously analysed in Refinetti et al. (2021); Ben Arous
et al. (2023), which involves a combination of high-
dimensional and low-dimensional learning tasks. In par-
ticular, an XOR classification problem—see sketches in
Fig. 1—is hidden in high-dimension and is to be discov-
ered and solved by the learning model. Because of the
non-linearly separable nature of the XOR problem, at least
a hidden layer is required for a neural network to be able to
achieve optimal generalisation in this setting.

Model definition. Given two orthogonal unit vectors
µ1,µ2 ∈ Rd, we obtain i.i.d. samples (X, y), with X ∈ Rd

and y ∈ {0, 1}, from the following Markov chain: first the
label is obtained as y ∼ Ber( 12 ), then if y = 1 the inputs
follow the mixture X ∼ 1

2N (µ1, σ
2I) + 1

2N (−µ1, σ
2I),

while if y = 0 the input distribution is X ∼ 1
2N (µ2, σ

2I)+
1
2N (−µ2, σ

2I). The standard deviation σ controls the sig-
nal to noise ratio of the problem SNR = ∥µ∥

σ = 1
σ . Here-

after, we will use the short-hand notation X±α for indicating
a sample from cluster N (±µα, σI).

We consider a 2-layer neural network with K hidden units,
with parameters W ∈ RK×d, b ∈ RK , v ∈ RK and
activation:

ŷ =
1√
K

K∑
k=1

vkg (W k ·X + bk) . (1)

We assume the first layer weights are initialised according

to the typical scaling Wki ∼ N (0, 1√
d
), while the second

layer weights are standard Gaussian vk ∼ N (0, 1) and the
bias terms are initially set to bk = 0. While the non-linearity
g could be arbitrary, in the following we will consider the
case of ReLU activation, and discuss logistic regression
with cross-entropy loss L(y, ŷ) = −yŷ + log (1 + exp(ŷ)).
We focus on the online learning setting (ballistic limit in
Ben Arous et al. (2023)) where at each epoch a new pattern
is presented and a step of gradient descent is applied to the
parameters of the network.

ODE limit. As in Refinetti et al. (2021); Ben Arous et al.
(2023), we consider the high-dimensional limit where the
input dimension d → ∞ and the gradient descent step is
rescaled with 1/d. In this regime, the learning dynamics
provably approaches a deterministic limit that can be fully
captured by a system of ODEs, which track the evolution of
a set of key order parameters. In particular, given a sample
X±α, the scalar fields {λi}K+2

1 defined as:

λk = W k ·X±α; λK+β = µβ ·X±α; (2)

with k ∈ ⌊K⌋ and β ∈ ⌊2⌋, can be shown to follow a multi-
variate Gaussian distribution with mean and covariance:

m = [±M·α, T·α]; C = σ2

[
Q M
M⊤ T

]
; (3)

parameterised by the order parameters

Q = WW⊤, M·α = Wµα, Tαβ = µα · µβ ,

which respectively represent the overlap matrix between the
neurons, the alignment of the neurons with the centroids,
and the overlap between the centroids. Note that in our
setting T = I2×2.

Then, denoting with σ(·) the sigmoid function and using the
short-hand notation ∆ = y − σ

(
1√
K

∑
k vkg(λk + bk)

)
,

we can define the expectations:

Aij = E±αEλ [λig
′(λj + bj)∆] ;

Bij = σ2E±αEλ

[
g′(λi + bi)g

′(λj + bj)∆
2
]
;

Di = E±αEλ [g(λi + bi)∆] ; Ei = E±αEλ [g′(λi + bi)∆] ,

allowing us to write the simple ODEs that characterise the
time evolution of the order parameters:

dQkl = η̃ (vkAk,l + vlAl,k) + η̃2vkvlBkl (4)
dMkα = η̃ vkAk,K+α (5)

d vk = η̃ Dk (6)
d bk = η̃ vkEk. (7)

As in Refinetti et al. (2021), we rescaled the learning rate
with the number of neurons, fixing η̃ = η/

√
K = 2.5.

The obtained order parameters can then be used to track
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(a) Minimal parameterisation (b) Overparameterised NN
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Figure 1. XOR-like Gaussian mixture and the lottery ticket. Panels (a) and (b) show the relevant coordinates in the input space of the
Gaussian mixture considered in our theoretical framework. Circles and crosses represent the position of the centroids for the two classes.
All the remaining dimensions are spurious, and their centroids are centered at zero. Panel (a) represents a possible ‘bad’ initialisation of
a 2-layer neural network with K = 4 hidden units (weight vectors depicted in gray), where ‘bad’ means that this will not lead to the
optimal solution. Notice that K = 4 is however the minimal number of parameters to optimally solve the task. Panel (b) considers instead
an overparameterised neural network with K = 10: notice that by increasing K the probability of covering all 4 quadrants at initialisation
increases, making it more likely to have a good ‘lottery ticket’. Panel (c) shows that, indeed, overparameterisation consistently helps
achieve a lower generalisation error (y-axis), even as noise intensity σ increases. Eventually, the clusters become so overlapping that even
an overparameterised system cannot achieve good performance.

the trajectory of the typical observables and performance
metrics for the neural network, such as the generalisation
error and the population loss. We provide a sketch of the
derivation of the ODE description in Appendix A.

Lottery ticket effect. In the XGM setting, the minimal
architecture that can achieve optimal generalisation is a 2-
layer network with K = 4 neurons (Refinetti et al., 2021;
Ben Arous et al., 2023). The key requirement for an optimal
solution is to achieve perfect coverage, i.e. each of the cen-
troids should have at least one specialised neuron that aligns
with it. In Ben Arous et al. (2023), in the noiseless limit
σ → 0 and the special case of zero bias b = 0, the authors
propose a combinatorial analysis for characterising the prob-
ability of the dynamics falling into the basin of attraction
of the perfect coverage solutions, and identify the initial
configuration of the neurons as the discriminating factor. In
particular, the learning network is shown not to be able to
recover from poor initializations where multiple neurons
redundantly focus on the same centroid and one or multiple
centroids are “ignored” by the network—e.g. as in Fig. 1a.

As first observed in Refinetti et al. (2021), overparameteris-
ing the network by increasing K lowers the probability of
the initial configuration being in the basin of attraction of a
low coverage solution—as sketched in Fig. 1b—and leads to
a clear improvement in the average performance of the net-
work. In fact, the probability of reaching an optimal solution
is shown to increase exponentially with K in the simplified

setting of Ben Arous et al. (2023). We extend the analysis
to the case of σ > 0 and non-zero bias, where the network
has the additional option of muting a neuron by sufficiently
increasing the associated bias. In Fig. 1c, we show the gain
in performance for increasing values of K as a function of
the noise level σ. Note that the curves, obtained through the
ODE system Eq. 4, display the averages over initialisations
of the population loss reached after 10, 000 learning epochs.
At very large values of σ, the selected cut-off on the epochs
is insufficient for the network to converge to a configuration
with better-than-chance performance.

This overparameterisation phenomenology provides a clear
example of the lottery ticket hypothesis (Frankle & Carbin,
2019). The idea is that one of the advantages of training
highly overparameterised neural networks comes from the
increased likelihood of randomly sampling a well-initialised
sub-network that is sufficient to solve the learning problem
at hand. In simple words, collecting more lottery tickets will
certainly enhance the chance of finding the winning one. In
the following sections, we investigate the effectiveness of
curriculum learning in the XGM problem and whether it
can work in synergy with the overparameterisation strategy.

3. Curriculum learning
In curriculum learning, samples are presented to the model
in a curated order. This procedure finds motivation in studies
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(a) Asymptotic performance of curricula (b) Curricula dynamics

Figure 2. The benefits of a curriculum. Panel (a) shows that curriculum learning (‘c’) can achieve a better test loss in comparison with
random ordering (‘rand’) and no-fading (‘nf’) paradigms. Consistent with results in cognitive science, neural networks find benefits from
curricula in a Goldilocks range of the noise. Histograms show centroid coverage for the three protocols. Panel (b) highlights another
aspect of curricula that comes from the dynamics: curricula can also speed up learning considerably.

from the field of cognitive science (Lawrence, 1952; Baker
& Osgood, 1954; Skinner, 1965) showing that animals learn
faster—and sometimes learning is unlocked—if samples are
presented in increasing order of difficulty. However, with
few exceptions, deep learning does not seem to benefit as
much from curricula (Wu et al., 2021).

The very definition of what identifies a difficult sample in
standard ML problems is debatable, and in practice, dif-
ferent approaches have been tested with alternating results.
In the synthetic framework of the XGM, we can use the
SNR = ∥µ∥

σ as a natural notion of sample difficulty. In par-
ticular, to similar effect, one could either rescale the norm of
the centroids µα, or the standard deviation σ, in a fraction
of the presented patterns. In the following, we will employ
the former approach, often referred to as fading in the field
of cognitive science (Pashler & Mozer, 2013). To this end,
we define a fading factor φ to rescale the signal component
of the inputs X±α ∼ N (±φµα, σ

2I).

We compare three learning protocols, namely curriculum,
random order, and no-fading. In the first two cases, we
assume that a fraction α of the dataset contains easier
samples—i.e.φ > 1. In the curriculum setting, we con-

sider a fading factor that, starting from a maximum value,
decreases linearly to 1 in the first fraction α of the epochs,
and is kept fixed thereafter. We set φmax = 3 in our ex-
periments. In the random order protocol, the dataset is
presented with identical yet shuffled fading factors. Finally,
in the no-fading protocol, φ = 1 for all samples—e.g. as in
Fig. 1c. Notice that only the no-fading protocol is explicitly
receiving less information.

3.1. Effectiveness of curriculum

Before analysing the mechanisms behind the effectiveness
of curriculum, we here show the twofold nature of the cur-
riculum benefit. For simplicity, we focus on the minimal
2-layer network setting (K = 4) in the XGM task, with
10, 000 training epochs and an easy fraction α = 0.1.

In Fig. 2a and Fig. 2b, we show that a curriculum strategy
can provide both an asymptotic and a dynamical advan-
tage compared to random order and no fading. The upper
plot of Fig. 2a displays the population loss after training,
for different levels of standard deviation σ, while the his-
tograms on the bottom show the cluster coverage achieved
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(a) Curriculum benefit (b) Speed boost from curriculum

Figure 3. Scrutinising the curriculum gain. Panel (a) shows a controlled experiment where a K = 4-network is initialised with 3
neurons in the optimal configuration, and the remaining one at an angle θ1 with the free centroid and with a fraction ρ1 = 0.1 of norm
lying on the 2-dimensional relevant manifold. The experiment is run in the high-noise regime, σ = 1.0. The curriculum (blue) and
random (red) lines show that curriculum finds the optimal configuration for a significantly larger range of initial angles. Furthermore,
the inset shows that the final ρ1 of the free neuron is consistently larger for curriculum. Panel (b) shows the instantaneous benefit of
curricula, both for the rate of alignment with the left-out centroid—dM11 (upper row)—and in the rate of alignment with the relevant
manifold—d ρ1 (lower row). The heatmaps span the fading factors µ on the horizontal axis, and the current mass on the relevant manifold
ρ1 (alignment with the centroid m1) on the vertical axis of the upper (lower) row. Crucially, at a given µ, the benefit is non-monotonic on
the other variable, implying that there is an optimal period during learning for using curricula effectively.

by the three strategies at σ ∈ [0.1, 0.4, 0.7]. In Fig. 2b,
we show the learning trajectories (time evolution of the
loss) of the different protocols at different noise levels,
σ ∈ [0.1, 0.3, 0.5, 0.7]. Overall we identify three regimes
of effectiveness (dashed vertical lines in Fig. 2a), depend-
ing on the noise level: high SNR, the Goldilocks region at
intermediate SNR, and low SNR.

High SNR. As can be seen in Fig. 2a, at small σ all the
protocols can identify the relevant manifold spanned by the
centroids and progressively align the available neurons to it.
However, by providing easier samples at the beginning of
the training, curriculum lowers the entropic barrier associ-
ated with the search of the relevant manifold, allowing for a
faster specialisation of the neurons—see also Fig. 2b—and
inducing a quicker growth of the norm of the neurons, which
yields a lower loss value on average. Interestingly, the left
histogram shows that despite the lower loss, the associated
level of coverage of curriculum is found to be slightly worse
than random order and no-fading. While a small amount
of noise can help escape bad initialisations, the initial boost
in the SNR of the fading strategy commits the network to
the closest bad minimum and prevents positive fluctuations,
proving detrimental in this regime.

Goldilocks SNR. At intermediate values of σ we find the
Goldilocks regime of curriculum, where the advantage is
maximal. In Fig. 2a, curriculum achieves lower loss and
better coverage (central histogram) on average compared to
the other strategies. This signals that the fading procedure,
by temporarily increasing the SNR, can effectively enlarge
the basin of attraction of neuron configurations with high
coverage. Fig. 2b also shows that the learning speed is max-
imal in this regime, and that larger fractions of trajectories
land on lower loss values.

Low SNR. Finally, at large σ the complexity of the task is
too high for curricula to be effective. The time scale for
identifying the relevant manifold spanned by the cluster
centroids is large compared to the training epochs, and the
model predictions are dominated by the irrelevant—non-
informative—dimensions. Thus, the observed performance
is nearly chance-level. As shown in the right histogram,
a poor alignment with the relevant manifold can push the
network towards configurations where all the neurons are
muted and none of the clusters is covered.

This preliminary analysis shows the emergence and interplay
between two key ingredients:
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• the relevant manifold discovery, i.e. how much the
network aligns its neurons to the sub-manifold spanned
by the centroids, decreasing the impact of the noise
dimensions on the learning dynamics. This sub-task
does not explicitly require the labels and is akin to
feature discovery in unsupervised settings.

• the labelling rule identification, i.e. how much the
learned features allow the network to represent the cor-
rect input-output association for the presented data. In
the XGM model, this goal is in direct correspondence
with cluster coverage. This sub-task is intrinsically
driven by supervision.

In the next section, we disentangle these sub-tasks in con-
trolled experiments and show the impact of the presentation
order of the SNR-boosted patterns.

3.2. Anatomy of curriculum

We now aim to quantify the impact of curriculum on the
relevant manifold discovery and labelling rule identification
sub-tasks. To this end, we consider a controlled setup where
most of the network parameters are ideally initialised: 3
of the 4 neurons start aligned with distinct centroids, v is
chosen with appropriate alternating signs, and b = 0.

The idea is to explore in isolation the impact of the initial-
isation of the weights of the remaining neuron—neuron
1 for simplicity. We parameterise it by two numbers:
θ1 = arctan M12

M11
, the angle between the projection of the

weights W 1 on the relevant manifold and the left-out cen-
troid; and ρ1 =

M2
11+M2

12

Q11
, the fraction of norm of the neu-

ron lying on the relevant manifold. Ideally, the manifold dis-
covery sub-task would require the neuron to obtain ρ1 → 1,
while the optimal cluster coverage would be obtained when
θ1 → 0. When ρ1 is small, the response of the neuron is
more affected by noise and its fluctuations are enhanced. For
ρ1 → 1 the fluctuations weaken, since the signal component
becomes more prominent, and the neuron is attracted to the
closest centroid compatible with the initialisation of v. Note
that, despite the semi-aligned initialisation, during training
all neurons are left free to evolve and can suffer slight dis-
alignments from the relevant manifold—especially in the
low SNR regime.

Labelling rule identification. In Fig. 3a, we show the fi-
nal alignment with the left-out centroid, M11, after 10, 000
training epochs and starting from ρ1 = 0.1 and θ1 ∈ [0, π].
The curriculum protocol induces a sharper behaviour: a
critical value of θ1 separates a phase where the neuron con-
sistently aligns to the centroid, from a phase where it con-
sistently anti-aligns. In contrast, random order shows a less
consistent behaviour, with a larger fraction of initialisations
neither aligning nor anti-aligning with the left-out centroid.
Overall, curriculum is found to infer the correct labelling

rule for a wider range of θ1s. Interestingly, at large θ1, ran-
dom order displays a small advantage, connecting back to
the observations about the left histogram—σ = 0.1—in
Fig. 2a. In the inset of Fig. 3a, we see that after training
curriculum achieves a larger ρ1 than random order, prov-
ing more efficient in the discovery of the relevant manifold
especially when θ1 is small.

By inspecting the ODE updates Eq. 4, in Fig. 3b we can
analyse the rate of increase of M11 (top) and ρ1 (bottom),
as a function of their current values and of the fading factor
φ. In the top plots, we study the gradient of the alignment
with the left-out centroid, M11, at ρ1 = 0.8 in two different
scenarios. On the left, the alignment with the orthogonal
centroid is small—M12 = 0.1—and the signal is stronger,
while on the right the neuron is more aligned with the or-
thogonal centroid—M12 = 0.8—increasing the cross-talk
between the two directions. The impact of φ on the growth
rate of M11 is found to be maximal when M11 is about
the same order as M12. In a random initialisation scenario,
having a stronger signal in the early training stages—when
the alignment with both neurons is still small—is thus more
beneficial compared to getting the boost in later stages of
training.

Relevant manifold discovery. In the bottom plots of
Fig. 3b, we study the gradient for ρ1 in two scenarios: when
the neuron is already well aligned with the left-out centroid
(θ1 = 1

12π, left) and when the alignment is stronger with
the orthogonal centroid (θ1 = 5

12π, right). At low values
of φ, in both scenarios the gradient is weak. However, if φ
is large we observe a bifurcation: if the neuron is already
oriented correctly, it is pulled toward the relevant manifold;
if the orientation is incorrect, the neuron is repelled from
the relevant manifold. This behaviour is reminiscent of a
phenomenon exploited in the learning rate warm-up strategy
and implicitly in the catapult mechanism (Lewkowycz et al.,
2020): temporarily disaligning with the relevant manifold
can be useful because the fluctuations induced by the irrele-
vant directions can be used to escape a sub-optimal basin.
See Appendix B for additional details.

Notice that identifying explicit parameters that track the
progress in the two sub-tasks is only feasible in controlled
settings like the XGM. A similar analysis with real data
would require some approximations to estimate analogous
observables. For instance, reduction techniques like PCA
or CKA (Kornblith et al., 2019) could be used to estimate
the manifold of relevant features, and heuristic methods like
fitting a teacher-network to the data (Loureiro et al., 2021)
could allow a more controlled characterisation of the rule.

3.3. Ablations and variations

Our analysis, so far, focused on a specific setting, trying to
remove as many elements of complexity as possible, in order
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Figure 4. Interaction between curricula and overparameterisation. Panel (a) shows histograms of the cluster coverage achieved after
10,000 epochs, for a standard deviation σ = 0.4 and 1,000 easy samples (α = 0.1). The colours (blue, red, and yellow) denote the
strategies used (curriculum, random order, and no-fading, respectively) during training. The different plots in the panel show the effect of
overparameterisation, controlled by the parameter K. While a small degree of overparameterisation benefits curricula more than other
strategies, a very large overparameterisation makes all strategies equally effective. Panel (b) generalises the picture to a broad range of σs
and larger training time. In all these cases, we always keep the number of ‘easy’ samples fixed to 1,000—e.g. in the rightmost plot only
0.1% of the samples are easy. The different lines represent the gap in noiseless generalisation error between curriculum and no-fading
(solid lines), and random order and no-fading (dotted lines), for different network parameterisations K.

to identify the simplest model avoiding confounding effects.
However, practical applications use a number of tricks to
improve performance. We discuss some of these changes,
showing the robustness of our result, in Appendix C.

4. Interplay of curriculum learning and
over-parameterization

We have so far separately covered the benefits of overapa-
rameterisation and curriculum learning. We now turn to
characterising their interplay. In particular, we address the
question: How effective can curriculum be when the model
approaches the overparameterised regime?

In Fig. 4a, we go back to the random initialisation setup,
and plot the histograms for the cluster coverage achieved by
networks with increasing numbers of neurons and trained
according to the three curriculum protocols. The results
show that both employing curriculum and overparameteris-
ing the network can increase the probability of ending up

in a good solution with high centroid coverage, inducing a
lower loss at the end of training. However, the asymptotic
gain of curriculum is minimal when the network is already
overparametrised, since full centroid coverage is already
achieved without boosting the SNR, and the margin for a
curriculum benefit is no longer present.

In Fig. 4b, we extend the picture by exploring a range
of values for σ and by increasing the number of training
epochs, keeping the total number of easy samples fixed
to 1, 000. Each of the plots displays, for different network
sizes K, the gap between the generalisation error evaluated
at σ = 0 of curriculum and no-fading (full lines), and the
gap between random order and no-fading (dotted lines).
First, notice that with larger K the maxima of the curves
shift to the right, indicating that higher levels of noise can
be tolerated in overparameterised networks, and that the
curriculum Goldilocks regime shifts to higher σ. At fixed
σ, the asymptotic gain of curriculum tends to decrease with
larger K, as observed in Fig. 4a.
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(a) Curricula in MLP (b) Curricula in CNN (c) Dataset samples

Figure 5. Interplay between curriculum and overparameterisation in real data. Panel (a) shows the effect of curriculum and
overparameterisation for a MLP trained in a corrupted fashionMNIST dataset. We can observe two types of overparameterisation,
layer-wise (x-axis) and in depth (bars), and their impact on the gap between curriculum and random order (y-axis). The key observation
is that, above the Goldilocks range, both kinds of overparameterisation reduce the benefit of curricula. Panel (b) extends the analysis on
CNNs trained in a corrupted CIFAR10 dataset. As we overparameterise by increasing the number of filters (x-axis), the accuracies (y-axis)
of the two strategies get closer and their gap decreases. In Panel (c) we show some of the samples used in training and testing. For the
MLP, we add ‘difficulty’ to fashionMNIST by adding white noise to the images. Since CNNs are robust against this kind of perturbation,
we increase the ‘difficulty’ of CIFAR10 samples by adding a distracting frame around the image. The different columns represent the easy
samples, the test samples and the hard samples, respectively.

With a larger number of training epochs—Fig. 4b, mid and
right plots—the network has sufficient time to converge
closer to the minimum within the reached basin of attraction.
Therefore, the dynamical speed-up effect of curriculum
becomes negligible. In these settings, the performance gaps
indicate a higher frequency of convergence to solutions with
good centroid coverage. We also observe that the maximum
gap decreases when K is larger, evidencing again that in
the overparameterised regime curriculum strategies have
less to gain.

Looking at the difference between random order and no-
fading (dotted curves) we see that it vanishes for longer
training times: random order struggles to extract additional
information from easy samples if they are presented with
very low frequency. On the contrary, curriculum can still
benefit from them. This result can be identified with the

“eureka effect” described in cognitive science (Ahissar &
Hochstein, 1997; 2004), where better asymptotic perfor-
mance can be unlocked if easier examples are consistently
presented in the initial stages of learning.

Finally, notice that curriculum can cause worse performance
in the regime of very small noise and a large number of
epochs. This is compatible with the previous observations
on Fig. 2a and Fig. 3a: since some noise at the beginning
of learning can help escape sub-optimal basins of attraction,
our curriculum protocol can be detrimental since it reduces

the fluctuations.

Numerical results on ML benchmarks
In this section, we seek a similar phenomenology on real
data. As discussed, defining a proper notion of difficulty
among the patterns of standard datasets—e.g. FMNIST or
CIFAR10—is an open problem, and is out of the scope of the
present paper. Here, we simply modify the original dataset
to complexify the task in a tunable way. Given the limited
size of the datasets, we revert to the standard batch-learning
setting with cross-entropy loss. Curriculum learning can
be introduced by splitting the learning process into stages,
where the model can focus on different slices of the dataset.

In the first experiment on FMNIST (Xiao et al., 2017), we
simply add i.i.d. Gaussian noise to the input pixels and
clip to the original range [0, 1]. The difficulty level is thus
controlled via the standard deviation of the additive noise—
see top plot in Fig. 5c. We consider a sub-sampled dataset
with 5, 000 unperturbed ‘easy’ samples and 5, 000 perturbed
‘hard’ samples with σ = 0.5. For curriculum, in the first
training stage we present to the network only the easy sam-
ples, drop the learning rate by a factor 1/3 and finally train
only on the hard samples in the second and final stage. For
random order we simply train on the full dataset in shuffled
order for the same total epochs. We test on hard patterns
with noise σ = 0.5. We train with Adam (Kingma & Ba,
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2015) a multi-layer perceptron with L layers, each with the
same width. In Fig. 5a, we find that, in agreement with the
XGM phenomenology, the gain of curriculum first increases
as the width is increased to 100—the Goldilocks regime—
and then decreases when the degree of overparameterisation
is further increased. Also increasing the number of layers
has a similar effect—i.e. the gap shrinks, especially when
the width is sufficiently large.

In the second experiment on CIFAR10 (Krizhevsky et al.,
2009), we introduce a difficulty level by swapping centres
and frames of different images in the dataset—maintaining
the label associated with the center. The difficulty level is
controlled via the width of the distracting frame—see bot-
tom plot in Fig. 5c. This type of perturbation is designed
to be more impactful on convolutional networks. We con-
sider a training set with 1, 000 easy samples with distracting
frame width w = 1pixel and 9, 000 hard samples with
w = 6pixels, and then test on samples with w = 2pixels.
In the curriculum protocol, we first train on the easy samples
alone, and then train on the whole dataset. We train with
Adam a custom convolutional network—additional details
in Appendix E—where the number of filters in each layer
is multiplied by an increasing factor, reported in Fig. 5c.
The results are again consistent with our theoretical analy-
sis, supporting the idea that overparameterisation limits the
effectiveness of curricula.

Discussion
We provided a detailed theoretical characterisation of the
effectiveness of curriculum learning in training a 2-layer
network on the XOR-like Gaussian Mixture problem. After
establishing a connection with recent studies, proving an
advantage of overparameterisation in the same setting, we
highlighted the limitations for the two strategies to work in
synergy, since in the highly overparameterised regime the
margin of improvement for curriculum eventually vanishes.
A similar phenomenology was then traced in experiments
with real data and more complex neural network architec-
tures. More generally, overparameterisation was recently
shown to smooth and convexify the loss landscape in dif-
ferent settings, e.g. in 2-layer neural networks (Chizat &
Bach, 2018; Mei et al., 2018; Rotskoff & Vanden-Eijnden,
2022) and in phase retrieval (Chen et al., 2019; Sarao Man-
nelli et al., 2020a;b). At the same time, in a convex set-
ting curriculum learning was shown to be unable to pro-
vide a sizeable benefit on asymptotic performance (Saglietti
et al., 2022). Combining these observations, we conjecture
that curriculum ineffectiveness due to overparameterisation
should generalise beyond the particular cases analysed in
this paper.

Some deep learning applications, especially in NLP and RL
problems (Soviany et al., 2022), show that curricula can be

effective in practice for models with very high parameter
counts. A possible explanation of this observation is that,
despite their size, the trained models might still not be over-
parameterised enough—compared to the task difficulty—to
make curricula ineffective. This observation requires further
investigation and is left for future research.

Recent work in data imbalance (Ye et al., 2021) and fair-
ness (Ganesh et al., 2023) suggested the use of curricula as
mitigation strategies in stochastic gradient descent optimi-
sation. Given the availability of high-dimensional models
of fairness (Sarao Mannelli et al., 2022), this represents an
interesting future direction for our theory.

Finally, this research also suggests that, when there is exter-
nal pressure over cost-effectiveness of computation—e.g. in
biological settings—learning systems that are not too over-
parametrised can still perform well when curriculum strate-
gies are available. This seems consistent with the crucial
role played by curricula in animal learning.
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The research presented in this paper is fundamentally theo-
retical, and as of now, we do not foresee substantial direct
societal impact stemming from its findings.
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A. Sketch of the derivation of the ODE description.
We here provide some additional details on the derivation of the ODE system Eq.4 for our learning problem –i.e. online
learning in the XGM problem for a 2-layer network with K neurons. To recover the low-dimensional deterministic
description we are going to consider the asymptotic limit where the input size d → ∞. Note that the full derivation was first
derived in (Refinetti et al., 2021), and then rigorously proven in (Ben Arous et al., 2023).

The network is trained using one-pass stochastic gradient descent on a given loss function. Note that, while in this work we
focus on the case of binary cross-entropy loss L(y, ŷ) = −yŷ+ log (1 + exp(ŷ)) –as in (Ben Arous et al., 2023), a different
loss could be considered with small adjustments –e.g. a MSE loss MSE(y, ŷ) = (ŷ − y)2/2 = ∆2/2 was analysed in
(Refinetti et al., 2021).

Given an input-output pair (X, y), we define the receptive field of the neurons λk = W k · X , and the “error” ∆ =

y − σ
(

1√
K

∑
k vkg(λk + bk)

)
, to write the discrete time SGD updates:

W t+1
k = W t

k − η√
K

∆ vkg
′ (λk + bk)X (8)

bt+1
k = btk − η√

K
∆ vkg

′ (λk + bk) (9)

vt+1
k = vtk − η√

K
∆ g (λµ

k + bk) , (10)

where η = O(1) represents the learning rate.

As described in the main text, we want to track the evolution of the order parameters:

Q = WW⊤, M·α = Wµα, Tαβ = µα · µβ . (11)

By substituting the SGD update equations for the first layer weights we get:

Qt+1
jk = Qt

jk +W t
j · dW k + (j ↔ k) + dW j · dW k

= Qt
jk +

η√
K

vk (λjg
′ (λk + bk)∆) + (j ↔ k) +

η2σ2

K
vjvk

(
g′ (λk + bk) g

′ (λj + bj)∆
2
)
, (12)

and in expectation over the receptive fields:

dQjk =
η√
K

vk E[λjg
′ (λk) + bk∆] + (j ↔ k) +

η2σ2

K
vjvk E[g′ (λk + bk) g

′ (λj + bj)∆
2]. (13)

Similarly, we find:
M t+1

kα = M t
kα + µα · dW k

= M t
kα +

η√
K

vk E[(µα ·X) g′ (λk + bk)∆] (14)

Following the unified notation introduced in the main text, we introduce 2 additional fields λk+α = µα ·X , representing
the projection onto the centroid directions of the inputs.

In the high-dimensional limit d → ∞, assuming i.i.d. inputs from the XOR-like Gaussian mixture, the vector field λ
becomes Gaussian distributed. To identify the associated mean and covariance, we notice that one can decompose:

W k = Mk1µ1 +Mk2µ2 +W⊥
k , (15)

isolating relevant and irrelevant components of the weights of the neuron. Recalling that X±α = ±µα + z, with i.i.d. noise
components zi ∼ N (0, σ2), one can easily find that:

m = [±M·α, T·α]; C = σ2

[
Q M
M⊤ T

]
; (16)

where T is the overlap matrix between the centroids, i.e. a 2× 2 identity matrix in the XGM setting. After the definition
of the expectations A, B, D and E, we finally obtain the system Eq.4. Note that, in the main text we introduce a rescaled
learning rate η̃ = η√

K
, which is kept fixed to avoid a trivial slow-down of the learning dynamics in the large K regime.
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Figure 6. More on the two learning tasks in the controlled setup. In each row, we display analogous plots as those in Fig.3a and
its inset, but with an initialising with different initial values of ρ1. In particular, we plot the final alignment of the free neuron with the
left-out centroid (left) and the final fraction of relevant norm ρ1, as a function of the initial angle θ1 between the neuron and the centroid.

B. Exploiting noise to achieve better alignment.
We here present some additional results obtained in the controlled setup introduced in Sec.3.

In particular, in Fig.6 we investigate the role played by the initial relevant fraction of the norm ρ1. We observe that, somewhat
counterintuitively, initialising neuron 1 closer to the relevant manifold makes the adversarial initialisations with θ1 ≃ π
more difficult to escape. Instead, when the neuron is initialised with a very small relevant component, the initial θ1 is almost
irrelevant, and the left-out centroid is always covered at the end of training. This is evidence of a mechanism where the
noise can be exploited to escape the basin of attraction of sub-optimal minima.

Another observation is that, due to the high level of noise σ = 1, even when the neuron is initialised on the relevant manifold,
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the learning dynamics causes the irrelevant component of the norm to grow, causing a partial dis-alignment from the relevant
manifold. The observed dis-alignment is largest around the θ1 threshold where the neuron transitions from focusing on the
left-out cluster to focusing on the opposite cluster.

C. Ablations and variations.
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Figure 7. Variations of the setting. Panel (a) shows the effect of an L2-regulariser with strength λ applied to the first layer. Given
σ = 0.4, the upper plot reports results for K = 4 while the lower plot shows the effect on K = 64. The same analysis with regularisation
applied to both layers reported minor benefits. Panel (b) shows the benefit of curricula against no fading (left plots) and random ordering
against no fading (right plots) under alternative notions of difficulty. In the upper plots difficult samples are defined in terms of the norm of
the centroids—easy samples have up to twice the norm—while in the lower plots difficulty comes from the cluster variance—with easiest
difficulty level given by σ = 0.1. The lines represent continuous curricula, and discrete curricula with 1 or 2 step difficulty increase.

Standard optimisation usually includes learning rate scheduling. In general, learning rate annealing advantages curricula.
Indeed an effective curriculum protocol can exploit learning rate annealing to focus on relevant samples and prevent
forgetting as difficulty increases (Zhou et al., 2021). Another standard protocol is regularisation, which indeed can help
identify the relevant manifold by pruning irrelevant directions. In Fig. 7a we show the effect of regularisation in our problems
in the just-right parameterised (upper plot) and overparameterised (lower plot) architectures. The plots show an improvement
in performance that benefits mostly “no-fading” and “random” strategies. This is to be expected as curriculum is already
helping in identifying the relevant manifold so the benefit of regularisation is reduced. As shown in the lower plot, the
benefit in the overparemeterised architecture is minor, and this is due to the lottery ticket effect, as explained in detail in the
next section.

In our investigation we considered curricula based only on one notion of difficulty. In general, defining what characterises
a hard samples is not straightforward and it is one of the main design choices behind a curriculum strategy (Soviany
et al., 2022). In Fig. 7b, we investigate several variations of difficulty that still retain analytical tractability. Similarly
to Lawrence (1952); Baker & Osgood (1954), we consider curricula that are discrete—where difficulty assumes 2 or 3
values—and continuous—where there is a continuous increasing in difficulty. Finally, we consider two notions of difficulty
based on the centroids’ norm µ—similar to the idea of fading used in Pashler & Mozer (2013) where relevant features are
highlighted—and based on the level of noise in the input σ—as in Bengio et al. (2009); Saglietti et al. (2022). Overall,
despite the quantitative difference, we observe the same behaviour as in the analysis reported so far.

D. Additional details on the loss in the XOR models.
In the main content of the paper we showed that the XOR-like Gaussian Mixture model allows to exemplify a problem that
can occur in more complex architectures and tasks. In this section, we want to comment further on some of the peculiarities
of this model that however we do not believe share the same degree of universality.
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Figure 8. Loss and overparameterisation. The figure shows the loss gap as function of noise σ, for different level of overparametereistion
(in colours). As in Fig. 4, solid line represent the gain of curriculum versus no-fading while dotted is the gain of random.

In particular the actual loss of on the XGM is determined by two main factors: cluster coverage, norm of the layers. In our
main discussion we focused mostly on cluster coverage as this is a proxy for how well the network is reconstructing the rule.
However, measuring directly the loss can give results harder to interpret. In Fig. 8 we show an analogous version of Fig. 4b
measuring the gap in cross-entropy loss rather than generalisation error. While the overall message remains unchanged,
i.e. overparameterisation makes curricula ineffective, we can notice the presence of an additional bump and a dip for small
K. These are due to a destabilisation of fixed points that occur at different level of SNR for the different strategies.

In order to investigate this further we analysed how the different initialisation get destabilised by increasing the noise. This is
shown in Fig. 9, where on the first row we show the cluster coverage for the three strategies (respectively curriculum, random,
no-fading) at different value of noise. The following three rows show the fraction of initialisations that get destabilised by
increasing the noise by ∆σ = 0.15 and move from a given level of cluster coverage (row of the matrices) to another given
level (column of the matrices). Notice, that the pattern between random and no-fading (bottom two rows) is very consistent,
while curriculum (2nd row) appears to be delayed. This results in a larger stability of fixed points in the curriculum strategy
and consequently better performance.

Finally in Fig. 10, we compute and show the norm on the relevant manifold, quantity whose relevance was already discussed
in detail in the controlled setting of in Sec. 3. In most of cases, curriculum helps to uncover the relevant manifold and
improve performance. However this is not the case for K = 4 and σ = 0.4, resulting in the dip observed in Fig. 8.

E. Additional details on the real-data simulations.
In the Fashion MNIST experiment, we consider a multi-layer perceptron with L dense layers with intermediate widths
H –reported in Fig.5a with the label “width”. We train the network for 100 epochs, employing the Adam optimiser with
learning rate η = 0.001 and batchsize 200. In the curriculum protocol, we split the training into two stages –50 epochs
each– and drop the learning rate by a factor 1/3 between them. The same drop is also applied in the random order protocol,
except the dataset is not split in half according to difficulty in the two stages.

In the CIFAR10 experiment, we train a custom convolutional network with 5 blocks containing a layer of 3× 3 convolutions
–with padding and stride 1– and a layer of MaxPool each. Given a filter factor f –reported in Fig.5b with the label “filters”–
the number of channels in each layer are respectively: f in the first block, 2f in the second, 4f in the third, and 8f in the
fourth and fifth blocks. Before the output, we also add to the network two dense layers with an intermediate width of 4096.
We train the network with Adam, η = 0.0003, and batchsize 256. Notice that, in this experiment, the model is tested on
samples with an intermediate difficulty w = 2pixels, between hard (w = 6pixels) and easy (w = 1pixels): this is to ensure
that extracting information from the additional pixels of the centre of the image is partially useful also at test time –otherwise
learning on the correct width of the distracting frame would be optimal. Each learning stage has 50 epochs, but we employ
early stopping –terminating training when zero error is achieved– to avoid overfitting.

Notice that, to observe the reported phenomenology, one needs a setting where at least the following requirements are met:

15



Tilting the Odds at the Lottery

Figure 9. Fixed point destabilisation. The figure shows the cluster coverage at different values of the noise, σ ∈
{0.1, 0.25, 0.4, 0.55, 0.7, 0.85}, indicated by the columns. The first row shows the cluster coverage at given SNR, the following
rows instead show the fractions of simulation that move a given level of cluster coverage to another according to their strategy, curriculum,
random, no-fading, respectively.
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Figure 10. Norm on the relevant manifold at different values of the noise, columns σ ∈ {0.1, 0.25, 0.4, 0.55, 0.7, 0.85}, and degree of
overparameterisation, rows K ∈ {4, 16, 64}. The individual plots show the norm of the relevant component of each hidden unit (ordered
on the x-axis).
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Tilting the Odds at the Lottery

• Both easy and hard patterns should be informative for the considered test task.

• Training on a pure easy dataset should lead to a better performance on the test task than training on a pure hard dataset.

For the first requirement, note that if the hard component of the dataset is too noisy it can become detrimental to the network
and the curriculum phenomenology trivialises. The second requirement might seem trivial at first. However, given the strong
moment-matching capabilities of deep networks, it is possible to observe scenarios where training on samples with a noise
level matched with that of the test set could lead to a better performance than training on clean patterns. Both conditions
were checked to be verified in our two experiments.
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