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Fig. 1: One Policy, Two Worlds, Many Robots. We study embodiment scaling laws by training a single policy on ∼1,000
procedurally generated “blueprint” embodiments in simulation. Our policy zero-shot transfers to real-world embodiments,
including modified joint constraints (circled in red).

Abstract—Developing generalist agents that can operate across
diverse tasks, environments, and robot embodiments is a grand
challenge in robotics and artificial intelligence. In this work, we
focus on the axis of embodiment and investigate embodiment
scaling laws—the hypothesis that increasing the number of
training embodiments improves generalization to unseen ones.
Using robot locomotion as a test bed, we procedurally generate
a dataset of ∼1,000 varied embodiments, spanning humanoids,
quadrupeds, and hexapods, and train generalist policies capable
of handling diverse observation and action spaces on random sub-
sets. We find that increasing the number of training embodiments
improves generalization to unseen ones, and scaling embodiments
is more effective in enabling embodiment-level generalization
than scaling data on small, fixed sets of embodiments. Notably,

our best policy, trained on the full dataset, zero-shot transfers
to novel embodiments in the real world, such as Unitree Go2
and H1. These results represent a step toward general embodied
intelligence, with potential relevance to adaptive control for
configurable robots, co-design of morphology and control, and
beyond.

I. INTRODUCTION

Over two millennia ago, Heraclitus remarked that no man
ever steps in the same river twice. Today, one might say that no
embodied agent acts in the same body twice. In a broad sense,
the human embodiment evolves in subtle ways, e.g., through
injury, aging, or tool use [62, 69, 100], which alter our sen-



sorimotor coordination. In robotic systems, similar variability
in embodiment can arise due to manufacturing differences,
hardware upgrades, or mass deployment of heterogeneous
robots. How can we learn policies that can zero-shot transfer
across a large number of distinct embodiments?

Scaling has been a key driver of progress in deep learn-
ing, which can occur along multiple dimensions. Scaling
dataset size and model size has improved generalization in
vision [13, 50, 61, 71, 91, 93, 99, 104] and language [1,
3, 20, 21, 30, 31, 38, 46, 72, 101]. In robotics, scaling
the number of tasks [10, 26, 27, 33, 41, 53, 70, 110] and
environments [2, 4, 23, 25, 32, 33, 41, 56, 96, 110] enable
cross-task and cross-environment generalization. In this work,
we explore a distinct and underexplored dimension of scaling:
robot embodiment, the physical structure of robots. We
hypothesize that scaling the number of training embodiments
leads to better generalization to unseen embodiments, as
the policies learn to capture shared control strategies across
different physical structures. We refer to this hypothesized
relationship as embodiment scaling laws.

Studying this hypothesis requires addressing several open
challenges. First, we need policy architectures that (i) can
be conditioned on embodiment structures, (ii) handle varied
observation and action spaces, (iii) scale to a large number of
distinct embodiments, and (iv) have the right inductive biases
to discover generalizable motion patterns for zero-shot transfer
to novel embodiments. Second, we need a large dataset com-
prising diverse robot morphologies. We postulate that an order
of magnitude of 103 is a reasonable starting point to study
the relationship between the number of training embodiments
and generalization performance on novel ones. However, most
prior work on multi-embodiment policy training has not sys-
tematically investigated the relationship between generaliza-
tion performance and the number of training embodiments at
scale, likely due to the limited size of available embodiment
collections, often restricted to ∼ 102 in simulation [74] or
∼ 101 in the real world [23, 49, 70, 96]. Consequently, the
scale, degree of generalization, and specific scaling analysis
presented in this work remain largely unexplored.

To this end, we develop a framework for studying embodi-
ment scaling laws using robot locomotion as a testbed. We first
use a procedural generation algorithm to create GENBOT-1K,
a large-scale dataset of ∼1,000 blueprint robot descriptions
in the URDF format, including humanoids, quadrupeds, and
hexapods. To handle varied state and action spaces, we extend
Unified Robot Morphology Architecture (URMA) [8] into
a wider multi-head attention architecture. We adopt a two-
stage policy learning framework [44, 97]: (i) training single-
embodiment expert policies using Reinforcement Learning
(RL), and (ii) distilling these experts into a single embodiment-
aware URMA policy via behavior cloning. We vary the
number of embodiments used in distillation to study the effect
of embodiment scaling on embodiment-level generalization.

Overall, we present a large-scale empirical study of em-
bodiment scaling laws across ∼1,000 robot embodiments.
We design a general reward formulation, training curriculum,

and domain randomization that enable scalable training of
embodiment-specific RL experts without embodiment-specific
tuning, accumulating a total of 2 trillion simulation steps.
We observe a positive correlation between the number of
training embodiments and generalization performance on held-
out test embodiments. The best policy, trained on 2 billion
expert demonstration steps across the full set of training
embodiments, achieves zero-shot transfer to real-world robots,
including the Unitree Go2 with varied kinematic constraints
and the H1 humanoid. These findings provide preliminary
empirical evidence for embodiment scaling laws and highlight
their potential for enabling generalist robot agents.

II. RELATED WORK

Cross-Embodiment Generalization. One goal of cross-
embodiment learning is to enable control policies to gen-
eralize across robot embodiments without retraining. Prior
efforts often focus on transferring policies between a small
number of robots by aligning dynamics, learning shared em-
beddings [15, 107], or extracting transferable skills [39, 58].
However, these methods are only able to transfer to a single
or a few target embodiments. Related work about scalable
network architectures, such as graph neural networks [40, 98]
or Transformers [29, 94], scale to more complex embodi-
ments by conditioning on embodiment-specific information,
but these works mostly use unrealistic and simplified robots
that are not suitable for real-world transfer. More recent
approaches can be trained on a larger number of realistic
robot embodiments, but they often rely on existing low-level
controllers [84, 89], embodiment-specific decoders [22], other
action abstractions [24, 83], or assume a fixed observation and
action space [28], limiting their generalization capabilities to
pre-defined morphological structures. URMA [8] solves this
issue by introducing a unified joint-level control architecture
for arbitrary robot morphologies, but is validated only on 16
robots without studying scaling effects. Our work demon-
strates broader cross-embodiment generalization than prior
works by training a single policy on ∼1,000 embodiments,
achieving zero-shot transfer to unseen embodiments in both
simulation and the real world.

Robot Locomotion. In recent years, Deep Reinforcement
Learning (DRL) has been applied to single embodiment robot
locomotion to great success. The combination of scalable on-
policy RL algorithms, such as Proximal Policy Optimization
(PPO) [81], with fast and highly parallelizable simulators
has enabled the training of powerful locomotion policies for
quadruped [11, 16, 19, 64, 67, 90, 108] and humanoid robots
[52, 55, 78, 86, 109]. Techniques such as student-teacher
learning [14, 48], curriculum learning [51, 63, 80], and domain
randomization [12, 51, 76] have enabled zero-shot sim-to-
real transfer of these policies. Less data-hungry methods
for learning directly on real robots, utilizing model-based or
off-policy RL algorithms [9, 54, 87, 88], and non-learning
methods, such as Model Predictive Control (MPC) [42, 47],
have also been proposed for legged locomotion, but generally
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Fig. 2: Overview of our approach for studying embodiment scaling laws. We procedurally generate GENBOT-1K, a dataset
of ∼1000 diverse robot embodiments with structured variations in topology, geometry, and kinematics. We train a single cross-
embodiment policy using the URMA architecture, which handles varying observation and action spaces via attention-based joint
encoding. We systematically vary the number of training embodiments to study how generalization scales with embodiment
quantity. The policy trained on the full training dataset transfers zero-shot to novel simulated robots and real-world hardware
with different morphologies.

trade their efficiency for worse performance with less robust
gaits on challenging terrain or under strong perturbations.

Robot Embodiment Generation. Prior research in robot
embodiment generation has pursued several directions. One
prominent direction focuses on optimizing robot designs for
specific tasks, where procedural and learning-based techniques
generate embodiments tailored for enhanced performance in
tasks such as locomotion [5, 79, 106] or manipulation [36].
Closer to our objectives is the use of embodiment generation
to develop generalizable robot policies. Existing works have
explored methods based on simplified kinematic trees [29, 34],
randomization within a fixed morphology [28], diverse sensor
configurations [24], or varied hand structures [75]. However,
these approaches are generally limited to a single robot class
or topological template. In contrast, we introduce a compre-
hensive procedural generation framework that spans multiple
morphological classes, including quadrupeds, hexapods, and
humanoids, while varying topology, geometry, and kinematics
for each of them. This enables a large-scale systematic study
of embodiment scaling in locomotion.

III. METHODOLOGY

Generalizable cross-embodiment robot learning aims to
train a control policy that can control diverse seen and unseen
robot embodiments to solve a common task. Formally, let E
denote a set of embodiments sampled from PE , where each
embodiment e ∈ E is defined as a triplet e = ⟨G, T ,K⟩,
where T specifies the joint topology (i.e., number and con-
nectivity), G denotes link geometry (e.g., shape and size),
and K describes additional kinematic properties (e.g., joint
types and range of motion). The control problem of each
embodiment e is defined by a Markov Decision Process (MDP)
Me = ⟨Se,Ae, Pe, Re, H⟩, where Se, Ae, and Pe denote

the state space, action space, and transition dynamics; Re is
the reward function; and H is the episode horizon. At any
particular time step t, a policy predicts an action at ∈ Ae,
conditioned on the robot state st ∈ Se and the embodiment
descriptor ϕ(e). In the specific case of robot locomotion,
the policy is additionally conditioned on a x-y-yaw velocity
command vt ∈ R3 with respect to the trunk frame, i.e.,
at ∼ π(st, ϕ(e), vt).

During training, we optimize the policy to maximize the ex-
pected cumulative reward across training embodiments Etrain ⊂
E with trajectories τ = {(s0, a0), . . . , (sH , aH)} sampled
from Me:

π∗
train = argmax

π
Ee∈EtrainEτ∼π

[
H∑
t=0

Re(st, vt, at)

]
. (1)

The generalization performance is evaluated on a held-out set
of embodiments Etest = E \ Etrain:

Jtest(π
∗
train) = Ee∈EtestEτ∼π∗

train

[
H∑
t=0

Re(st, vt, at)

]
. (2)

We note that both learning and generalizing across embod-
iments present significant challenges. Differing observation
and action spaces require policies to handle variable-sized
and potentially inconsistent inputs and outputs. Variations
in kinematic constraints, self-collision profiles, and contact
dynamics introduce embodiment-specific behaviors that com-
plicate the optimization landscape of policy learning. Even
further, generalizing to unseen embodiments demands that the
policy captures meaningful shared control features that can be
applied to novel physical embodiments.

Scaling hypothesis. We hypothesize that generalization
improves with the number of training embodiments, i.e.,
larger |Etrain| leads to higher Jtest. Intuitively, training on



Fig. 3: Empirical distributions of embodiment variations in GENBOT-1K. The statistics reflect geometric (a), topologi-
cal (b,c), and kinematic (d) variability of embodiments in our dataset.

more diverse embodiments encourages the policy to extract
structural features that transfer to novel robots. For instance,
despite differences in leg length or joint placement, many em-
bodiments share similar locomotion dynamics and constraints.
Discovering a scaling trend would provide empirical support
for an embodiment scaling law and offer actionable insights
for building general-purpose control policies.

Empirical setup. To study the hypothesis, we fix a constant
test set by randomly holding out 20% of the generated embod-
iments. The remaining 80% serve as the pool for constructing
training subsets E(i)

train ⊂ Etrain at varying proportions i ∈ (0, 1].
For each subset, we train a separate policy π

(i)∗
train and evaluate

it on the fixed Etest. This setup enables a systematic analysis
of generalization performance Jtest(π

(i)∗
train ) as a function of

training set size, probing for evidence of an embodiment
scaling law.

Next, we describe how we generate diverse embodiments
(Section III-A), construct a policy to handle varying observa-
tion and action spaces (Section III-B), and train it on many
embodiments (Section III-C).

A. Embodiment Generation

We adopt a procedural generation pipeline to produce
diverse robot embodiments spanning three commonly used
morphology classes: humanoid [7, 8, 17, 43, 52, 82, 85],
quadruped [8, 16, 37, 51, 57, 63, 65, 83, 92, 102], and
hexapod [6, 8, 18, 35, 73, 77, 103, 105]. Our generated robots
follow common design patterns using realistic base compo-
nents, such as link shapes, dimensions, and motor properties,
but are procedurally composed into novel embodiments by
varying their parameters. Geometric variation is introduced
by scaling individual links and overall body size. Topological
variation is achieved by changing the number of knee joints
per leg within each morphology class. We also vary joint limits
to implement kinematic variations. In total, we generate 1,012
distinct robots, including 348 humanoids, 332 quadrupeds, and
332 hexapods, to form the GENBOT-1K dataset (Figure 1).
Our resulting dataset is diverse in various aspects, as reflected
in post-generation statistics (Figure 3). More details about the
generation process are provided in Appendix VII.

B. Cross-Embodiment Policy Architecture

To train a policy that can control ∼1000 different embodi-
ments with different state and action spaces, we use URMA, an

embodiment-aware architecture for robots with arbitrary num-
bers of joints [8]. URMA handles the differently sized partially
observable states (observations) o of different embodiments
by splitting them into fixed-length general observations og
and varying-length joint-specific observations oj , depending
on the number of joints j(e). The embodiment descriptors
ϕ(e) are used to generate joint description vectors dj , which
can uniquely describe every joint of the embodiment and are
made up of the fixed dynamics and kinematics properties of the
joint and its underlying motor. The joint-specific observations
are processed by an attention encoder and are summed up into
the joint latent vector

z̄joints =
∑
j∈J

zj , zj =
exp (fϕ(dj)/τ)∑
Ld

exp (fϕ(dj)/τ)
fψ(oj), (3)

where fϕ (with latent dimension Ld) and fψ are the encoders
for the joint descriptions and joint observations, respectively,
and τ is the learnable temperature parameter of the softmax.
Intuitively, the attention mechanism fuses joint observations
based on their descriptions so that z̄joints has global information
about the embodiment. The encoded joint latent vector is
then concatenated with the general observations and pro-
cessed by a core network to generate an action latent vector
z̄action = hθ(og, z̄joints). To handle the differently sized action
spaces, URMA concatenates the action latent vector with each
encoded joint description vector in batch to decode a single
action for each joint:

aj = µν(gω(dj), z̄action, zj), (4)
where gω is the action encoder for the joint descriptions,
µν is the final action decoder. In our work, we incorporate
multi-head attention into URMA, enabling the policy to attend
to different joint-level features in parallel and better capture
complex inter-joint dependencies (Appendix VIII-B).

C. Two-Stage Policy Learning

To scale cross-embodiment policy learning to a large num-
ber of robots, we adopt a two-stage paradigm. First, we train
embodiment-specific expert policies using standard RL. Then,
we collect demonstration data from these experts and train
a single student policy via imitation learning, conditioned on
embodiment descriptors. This approach allows learning across
∼1000 robots while maintaining tractable memory usage and
stable training dynamics.

Expert Training. We develop a unified RL locomotion
training pipeline applicable to all embodiments with minimal
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Fig. 4: Results on embodiment scaling. We evaluate generalization performance as a function of the number of training
embodiments. (a) In-class study: policies are trained and tested within the same morphology class (humanoid, quadruped, or
hexapod). (b) Cross-class study: We train policies on the full training set (green) and compare performance against policies
trained on only the individual classes, while all policies are evaluated on the test set containing all classes. The proportion of
training embodiments (i ∈ {0.05, 0.2, 0.4, 0.6, 0.8, 1.0}) is denoted in the x-axis. While the underlying reward function is the
same, the reward scales differ across classes due to inherent differences in the embodiments (e.g., humanoids are less stable
than quadrupeds) and unnormalized reward formulations (e.g., humanoids experience larger ground contact forces).

tuning. Key components include extensive domain random-
ization, performance-based curriculum learning, and regular-
ization terms that encourage stable and natural locomotion
(e.g., penalizing jittering movements and excessive ground
contact). All robots in one morphology class share one set
of hyperparameters for scalable training.

Training robust policies for ∼1,000 robot embodiments is
computationally demanding. We use NVIDIA Isaac Lab [68],
a GPU-accelerated simulation framework, to train single-
embodiment policies across 4096 parallel environments with
PPO [81]. Training all experts takes approximately 5 days on
160 NVIDIA RTX 4090/3090 GPUs, totaling over 2 trillion
simulation steps. Full details on the training process are
provided in Appendix VI.

Student distillation. Given expert policies {πe}e∈Etrain
, we

collect a demonstration dataset by rolling out each policy for
600 timesteps in 4,096 parallel environments, totaling 2 billion
samples across all embodiments. We then train URMA by
minimizing the Mean Squared Error (MSE):

LBC = E(st,e,at)∼D

[
∥π(st, ϕ(e))− at∥2

]
, (5)

where D is the expert demonstration dataset. The student pol-
icy conditions on the embodiment descriptor ϕ(e), enabling it
to generalize across the generated embodiments with different
geometry, topology, and kinematics. Training the model on the
full demonstration dataset takes one week using a NVIDIA
H100 GPU. More details about the distillation process can be
found in Appendix VIII.

IV. EXPERIMENTS

In this section, we conduct a large-scale empirical study to
investigate the scaling behavior of cross-embodiment learning.
Our experiments are designed to answer the following key
research questions:
Q1. How does the generalization performance of the cross-

embodiment policy scale with the number of training
embodiments? (Sec. IV-A)

Q2. Can the learned policy generalize zero-shot to unseen
embodiments, including real-world robots, and handle

varied kinematic constraints? (Sec. IV-B)
Q3. Does the policy network learn meaningful, structured

representations of the space of robot embodiments
and morphologies through cross-embodiment training?
(Sec. IV-C)

A. Studying Embodiment Scaling Laws

We train and evaluate our policies under multiple setups and
show the results in Figure 4. We analyze the generalization
patterns through the three aspects below.

Scaling within each embodiment class. We conduct train-
ing and evaluation separately for each morphology class (hu-
manoid, quadruped, and hexapod) in GENBOT-1K, resulting in
curves C1–C3. For each morphology class, we observe a clear
scaling trend: increasing the number of training embodiments
from 0.05 to 1.0 can double the cumulative reward. The rate
of convergence varies by class: for quadrupeds and hexapods,
performance saturates around 100 training embodiments, while
for humanoids, it continues to improve steadily with more
training data, likely due to greater instability and control
difficulty. This suggests that more challenging embodiments
may benefit more from larger-scale embodiment scaling.

Scaling across embodiment classes. We train on the full
combined dataset of all three classes and evaluate on a unified
test set (C4). The resulting curve begins at a reward of 18
and rises consistently to nearly 30, demonstrating that scaling
across diverse embodiments enables broader generalization.
We further evaluate the policies trained on individual mor-
phology classes (corresponding to C1–C3) on the combined
test set, obtaining (C5–C7). Since each of these models has
only seen a single morphology class during training, their
performance on the mixed test set is limited. In contrast, the
best point on C4 achieves 2–5× higher average reward than
C5–C7, demonstrating that training across diverse morphology
classes enables substantially broader generalization.

Comparison with pure data scaling. To disentangle the
effects of embodiment diversity from data quantity, we collect
a dataset using only 5% of the training embodiments and



Fig. 5: Zero-shot generalization to unseen real-world robots. Our URMA policy, trained on 817 diverse simulated
embodiments, successfully transfers zero-shot to control the Unitree Go2 quadruped and Unitree H1 humanoid in the real
world. a, b: The policy can perform forward and backward locomotion on cobblestone and grass terrain with the Go2. c, d,
e, f: We test the policy’s adaptation to kinematic constraints by artificially restricted the joint limits on the right rear knee of
the Go2 by 20%. The policy effectively compensates for the limited range of motion, resulting in a stable limping gait on
gravel (d) and indoors (f), compared to the unrestricted gait (c, e). g, h: Zero-shot transfer on the H1 works well in a lab
environment, showing decent forward and backward locomotion. i: Walking side-to-side with H1 is slower as in simulation
but stable in the real world.

vary the number of trajectories per embodiment for distillation
(C8). We find that performance quickly saturates: the policy
nearly reaches its peak at 0.2 data scale (4× data as 0.05),
with negligible gains beyond that. This highlights that, if the
goal is to achieve broad embodiment-level generalization, it
is ineffective to only increase data volume on a small set of
embodiments; embodiment scaling is essential.

B. Real-World Generalization Test
To validate real-world transfer capabilities, we conducted

zero-shot deployments of our best-performing policy, trained
on the full training set of 817 simulated embodiments, on two
real robots: the Unitree Go2 quadruped and the Unitree H1
humanoid, neither of which was included in the training set
Etrain, although robots with similar kinematic structures were
present.

Figure 5 shows the policy successfully generalizing to
the two real robots without any fine-tuning or modifications,

using only the URDF of the respective robot to generate the
embodiment descriptor ϕ(e). The Go2 demonstrated robust
and stable walking gaits across diverse terrains such as grass,
cobblestone, and gravel (a-c). Similarly, the H1 was able
to maintain stable locomotion, tracking the desired velocity
commands while walking on flat ground with rubber mats in
a lab environment (g-i). While the transfer worked for both
robots, the policy transferred worse to the H1 compared to the
Go2, highlighting the need for potentially even more diverse
humanoid robots in the training set.

To probe the policy’s ability to handle kinematic variations
in the real world, we artificially restricted the joint limits of
the knee joints of the Go2 to 20% of their nominal limits by
restricting the PD controller on the robot and pushing towards
the limits with high gains when the joint angles exceed the
limits. Figure 5 (d, f) shows that the policy was able to transfer
the adaptations it learned in simulation as it keeps the restricted
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Fig. 6: Visualization of the embodiment latent space. t-distributed Stochastic Neighbor Embedding (t-SNE) projection of the
action latent vectors on the complete GENBOT-1K dataset from the URMA policy trained on the full training set. Points are
colored by morphology class. The clear clustering based on morphology class, and finer sub-structures related to the number of
knee joints or kinematic and geometric properties, suggest that the policy learns a meaningful and structured representation of
diverse embodiments, capturing functional similarities that help during cross-embodiment learning and enable generalization.

rear right leg further back and maintains a stable limping gait.

C. Understanding Learned Embodiment Representations

To gain insight into the internal representations learned
by our policy, we performed a t-SNE [95] analysis on the
action latent vectors z̄action produced by URMA for each
embodiment. Figure 6 shows that the learned representations
naturally cluster according to the robot morphology, clearly
distinguishing humanoids, quadrupeds, and hexapods. For all
three morphologies, large clusters around the number of knee
joints separate most of the latent space, showing the impact of
additional joints on the policy. Many finer sub-clusters emerge
based on different geometric and kinematic variations for a
given number of knee joints. This structured representation
indicates that our policy captures meaningful embodiment-
specific features that generalize, mostly, within the morpho-
logical classes, whereas patterns across classes are less clear.
Additional visualizations using PCA [45] and UMAP [66] can
be found in Appendix X.

V. CONCLUSION

We present preliminary empirical evidence for embodiment
scaling laws through a large-scale study on robot locomotion,
using a procedurally generated dataset GENBOT-1K. Our re-
sults show that increasing the number of training embodiments
improves generalization to unseen ones, with more challeng-
ing morphologies benefiting from continued scaling. Scaling
across embodiment classes further enhances generalization,
while simply increasing data volume on a fixed set of robots
yields diminishing returns. We also demonstrate successful
sim-to-real transfer of the learned cross-embodiment policy.
As robotic platforms grow more diverse, the ability to learn
from and generalize across embodiments becomes increasingly
critical. We hope this work offers a step toward scalable,
general-purpose robotic agents that generalizes across tasks,
environments, and embodiments.
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APPENDIX

VI. EXPERT TRAINING

A. Observation and Action Space

The observation space of the expert policies includes the
joint angles, joint velocities, previous actions, trunk angular
velocities, gravity vector and the command velocities. The
observation space of the critics includes the same observations
as for the policies, but also includes privileged information:
the trunk linear velocity, trunk height over the ground, feet
contact states and feet air times.

The policies control the robots at 50 Hz with a PD con-
troller, where the target joint angles are generated by scaling
the action of the policy and adding it to the nominal joint
configuration of the robot: qtarget = qnominal + σ · a. We define
the nominal joint configuration as a standing pose of a robot
and use the same configuration for all robots of the same
morphology class (see Appendix VII-C). For the action scaling
factor σ, we use 0.3 for quadrupeds and hexapods, and 0.75
for humanoids. For the PD controller, we use Kp = 20 and
Kd = 0.5 for quadrupeds, Kp = 25 and Kd = 0.5 for
hexapods, and Kp = 60 and Kd = 2.0 for humanoids.

B. Domain Randomization

To enable sim-to-real transfer of the trained policies, we
add strong domain randomization during training. We use a
performance-based curriculum learning approach, where the
domain randomization ranges are increased from 0 (or their
mean if not zero-centered) to the final values in Table I over
the course of training. This curriculum approach allows the
policy to learn basic locomotion first in the simplest possible
environment before adapting to wider variations. We define
a curriculum coefficient from 0 to 1, which is multiplied
with the domain randomization ranges (and the reward penalty
coefficients). The coefficient of an environment is increased by
0.01 if the policy completed the episode without falling, and
the average tracking error of the target x,y velocity is below
0.4 m/s, and the coefficient is reduced by 0.01 otherwise.

Every embodiment in GENBOT-1K uses the same domain
randomization ranges. The "starting" values (naming scheme
in Table I) are sampled uniformly at the start of every episode
to randomize the starting state of the robot. The "noise" values
are sampled uniformly for every simulation step to add noise
to the observations. The values of every other parameter are
sampled uniformly every simulation step with a probability of
0.002 (on average every 500 steps / every 10 seconds). Pushes
are applied as linear velocities to the trunk of the robot.

C. Reward Function

Table II contains all reward terms and coefficients of the
reward function for the expert training of all robots in the
GENBOT-1K dataset. Joint-based (T6-T12) and feet-based
(T14-T17) reward terms are calculated as the mean over
every joint and foot, respectively, to account for the varying
amounts of joints and feet of the generated embodiments. The
coefficients of all penalties are attached to the curriculum

TABLE I: Domain randomization configuration. Domain
randomization values and ranges for every randomized pa-
rameter during the expert RL training. The values in the table
are the maximum values and ranges in the curriculum when
reaching the final curriculum coefficient of 1.

Parameter Value

Max action delay 1
Chance for action delay 0.05
Min & max motor strength (0.5, 1.5)
Min & max P gain factor (0.5, 1.5)
Min & max D gain factor (0.5, 1.5)
Min & max joint position offset (-0.05, 0.05)
Min & max starting orientation factor (-0.0625, 0.0625)
Min & max starting joint position factor (-0.5, 0.5)
Min & max starting joint velocity factor (-0.5, 0.5)
Min & max starting linear velocity (-0.5, 0.5)
Min & max starting angular velocity (-0.5, 0.5)
Joint position noise 0.01
Joint velocity noise 1.5
Angular velocity noise 0.2
Gravity velocity noise 0.05
Joint observation dropout chance 0.05
Min & max static friction (0.05, 2.0)
Min & max dynamic friction (0.05, 1.5)
Min & max restitution (0.0, 1.0)
Min & max added mass (-2.0, 2.0)
Min & max gravity (-8.81, 10.81)
Min & max joint friction (0.0, 0.01)
Min & max joint armature (0.0, 0.01)
Min & max pushes in x (-1.0, 1.0)
Min & max pushes in y (-1.0, 1.0)
Min & max pushes in z (-1.0, 1.0)

coefficient (see Appendix VI-B) and thus linearly increase
from 0 to the final values in Table II over the course of training.
This makes the training process less sensitive to the precise
values of the coefficients.

D. PPO Hyperparameters

We use the same PPO hyperparameters for the training of
all expert policies, detailed in Table III. Searching for better
hyperparameters for every embodiment might lead to increased
performance but is impractical when considering training
∼1000 embodiments. The chosen hyperparameters are based
on common practices in legged locomotion research [8, 80]
and preliminary tuning on a small subset of embodiments.

VII. EMBODIMENT GENERATION

A. Basic Units for Quadruped, Humanoid and Hexapod

Tables IV and V provide the base values for geometry-
related and kinematics-related parameters, respectively, for
representative links across quadruped, humanoid, and hexapod
morphologies. For the humanoid class, we report parameters
for the trunk and the left-side lower-body links. For quadruped



TABLE II: Reward terms for the RL training of embodiment-specific experts. All reward terms and the corresponding
coefficients that compose the reward function for the expert training. While all the coefficients work for all embodiments, for
the final experiments, we tweaked four coefficients for the humanoid embodiments to improve the style of the gait: *1 3.0, *2

1.5, *3 43.2, *4 6e-3.

Term Equation Coefficient

T1 Xy velocity tracking exp(−|vxy − cxy |2/0.25) 2.0 *1

T2 Yaw velocity tracking exp(−|ωyaw − cyaw|2/0.25) 1.0 *2

T3 Z velocity penalty −|vz |2 2.0

T4 Pitch-roll velocity penalty −|ωpitch, roll|2 0.05

T5 Pitch-roll position penalty −|θpitch, roll|2 5.0

T6 Joint nominal differences penalty −|q − qnominal|2 14.4 *3

T7 Joint position limits penalty −1̄(0.9qmin < q < 0.9qmax) 120.0

T8 Joint velocity limits penalty −1̄(0.9q̇min < q̇ < 0.9q̇max) 10.0

T9 Joint accelerations penalty −|q̈|2 5e-6
T10 Joint torques penalty −|τ |2 2.4e-4
T11 Action rate penalty −|at − at−1|2 0.12

T12 Action smoothness penalty −|at − 2at−1 + at−2|2 0.12

T13 Walking height penalty −|h− hnominal|2 30.0

T14 Air time penalty −
∑

f1(pf )(pTf − 0.5) 0.1

T15 Symmetry penalty −
∑

f 1̄(pleft
f )1̄(pright

f ) 0.5

T16 Feet y distance penalty −|f actual
y distance − f

target
y distance|

2 2.0

T17 Feet force penalty −|fforce|2 8e-3 *4

T18 Self-collision penalty −1self-collision 1.0

TABLE III: PPO hyperparameters for expert policy training.

Hyperparameter Value

Batch size 98304
Mini-batch size 24576
# epochs 5
Initial learning rate 0.001
Learning rate schedule Adaptive with target KL 0.01
Entropy coefficient 0.002
Discount factor 0.99
GAE λ 0.95
Clip range 0.2
Max gradient norm 1.0
Initial action standard deviation 1.0
Clip range action mean -10.0, 10.0
Policy and critic hidden layers [512, 256, 128]
Activation function ELU
# training iterations 17500 (quadruped, hexapod), 42500 (humanoid)

and hexapod classes, we include the front-left leg. The re-
maining components are either symmetric or peripheral to
locomotion (e.g., arms or head for humanoids) and therefore
omitted.

The base parameter values are partially inspired by the
Unitree Go2 and H1 platforms, offering a degree of realism
without exact replication. This design choice is consistent
with prior work such as GenLoco [28], which abstracts phys-
ical characteristics from real robots to define a diverse yet
grounded design space. Robots instantiated with these values
correspond to a 1.0× variation setting (i.e., no geometric,

kinematic, or topological scaling applied), and serve as the
reference point for applying the variation factors listed in
Tables IV and V.

To support meaningful evaluation of generalization, these
reference robots are excluded from the training set. Every
robot in the training set differs from Go2 and H1 by at least
one geometric, topological, or kinematic variation, along with
additional discrepancies due to loose alignment in parameter
values (e.g., each joint in the humanoid closest to H1 differs
by a few centimeters, and the overall height differs by approx-
imately 10 cm). This diversity encourages the learned policy



TABLE IV: Base geometry and mass parameters for representative link types in the embodiment generation pipeline
used in GENBOT-1K. Geometry dimensions are specified according to shape type: Sphere (radius), Cylinder (length, radius),
and Box (length, width, height).

Class Link Name Geometry Type Geometry Dimension (m) Mass (kg)

Humanoid Pelvis Sphere (0.05,) 5.390
Torso Box (0.08, 0.26, 0.18) 17.789
Hip yaw link Cylinder (0.02, 0.01) 2.244
Hip roll link Cylinder (0.01, 0.02) 2.232
Thigh Cylinder (0.2, 0.05) 4.152
Calf Cylinder (0.2, 0.05) 1.721
Foot Box (0.28, 0.03, 0.024) 0.474

Quadruped Trunk Box (0.38, 0.09, 0.11) 6.921
Hip Cylinder (0.04, 0.046) 1.152
Thigh Box (0.21, 0.025, 0.034) 1.152
Calf Cylinder (0.12, 0.013) 0.154

g Foot Sphere (0.022,) 0.040

Hexapod Trunk Box (0.8, 0.5, 0.1) 6.921
Hip Sphere (0.05,) 0.678
Thigh Cylinder (0.22, 0.03) 1.152
Calf Cylinder (0.22, 0.025) 0.154
Foot Sphere (0.03,) 0.040

TABLE V: Motor and joint properties of the generated embodiments in GENBOT-1K.

Class Joint Name Joint Limits (rad) Max. Torque (N·m) Max. Velocity (rad/s)

Humanoid Torso joint (-2.35, 2.35) 200 23
Shoulder pitch joint (-2.87, 2.87) 40 9
Shoulder roll joint (-0.34, 3.11) 40 9
Shoulder yaw joint (-1.30, 4.45) 18 20
Elbow joint (-1.25, 2.61) 18 20
Hip yaw/roll joint (-0.43, 0.43) 200 23
Hip pitch (-3.10, 2.50) 200 23
Knee joint (-0.26, 2.00) 300 14
Ankle joint (-0.87, 0.52) 40 9

Quadruped Hip pitch joint (-1.05, 1.05) 23.7 30.1
Front thigh joint (-1.57, 3.49) 23.7 30.1
Rear thigh joint (-0.52, 4.53) 23.7 30.1
Knee joint (-2.72, -0.84) 45.43 15.7

Hexapod Hip joint (-1.57, 1.57) 100 30
Thigh joint (-1.57, 1.57) 100 30
Knee joint (-1.57, 1.57) 100 30

to capture broadly transferable motion patterns. As discussed
in Section IV, empirical results suggest that the policy has
acquired sufficiently generalizable behaviors to support both
cross-embodiment and sim-to-real transfer, which is generally
considered highly challenging.

B. Generation Algorithm

We construct each robot embodiment in a tree-like structure
by iteratively connecting links using joints, following the
URDF specification and the basic units described in Sec-

tion VII-A. The construction procedure varies slightly across
morphologies:

• Humanoids: The root node is the pelvis. We first append
the torso and hip links, then attach the shoulder and arm
links for the upper body, followed by the thigh, calf, and
foot links for the lower body.

• Quadrupeds and hexapods: The root node is the trunk.
We sequentially append the hip links to the trunk, then
connect the leg and foot links to form the complete body.

To ensure diversity in the generated embodiments, we intro-



TABLE VI: Variation parameters across geometry, topology, and kinematics in the embodiment generation algorithm.
The torso link randomization only applicable to the humanoid class.

Variation Type Parameter Name Candidate Values
Topology Number of knee joints {0, 1, 2, 3}
Geometry Scaling factor for all link size {0.8, 1.0, 1.2}

Scaling factor for thigh link length {0.4, 0.8, 1.0, 1.2, 1.6}
Scaling factor for calf link length {0.4, 0.8, 1.0, 1.2, 1.6}
Scaling factor for foot link size {1.0, 2.0}
Scaling factor for torso link size {0.4, 0.8, 1.0, 1.2, 1.6}

Kinematics Scaling factor for knee joint limits {0.2, 0.6, 1.0}

duce variations in geometry, topology, and kinematics during
the construction process, as detailed in Section III. Table VI
summarizes the variation parameters and their corresponding
candidate values. While most parameters are self-explanatory,
we clarify a few specific cases:

• Number of knee joints: If a leg is configured with zero
knee joints, the calf link is omitted, and the thigh link is
directly connected to the foot.

• Foot link size: For humanoids, foot links are modeled as
boxes and scaled by length; for quadrupeds and hexapods,
foot links are modeled as spheres and scaled by radius.

• Joint limit variation: Joint limits are varied by uniformly
scaling the nominal joint ranges about the nominal joint
position, which serves as a fixed point.

C. Nominal Joint Configurations

Nominal joint configurations are used to initialize robot
poses during training, contribute to reward terms that discour-
age deviations too far from these default joint angles, and
function as offsets to the actions of the expert and distillation
policies. As such, they serve as useful regularizers for learn-
ing realistic and efficient gaits. To support scalability across
diverse morphologies, we generate nominal configurations by
reusing unit values across the generated embodiments. The
nominal joint angles used are summarized in Table VII.

VIII. CROSS-EMBODIMENT DISTILLATION

A. Expert Data Collection

For every embodiment, we run the expert RL policy for
600 simulation steps using 4096 parallel environments. This
results in a total of 1,985,740,800 data samples across all
training embodiments. Note that the episode length during
the expert training is 1000 simulation steps (equivalent to 20
physical seconds), thus, the collected data only covers the first
half of the episode. Using the full length may provide more
time-correlated data, which we did not analyze due to time
constraints. The final dataset needs around 5 TB of storage
using the h5py format without additional compression.

B. URMA Architecture Details

The observation space of the URMA policy is split into two
parts: joint-specific observations oj and general observations
og . The joint-specific observations oj include the joint angle,
joint velocity, previous action of the joint (shape: (j(e), 3)).
The general observations og include the trunk linear velocity,

TABLE VII: Nominal joint configurations for generated
embodiments in GENBOT-1K. These joint angles are used
to initialize robot poses, define regularization rewards, and
function as offsets to the policy actions. The values are
consistent across symmetric limbs.

Class Joint Name Joint Angle (rad)

Humanoid Torso 0.0
Shoulder (Left/Right, pitch/roll/yaw) 0.0
Elbow (Left/Right) 0.0
Hip pitch (Left/Right) -0.4
Hip roll/yaw (Left/Right) 0.0
Knee (Left/Right) 0.8
Ankle (Left/Right) -0.4

Quadruped Hip (Front/Rear, Left/Right) ±0.1
Thigh (Front, Left/Right) 0.8
Thigh (Rear, Left/Right) 1.0
Knee (Front/Rear, Left/Right) -1.5
Additional knee joints (if any) 0.0

Hexapod Hip (Front/Middle/Rear, Left/Right) 0.0
Thigh (Front/Middle/Rear, Left/Right) 0.79
Knee (Front/Middle/Rear, Left/Right) 0.79
Additional knee joints (if any) 0.0

gravity vector, command velocities, PD gains, action scaling
factor, total mass of the robot, robot dimensions, number of
joints and feet size (shape: (20,)).

The description vectors dj of the joints include the relative
carthesian position of the joint in the nominal configuration,
joint rotation axis, joint nominal angle, maximum joint torque,
maximum joint velocity, joint position limits, p-gain, d-gain
and action scaling factor, robot mass and dimensions (shape:
(j(e), 18)).

We build on the original URMA neural network architec-
ture, as shown in Figure 7, from Bohlinger et al. [8] with the
following modifications:

• We use multi-headed attention for the encoding of the
joint observations and descriptions to increase the expres-
siveness of the policy. All our experiments use 3 attention
heads.

• We remove the feet-specific attention encoder as not all
robots in the real world have foot-specific sensors, like
pressure sensors.



TABLE VIII: Train-test splits of GENBOT-1K. Each index refers to one unique embodiment in each embodiment class. The
training set is simply the complement of the test set and thus omitted.

Class Test Set

Humanoid [0, 7, 12, 20, 31, 32, 37, 41, 46, 47, 48, 50, 51, 55, 63, 71, 72, 75, 97, 104, 111, 113, 122, 124, 128, 132, 133, 144, 149, 154,
155, 158, 161, 163, 166, 169, 170, 181, 183, 197, 204, 207, 215, 222, 226, 229, 241, 244, 248, 250, 252, 258, 260, 261, 266,
272, 276, 278, 280, 282, 286, 290, 298, 308, 312, 313, 316, 320, 327, 342]

Quadruped [0, 7, 8, 20, 31, 32, 37, 41, 46, 47, 48, 50, 51, 55, 71, 72, 75, 97, 104, 111, 113, 122, 124, 128, 132, 133, 144, 149, 154, 155,
158, 161, 163, 166, 169, 170, 181, 183, 197, 204, 207, 215, 222, 226, 229, 241, 244, 248, 250, 252, 258, 260, 261, 266, 272,
278, 280, 282, 286, 290, 298, 308, 312, 313, 316, 320, 327]

Hexapod [0, 7, 8, 20, 31, 32, 37, 41, 46, 47, 48, 50, 51, 55, 71, 72, 75, 97, 104, 111, 113, 122, 124, 128, 132, 133, 144, 149, 154, 155,
158, 161, 163, 166, 169, 170, 181, 183, 197, 204, 207, 215, 222, 226, 229, 241, 244, 248, 250, 252, 258, 260, 261, 266, 272,
278, 280, 282, 286, 290, 298, 308, 312, 313, 316, 320, 327]

TABLE IX: Statistics of train-test splits of GENBOT-1K.
The splits have an approximately balanced distribution over
different categories.

Class Total Number Train Set (80%) Test Set (20%)

Humanoid 348 278 70
Quadruped 332 265 67
Hexapod 332 265 67
Total 1012 808 204

• We directly use the output from the action decoder µν
as the action of the policy, instead of using an additional
head to produce a standard deviation and sampling from
a Gaussian distribution, as we train the policy with
imitation learning instead of RL.

• We add another encoding layer to the general observa-
tions og to project them into a higher dimensional latent
space before concatenating them with all the joint latent
vectors from the attention heads.

• We use wider feedforward layers (2× the hidden dimen-
sions) throughout the network.

The resulting model has 2.1 million parameters. Overall, it is
a compact network with strong inductive biases that leverage
the compositional structure of robots.

When applying the actions of the policy to the robots, we
use the same PD controllers with the same nominal joint
configurations and action scaling factors as in the expert
training (see Appendix VI-A).

C. Train-Test Set Splits

We split GENBOT-1K into a training set (80%) and a test
set (20%) using a deterministic pseudo-random sampler with
a fixed seed, ensuring full reproducibility. The same sampling
procedure is applied independently to each morphology class,
except for quadrupeds and hexapods, which share identical
splits due to matched dataset sizes. Detailed test indices are
listed in Table VIII, and summary statistics for each category
are shown in Table IX.

D. Training Details

We designed an efficient training pipeline that balances disk
I/O, CPU preprocessing, GPU utilization, and RAM usage.
Instead of loading every minibatch directly from disk, we first

load a fixed number of data slices, each containing a small
subset of steps from multiple robot embodiments, into an in-
memory buffer. Each slice consists of 100 trajectories with 128
steps per trajectory. Once the buffer is filled, minibatches are
sampled uniformly at random, without replacement, until every
sample has been seen a fixed number of times. This strategy
reduces disk access overhead, improves memory locality, and
maintains sample diversity throughout training, though it may
introduce local overfitting and biased gradient estimates.

Because data from different robots have varied observation
and action spaces, we load them separately and use gradient
accumulation to reduce bias in the gradient estimation. Specif-
ically, gradients are accumulated across multiple minibatches
before each optimizer step, helping to balance contributions
across robot embodiments. While effective, this approach still
suffers from local gradient bias. A more principled solution
would involve zero-padding to form large, uniform batches
across robots, but implementing this would require architec-
tural and pipeline-level changes, which we did not pursue due
to time constraints. In theory, this could lead to smoother
optimization and potentially better final performance.

To ensure numerical stability, we apply gradient clipping
with a maximum norm of 5. We use the AdamW opti-
mizer [60] with β1=0.9, β2=0.999, and a cosine-annealed
weight decay schedule that decays from 3 × 10−4 to 0 over
the course of training [59]. The key hyperparameters for
distillation are summarized in Table X.

Our pipeline requires 128 GB of RAM to maintain the in-
memory buffer. Due to the small size of the URMA policy,
training can be efficiently performed on a single GPU (e.g.,
NVIDIA RTX 4090 or H100). We did not observe significant
gains in convergence from increasing batch size, possibly due
to the structured nature and potential bottlenecks in the model
architecture. Further investigation into the scaling behavior of
the training dynamics is left for future work.

IX. ADDITIONAL DETAILS ON REAL-WORLD
DEPLOYMENT

A. Hardware Setup

We evaluated our distilled URMA policy zero-shot on two
real-world platforms: the Unitree Go2 quadruped and the
Unitree H1 humanoid. For each robot, we used its URDF
to produce the embodiment description vectors dj . Before
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Fig. 7: URMA with multi-head attention. We extend the
original URMA module [8] with multiple attention heads,
each aggregating information from joint observations using
distinct attention distributions. This design enables the model
to capture multi-modal dependencies and improves its capacity
to scale across diverse embodiments.

TABLE X: Hyperparameters of the distillation pipeline.

Hyperparameter Value

# training samples per embodiment 500 × 4096
Validation set size 100 × 4096
Batch size 64
Gradient accumulation steps 8
Gradient clipping threshold 5
Data slice size 100 × 128
Max slices in buffer 1024
Buffer repeat factor 3
Optimizer AdamW [60]
AdamW betas (0.9, 0.999)
Weight decay schedule 3× 10−4 → 0 (cosine)
Learning rate schedule Cosine annealing [59]
# epochs 80

deployment, the policy was converted to the ONNX format to
load it in JAX and guarantee maximum inference speed. The
policy inference ran on a Ubuntu 22.04 laptop (Ryzen 9 CPU),
interfaced to the robot over a dedicated Ethernet connection.
We ran the control loop at the same 50 Hz and with the same
PD gains as in simulation, and sent the target joint angles to
the robot’s internal controller. We limited the commanded x-y-
yaw velocity to 0.8 m/s for the Go2 and 0.5 m/s for the H1, to
ensure the robot’s stability and safety during the experiments.

B. Implementing Joint Limit Variations

To probe robustness under kinematic constraints, we impose
an artificial knee-joint range limited to 20 % of its nominal
span. In simulation, one can enforce such limits by directly
clamping joint angles within the physics engine; in hardware,
however, neither the robot’s encoders nor its embedded PD
controller can be modified. Consequently, we introduce a
software-level joint-limit layer into the control loop in order
to restrict the target joint angle for affected knee joints to the
new limits. At each control step, the policy’s commanded knee
angle is constrained to the prescribed ±20 % bounds. Instead,
we implemented a software-based solution that restricts the
target joint angle for affected knee joints to the new limits.
To counteract any excursions driven by external disturbances,
we implement an active rejection mechanism: whenever the
measured knee angle violates the software limits, we (1)

Hexapod Humanoid Quadruped

Fig. 8: Additional visualizations of the learned embodiment
embeddings. Principal Component Analysis (PCA) (a.) and
Uniform Manifold Approximation and Projection (UMAP) (b.)
of the embodiment latent space (i.e., every point represents one
robot, aggregated from all of its joint description vectors).

Hexapod Humanoid Quadruped

Fig. 9: Additional visualizations of the learned joint de-
scription embeddings. t-SNE visualization of the joint de-
scription latent space of all joints from all embodiments in
the GENBOT-1K dataset (i.e., every point represents one joint
of a robot).

project the commanded target onto the nearest permissible
bound and (2) elevate the proportional and derivative gains
to Kp = 60 and Kd = 1, respectively, until the joint re-enters
the safe region. This procedure enforces a soft joint-limit
constraint exclusively in software—without altering hardware
or contravening physical laws—while delivering high-gain
corrective action against environmental perturbations.

X. ADDITIONAL LATENT SPACE ANALYSIS

In addition to the t-SNE analysis, we also apply PCA
[45] and UMAP [66] on the action latent vectors z̄action in
Figure 8. Both PCA and UMAP projections reveal clear
grouping according to the morphology class, with humanoid,
quadruped, and hexapod embeddings forming distinct clusters.
Compared to the t-SNE analysis, clusters about the topologi-
cal, geometric, and kinematic variations are less pronounced
and appear to be more cramped.

Furthermore, we show in Figure 9 the t-SNE analysis of
the learned joint description latent space fϕ(dj) for all joints
from all embodiments in the GENBOT-1K dataset. Although
the three morphologies still define the rough structure of this
latent space, the learned embeddings for the joint descriptions
seem to be much more entangled across the three morphology
classes.
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