
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ADDITIVE SEPARABLE GRAPHON MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The graphon function is fundamental to modeling exchangeable graphs, which
form the basis for a wide variety of networks. In this paper, we use the addi-
tive separable model as a parsimonious representation of the graphon, capable
of generating a low-rank connection probability matrix for network data. This
model effectively addresses the well-known identification challenges associated
with graphon functions. We develop an efficient estimation approach that lever-
ages subgraph counts to estimate the low-rank connection matrix and uses interpo-
lation to recover the graphon functions, achieving the minimax optimal estimation
rate. We provide the convergence rate of our method, and validate its computa-
tional efficiency and estimation accuracy through comprehensive simulation stud-
ies.

1 INTRODUCTION

With advancements in data collection and analysis techniques, the modeling of network data
has become increasingly prevalent. Examples of network data include brain networks (Maugis
et al., 2020), co-authorship networks (Isfandyari-Moghaddam et al., 2023), and biological networks
(Kamimoto et al., 2023), among others. A critical challenge in analyzing such data is understanding
the underlying generative mechanisms, which are essential for tasks like studying dynamic evo-
lution (Pensky, 2019), predicting links (Gao et al., 2016), and detecting communities (Jin et al.,
2021). One effective modeling framework is that of exchangeable graphs, which represent networks
as graphs where nodes correspond to objects and edges represent connections between them. The
concept of exchangeability implies that the joint distribution of edges remains invariant under any
permutation of the nodes. According to the Aldous-Hoover theorem, any exchangeable graph can
be characterized by a graph function, commonly known as a graphon. The study of graphons has
gained substantial attention in the literature due to their ability to tackle a wide array of challenges,
including explaining the asymptotic normality of subgraphs (Bickel et al., 2011) and conducting hy-
pothesis testing for the equivalence of two graphs (Maugis et al., 2020). Furthermore, the graphon
model encompasses several widely used models as special cases, such as the stochastic block model
(SBM) (Holland et al., 1983), the random dot product graph (RDPG) model (Young & Scheinerman,
2007), and the latent space model (Hoff et al., 2002).

The graphon is a symmetric, measurable bivariate function, which, without additional assumptions,
is not directly estimable from a single observed network. However, by leveraging its eigenvalue-
eigenfunction decomposition, we can impose a highly effective assumption: truncating the decom-
position to retain terms with leading eigenvalues, similar to principal component analysis. A key
benefit of this approach is that the resulting connection probability matrix P–the matrix formed
when the graphon function is evaluated at the nodes–naturally inherits the same low rank as the
truncated graphon.

Building on this insight, we propose the Additive Separable Graphon (ASG) models, which el-
egantly align the low-rank properties of both the graphon and the connection probability matrix.
To estimate this new low-rank network model, we have developed a highly efficient method that
harnesses well-established, scalable techniques for subgraph counting, enabling rapid and practical
implementation. The core idea is intuitive: a matrix of rank r can be decomposed into a sum of r
rank-1 matrices. By counting the number of O(r) subgraphs, we extract the information correspond-
ing to these r rank-1 matrices. Solving the associated system of equations allows us to estimate each
matrix individually. By combining these estimates, we reconstruct the final rank-r matrix, which
serves as our estimator for P . The graphon function f is then estimated by utilizing sorting and
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interpolation techniques based on these rank-1 matrix estimates. The graphon captures the limiting
behavior of a graphon model, and our method leverages the low-rank structure of the graphon for
estimation. Notably, our method is tuning parameter-free, as it does not require bandwidth or other
adjustments, and it performs consistently well across various settings. On the other hand, estimat-
ing the connection probability matrix is important in practice and has attracted increasing attention,
see for example, all of which focus on estimating the connection probability matrix rather than the
graphon itself. In contrast, our method can estimate the graphon function and connection probability
matrix simultaneously.

In the existing literature, graphon estimation methods can be broadly categorized into two groups:
those focused on estimating the graphon itself, and those targeting the connection probability matrix
P . For graphon estimation, Olhede & Wolfe (2014) approximate the graphon using blocks, treating
it as a two-dimensional step function. Their method, however, requires finding the argmax of a per-
mutation, and their implementation relies on a greedy search algorithm that can be computationally
slow (see Section 4 for more details). Chan & Airoldi (2014) refine this by reordering nodes based
on degree and applying total variation minimization, assuming the one-dimensional marginals of
the graphon are strictly monotone. However, this assumption is restrictive, as it excludes SBM. The
resulting P from either of these approaches is generally not low-rank.

On the other hand, methods focused on estimating P include Chatterjee (2015), who impose a low-
rank assumption on P and propose using Universal Singular-Value Thresholding (USVT), treat-
ing the adjacency matrix as a perturbed version of P . Zhang et al. (2017) apply neighborhood
smoothing to estimate P , achieving near-minimax optimality. Gao et al. (2016) propose a mini-
max optimal combinatorial least-squares estimator, which is also adopted by Wu et al. (2024+) for
non-exchangeable network. Despite these advances, due to identification issues, graphon functions
cannot be directly recovered from the connecting probability matrix produced by these methods.

The structure of this paper is organized as follows: Section 2 introduces our parsimonious low-
rank graphon model, termed the Additive Separable Graphon Model (ASG). Section 3 provides a
comprehensive description of the estimation procedures and algorithms for both r = 1 and r ≥ 2. In
Section 4, we present simulation studies that demonstrate the advantages of the proposed method in
terms of implementation speed and estimation accuracy. Section 5 offers a discussion and outlines
potential directions for future research. Finally, an analysis of time complexity, a real data example,
additional simulation results, an approach for selecting the rank r when it is unknown, the proofs of
the theoretical results, and the corresponding technical lemmas are provided in the appendix.

1.1 NOTATIONS

For a real number x, ⌊x⌋ denotes the greatest integer less than or equal to x. For two positive real
numbers a and b, we define a ∨ b = max(a, b) and a ∧ b = min(a, b). Let ∥A∥F represent the
Frobenius norm of a matrix A, and let Aij denote the element in the i-th row and j-th column.
For two sequences of positive real numbers an and bn, we write an = O(bn) or an ≲ bn if there
exist positive constants N and C such that an

bn
≤ C for all n > N . For two sequences of random

variables Xn and Yn, we write Xn = Op(Yn) if for any ε > 0, there is a constant Cε > 0 such that
supn P(|Xn| ≥ Cε|Yn|) < ε.

2 ADDITIVE SEPARABLE GRAPHON MODEL

We consider a random graph G = (V,E) using the graphon formulation. Specifically, for
i = 1, . . . , n, where n represents the size of the network, each node i is associated with an in-
dependent and identically distributed (i.i.d.) random variable Ui ∼ Uniform(0, 1). The edges Eij

are then independently drawn as Eij ∼ Bernoulli(f(Ui, Uj)) for i < j, where f(·, ·) is a symmetric,
measurable function f : [0, 1]2 → [0, 1] named the graphon. Additionally, we have Eii = 0 and
Eij = Eji for i > j. Although we focus on undirected graphs without self-loops, our methods
and theory can be readily extended to graphs with self-loops or directed graphs. Notably, many
large-scale real-world networks exhibit low-rank characteristics, such as memberships or commu-
nities. The SBM (Holland et al., 1983) and the RDPG (Young & Scheinerman, 2007) are popular
approaches for capturing unobserved heterogeneity in networks. For further discussion and real data
examples, we refer to Athreya et al. (2018); Thibeault et al. (2024); Fortunato (2010).
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To incorporate low-rank structure into graphon models, we propose a parsimonious model called the
additive separable graphon model with rank r (ASG(r)), defined as follows:

f(Ui, Uj) =

r∑
k=1

λkGk(Ui)Gk(Uj), (1)

where |λ1| ≥ |λ2| ≥ · · · ≥ |λr| > 0, Gk is a measurable function,
∫ 1

0
G2

k(u) du = 1 for
k = 1, . . . , r, and

∫ 1

0
Gk(u)Gl(u) du = 0 for k ̸= l. This can be viewed as a truncated eigen decom-

position of the graphon, as suggested by the Hilbert-Schmidt theorem; see, for example, Szegedy
(2011). Model (1) includes the aforementioned SBM and RDPG as special cases. For example, if
the Gk functions are step functions, model (1) reduces to an SBM with r blocks. Moreover, if all λk

values are positive, our model simplifies to a rank r RDPG. The introduction of low-rank structures
in graphons not only enhances the ability of existing graphon models to capture real-world low-rank
features of network data, but also offers computational advantages due to the additive separable
structure. In this paper, we propose a novel, computationally efficient, and theoretically justified
method to estimate the connection probabilities {f(Ui, Uj)}ni,j=1 and the full graphon function f .
It is important to note that due to identification issues, effective approaches for estimating general
graphon functions in polynomial time are rare in practice (Gao & Ma, 2021).

3 METHODOLOGY AND THEORY

Let pij = f(Ui, Uj) be the connection probability between the i-th and j-th nodes, with P = (pij)i,j
as the connection probability matrix. While we focus on estimating P and f for r = 1 in Section 3.1,
our method is readily extendable to cases where r ≥ 2, which we provide in Section 3.2 for more
detail.

3.1 ASG(1): ADDITIVE SEPARABLE GRAPHON WITH RANK-1

To clarify the motivation, we first consider the case where r = 1, i.e., f(Ui, Uj) =
λ1G1(Ui)G1(Uj). Assume, without loss of generality, that infu∈[0,1] G1(u) ≥ 0; otherwise, we
can replace G1(u) with |G1(u)|. Note that the degree of the i-th node, di =

∑
j Eij , satisfies

E(di | Ui)

n− 1
=

1

n− 1

∑
j ̸=i

∫ 1

0

f(Ui, Uj) dUj = λ1G1(Ui)

∫ 1

0

G1(u) du, (2)

which is proportional to G1(Ui). Moreover, by Lemma 2, we have

sup
i=1,...,n

|di − E(di | Ui)|
n− 1

= Op(
√
log(n)/n). (3)

Therefore, G1(Ui) can be estimated by di

n−1 , and consequently, pij can be estimated by didj

(n−1)2 ,
both up to a multiplicative factor. Finally, we align with the sparsity of the graph G to provide a
moment estimation of the multiplicative factor. We summarize the estimation procedure for pij in
Algorithm 1.

Algorithm 1 Estimation procedure for {pij}ni,j=1 for ASG(1).

Require: The graph G = (V,E).
1: For i = 1, . . . , n, let di =

∑
j:j ̸=i Eij .

2: Let c1 =
∑

i,j:i ̸=j Eij

/∑
i,j:i̸=j didj .

3: For any (i, j) pair, i ̸= j, let the estimator of pij be p̂ij = 1 ∧ (c1didj).
4: Let p̂ii = 0 for i = 1, . . . , n.
5: Output {p̂ij}ni,j=1.
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Algorithm 1 is very simple, utilizing the low-rank setting r = 1. The time complexity of Algorithm 1
is O(n2), which is efficient considering that there are O(n2) values of pij to be estimated. By
comparison, SVD-based methods (e.g., Xu (2018)) typically require a time complexity of O(n3).

Remark 1 (Comparison with power iteration method for estimating the connection probability ma-
trix). As an alternative method for computing the decomposition in our model, the power iteration
approach (Mises & Pollaczek-Geiringer, 1929; Stoer et al., 1980) can be utilized. In our simula-
tions, we compare it with our approach for estimating connection probability matrices. As shown in
Tables 2 and 5, both methods perform comparably in dense regimes. However, our method demon-
strates superior performance in the sparse regime, as evidenced in Table 3.

We now present the theoretical results for the estimates p̂ij .

Theorem 1. For ASG(1), assume that
∫ 1

0
G1(u) du > 0. Applying Algorithm 1 to obtain the esti-

mates p̂ij , we have supi,j |p̂ij − pij | = Op(
√

log(n)/n).

The assumption in Theorem 1 is mild and does not require the continuity of the function G1. This
flexibility allows our model to accommodate block structures, such as the SBM with a rank-1 con-
nection probability matrix. Furthermore, the estimated connection probability matrix P̂ = (p̂ij)i,j
retains a rank of 1, consistent with the rank of P . Additionally, the result supi,j |p̂ij − pij | =

Op(
√
log(n)/n) implies the convergence ∥P̂−P∥2F /n2 = Op(log(n)/n), a metric commonly used

in the literature, such as by Zhang et al. (2017) and Gao et al. (2015). Estimating the graphon func-
tion f(u, v) is generally challenging due to the identification issues caused by measure-preserving
transformations (Borgs et al., 2015; Diaconis & Janson, 2007; Olhede & Wolfe, 2014). Conse-
quently, many popular methods, including those in Gao et al. (2016) and Zhang et al. (2017), focus
on estimating the connection probability matrix, as we present in Theorem 1.

In the low-rank case with r = 1, we can mitigate the non-identifiability issue by defining a canonical,
monotonically non-decreasing graphon through rearrangement. Specifically, let

G†
1(u) = inf {t : µ(G1 ≤ t) ≥ u} ,

where µ(·) denotes the Lebesgue measure. As shown in Barbarino et al. (2022), the function G†
1(u)

is the monotone rearrangement of G1(u), making it monotonically non-decreasing, left-continuous,
and measure-preserving. Moreover, G†

1(u) is continuous if G1(u) is continuous. Consequently, we
can focus on the canonical graphon f†(u, v) := λ1G

†
1(u)G

†
1(v).

To estimate f†(u, v), we propose a degree sorting and interpolation method. Let σ(k) denote the
index i corresponding to the k-th smallest value in the sequence {di}ni=1, i.e., dσ(1) ≤ dσ(2) ≤ · · · ≤
dσ(n). Then, for any (u, v) ∈ [0, 1]2, we define

f̂†(u, v) := 1 ∧ (c1h(u)h(v)) ,

where

h(v) :=


dσ(1), if ⌊v(n+ 1)⌋ = 0,
dσ(⌊v(n+1)⌋) (⌊v(n+ 1)⌋+ 1− v(n+ 1))

+ dσ(⌊v(n+1)⌋+1) (v(n+ 1)− ⌊v(n+ 1)⌋) , if 1 ≤ ⌊v(n+ 1)⌋ < n,

dσ(n), if ⌊v(n+ 1)⌋ ≥ n.

serves as an estimator of the graphon f†(u, v). Intuitively, Uσ(i) is close to i/(n + 1), allowing us
to approximate the entire function using a piecewise linear approach. We then have the following
result.

Theorem 2. For ASG(1), assuming that G1(u) is Lipschitz continuous on the interval [0, 1], i.e.,
there exists a constant M > 0 such that for any u1, u2 ∈ [0, 1], |G1(u1)−G1(u2)| ≤ M |u1 − u2|.
Then,

sup
u,v∈[0,1]

|f̂†(u, v)− f†(u, v)| a.s.,L2−→ 0, and = Op(
√
log(n)/n).

The estimation rate coincides with Chan & Airoldi (2014).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2 ASG(R): ADDITIVE SEPARABLE GRAPHON WITH RANK-R

For ASG(r), the connection probability pij = f(Ui, Uj) is given by

pij =

r∑
k=1

λkGk(Ui)Gk(Uj),

where |λ1| ≥ |λ2| ≥ · · · ≥ |λr| > 0,
∫ 1

0
G2

k(u) du = 1 for 1 ≤ k ≤ r, and
∫ 1

0
Gi(u)Gj(u) du = 0

for 1 ≤ i ̸= j ≤ r. To estimate pij , the key idea is to leverage additional subgraph counts to
distinguish between the information derived from Gk, 1 ≤ k ≤ r. Since subgraph frequencies
represent moments of the graphon, as suggested by Bickel et al. (2011), our approach can be seen
as a form of moment estimation.

The study of subgraphs, often referred to as “motifs” in complex systems science, is not only theo-
retically significant (e.g., Maugis et al. (2020); Bravo-Hermsdorff et al. (2023); Ribeiro et al. (2021))
but also practically important (e.g., Milo et al. (2002); Dey et al. (2019); Yu et al. (2019)). For sim-
plicity, in the case of ASG(r), we use subgraphs consisting of lines and cycles, as their expectations
can be conveniently expressed using the graphon function. Moreover, selecting lines and cycles
allows us to approximate them using paths with repeated nodes, which leads to a variant algorithm
(Algorithm 3) that has the same time complexity as matrix multiplication (which is O(n2.373)).

Specifically, for i = 1, . . . , n, let

L
(1)
i =

∑
i1

Eii1 , L
(a)
i =

∑
i1,··· ,ia distinct ,ik ̸=i,1≤k≤a

Eii1

a∏
j=2

Eij−1ij for a ≥ 2,

C
(a)
i =

∑
i1,··· ,ia−1 distinct ,ik ̸=i,1≤k≤a−1

Eii1Eia−1i

a−1∏
j=2

Eij−1ij for a ≥ 3. (4)

In other words, L
(a)
i represents the count of simple paths of length a that have node i

as an endpoint, while C
(a)
i represents the count of cycles of length a with node i as a

point. By evaluating the expected counts of these subgraphs, we estimate the parameters
(λ1, · · · , λr,

∫ 1

0
G1(u) du, · · · ,

∫ 1

0
Gr(u) du) by solving for (λ̂1, · · · , λ̂r, y1, · · · , yr) in the follow-

ing system of equations:

yk ≥ 0, for 1 ≤ k ≤ r, |λ̂1| > · · · > |λ̂r|,
r∑

k=1

λ̂a
k =

1∏a−1
j=0 (n− j)

n∑
i=1

C
(a)
i for 3 ≤ a ≤ r + 2, (5)

r∑
k=1

λ̂a
ky

2
k =

1∏a
j=0(n− j)

n∑
i=1

L
(a)
i for 1 ≤ a ≤ r. (6)

As in (2), we express the conditional expectations as follows:

1∏a
j=1(n− j)

E(L(a)
i | Ui) =

r∑
k=1

λa
kGk(Ui)

∫ 1

0

Gk(u) du for 1 ≤ a ≤ r.

Then for every 1 ≤ i ≤ n, we define the point-wise statistics Ĝk(Ui), 1 ≤ k ≤ r, as the solution for
Gk(Ui), 1 ≤ k ≤ r, in the following system of equations:

1∏a
j=1(n− j)

L
(a)
i =

r∑
k=1

λ̂a
kykGk(Ui) for 1 ≤ a ≤ r. (7)

Additionally, we standardize Ĝk(Ui) as

G̃k(Ui) =
Ĝk(Ui)√∑n
i=1 Ĝ

2
k(Ui)/n

. (8)
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We remark that this standardization step typically enhances performance in finite samples, benefit-
ing both dense and sparse graphon settings. Then the estimated connection probabilities are then
given by p̂ij =

[
1 ∧

(
0 ∨ (

∑r
k=1 λ̂kG̃k(Ui)G̃k(Uj))

)]
. The estimation procedure is summarized

in Algorithm 2.

Algorithm 2 Estimation procedure for {pij}ni,j=1 for ASG(r).

Require: The graph G = (V,E).
1: For i = 1, . . . , n, compute L

(a)
i , 1 ≤ a ≤ r and C

(a)
i , 3 ≤ a ≤ r + 2 defined in (4).

2: Solve the system of equations in (6) to obtain (λ̂1, · · · , λ̂r, y1, · · · , yr).
3: For i = 1, 2, . . . , n, compute the estimators Ĝ1(Ui), · · · , Ĝr(Ui) from (7). Compute the standardized

estimators G̃1(Ui), · · · , G̃r(Ui) from (8).

4: For each pair (i, j), where i ̸= j, estimate pij as p̂ij =
[
1 ∧

(
0 ∨ (

∑r
k=1 λ̂kG̃k(Ui)G̃k(Uj))

)]
. Set

p̂ii = 0 for i = 1, . . . , n.
5: Output {p̂ij}ni,j=1.

Remark 2. In Section A.1, we introduce a modified version of Algorithm 2 that retains all theoretical
guarantees from Theorems 3 and 4 while achieving the time complexity of matrix multiplication,
specifically O(n2.373).
Remark 3 (Comparison with the spectral method for estimating the connection probability matrix).
Spectral methods, such as USVT (Chatterjee, 2015), also estimate the connection probability matrix
by computing eigenvalues and eigenvectors. However, our approach differs in several important
ways. First, our motivation is fundamentally different: our primary goal is to estimate the graphon
function itself, rather than simply the connection probability matrix. This distinction leads to a
different methodology. While spectral methods rely on matrix spectral decomposition, our approach
is based on subgraph counts, employing a moment-based technique that is a traditional and still
evolving tool in statistical network analysis. Second, our method achieves the minimax rate for the
mean squared error up to a logarithmic factor, without imposing smoothness assumptions on the
graphon. In contrast, spectral methods typically require assumptions such as piecewise constant
or Hölder-class smoothness of the graphon to derive convergence rates, as shown in Xu (2018).
Lastly, for sparse graphons, our method empirically outperforms USVT, as demonstrated in Table 3,
highlighting its advantage in handling networks with lower densities.

We impose the following mild conditions for the consistency of p̂ij .

Assumption 1. Assume that: (i) |λ1| > · · · > |λr| > 0,
∫ 1

0
G2

k(u)du = 1, for 1 ≤ k ≤ r, and∫ 1

0
Gi(u)Gj(u)du = 0 for 1 ≤ i ̸= j ≤ n, (ii)

∫ 1

0
Gk(u)du ̸= 0, for 1 ≤ k ≤ r, (iii) there exists a

constant K > 0 such that max1≤k≤r supu∈[0,1] |Gk(u)| ≤ K.

Assumption 1 (i) is a standard condition ensuring the identifiability of the functions Gk. Intuitively,
this condition is analogous to the restriction on eigengaps in the RDPG model (see, for example,
Lyzinski et al. (2014)). Condition (ii) guarantees that the system of equations (7) has a unique
solution, which is a similar requirement found in Bickel et al. (2011). Condition (iii) is mild and
is typically satisfied by most graphon functions. It is worth noting that we do not require Gk’s
to be piecewise smooth, which enhances the generality and applicability of our model in terms of
estimating the connection probability matrix. We present the theoretical result for p̂ij as follows.
Theorem 3. For ASG(r), under Assumption 1, when n is sufficiently large, there exists an open
set U ⊂ R2r containing the point (λ1, · · · , λr,

∫ 1

0
G1(u) du, · · · ,

∫ 1

0
Gr(u) du) such that, with

probability 1, the system of equations in (6) has a unique solution within this region. Moreover,
for λ̂k, 1 ≤ k ≤ r, p̂ij , we have max1≤k≤r |λ̂k − λk| = Op(n

−1/2), and supi,j |p̂ij − pij | =

Op(
√
log(n)/n).

Importantly, Theorem 3 implies that ∥P̂ − P∥2F /n2 = Op(log(n)/n), which matches the minimax
rate (up to a logarithmic factor) that can be derived by following the proof of Theorem 1.1 in Gao
et al. (2015). The estimation of graphon functions for ASG(r) presents more challenges than for
ASG(1) due to the additive structure. We consider the following assumptions for estimating the
graphon function of ASG(r):

6
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Assumption 2. Assume that: (i) At least one of Gk, 1 ≤ k ≤ r, is strictly monotonically increasing;
and (ii) All Gk, 1 ≤ k ≤ r, are Lipschitz continuous with Lipschitz constant M .

Assumption 2 serves as a technical condition that establishes an analogy to the “canonical form”
for graphon functions of ASG(r). In this context, we refer to the monotone graphon as the refer-
ence marginal graphon. Chan & Airoldi (2014) proposed an alternative identification condition for
graphon estimation, requiring the existence of a canonical form of the graphon that becomes strictly
monotone after integrating out one of its arguments. It is also important to note that Assumption 2 is
not necessary if the objective is to estimate the connection probability matrix rather than the entire
graphon function.

Under Assumption 2, we proceed without loss of generality by assuming G1 is the reference
marginal graphon. We first sort the estimated pairs (Ĝ1(Ui), Ĝ2(Ui), · · · , Ĝr(Ui)) according to
the first coordinate. Let γ be a one-to-one permutation such that

Ĝ1(Uγ(1)) ≤ Ĝ1(Uγ(2)) ≤ · · · ≤ Ĝ1(Uγ(n)).

After sorting, we denote the reordered pairs as (Ĝ1(Uγ(i)), Ĝ2(Uγ(i)), · · · , Ĝr(Uγ(i))). We then
define the function

h1(u) = Ĝ1(Uγ(1))I(u(n+ 1) < 1) + Ĝ1(Uγ(n))I(u(n+ 1) ≥ n)

+

n−1∑
k=1

(
(k + 1− u(n+ 1)) Ĝ1(Uγ(k)) + (u(n+ 1)− k) Ĝ1(Uγ(k+1))

)
I(⌊u(n+ 1)⌋ = k)

as an estimate of the function G1. For Gk, k ≥ 2,, recognizing that Gk is a function of G1, we
define:

hk(u) = Ĝk(Uγ(1))I(h1(u) < Ĝ1(Uγ(1))) + Ĝk(Uγ(n))I(h1(u) ≥ Ĝ1(Uγ(n)))

+

n−1∑
k=1

(
Ĝ1(Uγ(k+1))− h1(u)

Ĝ1(Uγ(k+1))− Ĝ1(Uγ(k))
Ĝk(Uγ(k)) +

h1(u)− Ĝ1(Uγ(k))

Ĝ1(Uγ(k+1))− Ĝ1(Uγ(k))
Ĝk(Uγ(k+1))

)
I(Ĝ1(Uγ(k)) ≤ h1(u) < Ĝ1(Uγ(k+1))).

Finally, we define

f̂(u, v) := 1 ∧ (0 ∨ (

r∑
k=1

λ̂khk(u)hk(v))) (9)

as an estimate of the graphon f(u, v).

Theorem 4 presents the theoretical result for this estimation. Since its proof follows directly from
the proof of Theorem 2, we omit the details.
Theorem 4. For ASG(r), under Assumptions 1 and 2, the estimated graphon given by (9) satisfies

sup
u,v∈[0,1]

|f̂(u, v)− f(u, v)| a.s.,L2−→ 0, and = Op(
√
log(n)/n).

The estimation rate coincides with Chan & Airoldi (2014).
Remark 4. When r is unknown, we can estimate it using a ratio-based method. Due to space
limitations, we provide the detailed description in Appendix A.4.

4 SIMULATIONS

In this section, we evaluate the effectiveness of our method through extensive simulation studies.
For estimating the connection probability matrix P , we employ three metrics for assessment:

• Mean squared error (MSE) given by ∥P̂ − P∥2F /n2 (averaged with standard deviation)
across 100 repetitions.

7
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• Maximum error defined as maxi̸=j |p̂ij − pij | (averaged with standard deviation) across
100 repetitions.

• Average time cost measured in seconds.

The mean squared error is a standard metric commonly utilized in the literature. Additionally, we
incorporate a stricter measure, namely the maximum error, to provide further insight into perfor-
mance. To mitigate the impact of random fluctuations, we average both the MSE and the maximum
error over 100 independent trials. For the estimation of the graphon function f(u, v), we present
visual representations of our estimated functions Gk, 1 ≤ k ≤ r in Figure 1 to illustrate their per-
formance. We generate networks from the seven graphons listed in Table 1, with the network size
set to n = 2000.

ID Graphon f(u, v) Rank of f(u, v)
1 0.15 1
2 1.5

(1+exp(−u2))(1+exp(−v2))
1

3 1
5

(
tan

(
π
2
u
)
+ 7

6

) (
tan

(
π
2
v
)
+ 7

6

)
1

4 0.95 exp(−3u) exp(−3v) + 0.04(3u2 − 5u+ 1)(3v2 − 5v + 1) 2
5 1

2
(sinu sin v + uv) 2

6 0.05 + 0.15I(u < 0.4, v < 0.4) + 0.25I(u > 0.4, v > 0.4) 2

7 0.1 + 0.75I(u, v < 1
3
) + 0.15I( 1

3
< u, v ≤ 2

3
)

+0.5I(u, v > 2
3
)

3

Table 1: List of Graphons. We estimate three rank-1 graphons using Algorithm 1, and four rank ≥ 2
graphons using Algorithm 2.

For comparison, we include the universal singular value thresholding (USVT) method (Chatterjee,
2015) and the sort-and-smooth (SAS) method (Chan & Airoldi, 2014). Both algorithms demonstrate
consistency and computational efficiency. Additionally, we compare our approach with the network
histogram method (Olhede & Wolfe, 2014), and the neighborhood smoothing method proposed by
Zhang et al. (2017). As discussed in Remark 1, we also include the power iteration method (Stoer
et al., 1980). To streamline the discussion, we denote the following acronyms for these methods:
N.S. for the method of Zhang et al. (2017), Nethist for Olhede & Wolfe (2014), USVT for Chatterjee
(2015), SAS for Chan & Airoldi (2014), and P.I. for power iteration method. For a fair comparison,
we additionally conducted simulations using the true r for USVT (i.e., retaining only the first r
eigenpairs) when r ≥ 2, which we denote as USVT(r). For the aforementioned methods, we
utilize the R functions provided by the respective authors with their default parameters. All results
presented in this section were generated on an Apple M1 machine equipped with 16GB of RAM,
running macOS Sonoma with R version 4.2.1.

Remark 5. In Algorithm 3, we employ L̃(a)
i and C̃

(a)
i as approximations for L(a)

i and C
(a)
i , enabling

efficient computation. Though their equivalence has been proven in Theorem 5, applying certain
corrections in practice can improve the finite-sample performance. Specifically, we let

Ľ
(3)
i = L̃

(3)
i − L̃

(2)
i − (L̃

(1)
i )2, Č

(4)
i = C̃

(4)
i − L̃

(2)
i − (L̃

(1)
i )2,

Č
(5)
i = C̃

(5)
i − 2(L̃

(1)
i − 2)C̃

(3)
i − 1

n

(
n∑

k=1

L̃
(1)
k

)
C̃

(3)
i − 2

n∑
k=1

EikC̃
(3)
k

and use Ľ
(3)
i , Č

(4)
i , Č

(5)
i to replace L̃

(3)
i , C̃

(4)
i , C̃

(5)
i respectively in Algorithm 3. In fact, we have

Ľ
(3)
i = L

(3)
i , Č

(4)
i = C

(4)
i , and Č

(5)
i is closer to C

(5)
i compared to C̃

(5)
i .

We present a comprehensive summary of the results for rank ≥ 2 settings in Tables 2, with additional
results for the rank 1 settings presented in the appendix. Our method exhibit good performance
across various settings for both MSE and maximum error, achieving the best performance in the first
and fourth settings. Additionally, our method demonstrates comparable speed to the SAS and P.I.,
while significantly outperforming all other methods in terms of computational efficiency.

Moreover, the accuracy of our method is generally on par with that of the USVT approach. Notably,
under certain regular conditions, the USVT method is nearly minimax optimal in some scenarios
regarding MSE, up to a logarithmic factor (see Theorems 2 and 4 in Xu (2018)). Therefore, it is

8
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ID Method
MSE

(×10−4)
Std. dev of

MSE (×10−6)
Max. error
(×10−2)

Std dev.of
max. error (×10−3)

Run time
(seconds)

4

Ours 1.826 6.172 12.898 12.559 0.627
N.S. 4.388 8.413 17.902 11.686 108.569

Nethist 3.928 16.982 18.649 15.296 22.829
USVT 7.617 17.079 13.637 13.036 10.064
SAS 18.641 90.264 97.064 24.053 1.422
P.I. 1.890 6.420 13.400 13.927 0.654

USVT(2) 1.898 6.462 13.408 13.906 10.064

5

Ours 1.774 6.204 9.676 7.804 1.507
N.S. 7.101 14.996 17.473 9.156 122.995

Nethist 7.729 31.838 18.559 15.486 23.804
USVT 1.769 6.078 9.661 7.871 13.684
SAS 28.703 115.215 89.861 49.103 1.104
P.I. 4.680 7.730 29.196 56.981 0.736

USVT(2) 5.140 9.234 31.701 38.934 13.684

6

Ours 2.582 7.017 9.319 7.808 0.682
N.S. 7.527 6.960 18.312 11.119 115.813

Nethist 9.548 244.015 22.573 107.570 19.441
USVT 2.383 6.082 10.052 8.343 11.169
SAS 18.456 16.344 95.000 0.000 1.500
P.I. 2.380 6.080 10.052 8.344 0.682

USVT(2) 2.383 6.082 10.052 8.343 11.169

7

Ours 3.768 9.091 12.721 12.233 1.316
N.S. 6.596 6.372 17.611 9.760 126.270

Nethist 41.224 1574.245 59.567 96.247 20.238
USVT 3.644 7.580 12.613 11.696 11.640
SAS 20.552 22.529 90.000 0.000 1.701
P.I. 3.640 7.580 12.613 11.696 1.005

USVT(3) 3.644 7.580 12.613 11.696 11.640

Table 2: Results for rank ≥ 2 graphons across 100 independent trials.

particularly encouraging that our method achieves accuracy comparable to USVT in practice while
maintaining much lower computational complexity.

Importantly, our method operates without any tuning parameters, enhancing its robustness across
various settings.

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

u

Graphon 3: G1(u)

0.0

0.5

1.0

1.5

2.0

2.5

0.00 0.25 0.50 0.75 1.00

u

Graphon 4: G1(u)

−1.0

−0.5

0.0

0.5

1.0

1.5

0.00 0.25 0.50 0.75 1.00

u

Graphon 4: G2(u)

Legend Estimated True

Figure 1: Estimation of graphons for the third and fourth settings.

To illustrate the accuracy of our graphon estimation, we applied the algorithms for estimating G1

and G2 as outlined at the end of Sections 3.1 and 3.2 to the third and fourth settings. The results
presented in Figure 1 demonstrate that the estimated G1 in the third setting aligns almost perfectly
with the theoretical values. Furthermore, both estimated functions G1 and G2 closely match their
theoretical counterparts, highlighting the effectiveness of our method. It is noteworthy that the
function G2 in the fourth setting is continuous but not monotonic.
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In the remainder of this section, we evaluate the performance of our method in estimating connection
probability matrices derived from sparse graphon models. Specifically, we consider the scenario
where Eij ∼ Bernoulli(ρnf(Ui, Uj)), with ρn → 0 indicating the degree of sparsity. We utilize
the functions f(x, y) from the previous 2nd, 3rd, 4th, and 5th settings, setting ρn = n−1/2. For
comparison, we include the same four methods as before, modifying the USVT method as suggested
by Xu (2018) to ensure its adaptability to sparse settings. The results are summarized in Tables 3,
which demonstrate that our method consistently outperforms the other five in terms of mean squared
error (MSE).

Intuitively, our method is well-suited for handling sparse scenarios, as evident from equation (7),
which incorporates the sparsity parameter ρn. We plan to explore further modifications of our pro-
posed algorithm specifically tailored for sparse conditions, along with the corresponding detailed
theoretical analysis, in future work.

ID Method
MSE

(×10−4)
Std. dev of

MSE (×10−6)
Max. error
(×10−2)

Std dev.of
max. error (×10−3)

2

Ours 0.115 0.401 2.560 3.367
N.S. 61.897 249.576 99.161 0.002

Nethist 0.391 1.536 2.112 2.926
USVT 0.352 2.524 1.790 0.017
SAS 0.946 5.704 99.16 0.013
P.I. 0.132 0.490 2.951 4.110

3

Ours 0.075 0.284 3.079 4.494
N.S. 40.084 119.792 99.968 0.093

Nethist 0.249 1.056 2.840 14.842
USVT 0.314 0.952 2.093 0.039
SAS 0.200 2.163 99.956 0.426
P.I. 0.099 0.445 4.255 6.704

4

Ours 0.043 0.398 3.840 8.423
N.S. 14.573 43.039 99.973 0.047

Nethist 0.111 0.642 2.485 12.126
USVT 0.102 0.648 2.202 0.075
SAS 0.078 0.945 89.227 253.955
P.I. 0.115 2.704 33.130 158.566

5

Ours 0.071 0.330 2.910 4.576
N.S. 34.490 115.091 99.993 0.039

Nethist 0.229 0.948 3.001 20.765
USVT 0.294 0.971 1.906 0.023
SAS 0.118 0.907 75.367 325.895
P.I. 0.170 4.392 21.174 101.657

Table 3: Results for sparse graphons characterized by ρn = n−1/2. Our method consistently per-
forms best in terms of MSE.

5 DISCUSSION

In this paper, we present an effective and efficient estimation method for the additive separable
graphon (ASG) model based on subgraph counts. We provide theoretical justifications for the meth-
ods applied to ASG(r) with fixed r, and evaluate their performance through simulation studies.

There are several promising directions for future research. In our simulations, we found that the per-
formance of our method in sparse graphons is competitive. Therefore, investigating the convergence
rate as well as optimality of our method in the context of sparse graphons would be a valuable next
step. Additionally, exploring the selection of “optimal” subgraphs offers another important research
avenue. Finally, it remains an open question whether our method can be extended to cases where r
diverges with n.
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A APPENDIX

A.1 A VARIANT ALGORITHM AND TIME COMPLEXITY

The primary computational complexity of Algorithm 2 arises from counting lines and cycles within
the graph. Notably, counting paths that allow repeated nodes is considerably simpler than counting
simple paths (where nodes cannot repeat), as the former can be achieved via matrix multiplication
with a complexity of O(n2.373), see for example, Williams (2012). Motivated by this observation,
we define paths that permit node repetition and propose a variant algorithm accordingly.

For i = 1, . . . , n, define the lines and cycles allowing repeated nodes as

L̃
(1)
i =

∑
i1

Eii1 , L̃
(a)
i =

∑
i1,··· ,ia

Eii1

a∏
j=2

Eij−1ij for a ≥ 2,

C̃
(a)
i =

∑
i1,··· ,ia−1

Eii1Eia−1i

a−1∏
j=2

Eij−1ij for a ≥ 3.

L̃
(a)
i , C̃

(a)
i can be computed efficiently. Specifically, let Ea denote the ath power of the adjacency

matrix E, then we have L̃
(a)
i =

∑
j ̸=i(E

a)ij , C̃
(a)
i = (Ea)ii. The variant algorithm (Algorithm 3)

uses L̃(a)
i , C̃

(a)
i instead of L(a)

i , C
(a)
i .

Algorithm 3 Fast estimation procedure for {pij}ni,j=1 for ASG(r).

Require: The graph G = (V,E).
1: For i = 1, . . . , n, let L̃(a)

i =
∑

j ̸=i(E
a)ij , 1 ≤ a ≤ r, C̃

(a)
i = (Ea)ii, 3 ≤ a ≤ r + 2.

2: Set L(a)
i = L̃

(a)
i , C

(a)
i = C̃

(a)
i .

3: Follow from Line 2 of Algorithm 2 to estimate {p̂ij}ni,j=1.
4: Output {p̂ij}ni,j=1.

Remark 6 (Time complexity of Algorithm 3). Since all L̃(a)
i and C̃

(a)
i for 1 ≤ i ≤ n and 1 ≤ a ≤ r

can be computed using matrix multiplication, which has a time complexity of O(n2.373), it directly
follows that the overall time complexity of Algorithm 3 is also O(n2.373).

To analyze the theoretical properties, we present a key lemma showing that L̃(a)
i and L

(a)
i (as well

as C̃
(a)
i and C

(a)
i ) are sufficiently close, such that their differences do not impact the results of

Theorem 3 and Theorem 4.
Lemma 1. For ASG(r), under the assumptions of Theorem 3, we have

max
1≤i≤n

max
1≤a≤r

∣∣∣∣∣ 1∏a
j=1(n− j)

(L̃
(a)
i − L

(a)
i )

∣∣∣∣∣ = op

(
1√
n

)
,

max
1≤i≤n

max
3≤a≤r+2

∣∣∣∣∣ 1∏a−1
j=1 (n− j)

(C̃
(a)
i − C

(a)
i )

∣∣∣∣∣ = op

(
1√
n

)
.

With Lemma 1 established, it follows straightforwardly that the following theorem holds.
Theorem 5. Theorem 3 and Theorem 4 remain valid when the fast estimation procedure described
in Algorithm 3 is applied.

A.2 A REAL DATA EXAMPLE

To demonstrate the effectiveness of our method, we applied it to a real data example of contacts in a
primary school. The data is collected by the SocioPatterns project1 with active RFID devices, which
generate a new data record every 20 seconds capturing information from the preceding 20 seconds.

1http://www.sociopatterns.org
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Figure 2: Estimated connection probability matrix for the real data example.

Specifically, on October 1st, 2009, from 8:40 to 17:18, contact data were collected for a total of 236
individuals, with a total of 60623 records. We use these data to construct a undirected simple graph
and use our method to estimate the underlining graphon structure. Specifically, let E denote the
contact matrix, i.e.,

Ekl =

{
1 individuals k and l contacted at least once,
0 otherwise,

Firstly, we select the rank r by our Algorithm 3 with the threshold τ = 0.2. The results, as shown
in Table 4, leads us to select r = 4.

Rank r λ̂1 λ̂2 λ̂3 λ̂4 λ̂5

2 0.264 0.159
3 0.266 0.146 0.0593
4 0.271 0.118 0.118 −0.0992
5 0.272 0.117 0.0813 −0.0423 −0.00721

Table 4: Estimated eigenvalues from Algorithm 3 with respect to different choice of rank r.

Subsequently, we estimated the connection probability matrix using Algorithm 2, and the resulting
heatmap is depicted in Figure 2. The smoothness of the heatmap is consistent with expectations for
real-world in-person interaction scenarios.

Assuming Assumption 2, we estimated the graphon function of the network, taking G1 as the ref-
erence marginal graphon. The estimated functions h1, · · · , h4 are plotted in Figure 3. Then for any
(u, v) ∈ [0, 1]2, the estimated value of graphon function f̂(u, v) can be obtained from equation 9.

A.3 RESULTS FOR RANK-1 SETTINGS

We present the results for rank-1 graphons in Table 5.

A.4 SELECTING R WHEN IT IS UNKNOWN

In this section, we propose a method for selecting r when it is unknown. Since r̂ approximates r

by Theorem 3, we can start estimating from r = 1 and incrementally increase r. When |λ̂k| is

14
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Estimated graphons for the real−world data

Figure 3: Estimated graphons for the real data example.

ID Method MSE
(×10−4)

Std. dev of
MSE (×10−6)

Max. error
(×10−2)

Std dev.of
max. error (×10−3)

Run time
(seconds)

1

Ours 1.275 3.871 5.817 4.955 0.121
N.S. 7.853 5.175 16.749 9.849 115.076

Nethist 4.237 8.330 5.980 11.474 16.705
USVT 1.282 3.863 5.837 4.994 13.587
SAS 19.120 16.865 85.000 0.000 1.273
P.I. 1.280 3.860 5.837 4.994 0.304

2

Ours 2.452 7.806 8.114 5.819 0.539
N.S. 12.033 9.750 17.617 8.275 115.757

Nethist 9.867 24.220 16.962 44.037 16.744
USVT 2.403 7.593 7.977 5.740 14.629
SAS 39.888 29.339 78.134 37.486 1.250
P.I. 2.400 7.590 7.977 5.740 0.274

3

Ours 1.973 6.794 10.163 8.537 0.259
N.S. 8.337 14.186 17.329 8.566 114.694

Nethist 7.942 27.962 17.094 10.368 20.288
USVT 1.919 6.530 9.395 7.146 13.758
SAS 26.987 77.248 94.849 20.701 1.241
P.I. 1.920 6.530 9.395 7.146 0.328

Table 5: Results for rank-1 graphons across 100 independent trials.
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significantly larger than 0, but |λ̂i|, i ≥ k + 1 are close to 0, we select r = k. The detailed selection
procedure is summarized in Algorithm 4.

Algorithm 4 Selection procedure for r.
Require: The graph G = (V,E), threshold τ .
1: For i = 1, . . . , n, compute C̃

(3)
i . Set k = 1.

2: For i = 1, . . . , n, compute C̃
(k+3)
i .

3: Solve the system of equations in (5) with 3 ≤ a ≤ k + 3 and r = k + 1 to obtain (λ̂1, · · · , λ̂k+1).

4: If
∣∣∣ λ̂k+1

λ̂k

∣∣∣ ≤ τ, choose r = k and output r.
5: Set k = k + 1 and go back to Line 2.
6: Output r.

We apply Algorithm 4 to select r for the third and sixth settings in Table 1, with τ = 0.2. The results
are summarized in Table 6. From the results, it can be observed that Algorithm 4 is effective in most
cases.

ID True r
Estimated r

1 2 3 ≥ 4
3 1 100 0 0 0
6 2 0 92 0 8

Table 6: Results for selection of r for the third and sixth settings across 100 independent trials.

A.5 PROOFS

Proof of Theorem 1. By (2) and (3), we have

sup
i

∣∣∣∣G1(Ui)−
1

c(n− 1)
di

∣∣∣∣ = Op(
√

log(n)/n) (10)

where c = λ1

∫ 1

0
G1(u)du.

By the property of U statistics (see for example, Theorem 4.2.1 in Korolyuk (2013)), we have
1

n(n− 1)

∑
i,j:i ̸=j

f(Ui, Uj) = Ef(Ui, Uj) +Op(n
−1/2). (11)

Moreover, note that

E


 1

n(n− 1)

∑
i,j:i ̸=j

Eij −
1

n(n− 1)

∑
i,j:i ̸=j

f(Ui, Uj)

2 ∣∣∣∣U1, · · · , Un

 (12)

≲
1

n4

∑
i1,i2,j1,j2

E
(
(Ei1j1 − f(Ui1 , Uj1))(Ei2j2 − f(Ui2 , Uj2)

∣∣∣∣U1, · · · , Un

)
(13)

≲
1

n4

∑
i1,i2

E
(
(Ei1j1 − f(Ui1 , Uj1))

2

∣∣∣∣U1, · · · , Un

)
= O

(
1

n2

)
, (14)

where the second inequality follows from the fact that the terms are nonzero only when i1 = i2, j1 =
j2, and the last equality is due to the boundedness of each term. By combining (11) and (12), we
have that

1

n(n− 1)

∑
i,j:i̸=j

Eij = λ1

(∫ 1

0

G1(u)du

)2

+Op(n
−1/2). (15)

Similarly,

1

n(n− 1)3

∑
i,j:i ̸=j

didj = λ2
1

(∫ 1

0

G1(u)du

)4

+Op(n
−1/2). (16)
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Combining (15) and (16), we obtain that

(n− 1)2
∑

i,j:i ̸=j Eij∑
i,j:i ̸=j didj

=
1

λ1

(∫ 1

0
G1(u)du

)2 +Op(n
−1/2).

Hence,

sup
i

∣∣∣∣∣G1(Ui)−

√∑
i,j:i ̸=j Eij∑
i,j:i ̸=j didj

di√
λ1

∣∣∣∣∣ (17)

≤ sup
i

∣∣∣∣G1(Ui)−
1

c(n− 1)
di

∣∣∣∣+ sup
i

∣∣∣∣∣
√ ∑

i,j:i ̸=j Eij∑
i,j:i ̸=j didj

di√
λ1

− 1

c(n− 1)
di

∣∣∣∣∣ (18)

≤ sup
i

∣∣∣∣G1(Ui)−
1

c(n− 1)
di

∣∣∣∣+
∣∣∣∣∣
√
(n− 1)2

∑
i,j:i ̸=j Eij∑
i,j:i ̸=j didj

1√
λ1

− 1

λ1

∫ 1

0
G1(u)du

∣∣∣∣∣ (19)

= Op(
√

log(n)/n). (20)

By the definition of graphon function, supu1,u2∈[0,1] λ1G1(u1)G1(u2) ≤ 1. As a result,
supu∈[0,1]

√
λ1G1(u) ≤ 1. Then for c1 =

∑
i,j:i ̸=j Eij/

∑
i,j:i̸=j didj , we have

sup
i,j

|p̂ij − pij | ≤ sup
i,j

|c1didj − λ1G1(Ui)G1(Uj)|

≤ sup
i,j

|
√
c1di −

√
λ1G1(Ui)|

√
c1dj + sup

i,j
|
√
c1dj −

√
λ1G1(Uj)|

√
λ1G1(Ui)

≤ sup
i,j

|
√
c1di −

√
λ1G1(Ui)||

√
c1dj −

√
λ1G1(Uj)|

+ 2 sup
i,j

|
√
c1dj −

√
λ1G1(Uj)|

√
λ1G1(Ui)

= Op(
√

log(n)/n).

Proof of theorem 2. It suffices to show that

sup
u∈[0,1]

∣∣∣∣∣G†
1(u)−

1

(n− 1)λ1

∫ 1

0
G1(v)dv

h(u)

∣∣∣∣∣ a.s.→ 0, (21)

sup
u∈[0,1]

∣∣∣∣∣G†
1(u)−

1

(n− 1)λ1

∫ 1

0
G1(v)dv

h(u)

∣∣∣∣∣ = Op(
√
log(n)/n), (22)

then the theorem holds following the similar proof of Theorem 1 via following from (10) to (17) to
replace (n − 1)λ1

∫ 1

0
G1(v)dv by

√∑
i,j:i̸=j Eij/(λ1

∑
i,j:i̸=j didj), and via modifying the argu-

ment on taking maximum over all Ui to taking supreme over all u ∈ [0, 1]. To show (21) and (22),
we consider the following two steps.

(Step 1.) In this step, we prove that

sup
u∈{1,2,··· ,n}

|h (u/(n+ 1)) /((n− 1)λ1

∫ 1

0

G1(v)dv)−G†
1(u/(n+ 1))| a.s.→ 0,

and

sup
u∈{1,2,··· ,n}

|h (u/(n+ 1)) /((n− 1)λ1

∫ 1

0

G1(v)dv)−G†
1(u/(n+ 1))| = Op(

√
log(n)/n).

Let U(1), · · · , U(n) denote the rearrangement of U1, · · · , Un
i.i.d.∼ Uniform(0, 1) such that U(1) ≤

· · · ≤ U(n). By Lemma 3, we have supi=1,··· ,n |U(i) − i/(n + 1)| a.s.→ 0. By Kawohl (2006)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

(chapter II.2), the rearrangement function G†
1 is Lipschitz continuous with constant M as long as

G1 is Lipschitz continuous with constant M . As a consequence,

sup
i=1,··· ,n

|G†
1(U(i))−G†

1(i/(n+ 1))| ≤ M sup
i=1,··· ,n

|U(i) − i/(n+ 1)| a.s.→ 0. (23)

Moreover, via using the proof of Lemma 1 in Chan & Airoldi (2014), supi=1,··· ,n |U(i)−i/(n+1)| =
Op(

√
log(n)/n), which also shows that

sup
i=1,··· ,n

|G†
1(U(i))−G†

1(i/(n+ 1))| = Op(
√
log(n)/n). (24)

By definition, for i = 1, · · · , n, h(i/(n+1)) = dσ(i). By (10) (more precisely, the similar argument
of (10) applied to G†), (23) and Lemma 4, we have that

sup
i∈{1,2,··· ,n}

∣∣∣∣∣h
(

i

n+ 1

)
1

(n− 1)λ1

∫ 1

0
G1(v)dv

−G†
1

(
i

n+ 1

)∣∣∣∣∣ a.s.→ 0.

Similarly, via (10), (24) and Lemma 4 we have

sup
i∈{1,2,··· ,n}

∣∣∣∣∣h
(

i

n+ 1

)
1

(n− 1)λ1

∫ 1

0
G1(v)dv

−G†
1

(
i

n+ 1

)∣∣∣∣∣ = Op(
√
log(n)/n)

(Step 2.) In this step, we prove (21). We note that

sup
u∈[0,1/(n+1)]

∣∣∣∣∣G†
1(u)−

1

(n− 1)λ1

∫ 1

0
G1(v)dv

h(u)

∣∣∣∣∣
≤

∣∣∣∣∣G†
1

(
1

n+ 1

)
− h(1/(n+ 1))

(n− 1)λ1

∫ 1

0
G1(v)dv

∣∣∣∣∣+ sup
u∈[0,1/(n+1)]

∣∣∣∣G†
1

(
1

n+ 1

)
−G†

1 (u)

∣∣∣∣
≤

∣∣∣∣∣G†
1

(
1

n+ 1

)
− h(1/(n+ 1))

(n− 1)λ1

∫ 1

0
G1(v)dv

∣∣∣∣∣+ M

n+ 1

a.s.→ 0, and = Op(
√
log(n)/n)

Similarly, we have

sup
u∈[n/(n+1),1]

∣∣∣∣∣G†
1(u)−

1

(n− 1)λ1

∫ 1

0
G1(v)dv

h(u)

∣∣∣∣∣ a.s.→ 0, and = Op(
√
log(n)/n).

For u ∈ (1/(n+ 1), n/(n+ 1)), let k = ⌊u(n+ 1)⌋, then∣∣∣∣∣G†
1(u)−

h(u)

(n− 1)λ1

∫ 1

0
G1(v)dv

∣∣∣∣∣ ≤ (k + 1− u(n+ 1))

∣∣∣∣∣G†
1(u)−

dσ(k)

(n− 1)λ1

∫ 1

0
G1(v)dv

∣∣∣∣∣
+ (u(n+ 1)− k)

∣∣∣∣∣G†
1(u)−

dσ(k+1)

(n− 1)λ1

∫ 1

0
G1(v)dv

∣∣∣∣∣ ≤ (k + 1− u(n+ 1))|G†
1(u)−G†

1(k/(n+ 1))|

+ (k + 1− u(n+ 1))

∣∣∣∣∣G†
1(k/(n+ 1))− h(k/(n+ 1))

(n− 1)λ1

∫ 1

0
G1(v)dv

∣∣∣∣∣
+ (u(n+ 1)− k)

∣∣∣∣∣G†
1((k + 1)/(n+ 1))− h((k + 1)/(n+ 1))

(n− 1)λ1

∫ 1

0
G1(v)dv

∣∣∣∣∣
+ (u(n+ 1)− k) |G†

1(u)−G†
1((k + 1)/(n+ 1))|

≤ M

n+ 1
+ sup

i∈{1,2,··· ,n}

∣∣∣∣∣h
(

i

n+ 1

)
1

(n− 1)λ1

∫ 1

0
G1(v)dv

−G†
1

(
i

n+ 1

)∣∣∣∣∣ .
Therefore, by the result from (Step 1),

sup
u∈[1/(n+1),n/(n+1)]

∣∣∣∣∣G†
1(u)−

1

(n− 1)λ1

∫ 1

0
G1(v)dv

h(u)

∣∣∣∣∣ a.s.→ 0, and = Op(
√

log(n)/n).

The proof is then complete.
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Proof of Theorem 3. Without loss of generality, we assume that
∫ 1

0
Gk(u)du ≥ 0, 1 ≤ k ≤ r,

because we can replace Gk by −Gk if
∫ 1

0
Gk(u)du ≤ 0.

For i = 1, · · · , n, recall that

L
(1)
i =

∑
i1

Aii1 ,

L
(a)
i =

∑
i1,··· ,ia distinct ,ik ̸=i,1≤k≤a

Eii1

a∏
j=2

Eij−1ij for a ≥ 2,

C
(a)
i =

∑
i1,··· ,ia−1 distinct ,ik ̸=i,1≤k≤a−1

Eii1Eia−1i

a−1∏
j=2

Eij−1ij for a ≥ 3.

Note that P(Eij = 1|Ui, Uj) =
∑r

k=1 λkGk(Ui)Gk(Uj) and
∫ 1

0
G2

i (u)du = 1 for 1 ≤ i ≤ r, we
then have

1∏a
j=1(n− j)

E(L(a)
i | Ui) =

r∑
k=1

λa
kGk(Ui)

∫ 1

0

Gk(u) du for 1 ≤ a ≤ r,

1∏a−1
j=1 (n− j)

E(C(a)
i | Ui) =

r∑
k=1

λa
kG

2
k(Ui) for 3 ≤ a ≤ r + 2. (25)

We show the theorem via two steps.

(Step 1.) We first prove that max1≤k≤r |λ̂k − λk| = Op(n
−1/2),max1≤k≤r

∣∣∣yk −
∫ 1

0
Gk(u)du

∣∣∣ =
Op(n

−1/2).

By (25), we have

1∏a
j=1(n− j)

E(L(a)
i ) =

r∑
k=1

λa
k

(∫ 1

0

Gk(u) du

)2

for 1 ≤ a ≤ r,

1∏a−1
j=1 (n− j)

E(C(a)
i ) =

r∑
k=1

λa
k for 3 ≤ a ≤ r + 2. (26)

Moreover, by implicit function theorem, the system of equations (26) in terms of

λk,
(∫ 1

0
Gk(u)du

)2
, 1 ≤ k ≤ r, has a unique solution if∣∣∣∣∣∣∣
λ2
1 λ2

2 · · · λ2
r

... · · · · · ·
...

λr+1
1 λr+1

2 · · · λr+1
r

∣∣∣∣∣∣∣ ̸= 0,

∣∣∣∣∣∣∣
λ1 λ2 · · · λr

... · · · · · ·
...

λr
1 λr

2 · · · λr
r

∣∣∣∣∣∣∣ ̸= 0, (27)

which is implied by λk > 0 for 1 ≤ k ≤ r, λi ̸= λj , i ̸= j, assumed in Assumption 1. By Lemma 5,
we have

1∏a
j=0(n− j)

n∑
i=1

(L
(a)
i − E(L(a)

i )) = Op(n
−1/2) for 1 ≤ a ≤ r,

1∏a−1
j=0 (n− j)

n∑
i=1

(C
(a)
i − E(C(a)

i )) = Op(n
−1/2) for 3 ≤ a ≤ r + 2.

Then by Lemma 6, we have
max
1≤k≤r

|λ̂k − λk| = Op(n
−1/2).

By Lemma 7, we have

max
1≤k≤r

∣∣∣∣yk −
∫ 1

0

Gk(u)du

∣∣∣∣ = Op(n
−1/2).
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We mention that there is no square root ambiguity since we assume
∫ 1

0
Gi(u)du ≥ 0, i = 1, 2.

(Step 2.) In this step, we prove that supi,j |p̂ij − pij | = Op(
√
log(n)/n). Recall

that (G1(Ui), · · · , Gr(Ui)) is estimated by solving the system of equations with respect to
(Ĝ1(Ui), · · · , Ĝr(Ui)):

1∏a
j=1(n− j)

L
(a)
i =

r∑
k=1

λ̂a
kykĜk(Ui) for 1 ≤ a ≤ r

with λ̂a
k, yk, 1 ≤ k ≤ r defined in (6). Note that for the above linear equation, we have

max
i

max
k

|Ĝk(Ui)−Gk(Ui)| = Op(
√
log(n)/n) (28)

as long as maxi maxa |L(a)
i − E(L(a)

i |Ui)|/
∏a

j=1(n − j) = Op(
√

log(n)/n), which is indeed
indicated by Lemma 8.

According to (8), we have for every 1 ≤ k ≤ r,

G̃k(Ui)− Ĝk(Ui) =
Ĝk(Ui)√∑n
i=1 Ĝ

2
k(Ui)/n

− Ĝk(Ui) = Ĝk(Ui)

 1√∑n
i=1 Ĝ

2
k(Ui)/n

− 1

 .

(29)

Since Ui’s are i.i.d., there is
∑n

i=1 Gk(Ui)
2/n− 1 = Op(n

−1/2). Hence we have
n∑

i=1

Ĝk(Ui)
2/n− 1 =

n∑
i=1

Ĝk(Ui)
2/n−

n∑
i=1

Gk(Ui)
2/n+

n∑
i=1

Gk(Ui)
2/n− 1 = Op(

√
log(n)/n),

which implies that
1√∑n

i=1 Ĝ
2
k(Ui)/n

− 1 = Op(
√
log(n)/n). (30)

By Assumption 1, Gk are all bounded by K. Combining equation (30), (29), (28) and noting that
r = O(1), we have

max
k

max
i

|G̃k(Ui)− Ĝk(Ui)| = Op(
√
log(n)/n).

Therefore

max
k

max
i

|G̃k(Ui)−Gk(Ui)| = Op(
√
log(n)/n).

As a result, in terms of the estimation of connection probabilities, we have

sup
i,j

|p̂ij − pij | = sup
i,j

|[1 ∧ (0 ∨ (

r∑
k=1

λ̂kG̃k(Ui)G̃k(Uj))]

− (

r∑
k=1

λkGk(Ui)Gk(Uj))| = Op(
√

log(n)/n).

Proof of Lemma 1. We only show that

max
1≤i≤n

max
1≤a≤r

∣∣∣∣∣ 1∏a
j=1(n− j)

(L̃
(a)
i − L

(a)
i )

∣∣∣∣∣ = op

(
1√
n

)
,

as the result for C̃(a)
i follows similarly.

By definition, we have

L̃
(a)
i − L

(a)
i =

∑
i1,··· ,ia∈M

Ei,i1

a∏
j=2

Eij−1,ij
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where M = {At least two of the values i, i1, · · · , ia are identical}. Then

1∏a
j=1(n− j)

|L̃(a)
i − L

(a)
i | ≤ 1∏a

j=1(n− j)

∑
i1,··· ,ia∈M

1 =
O(na−1)∏a
j=1(n− j)

.

As a result,

max
1≤i≤n

max
1≤a≤r

1∏a
j=1(n− j)

|L̃(a)
i − L

(a)
i | ≤ O(na−1)∏a

j=1(n− j)
= Op

(
1

n

)
.

A.6 TECHNICAL LEMMAS

Lemma 2. For ASG(2) model with f(u, v) = λ1G1(u)G1(v) + λ2G2(u)G2(v) with G1, G2

bounded by a constant M > 0, then we have

sup
i=1,··· ,n

|di − E(di|Ui)|
n− 1

= Op(
√
log(n)/n),

where di is the degree of ith node. Note that the model reduces to ASG(1) when we set λ2 = 0.

Proof. We first note that

sup
i=1··· ,n

∣∣∣∣∣∣ 1

n− 1

∑
j:j ̸=i

(λ1G1(Ui)G1(Uj) + λ2G2(Ui)G2(Uj))

−λ1G1(Ui)

∫ 1

0

G1(u)du− λ2G2(Ui)

∫ 1

0

G2(u)du

∣∣∣∣
≤ λ1M

∣∣∣∣∣∣ 1

n− 1

n∑
j=1

G1(Uj)−
∫ 1

0

G1(u)du

∣∣∣∣∣∣+ 1

n− 1
M


+ λ2M

∣∣∣∣∣∣ 1

n− 1

n∑
j=1

G1(Uj)−
∫ 1

0

G1(u)du

∣∣∣∣∣∣+ 1

n− 1
M

 = Op(n
−1/2),

where the last result follows from Slutsky’s Theorem. Then it suffices to show that

sup
i=1··· ,n

∣∣∣∣∣∣ 1

n− 1

∑
j:j ̸=i

(I (Uij ≤ λ1G1(Ui)G1(Uj) + λ2G2(Ui)G2(Uj)) (31)

−λ1G1(Ui)G1(Uj)− λ2G2(Ui)G2(Uj))| = Op(
√

log(n)/n), (32)

where Uij , i ≤ j are i.i.d. uniformly distributed random variables on [0, 1], and Uji = Uij for i > j.
Let

Zi =
1

n− 1

n∑
j=1

(I (Uij ≤ λ1G1(Ui)G1(Uj) + λ2G2(Ui)G2(Uj))

−λ1G1(Ui)G1(Uj)− λ2G2(Ui)G2(Uj)) .

By Hoeffding’s inequality in Theorem 2.6.2 of Vershynin (2018), we have for any t > 0,
P (

√
n|Zi| > t|U1, · · · , Un) ≤ 2 exp(−ct2) where c > 0 is an absolute constant. Then

P (
√
n|Zi| > t) = E (P (

√
n|Zi| > t|U1, · · · , Un)) ≤ 2 exp(−ct2). As a result,

√
nZi are sub-

gaussian random variables. Then we have Emaxi=1··· ,n |Zi| = O(
√

log(n)/
√
n), which indicates

that maxi=1··· ,n |Zi| = Op(
√
log(n)/n).

Lemma 3. Suppose that Ui
i.i.d.∼ Uniform(0, 1), i = 1, · · · , n. Let U(i) denote the i-th smallest

value among U1, · · · , Un, i.e., U(1) ≤ U(2) ≤ · · · ≤ U(n). Then

sup
i

∣∣∣∣U(i) −
i

n+ 1

∣∣∣∣ a.s.→ 0.
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Proof. It is obvious that U(i) ∼ Beta(i, n − i + 1) with a probability density function p(x) =

xi−1(1−x)n−1/
∫ 1

0
xi−1(1−x)n−1dx. Then we derive that for any ε > 0, by Markov’s inequality,

P
(∣∣∣∣U(i) −

i

n+ 1

∣∣∣∣ ≥ ε

)
≤ 1

ε6
E
∣∣∣∣U(i) −

i

n+ 1

∣∣∣∣6
=

1

ε6
5i(n− i+ 1)A

(n+ 1)6(n+ 2)(n+ 3)(n+ 4)(n+ 5)(n+ 6)

≤ 1

ε6
5n2A

(n+ 1)11

where A = 24(n−i+1)4+2i(n−i+1)3(13n−13i+1)+i2(n−i+1)2(24−8(n−i+1)+3(n−
i+1)2)+2i3(n− i+1)2(3(n− i+1)2−4(n− i+1)−12)+ i4(24+26(n− i+1)+3(n− i+1)2).
Note that A ≤ 12n6 + 36n5 + 24n4 ≤ 72n6. Then we have

∞∑
n=1

P
(
sup
i

∣∣∣∣U(i) −
i

n+ 1

∣∣∣∣ ≥ ε

)
≤

∞∑
n=1

n∑
i=1

P
(∣∣∣∣U(i) −

i

n+ 1

∣∣∣∣ ≥ ε

)

≤ 1

ε6

∞∑
n=1

n∑
i=1

360n8

(n+ 1)11

≤ 360

ε6

∞∑
n=1

1

n2
< ∞.

Therefore, by the Borel-Cantelli lemma, the result follows.

Lemma 4. Let G(u), u ∈ [0, 1] be a monotonically non-decreasing, Lipschitz continuous function
with Lipschitz constant L > 0. Let ai := G(i/(n + 1)), i = 1, · · · , n. Suppose that there exists
a sequence of random variables b1, · · · , bn such that supi=1,··· ,n |bi − ai|

a.s.→ 0. Let α be a one-
to-one permutation such that bα(1) ≤ bα(2) ≤ · · · ≤ bα(n). Let âi := bα(i). Then we have
supi |âi − ai|

a.s.→ 0. Moreover, if supi=1,··· ,n |bi − ai| = Op(gn) then supi |âi − ai| = Op(gn) for
some gn = o(1), ngn → ∞.

Proof. Let Mn = supi=1,··· ,n |bi − ai|, then Mn
a.s.→ 0. Assume without loss of generality that

1/n = oa.s.(Mn). Let Kn be a non-negative random variable such that Kn
a.s.→ 0, 3Mn ≤ Kn ≤

4Mn, 1/n = oa.s.(Kn). For any i = 1, · · · , n, we have

|âi − ai| = |bα(i) − ai| ≤ |aα(i) − ai|+Mn.

First, consider the case where α(i) ≥ i. Assume, for the sake of contradiction, that aα(i)−ai > Kn.
Then for j = 1, 2, · · · , i+ 1, we derive that

bα(i) ≥ aα(i) −Mn > aj −
L

n+ 1
+Kn −Mn ≥ bj −

L

n+ 1
+Kn − 2Mn,

where for the second inequality we use the monotonicity. By the construction of Kn, with probabil-
ity 1, when n is sufficiently large, we have bα(i) > bj , j = 1, 2, · · · , i + 1. This implies that there
are at least i+ 1 values that are smaller than bα(i), which contradicts the definition of α. Therefore,
aα(i) − ai ≤ Kn.

Similarly, for the case where α(i) ≤ i, we have that aα(i) − ai ≥ −Kn.

Then we conclude that

sup
i

|âi − ai| = Oa.s.(Kn) +Mn
a.s.→ 0.

The statement of Op follows the exact same argument.
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Lemma 5. Under the assumptions of Theorem 3, we have

1∏a
j=0(n− j)

n∑
i=1

(L
(a)
i − E(L(a)

i )) = Op(n
−1/2) for 1 ≤ a ≤ r,

1∏a−1
j=0 (n− j)

n∑
i=1

(C
(a)
i − E(C(a)

i )) = Op(n
−1/2) for 3 ≤ a ≤ r + 2,

where L
(a)
i , C

(a)
i are defined in Section 3.2.

Proof. We only show that

1∏a
j=0(n− j)

n∑
i=1

(L
(a)
i − E(L(a)

i )) = Op(n
−1/2) for 1 ≤ a ≤ r,

as the results for C(a)
i follows similarly.

Note that E(Eij |Ui, Uj) = f(Ui, Uj), and that Eij is conditional independent of Ei1,j1 when
(i, j) ̸= (i1, j1). Then we derive that

1(∏a
j=0(n− j)

)2E
( n∑

i=1

L
(a)
i −

n∑
i=1

E(L(a)
i |U1, · · · , Un)

)2

|U1, · · · , Un


≲

1

n2a+2

∑
i,i1,··· ,ia,k,k1,··· ,ka

E

Eii1

a∏
j=2

Eij−1ij − f(Ui, Ui1)

a∏
j=2

f(Uij−1
, Uij )


Ekk1

a∏
j=2

Ekj−1kj
− f(Uk, Uk1

)

a∏
j=2

f(Ukj−1
, Ukj

)

∣∣∣∣U1, · · · , Un


≲

n2a

n2a+2
=

1

n2
.

Since
∑n

i=1 L
(a)
i ≤

∏a
j=0(n− j), we have

1∏a
j=0(n− j)

n∑
i=1

(L
(a)
i − E(L(a)

i |U1, · · · , Un)) = Op

(
1

n

)
. (33)

Moreover, by the property of U-statistics (see for example, Theorem 4.2.1 in Korolyuk (2013)), we
have∑

i,i1,··· ,ia f(Ui, Ui1)
∏a

j=2 f(Uij−1
, Uij )∏a

j=0(n− j)
=

E
∑

i,i1,··· ,ia f(Ui, Ui1)
∏a

j=2 f(Uij−1
, Uij )∏a

j=0(n− j)
+Op(n

−1/2).

(34)

Note that
n∑

i=1

E(L(a)
i |U1, · · · , Un) =

∑
i,i1,··· ,ia

f(Ui, Ui1)

a∏
j=2

f(Uij−1 , Uij ).

Then the result follows by combining (34) with (33).

Lemma 6. Suppose that x1, . . . , xr are r real numbers that satisfies |x1| > |x2| > · · · > |xr| > 0.
Let ϵ3,n, . . . , ϵr+2,n be r random variables satisfying maxi |ϵi,n| = Op(n

−1/2). Then the solution
(x̃1, . . . , x̃r) for the following system of equations:

r∑
k=1

x̃a
k =

r∑
k=1

xa
k + ϵa,n for 3 ≤ a ≤ r + 2 (35)

satifies
max

i
|x̃i − xi| = Op(1/

√
n).
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Proof. Let ∆i = x̃i−xi, 1 ≤ i ≤ r. By implicit function theorem, the system of equations (35) has
one unique solution with probability tending to 1. Moreover, by the continuous mapping theorem,
we have ∆i = op(1). By the definition of ϵi,n, for any ε > 0, there exists a finite M and a finite N
such that

P(max
i

|
√
nϵi| > M) < ε,∀n > N.

Therefore, it suffices to show that

P(max
i

|∆i| ≤ Cmax
i

|ϵi,n|) → 1 (36)

for some constant C > 0. Note that
r∑

k=1

x̃a
k −

r∑
k=1

xa
k =

r∑
k=1

(xk +∆k)
a −

r∑
k=1

xa
k =

r∑
k=1

axa−1
k ∆k +Op(max

k
∆2

k).

We then calculate that
r∑

k=1

axa−1
k ∆k = ϵ̃a,n for 3 ≤ a ≤ r + 2

where ϵ̃a,n = δa + ϵa,n, δa = Op(maxi ∆
2
i ). For the above linear system of equations, by our

assumption on xi (similar to the arguments in (27)), it has one unique solution with the form

∆i =

r+2∑
j=3

ai,j ϵ̃j,n (37)

where ai,j are constants depend on x1, . . . , xr only. By combining (37) and the fact that maxa |δa| =
Op(maxi ∆

2
i ),∆i = op(1), we conclude that (36) follows.

Lemma 7. Suppose that x1, . . . , xr are r real numbers that satisfies |x1| > |x2| > · · · > |xr| > 0,
x̃1, . . . , x̃r are r random variables that satisfies maxi |x̃i − xi| = Op(1/

√
n). Let y1, . . . , yr be r

non-zero real numbers, ϵ1,n, . . . , ϵr,n be r random variables satisfying maxi |ϵi,n| = Op(n
−1/2).

Then the solution (ỹ1, · · · , ỹr) for the following system of equations with respect to (y1, · · · , yr):

ya ≥ 0,

r∑
k=1

x̃a
kỹ

2
k =

r∑
k=1

xa
ky

2
k + ϵa,n for 1 ≤ a ≤ r (38)

satifies
max

i
|ỹi − yi| = Op(1/

√
n).

Proof. Note that
x̃a
kỹ

2
k − xa

ky
2
k = (x̃a

k − xa
k)y

2
k + x̃a

k(ỹ
2
k − y2k).

Since maxi |x̃i − xi| = Op(1/
√
n), we have maxi |x̃a

i − xa
i | = Op(1/

√
n). Then (38) reduces to

ya ≥ 0,

r∑
k=1

x̃a
k(ỹ

2
k − y2k) = ϵ̃a,n for 1 ≤ a ≤ r

where maxa |ϵ̃a,n| = Op(n
−1/2). Moreover, since maxk |x̃a

k| = Op(1), by noticing that the above
system of equations is a linear system with respect to ỹ2k − y2k, 1 ≤ k ≤ r, and that r = O(1),
we have maxk |ỹ2k − y2k| = Op(n

−1/2). Finally, recalling that y1, · · · , yr are non-zero, we have
maxk |ỹk − yk| = Op(n

−1/2).

Lemma 8. Under the assumptions of Theorem 3, we have

max
1≤i≤n

max
1≤a≤r

|L(a)
i − E(L(a)

i |Ui)|/
a∏

j=1

(n− j) = Op(
√
log(n)/n)

where

L
(1)
i =

∑
i1

Eii1 , L
(a)
i =

∑
i1,··· ,ia distinct ,ik ̸=i,1≤k≤a

Eii1

a∏
j=2

Eij−1ij for a ≥ 2.
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Proof. We divide the proof into two steps. In Step 1, we show that

1∏a
j=1(n− j)

max
i

|L(a)
i − Si,0| = Op(

√
log(n)/n)

where

Si,0 =
∑

i1,··· ,ia distinct ,ik ̸=i,1≤k≤a

f(Ui, Ui1)

a∏
j=2

f(Uij−1
, Uij ).

In Step 2, we show that

1∏a
j=1(n− j)

max
i

|Si,0 − Ti,1| = Op(n
−1/2)

where

Ti,1 = E

 ∑
i1,··· ,ia distinct ,ik ̸=i,1≤k≤a

f(Ui, Ui1)

a∏
j=2

f(Uij−1
, Uij )

∣∣∣∣Ui

 = E(L(a)
i |Ui).

Then the proof is complete by combining the above two equations and noticing that r is bounded.

Step 1. Let

Si,a−1 =
∑

i1,··· ,ia distinct ,ik ̸=i,1≤k≤a

Eii1

a−1∏
j=2

Eij−1ijf(Uia−1 , Uia).

Then

1∏a
j=1(n− j)

(L
(a)
i − Si,a−1) =

1∏a
j=1(n− j)

∑
i1,··· ,ia distinct ,ik ̸=i,1≤k≤a

Eii1

a−1∏
j=2

Eij−1ij (Eia−1ia − f(Uia−1 , Uia)).

(39)

Notice that Eia−1ia = I(Uia−1,ia ≤ f(Uia−1 , Uia)) is binary, Uia−1,ia ∼ Uniform(0, 1) indepen-
dently, and that Uij is independent of Uk for any i, j, k. By Hoeffding’s inequality in Theorem 2.6.2
of Vershynin (2018), we have for any t > 0,

P

 1√
n− a

∣∣∣∣∣∣
∑

ia ̸=i,i1,··· ,ia−1

(Eia−1ia − f(Uia−1
, Uia))

∣∣∣∣∣∣ ≥ t

∣∣∣∣U1, · · · , Un

 ≤ 2 exp(−ct2)

where c > 0 is an absolute constant. Then

P

 1√
n− a

∣∣∣∣∣∣
∑

ia ̸=i,i1,··· ,ia−1

(Eia−1ia − f(Uia−1
, Uia))

∣∣∣∣∣∣ ≥ t


= E

P

 1√
n− a

∣∣∣∣∣∣
∑

ia ̸=i,i1,··· ,ia−1

(Eia−1ia − f(Uia−1
, Uia))

∣∣∣∣∣∣ ≥ t

∣∣∣∣U1, · · · , Un

 ≤ 2 exp(−ct2).

As a result, 1√
n−a

∣∣∣∑ia ̸=i,i1,··· ,ia−1
(Eia−1ia − f(Uia−1 , Uia))

∣∣∣ are sub-gaussian random variables,

and we have Emaxia−1

∣∣∣∑ia ̸=i,i1,··· ,ia−1
Eia−1ia − f(Uia−1

, Uia)
∣∣∣ /(n−a) = O(

√
log(n)/n). By

recalling (39) and the fact that Eij’s are binary, we have

1∏a
j=1(n− j)

Emax
i

|L(a)
i − Si,a−1| = O(

√
log(n)/n).

Similarly, let

Si,a−2 =
∑

i1,··· ,ia distinct ,ik ̸=i,1≤k≤a

Eii1

a−2∏
j=2

Eij−1ijf(Uia−2
, Uia−1

)f(Uia−1
, Uia).
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Then
1∏a

j=1(n− j)
(Si,a−1 − Si,a−2) =

1∏a
j=1(n− j)

∑
i1,··· ,ia distinct ,ik ̸=i,1≤k≤a

Eii1×

a−2∏
j=2

Eij−1ij (Eia−2ia−1 − f(Uia−2 , Uia−1))f(Uia−1 , Uia)

=
1∏a−1

j=1 (n− j)

∑
i1,··· ,ia−1 distinct ,ik ̸=i,1≤k≤a−1

Eii1×

a−2∏
j=2

Eij−1ij (Eia−2ia−1
− f(Uia−2

, Uia−1
))

1

n− a

∑
ia

f(Uia−1
, Uia).

(40)

By Hoeffding’s inequality and noticing that the terms (Eia−2ia−1
−

f(Uia−2
, Uia−1

)) 1
n−a

∑
ia
f(Uia−1

, Uia) are bounded, we have for any t > 0,

P

 1√
n− a+ 1

∣∣∣∣∣∣
∑
ia−1

(Eia−2ia−1
− f(Uia−2

, Uia−1
))

1

n− a

∑
ia

f(Uia−1
, Uia)

∣∣∣∣∣∣ ≥ t

∣∣∣∣U1, · · · , Un

 ≤ 2 exp(−c′t2)

where c′ > 0 is an absolute constant. Then

1√
n− a+ 1

∣∣∣∣∣∣
∑

ia−1:ia−1 ̸=i,i1,··· ,ia−2

(Eia−2ia−1 − f(Uia−2 , Uia−1))
1

n− a

∑
ia:ia−1 ̸=i,i1,··· ,ia−1

f(Uia−1 , Uia)

∣∣∣∣∣∣
for any i, i1, · · · , ia−2, are sub-gaussian random variables, and

E max
i,i1,··· ,ia−2

1√
n− a+ 1

∣∣∣∣∣∣
∑

ia−1:ia−1 ̸=i,i1,··· ,ia−2

(Eia−2ia−1
− f(Uia−2

, Uia−1
))×

1

n− a

∑
ia:ia−1 ̸=i,i1,··· ,ia−1

f(Uia−1 , Uia)

∣∣∣∣∣∣ = O(
√

log(n)).

By recalling (40) and the fact that Eij’s are binary,, a = O(1), we have

1∏a
j=1(n− j)

Emax
i

|Si,a−1 − Si,a−2| = O(
√
log(n)/n).

Similar arguments can be perfomed for Si,a−3, · · · , Si,1, Si,0 (we define i0 = i). Since a ≤ r is
bounded, by combining all the results, we have

1∏a
j=1(n− j)

Emax
i

|L(a)
i − Si,0| = O(

√
log(n)/n) (41)

where

Si,0 =
∑

i1,··· ,ia distinct ,ik ̸=i,1≤k≤a

f(Ui, Ui1)

a∏
j=2

f(Uij−1
, Uij ).

Then
1∏a

j=1(n− j)
max

i
|L(a)

i − Si,0| = Op(
√
log(n)/n).

Step 2. Let

Ti,a−1 =
∑

i1,··· ,ia distinct ,ik ̸=i,1≤k≤a

f(Ui, Ui1)

a−1∏
j=2

f(Uij−1
, Uij )E(f(Uia−1

, Uia)|Uia−1
).
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Then

max
i

1∏a
j=1(n− j)

|Si,0 − Ti,a−1|

= max
i

1∏a
j=1(n− j)

∣∣∣∣∣∣
∑

i1,··· ,ia distinct ,ik ̸=i,1≤k≤a

f(Ui, Ui1)

a−1∏
j=2

f(Uij−1
, Uij )(f(Uia−1

, Uia)− E(f(Uia−1
, Uia)|Uia−1

))

∣∣∣∣∣∣
= max

i

1∏a−1
j=1 (n− j)

∣∣∣∣∣∣
∑

i1,··· ,ia−1 distinct ,ik ̸=i,1≤k≤a−1

f(Ui, Ui1)

a−1∏
j=2

f(Uij−1
, Uij )

1

n− a

∑
ia

r∑
k=1

λkGk(Uia−1
)[Gk(Uia)−

∫ 1

0

Gk(u)du]

∣∣∣∣∣
≤ 1

n− a

r∑
k=1

∣∣∣∣∣λkM
∑
ia

[Gk(Uia)−
∫ 1

0

Gk(u)du]

∣∣∣∣∣ = Op(n
−1/2),

where we use the fact that f(x, y) are bounded by 1, Gk are bounded by M , and that Ui are i.i.d.
random variables.

Similarly, let

Ti,a−2 =
∑

i1,··· ,ia distinct ,ik ̸=i,1≤k≤a

f(Ui, Ui1)

a−2∏
j=2

f(Uij−1 , Uij )E(f(Uia−2 , Uia−1)f(Uia−1 , Uia)|Uia−2).

Then

max
i

1∏a
j=1(n− j)

|Ti,a−1 − Ti,a−2|

= max
i

1∏a
j=1(n− j)

∣∣∣∣∣∣
∑

i1,··· ,ia distinct ,ik ̸=i,1≤k≤a

f(Ui, Ui1)

a−2∏
j=2

f(Uij−1
, Uij )

(f(Uia−2 , Uia−1)E(f(Uia−1 , Uia)|Uia−1)− E(f(Uia−2 , Uia−1)f(Uia−1 , Uia)|Uia−2))
∣∣

≲
1

n

∣∣∣∣∣∣
∑
ia−1

r∑
k1=1

r∑
k2=1

λk1
λk2

Gk1
(Uia−1

)Gk2
(Uia−1

)

∫ 1

0

Gk2
(u)du−

∑
ia−1

r∑
k=1

λ2
k

∫ 1

0

Gk(u)du

∣∣∣∣∣∣
≲

1

n

r∑
k=1

∣∣∣∣∣∣
∑
ia−1

(G2
k(Uia−1

)− 1)

∣∣∣∣∣∣+ 1

n

∑
k1 ̸=k2

∣∣∣∣∣∣
∑
ia−1

Gk1
(Uia−1

)Gk2
(Uia−1

)

∣∣∣∣∣∣+O

(
1

n

)
= Op(n

−1/2),

where we use the fact that f(x, y) are bounded by 1, Gk are bounded by M , r is bounded,∫ 1

0
G2

k(u)du = 1,
∫ 1

0
Gi(u)Gj(u)du = 0 for i ̸= j, and that Ui are i.i.d. random variables.

Similar arguments can be perfomed for Ti,a−3, · · · , Ti,1. Since a ≤ r is bounded, by combining all
the results, we have

1∏a
j=1(n− j)

max
i

|Si,0 − Ti,1| = Op(n
−1/2) (42)

where

Ti,1 = E

 ∑
i1,··· ,ia distinct ,ik ̸=i,1≤k≤a

f(Ui, Ui1)

a∏
j=2

f(Uij−1 , Uij )

∣∣∣∣Ui

 .

Then the proof is complete by combining the results from (41), (42), and noticing that r is bounded.
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