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Abstract

We introduce a method for probabilistically evaluating the reliability of Lipschitzian global opti-
misation under a constrained computational budget, a context frequently encountered in various
applications. By interpreting the slope data gathered during the optimisation process as samples
from the objective function’s derivative, we utilise Bayesian posterior prediction to derive a confi-
dence score for the optimisation outcomes. We validate our approach using numerical experiments
on four multi-dimensional test functions, and the results highlight the practicality and efficacy of
our approach.

1. Introduction

The DIRECT [4] algorithm is a gradient-free global optimisation method that does not rely on the
Lipschitz constant. This method is renowned for its efficiency in zeroing in on the vicinity of a
global optimum and can yield a robust approximation of the global optimum given ample function
evaluations [1]. In practice, however, function evaluation could be a computationally expensive
operation or have limited access during optimisation. Given these constraints, our focus shifts to
determining the quality of the approximation under a finite number of function evaluations, which
aligns more closely with real-world scenarios.

Building on the foundation of DIRECT optimisation, our study posits that the task of predict-
ing whether the actual value exceeds a predetermined threshold can be re-envisioned as estimating
if the local Lipschitz constant within each subspace goes beyond a certain value. In light of this,
we propose an approach in which the recorded slope data is considered as random samples from
the first-order derivative. Subsequently, we perform Bayesian posterior prediction for each discrete
subspace, and collating this probabilistic information allows us to predict the confidence of the
optimisation outcome within a defined computational constraint. To validate our approach, we con-
ducted numerical experiments on four widely used multi-dimensional test functions and compared
the estimated distribution based on DIRECT sampling to the results obtained via grid and random
sampling. Besides, we also compared the confidence obtained via maximum likelihood estimation
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and Bayesian posterior prediction on different setups, where the latter gave more precise predictions
in our experiments.

2. A Brief Overview of the DIRECT Optimisation

Suppose that there is a Lipschitz-continuous objective function f. We want to find the optimal

solution, z* = argminf(z), to achieve the global minimum of f within a bound parameter space
TeEX
X € R". In DIRECT optimisation [4], X is firstly projected into a unit n-dimensional search

space C, which is viewed as the initial Potential Optimal (PO) subspace. DIRECT evaluates the
centre point of the PO subspace and the points sampled at a distance of one-third the side length of
search space from the centre point in each coordinate and then divides the PO subspace into smaller
subspaces accordingly, where each newly sampled point becomes the centre of a hyperrectangle.
New PO subspaces are identified for the following divisions, completing one optimisation round.
The loop of space divisions and PO space selection is carried out until termination or convergence.

Wang et al. [7] adopted DIRECT-1 [1] to verify the robustness of deep neural network models
against adversarial geometric transformations. Although DIRECT does not require the Lipschitz
constant to proceed, this information is extremely critical to enable the obtained lower or upper
bounds with provable guarantees. Therefore, they proposed computing and recording the absolute
values of the slopes between queried points and utilising the largest value to estimate the lower
bound of the objective function.

3. Quantifying the Uncertainty Before Convergence

In robustness and reachability analysis [2, 5, 6, 9], a common scenario is to determine whether the
value of a target function can be smaller than a given threshold z in a specific domain. Typically,
the target function can measure a system’s performance, and its values smaller than 2z could indi-
cate system faults or unsafe behaviours [3, 7, 8]. Performing DIRECT could allow us to see if
min.cc f(¢) > z holds after convergence, but it may take a large number of function evaluations,
requiring unrealistic computational costs. Therefore, parallel to comparing the minimum found and
the threshold z, we propose to estimate the possibility of min.c¢ f(c) > z at each iteration.

Notation Given a function f, recall that we are interested in whether the true minimum min.c¢ f(c)
is smaller than a threshold z in each iteration of DIRECT . We denote ¢; as the centre of hyperrect-
angle indexed by ¢ € Z and write the query result at ¢; as f(c;). For a hyperrectangle i, we denote
d; ; and K; ; as half of its side length and the local Lipschitz constant at dimension j, respectively.
Although the local Lipschitz constants are unknown, we follow the approach proposed by Wang
et al. [7] and record k; ;, the absolute values of slopes between the centre of the hyperrectangle ¢
and newly sampled points along dimension j, during optimisation.

3.1. Gain Confidence from Queries

Suppose the DIRECT optimisation has been carried out for some iterations, and all query results are
greater than the threshold of interest. In each subspace, the probability of the ground truth minimum
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f(¢;) smaller than z can be expressed as

P(f(éz) < Z) < P< U f(CZ) —Kiﬁjdi’j < Z) =1 —P( ﬂ Ki,j < %) (1)
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The above inequality holds because of f(¢;) > min(f(c;) — Kj jd; ;). Then, globally, we can write
the confidence of the ground truth minimum greater than z as

P (min f(c) > ):1—P(3i€I:f(éi)<z)ZP(ﬂ N KW»SM). 2)
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We can see the right-hand side of Eq. (2) — 0 as the number of subspaces increases. Therefore, we
define the confidence of min.c¢c f(c) > z as follows to avoid the numerical issue,

fei) _Z)} 3)

1-— E [P(KiJ > di’j

i€T,jeNt,

3.2. Slopes are Randomly Sampled Derivative that Subject to Exponential Distribution

After any iteration of the DIRECT optimisation, the algorithm makes observations of the objective
function, allowing us to obtain values of f(¢;), d;, ¢;, and k; ,j so that every ( ) in Eq. 3) is a
known constant. Let 2; ; = f(c;) — z/d; j, the problem can then be translated 1nto measuring the
probability of whether the local Lipschitz constant K; ; is greater than Z; ;. As stated in Remark 1,
every observed slope can be the partial derivative of a point within C. But it would be difficult to
obtain the location of these points. Such uncertainty, therefore, motivates us to view these slopes as
randomly sampled first-order derivatives subject to certain distributions. As the upper bound of the
derivative in a subspace, the local Lipschitz constant should also be subject to the same distribution.
To compute P(K; ; > Z; ;), we would need to estimate the distribution of derivatives.

Remark 1 (Mean value theorem) Let k’ be the slope between two points cq and cp, along the
dimension j, i.e., kI = |f(c®) — f(P)|/||c* — ®||. Assuming that the objective function is dif-
ferentiable, according to the Mean Value Theorem, a point ¢ exists between ¢® and c® such that

f ()]0 = k.

Straightforwardly, we consider the exponential distribution as a good fit because k; ; is non-
negative. Assuming all dimensions are independent and K; ~ exp(};), for Vi € Z, we have
P(K;j > 2; ;) = exp(—A\;Z; ;), and then the confidence deﬁned in Eq. (3) is given by

E [ I (=exp(=A2) (4)

Through Maximum Likelihood Estimation (MLE), we can use \; = 1/E;cz[k; ] as an estimation
of \;, which allows us to calculate the Eq. (4).

3.3. Applying Bayesian Posterior Prediction

In addition to using the MLE to fit the exponential distributions, we can take a step forward and treat
the As inside exponential distributions as latent variables and perform posterior prediction. Inside a
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Figure 1: Visualisations of the partition results on four test functions with the estimated distribution
of derivatives and their 95-th percentiles. The distributions are estimated via MLE based
on different sampling strategies with the same amount of function evaluations.

subspace ¢, we are interested in the probability of the local Lipschitz constant greater than a certain
value, which can be given as

P(Ky, > 2{ki.i € T}) = /P(Ki,j > 3N - P(\|{ki.i € T}) dA, )

where {k; ;,i € T} represents a set that contains all the sampled slopes along j-th dimension. As
we assume that the local Lipschitz constant is subject to the exponential distribution, it is natural to
choose a gamma distribution Gamma(\; a, 3) as the prior distribution. Accordingly, the posterior
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Table 1: Computing the confidences corresponds to different thresholds. ‘min’ and ‘LB’ stand for
the found minimum and approximated lower bound. ‘GT’ represents the ground truth
minimum, which is O for all test functions.

< GT < min <LB
Functions ~ #Dim. #Query  min LB
MLE PP MLE PP MLE PP
2 Se3 29e-5 -1.68 0.0164% 0.0155% 0.02%  0.02% 0 0
Schwefel 3 le4 43e-5 -2.03 0.007%  0.006%  0.01%  0.01% 0 0
4 2e4 5.8e-5 -2.7 0.005%  0.003% 0.006% 0.006% 0 0
2 Se2 4e-6 4451  41.23%  37.46% 41.23% 37.46% 0.03% 0.01%
Rosenbrock 3 le3 l.4e-3 -179.01 2498%  1836% 2541% 18.82% 0 0
4 2e3 2.1e-3  -59.76  16.16% 9.87% 17.1%  11.02% 0 0
2 Se2 1.9¢-4 -0.083 2.97% 1.12% 3.2% 1.12% 0 0
Rastrigin 3 le3 2.8e-4 -0.13 0.17% 0.08% 026%  0.16% 0 0
4 2e3 3.7e-4  -0.16 0.25% 0.06% 035%  0.12% 0 0
2 2e2 2.7e-3  -0.01 0 0 0.54%  0.54% 0 0
Ackley 3 Se2 2.8e-3  -0.01 0 0 023%  0.23% 0 0
4 le3 7.4e-3  -0.03 0 0 0.05%  0.05% 0 0

distribution is also a gamma distribution given by

P(A[{kiy,i € T}) = Gamma(A; Q + o, B+ > ki)

i€Z
6)
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By substituting P(K; j > 2|\) = exp(—AZ) and Eq. (6) into Eq. (5), we can get
) . B+ ierkiy )Q+a

P(K; ; ki i, I} = - ’A . 7
(Kiy > 3lby i € 7)) = (Gt @

4. Empirical Study

We evaluate the confidence estimation on different multi-dimensional test functions, including the
Rosenbrock function, Rastrigin function, Ackley function and Schwefel function. The domain range
for the Rosenbrock, Rastrigin, and Ackley functions is [-5,5], while the Schwefel function is eval-
uated within [-500,500]. Following the implementation given by Wang et al. [7], we adopt the DI-
RECT-I to find the minimum and approximate the lower bound. In addition, we utilise the recorded
slope values to estimate the distribution of the first-order derivative and compute the confidence
with respect to different thresholds.

In Fig. 1, we provide visualisations of the 2-D case of each test function. The function land-
scapes and the partitions are given in the left column, and the distributions corresponding to each
dimension obtained via MLE and DIRECT are plotted on the right. Here, DIRECT-I is carried
out with up to 2500 function evaluations, and we also performed grid and random sampling on the
first-order derivative to estimate the distributions for comparison. Compared to the grid and ran-
dom sampling, using DIRECT-1 results in a long-tailed distribution with higher density on the left.
This distinction could potentially lead to an underestimation of the likelihood of a larger Lipschitz
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constant. In Tab. 1, we compare the confidence based on MLE given in Eq. (4) with the poste-
rior prediction given in Eq. (7). To prevent the global minimum from being located in the initial
query via DIRECT-I, we adjust the domain of the Ackley and Rastrigin functions from [-5,5] to
[-5,4]. Based on the same records, we can see that posterior prediction could provide more accurate
confidence than MLP.

5. Conclusion

In this paper, we propose to incorporate a probabilistic assessment of the reliability of DIRECT
optimisation with a fixed computational budget. During the optimisation, we propose to view the
recorded slopes as a sampling on the first-order derivative and perform Bayesian posterior prediction
to compute a confidence score about whether the ground truth would exceed a threshold. Our
empirical study demonstrates the feasibility and effectiveness of the proposed method, but it also
reveals that DIRECT sampling could introduce bias when fitting the distribution of the derivative.
In future work, we aim to refine the distribution estimation and provide a more precise confidence
score prediction.
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