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Abstract

Reinforcement learning (RL) for continuous con-
trol often requires large amounts of online interac-
tion data. Value-based RL methods can mitigate
this burden by offering relatively high sample ef-
ficiency. Some studies further enhance sample
efficiency by incorporating offline demonstration
data to “kick-start” training, achieving promis-
ing results in continuous control. However, they
typically compute the Q-function independently
for each action dimension, neglecting interdepen-
dencies and making it harder to identify optimal
actions when learning from suboptimal data, such
as non-expert demonstration and online-collected
data during the training process. To address
these issues, we propose Auto-Regressive Soft Q-
learning (ARSQ), a value-based RL algorithm
that models Q-values in a coarse-to-fine, auto-
regressive manner. First, ARSQ decomposes the
continuous action space into discrete spaces in a
coarse-to-fine hierarchy, enhancing sample effi-
ciency for fine-grained continuous control tasks.
Next, it auto-regressively predicts dimensional
action advantages within each decision step, en-
abling more effective decision-making in continu-
ous control tasks. We evaluate ARSQ on two con-
tinuous control benchmarks, RLBench and D4RL,
integrating demonstration data into online train-
ing. On D4RL, which includes non-expert demon-
strations, ARSQ achieves an average 1.62× per-
formance improvement over SOTA value-based
baseline. On RLBench, which incorporates expert
demonstrations, ARSQ surpasses various base-
lines, demonstrating its effectiveness in learning
from suboptimal online-collected data.
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1. Introduction
Deep reinforcement learning (RL) has demonstrated remark-
able performance across various continuous control domains
(Haarnoja et al., 2018; Schulman et al., 2017). However,
these breakthroughs often come at the cost of extensive
online interactions, which are required for effective con-
vergence (Berner et al., 2019; Mnih et al., 2015). This
reliance on large-scale exploration poses a major challenge
in real-world applications, where data collection can be ex-
pensive, time-consuming, or even risky. To alleviate this
burden, value-based RL methods, which directly approx-
imate the Q-function rather than parameterizing a policy,
have gained popularity due to their improved sample effi-
ciency (Seyde et al., 2024; Tavakoli et al., 2021; Seyde et al.,
2023) and have shown advances in continuous control tasks
by discretizing each of the dimensions of continuous action
spaces (Seo et al., 2024). Moreover, some studies integrate
offline demonstration data into training to further accelerate
early learning, reducing the dependence on purely online
exploration (Ball et al., 2023). In this paper, we adopt this
training paradigm to address continuous control using value-
based RL, incorporating offline data into the online training
process.

For value-based RL, the discretization scheme results in an
exponentially large discrete action space, making RL train-
ing and exploration challenging. To mitigate this, existing
value-based methods often estimate the Q-value for each
action dimension independently (Metz et al., 2017; Seyde
et al., 2023). However, this simplification comes with a limi-
tation—it neglects interdependencies between action dimen-
sions, potentially leading to suboptimal decision-making.
When training data exhibits multiple modes, such as a mix
of optimal and suboptimal demonstrations, independently
estimating Q-values can bias action selection toward the
most frequent behaviors rather than the truly optimal ones.
This limitation is particularly pronounced in the early stages
of learning, when the agent relies heavily on imperfect of-
fline data and lacks sufficient online refinement.

Consider a simple one-step decision-making task with two-

Project page is https://sites.google.com/view/
ar-soft-q.
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(a) An example dataset for a one-step
decision-making environment.
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(b) Q function given by independent ac-
tion decomposition.
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(c) Q function given by auto-regressive
action decomposition (Ours).

Figure 1. A motivating example of how Q decomposition influences policy training, as detailed in Appendix C.1.

dimensional actions (a1, a2) ∈ A = [−1, 1]2 ⊂ R2, shown
in Fig. 1, where an agent selects an action (a1, a2) given
state s and receives a reward r before the episode terminates.
Suppose the training dataset consists of three distinct modes:
one optimal mode with r = 1, two suboptimal modes with
r = 0.1 and r = −1, with the latter occurring more fre-
quently. If the suboptimal modes are more prevalent in
the dataset, conventional Q-learning approaches that esti-
mate action dimensions independently, i.e., Q(s, ai), could
undervalue the optimal mode. This bias can hinder the cor-
rect identification and reinforcement of the optimal action
mode, leading to slow convergence and degraded policy
performance.

To address this issue, we propose Auto-Regressive Soft Q-
learning (ARSQ), a novel approach that captures cross-
dimensional dependencies in discretized high-dimensional
action spaces. Instead of treating each dimension inde-
pendently, ARSQ adopts an auto-regressive structure, se-
quentially estimating advantages for each action dimension
conditioned on the previously selected dimensions. This
allows the method to better model interdependencies, ensur-
ing that correlated action dimensions are jointly optimized
rather than selected in isolation. Additionally, ARSQ adopts
a coarse-to-fine hierarchical discretization strategy inspired
by CQN (Seo et al., 2024), further enhancing sample effi-
ciency for fine-grained continuous control. We theoretically
show that the original Q function can be expanded into
an auto-regressive formulation with dimensional advantage
estimation under the framework of soft Q-learning. Our ap-
proach integrates these insights into an auto-regressive soft
Q-network, which is specifically designed for continuous
control tasks.

To evaluate ARSQ, we conduct extensive experiments on
the D4RL and RLBench continuous control benchmarks,
challenging it against a variety of widely used reinforcement

learning and imitation learning baselines. Results indicate
that ARSQ consistently surpasses these baselines, achiev-
ing up to 1.62× performance over existing value-based RL
when trained with suboptimal demonstrations on D4RL. Ab-
lation studies further highlight the significance of ARSQ’s
key components, confirming its effectiveness in continuous
control tasks.

Our contributions include:

• We extend Soft Q-learning framework to value-based
reinforcement learning with dimensional advantage
estimation.

• We propose the ARSQ algorithm to capture dependen-
cies in action dimensions and enhance learning from
suboptimal data.

• Through extensive experiments, we demonstrate that
ARSQ can learn better policies when data suboptimal-
ity arises from either offline datasets or data collected
online.

2. Related Works
Value-based RL for Continuous Control. Despite their
inherently straightforward critic-only framework, value-
based reinforcement learning (RL) algorithms have achieved
notable success (Mnih et al., 2015; Silver et al., 2017; Schrit-
twieser et al., 2020; Seyde et al., 2024; Seo et al., 2024).
Although these algorithms are primarily designed for dis-
crete action spaces, recent efforts have sought to adapt them
to continuous control by discretizing the continuous action
space (Tavakoli et al., 2018; Seyde et al., 2023). However,
the curse of dimensionality remains a significant challenge,
as the number of discretization bins increases exponentially
with the action dimension (Lillicrap, 2015). To address
this issue, some studies have modified the Markov Decision
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Process (MDP) of the environment, transforming it into a
sequential decision-making problem along the action dimen-
sion (Metz et al., 2017; Chebotar et al., 2023). Other ap-
proaches treat each action dimension independently, gener-
ating the Q function separately for each dimension (Tavakoli
et al., 2018; 2021; Seyde et al., 2023; 2024), akin to treating
each action dimension as a multi-agent RL problem (Foer-
ster et al., 2018; Yu et al., 2022). Recent research (Seo et al.,
2024) has employed a coarse-to-fine discretization approach
to improve sample efficiency. However, treating each action
dimension independently may disrupt the correlation be-
tween different action dimensions, potentially diminishing
performance in policy optimization. Some studies (Seo &
Abbeel, 2024) have attempted to solve this issue through
action sequence prediction. Our approach generates actions
in an auto-regressive manner, considering the correlations
between dimensions and improving policy learning, which
is orthogonal to (Seo & Abbeel, 2024).

Online RL with Offline Demonstration. Deep reinforce-
ment learning often requires a large amount of online inter-
actions to achieve convergence (Berner et al., 2019; Mnih
et al., 2015). To address this challenge, many methods
have been proposed that leverage offline demonstrations to
guide online exploration and accelerate policy training (Ra-
jeswaran et al., 2018; Ball et al., 2023). Some approaches
involve performing offline RL pretraining before initiating
online RL training (Lee et al., 2022; Nakamoto et al., 2023;
LEI et al., 2024; Hu et al., 2024). However, these approaches
often depend on expensive offline pretraining. To mitigate
this, some works explore incorporating offline demonstra-
tion data directly into the training process. One strategy
initializes the replay buffer with offline data (Hester et al.,
2018; Ball et al., 2023), while another balances sampling
between online and offline data to improve training stabil-
ity (Zhang et al., 2023; Hansen et al., 2023). Additionally,
certain methods explicitly introduce a behavior cloning loss
to leverage high-quality demonstrations for better guidance
(Rudner et al., 2021; Rajeswaran et al., 2018; Nair et al.,
2018). In this work, we adopt the paradigm of integrating
offline demonstrations into training to enhance sample effi-
ciency in continuous control tasks. Specifically, we improve
value-based RL by introducing an auto-regressive structure
that sequentially estimates advantage for each action dimen-
sion. This design enables better handling of suboptimal
data, whether from offline demonstrations or trajectories
collected during training.

3. Preliminaries
3.1. Problem Formulation

In this paper, we consider the standard RL setting with
the addition of a pre-collected dataset D for continuous
control. The problem can be represented as MDP, defined

by the tuple (S,A, γ, p, r, d0). Here, S is the continuous
state space, A is the continuous action space, γ ∈ (0, 1) is
the discount factor, p(s′ | s, a) is the transition dynamics,
r(s, a) is the reward function, and d0(s) is the distribution
of the initial state. In addition to interacting with the envi-
ronment online, we assume access to a pre-collected dataset
D = {(si, ai, ri, s′i)}, which can substantially reduce sam-
ple complexity and provide broader state-action coverage.

3.2. Soft Q Learning

To improve policy exploration, maximum entropy RL en-
hances the reward by adding an entropy term (Ziebart et al.,
2008; Haarnoja et al., 2017; 2018), so the optimal policy
seeks to maximize entropy at every state it visits. The ob-
jective is defined as

J(π) =
T∑

t=0

E(st,at)∼ρπ
[r(st,at) + αH(π(·|st))] (1)

where H is entropy, T is the episode length and ρπ is the
trajectory distribution induced by policy π. The temperature
parameter α dictates how much importance is placed on
the entropy term in comparison to the reward. Let the soft
Q-function and soft value function defined as:

Q∗
soft(st,at) = rt+

E(st+1,... )∼ρπ

[ ∞∑
l=1

γl (rt+l + αH (π∗(·|st+l)))

]
(2)

V ∗
soft(st) = α log

∫
A
exp

(
1

α
Q∗

soft(st,a
′)

)
da′ (3)

Then the optimal policy for Eq. (1) is given by

π∗(at|st) = exp

(
1

α
(Q∗

soft(st,at)− V ∗
soft(st))

)
(4)

Similar to the standard Q-function and value function, the
Q-function can be connected to the value function at a future
state using a soft Bellman equation.

Q∗
soft(st,at) = rt + γEst+1∼p(st,at) [V

∗
soft(st+1)] (5)

The proof can be found in (Ziebart et al., 2008; Haarnoja
et al., 2017).

4. Method
In this section, we begin by discussing the process of dis-
cretizing multi-dimensional actions in a coarse-to-fine man-
ner. Building on this, we extend the soft Q-learning theory
with a focus on the dimensional soft advantage. Subse-
quently, we introduce our Auto-Regressive Soft Q-learning
(ARSQ) algorithm, which is overviewed in Fig. 2.
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Figure 2. The ARSQ algorithm. The action space is discretized using a coarse-to-fine approach. By predicting dimensional soft advantages,
ARSQ generates actions in an auto-regressive manner within a single decision-making step.

4.1. Coarse-to-fine Action Discretization

To apply Q-learning (Mnih et al., 2015) in a continuous
domain, a straightforward approach is to discretize the ac-
tion space (Tang & Agrawal, 2020; Seo et al., 2024). For a
continuous action of d dimensions ac = (a1c , a

2
c , . . . , a

d
c) ∈

RD, the discretized action a = (a1, a2, . . . , aD) can be
represented by

ad = argmax
i
|adc − bi| (6)

where b = (b1, . . . , bB) are the centers of B discretization
intervals, or bins, which typically provide a uniform separa-
tion of the given action space. However, obtaining a finer
separation of the action space necessitates a greater number
of bins, thereby increasing the computational load when
assessing the Q function for each discrete action bin.

To address this issue, we can apply a coarse-to-fine action
discretization approach (Seo et al., 2024), similar to the
method used in (Yan et al., 2015) for computer vision, as
illustrated in Fig. 2. With L levels and B uniform separation
bins at each level, the discrete action for dimension d at level
l is expressed as:

ad,l = ⌊
ad −

∑l−1
i=1 B

L−iad,i

BL−l
⌋ (7)

Here, ⌊·⌋ represents the floor function.

During inference, the policy generates discrete actions
progressively through each level (a⟨·⟩,1,a⟨·⟩,2, · · · ,a⟨·⟩,L).
These are then combined to produce the final discrete action.

4.2. Dimensional Soft Advantage for Policy
Representation

Building on action discretization, we initially extend soft
Q-learning to discrete spaces. The soft value function is

expressed as

V ∗
soft(s) = α log

∑
a′∈A

exp

(
1

α
Q∗

soft(s,a
′)

)
(8)

And we omit the subscript t for st and at To further stream-
line the expression of the policy, we define the soft advan-
tage.

Definition 4.1 (Soft Advantage). The soft advantage of a
at s is given by

A∗(s,a) = Q∗
soft(s,a)− V ∗

soft(s) (9)

Similar to the advantage in policy gradient-based RL algo-
rithms, the soft advantage assesses how much taking action
a at state s is beneficial. Thus, the optimal policy in Eq. (4)
can be expressed as

π∗(a|s) = exp

(
1

α
A∗(s,a)

)
(10)

Considering the multi-dimensional action space, it still re-
mains necessary to use a neural network to output BL×D Q
values in the final layer, as per the DQN (Mnih et al., 2015).

However, outputting such a large number of Q values im-
poses a significant computational burden on the neural net-
work. Inspired by auto-regression (Brown et al., 2020), we
address this problem by make the policy π generate action
a = (a1, a2, . . . , aD) auto-regressively along the action
dimensions.

For clarity, we treats discrete action discussed in Sec. 4.1
in one level. The multi-level coarse-to-fine discrete action
can be considered as additional action dimensions, without
compromising generalization. We first define the dimen-
sional soft advantage to represent the auto-regressive policy
at dimension d.
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Definition 4.2 (Dimensional Soft Advantage). The dimen-
sional soft advantage of the action ad at state s, consid-
ering the previous generated dimensional actions a−d =
(a1, · · · , ad−1), is expressed by

π(ad|s,a−d) ∝ exp

(
1

α
Ad(s,a−d, ad))

)
(11)

However, the dimensional soft advantage is not normalized
for each action dimension d. We propose the following
theorem to establish a connection between the dimensional
soft advantage and the soft advantage.

Theorem 4.3. If the dimensional soft advantage
Ad(s,a−d, ad) satisfies

∑
ad

exp

(
1

α
Ad(s,a−d, ad)

)
= 1 (12)

for all dimension d, then the soft advantage can then be
expressed as the summation of the dimensional soft advan-
tages

D∑
d=1

Ad(s,a−d, ad) = A(s,a) (13)

Proof. See Appendix A.

Additionally, Eq. (12) shows that the exponential of the
dimensional soft advantage represent a valid probability
distribution. Using Eq. (11) together with Theorem 4.3,
the dimensional soft advantage serves as a bridge between
policy representation and Q prediction.

Since we do not introduce additional elements in policy
optimization, the Q-iteration follows the same update rule
as soft Q-learning. Based on Eq. (5), we have

Vsoft(st)+A(st,at)← rt+γEst+1∼p(s) [Vsoft(st+1)] (14)

The maximum entropy policy described in Eq. (4) can be
obtained by repeatedly applying Eq. (14) until it converges.

4.3. Auto-Regressive Soft Q-learning

Building on the theory outlined in Sec. 4.2, we introduce the
Auto-Regressive Soft Q-learning (ARSQ) algorithm. The
pseudo code for the ARSQ algorithm is presented in Al-
gorithm 1. We will discuss the various design choices of
ARSQ.

Behavior Cloning Objective. To leverage offline demon-
stration data during online training, we introduce an ad-
ditional behavior cloning loss term. Following previous
works (Hester et al., 2018; Seo et al., 2024), we encourage

Algorithm 1 Auto-Regressive Soft Q Algorithm (ARSQ)

Initialize θ1,2, ϕ1,2 for Aθi and V ϕi

soft
Assign target parameters θi, ϕi ← θi, ϕi.
Offline dataset D, replay bufferR ← D.
for each epoch do

for each environment step do
select at with Aθ1 and Aθ2 (10, 16)
st+1 ∼ p(st+1|st,at)
R ← R∪ {st,at, rt, st+1}

end for
for each gradient step do

Sample mini-batch bD, bR from D,R
Calculate LD = LRL + βLBC with bD (15, 18)
Calculate LR = LRL with bR (18)
Update mθi according to ∇̂θi(LD + LR)
Update Vs,ϕi

according to ∇̂ϕi
(LD + LR)

Update target networks θi ← ρθi + (1 − ρ)θi and
ϕi ← ρϕi + (1− ρ)ϕi.

end for
end for

actions present in the offline dataset to be preferred over
other actions. Specifically, we define the loss as

Ld
BC =

∑
ad

max(Ad,θi(s,a−d
e , ad)

−Ad,θi(s,a−d
e , ade), Cm)

(15)

where ae denotes the expert action observed in the offline
dataset, and Cm is a hyper-parameter controlling the margin.
This objective encourages the soft advantages of expert
actions to be at least Cm higher than those of other actions.

Policy Representation. As discussed in Sec. 4.2, ARSQ
predicts dimensional soft advantages, which function as
both components of the Q function and policy representa-
tion. The network architecture is illustrated in Fig. 3. In
practical design, the soft value Vsoft and the dimensional
soft advantage Ad are predicted using two separate neu-
ral networks. The advantage prediction network estimates
the dimensional soft advantage for each action dimension,
based on the partially generated action from previous di-
mensions, creating an auto-regressive sequence. In practical
design, we use a globally-shared MLP in the advantage net-
work, with separate heads to predict the dimensional soft
advantages.

Another challenge is applying the constraint of the dimen-
sional soft advantage as per Eq. (12). Here, we enforce a
hard constraint by normalizing each output head through
log-sum-exp subtraction, ensuring consistency across out-
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Figure 3. Network architecture of ARSQ. The soft value Vsoft and the dimensional soft advantage Ad are predicted by two separate
networks. The advantage network utilizes a shared backbone, and advantage constraints are applied to its output.

puts.

Ad(st,a
−d, ad) = ud(st,a

−d, ad)

− αlog
∑
ad′

exp

(
1

α
ud(st,a

−d, ad
′
)

)
(16)

where ud is the output of the d-th output head.

Furthermore, to stabilize training and address the over-
estimation problem (Fujimoto et al., 2018; van Hasselt et al.,
2016), we implement a double Q-learning approach with
two separate value networks and their corresponding tar-
get networks. Specifically, we maintain two online value
networks V ϕ1

soft and V ϕ2

soft , along with their respective target

networks V
ϕ1

soft and V
ϕ2

soft . Each target network is updated
as an exponential moving average (EMA) of its respective
online network parameters. The value target is then com-
puted by taking the minimum of the two target networks’
predictions

yt = γEst+1∼p(s)

[
min

(
V

ϕ1

soft(st+1), V
ϕ2

soft(st+1)
)]

(17)

Thus the resulting optimization objective becomes

LRL =
1

2

(
V ϕi

soft(st) +Aθi(st,at)− yt

)2
(18)

where Aθi is the soft advantage function parameterized by
θi.

Auto-regressive Conditioning. In Sec. 4.2, we explained
the process of handling discrete action in one coarse-to-
fine level. With multi-level coarse-to-fine action discretiza-
tion, the auto-regressive conditioning encompasses two as-
pects. Dimensional conditioning refers to generating actions

for each dimension in an auto-regressive sequence, while
coarse-to-fine conditioning involves generating actions for
each dimension from coarse to fine. In practice, we imple-
ment coarse-to-fine conditioning prior to dimensional condi-
tioning. Specifically, dimensional conditioning serves as the
inner conditioning, while coarse-to-fine conditioning acts as
the outer conditioning across levels. We explore swapping
the order of conditioning in Sec. 5.4, and the results indicate
that the current design better captures interdependencies
between action dimensions.

5. Experiment
We design our experiments to investigate the following ques-
tions: (i) What is ARSQ’s performance when the offline
dataset is suboptimal? (ii) What is ARSQ’s performance
when online collected data is suboptimal? (iii) How do
various design factors of ARSQ affect the performance?

Benchmarks. We evaluate our approach on two continuous
control benchmarks: D4RL (Fu et al., 2020) and RLBench
(James et al., 2020). Both domains provide access to online
interaction data and a limited number of demonstrations,
enabling us to assess the performance of ARSQ in diverse
settings. We present representative results here due to lim-
ited space and leave full results in Appendix D.

Baselines. We use CQN (Seo et al., 2024), a state-of-the-
art value-based RL method for continuous control, as our
baseline. CQN employs a coarse-to-fine action selection
strategy and independently predicts Q-values for each action
dimension. Additionally, CQN trains using a combination
of online training and offline demonstrations. Besides, we
also include DrQ-v2 (Yarats et al., 2022), a renowned actor-
critic algorithm designed for vision-based RL, along with
its enhanced version, DrQ-v2+, as benchmarks. We also
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Figure 4. D4RL main results. mr, m, and me represent medium-replay, medium, and medium-expert, respectively.

feature ACT (Zhao et al., 2023) and a CQN-style behavior
cloning (BC) policy among our baselines. Details about the
baselines can be found in Appendix C.3.

5.1. Performance on D4RL

Main Results. To evaluate ARSQ’s performance when
the offline dataset is suboptimal, we consider three distinct
locomotion tasks from the D4RL benchmark, each with
three datasets of varying quality. The medium dataset is
gathered using a medium-level policy, whereas the medium-
expert dataset comprises a combination of medium-level and
expert demonstrations. The medium-replay dataset includes
data ranging from completely random to medium-level. The
input to the model consists of state representations, while
the output corresponds to torques applied at each hinge joint.
A dense reward is provided to encourage completing the
task, staying alive, and discourage vigorous actions that
consume excessive energy.

We evaluate ARSQ, CQN (Seo et al., 2024), and BC in
this setting. At the beginning of online training, the replay
buffer for both ARSQ and CQN is initialized with an offline
dataset, and online data is added as the training progresses.
Additionally, both ARSQ and CQN incorporate the BC
objective (Eq. (15)) towards offline dataset. The BC baseline
is trained solely offline using the offline dataset with the BC
objective. We report the converged performance of ARSQ,
CQN and BC, averaged over three random seeds.

As shown in Fig. 4, ARSQ exhibits outstanding performance
across all nine datasets, demonstrating its ability to effec-
tively identify suboptimal actions and learn more efficiently
from the available offline data. ARSQ surpasses CQN, par-
ticularly in the medium-replay and medium-expert datasets,
where optimal data is not predominant, highlighting that
ARSQ is less biased toward frequently observed suboptimal
actions. Notably, both ARSQ and CQN outperform BC,
indicating that conducting reinforcement learning online

enhances policy performance.

Figure 5. D4RL results on different demonstration quality aver-
aged over 3 tasks, with each task containing 3 datasets respectively.
We report the normalized return provided by D4RL.

Analysis on Demonstration Quality. To better investi-
gate the influence of dataset quality, we rank trajectories by
episode return for each dataset, and labeling the top 30%,
middle 30%, and bottom 30% of the data as offline demon-
strations. The behavior cloning objective is applied only
to these offline demonstrations. We report the converged
performance ARSQ, CQN and BC over three random seeds.
As illustrated in Fig. 5, ARSQ consistently outperforms
both CQN and BC across all three levels of demonstration
quality. Notably, when using the bottom 30% of data as of-
fline demonstrations, ARSQ achieves approximately 2.0×
the final performance of CQN. In contrast, with the lowest
demonstration quality, CQN performs slightly worse than
BC, revealing CQN’s sensitivity to demonstration quality,
which negatively affects its online training. These results
further validate the effectiveness of our method when using
suboptimal offline datasets.
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Figure 6. RLBench results on different tasks. Each experiment begins with 100 expert demonstrations, and all RL methods include a
behavior cloning objective.

5.2. Performance on RLBench

To further evaluate ARSQ’s performance, we focus on six
tasks from RLBench (James et al., 2020). The agent re-
ceives input as RGB images and proprioceptive states and
outputs the change in joint angles to control the robot arm.
Unlike D4RL, the reward is sparse, offering a binary value
(0 or 1) only at the final timestamp. Although each task is
provided with 100 expert demonstrations, the agent might
gather unsuccessful trajectories during its interaction with
the environment. This setup allows us to examine the per-
formance when the data collected online is suboptimal.

In this domain, we evaluate the performance of ARSQ,
CQN, DrQ-v2+, DrQ-v2, ACT and BC. All reinforcement
learning methods incorporate the behavior cloning objective
(Eq. (15)) towards expert demonstrations and successful
trajectories collected online. Results are averaged over three
random seeds.

As shown in Fig. 6, ARSQ demonstrates superior perfor-
mance compared to all other algorithms, highlighting its
effectiveness in online learning with suboptimal collected
data. Additionally, ARSQ exceeds ACT, highlighting the
importance of reinforcement learning in online training.

5.3. Performance under Fully Offline Setting

To further examine the performance of ARSQ, we conduct
experiments in a fully offline setting, where the algorithm
learns solely from a predetermined dataset. We utilize nine
locomotion datasets from D4RL, as outlined in Sec. 5.1. For
offline RL methods, we employ CQL (Kumar et al., 2020),
IQL (Kostrikov et al., 2022), TD3+BC (Fujimoto & Gu,
2021), Onestep RL (Brandfonbrener et al., 2021), and RvS-
R (Emmons et al., 2022) as baselines. For offline imitation
learning methods capable of handling suboptimal data, we
use filtered BC (Chen et al., 2021; Emmons et al., 2022),
Decision Transformer (Chen et al., 2021), and DWBC (Xu
et al., 2022) as baselines. For DWBC, We adopt its best
performance under “Setting 2” from its original paper (Xu
et al., 2022), which mark top 5% trajectories as expert tra-

jectories based on total reward, and we re-evaluate DWBC
under the same conditions on additional datasets.

The results are presented in Tab. 1. All data is sourced
from the respective papers, with the reevaluated DWBC
results marked by “*”. Both ARSQ and re-evaluated DWBC
are assessed using 10 trajectories over three random seeds.
ARSQ demonstrates superior overall performance compared
to the other baselines, indicating its capability to effectively
manage suboptimal data under fully offline setting.

5.4. Ablation Studies

In this section, we evaluate the impact of key design factors
in ARSQ: auto-regressive conditioning (Fig.2) and advan-
tage prediction network (Fig.3).

Ablation on Auto-regressive Conditioning. We consider
several variants of ARSQ on auto-regressive conditioning.

• Swap: We reverse the conditioning order, applying
dimensional conditioning first, followed by coarse-to-
fine conditioning.

• w/o CF Cond.: We remove the coarse-to-fine condi-
tioning and output actions at multiple levels simultane-
ously.

• w/o Dim Cond.: We remove the dimensional condition-
ing and instead output all action dimensions simultane-
ously at each level.

• w/o CF: We replace the coarse-to-fine structure entirely
by discretizing each action dimension into BL bins and
then applying dimensional conditioning.

• Plain: We remove both the coarse-to-fine structure and
dimensional conditioning.

We report results on hopper-medium-expert and hopper-
medium-replay from D4RL, as well as Open Oven from
RLBench, all evaluated across three random seeds. As
depicted in Fig. 7, Swap demonstrates a slight decline in
performance, underscoring the effectiveness of the current
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Table 1. Performance under fully offline setting.

Dataset CQL IQL TD3+BC Onestep RL RvS-R Filt. BC DT DWBC ARSQ (Ours)

halfcheetah-m 44.0 47.4 48.3 48.4 41.6 42.5 42.6 *41.4 43.7 ± 0.6
hopper-m 58.5 66.3 59.3 59.6 60.2 56.9 67.6 *56.0 99.2 ± 0.5
walker2d-m 72.5 78.3 83.7 81.8 71.7 75.0 74.0 *72.3 81.2 ± 0.9
halfcheetah-mr 45.5 44.2 44.6 38.1 38.0 40.6 36.6 38.9 41.1 ± 0.1
hopper-mr 95.0 94.7 60.9 97.5 73.5 75.9 82.7 73.0 90.7 ± 4.4
walker2d-mr 77.2 73.9 81.8 49.5 60.6 62.5 66.6 59.8 74.0 ± 2.6
halfcheetah-me 91.6 86.7 90.7 93.4 92.2 92.9 86.8 *93.1 92.4 ± 1.2
hopper-me 105.4 91.5 98.0 103.3 101.7 110.9 107.6 *110.4 110.9 ± 1.0
walker2d-me 108.8 109.6 110.1 113.0 106.0 109.0 108.1 *108.3 107.9 ± 0.3

Total 698.5 692.4 677.4 684.6 645.5 666.2 672.6 653.2 741.1
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Figure 7. Ablation on auto-regressive conditioning in D4RL (left)
and RLBench (right).

conditioning order design. Additionally, removing any of
the components degrades performance to varying degrees.
When all components are removed, as in Plain, the per-
formance is at its lowest, emphasizing the significance of
dimensional and coarse-to-fine action generation.

Ablation on Shared Backbone. The advantage network
of ARSQ utilizes a shared backbone to reduce the number
of parameters and speed up the learning process. To assess
the impact of this choice, we introduce two variants. The
network architecture of these two variants can be found in
Appendix C.3.

• Separate: We employ separate networks for each action
dimension.

• Level Shared: We employ shared networks for each
coarse-to-fine level.

We report results on hopper-medium from D4RL and Open
Oven from RLBench over three random seeds. As shown
in Fig. 8, the standard ARSQ consistently performs well in
both environments. In contrast, using either a level-shared
or separate backbone results in diminished performance.
This demonstrates the effectiveness of the shared backbone
design.
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Figure 8. Ablation on shared backbone in D4RL (left) and RL-
Bench (right).

6. Conclusion
In this paper, we introduced Auto-Regressive Soft Q-
learning (ARSQ), a novel value-based RL approach tailored
for continuous control tasks with suboptimal data. ARSQ
addresses the limitations of existing value-based methods
by adopting an auto-regressive structure that sequentially
estimates soft advantage for each action dimension, thereby
capturing cross-dimensional dependencies. Through empiri-
cal evaluations, we show that ARSQ significantly surpasses
existing methods, highlighting its effectiveness in learning
from suboptimal data.

For future directions, an adaptive coarse-to-fine discretiza-
tion can be used to balance control granularity with the
overhead of additional bins. Another approach to explore is
grouping unrelated dimensions to shorten the conditioning
chain length, thereby speeding up computation.
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A. Proof of Theorem 4.3
First, we express the policy using conditional probability, and then replace it with Eq. (11).

π(a|s) =
D∏

d=1

π(ad|s,a−d)

=

D∏
d=1

exp
(
1
αA

d(s,a−d, ad)
)

Z(s,a−d)

=

∏D
d=1 exp

(
1
αA

d(s,a−d, ad)
)∏D

d=1 Z
d(s,a−d)

=
exp

(
1
α

∑D
d=1 A

d(s,a−d, ad)
)

∏D
d=1 Z

d(s,a−d)

(19)

We can then apply Eq. (12), resulting in

π(a|s) = exp

(
1

α

D∑
d=1

Ad(s,a−d, ad)

)
(20)

Recall that the policy π(a|s) can be represented using the soft advantage as shown in Eq. (10). Therefore, we have
D∑

d=1

Ad(s,a−d, ad) = A(s,a) (21)

B. Implementation Details
B.1. Action Selection

As illustrated in Algorithm 1, the action selection process receives inputs from Aθ1 and Aθ2 and produces at. Eq. (10) and
Eq. (16) describe the action selection process utilizing a single soft advantage network. To leverage the benefits of a double
network, we employ two advantage networks to generate more precise actions. This process is detailed in Algorithm 2.

Algorithm 2 ARSQ Action Selection with Double Q Network

Input: parameter θ1,2 for Aθi , state st
Output: action at
Initialize output action at = ∅
for each action dimension d do

Compute Ad,θi(st,at, a
d) for each ad (16)

Compute Ad(ad) = mini A
d,θi(st,at, a

d)
Compute π̃d(ad) = exp

(
1
αA

d(ad)
)

(10)

Normalize π̃d by πd(ad) = π̃d(ad)∑
ad′ π̃d(ad′ )

Sample discrete action at dimension d with πd(ad)
Append action at = at ∪ {ad}

end for

B.2. Variant of Behavior Cloning Objective

As discussed in Sec. 4.3, we incorporate an behavior cloning objective to effectively utilize offline demonstration data during
online training, as defined in Eq. (15).

Following prior works (Kumar et al., 2020), we also employ a variant of this objective, expressed as:

Ld
BC−v = max

log
∑

ad ̸=ad
e

exp
(
Ad,θi(s,a−d

e , ad)
)
−Ad,θi(s,a−d

e , ade), Cm

 (22)
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where ade is the expert action and Cm is a predefined margin constant.

We observe that this variant objective achieves better performance in scenarios where action modes are concentrated, such as
in the medium and medium-expert series of datasets in D4RL. Consequently, we adopt this variant objective when working
with such datasets.

B.3. Network Architecture

In RLBench tasks, observations consist of a combination of RGB images and low-dimensional states. To compute the
dimensional soft advantage for a given dimension, we first input the RGB images and low-dimensional states into a
Convolutional Neural Network (CNN) (Li et al., 2022) encoder and a Multi-Layer Perceptron (MLP) (Haykin, 1998)
encoder, respectively, to extract feature representations. These representations are then used to predict the soft value.
Concurrently, the feature representations are combined with actions from previous dimensions and coarse-to-fine levels to
create auto-regressive conditioning. An MLP-based shared backbone and output head are then utilized to determine the
dimensional soft advantage for the given dimension.

In D4RL tasks, observations consist solely of low-dimensional states, and feature representations are derived directly from
these states.

B.4. Hyper-parameters

Table 2. Typical hyper-parameters of ARSQ in D4RL and RLBench.

Hyper-parameter D4RL RLBench

Image resolution / 84× 84× 3
Image augmentation / RandomShift
Frame stack 1 8

CNN - Encoder / Conv (c=[32, 64, 128, 256], s=2, p=1)
Backbone Linear (512, 512, 512) Linear (512, 512, 512, bias=False)
Output Head Layers 1 1
Activation Tanh SiLU & LayerNorm

Coarse-to-fine Levels 2 3
Coarse-to-fine Bins 7 5

Batch Size 512 512
Optimizer Adam AdamW (weight decay = 0.1)
Learning Rate 3e-4 5e-5
Temperature Coefficient α 0.01 0.001
Target Critic Update Ratio (τ ) 0.005 0.02
BC Margin Cm -1 -0.01
Action Roll-out Network Current Target

The hyperparameters of ARSQ are presented in Table 2. We provide the typical hyperparameters for ARSQ in D4RL
(hopper-medium) and RLBench (Open Oven). In RLBench, ARSQ employs RandomShift (Yarats et al., 2022) for image
augmentation. Additionally, ARSQ utilizes SiLU (Hendrycks & Gimpel, 2016) and LayerNorm (Ba, 2016) as activation
functions in RLBench.

C. Experiment Setup
C.1. Motivating Example Setup

As introduced in Sec. 1 and illustrated in Fig. 1, we consider a motivating example to demonstrate the impact of Q
decomposition on policy training. The dataset is depicted in Fig. 1a, with each point to be a data point in the dataset. The
color of the data points indicates the reward of the data point. To illustrate the Q function of value-based RL algorithms, we
first discretize the action space with 2 bins in each action dimension.
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• Q function given by independent action decomposition is an example of DecQN (Seyde et al., 2023), as well as in
CQN (Seo et al., 2024), which features just a single coarse-to-fine level. In this setting, we employ separate tabular Q
functions, Q(s, a1) and Q(s, a2), for action dimension 1 and action dimension 2. The Q function is learned by gradient
descent.

• For the Q function obtained through auto-regressive action decomposition, we employ both tabular soft advantage
functions, A1(s, a1) and A2(s, a1, a2) for action dimension 1 and action dimension 2, and a tabular soft value function
Vsoft(s). The Q value reported in Fig. 1c is a sum of the soft value and the dimensional soft advantage of the
corresponding dimensions, i.e., Q(s, a1, a2) = Vsoft(s) +A1(s, a1) +A2(s, a1, a2). The soft advantage functions and
the soft value function are simultaneously learned through gradient descent.

C.2. Environment and Dataset

D4RL Gym Environment. D4RL (Fu et al., 2020) provides datasets for various tasks to evaluate the performance of
reinforcement learning. In this context, we use 3 Gym Locomotion tasks and datasets from D4RL to assess the performance
of ARSQ and other baselines. These tasks are illustrated in Fig. 9. The agent’s observations include its states, such as the
angle and velocity of each rotor. The agent’s actions consist of torques applied between the robot’s links, constrained within
the range of (−1, 1). The reward is dense, offering incentives for task completion and survival, while penalizing excessive
energy-consuming actions.

Figure 9. D4RL Gym tasks used in experiment.

D4RL Dataset. In D4RL, we use the medium-replay, medium, and medium-expert datasets for tasks involving half-cheetah,
hopper, and walker2d. In Section 5.1, to examine the impact of dataset quality, we rank trajectories based on episode returns
within these nine datasets. Specifically, we compute the total reward for each data chunk within each dataset. We then rank
these data chunks and select the top, middle, and bottom 30% accordingly. This is akin to rank trajectories but is easier to
handle.

To better demonstrate the suboptimal nature of the datasets, we plot a histogram of the data chunk rewards, as shown in
Fig. 10.

RLBench Environment. RLBench (James et al., 2020) serves as a benchmark and learning environment for robot control.
We have selected 20 tasks from RLBench and present results for 6 of them in Sec. 5. An illustration of the environment can
be seen in Fig. 11. The input consists of RGB images with a resolution of 84 × 84, captured from four camera angles: front,
wrist, left-shoulder, and right-shoulder, along with a history of the past seven observations. The output specifies the change
in joint angles at each time step, utilizing the delta JointPosition mode provided by RLBench. In our experiments, we use a
binary sparse reward system (0 or 1), which is awarded only at the final timestamp of an episode to indicate task success.

C.3. Baselines and Evaluation Details

Main Results Baselines. As mentioned in Sec. 5.1, within D4RL, we utilize the implementation from (Seo et al., 2024)
and modify its CNN-based encoder to an MLP-based encoder as the CQN baseline. The BC baseline originates from CQN
but operates with the RL learning objective turned off and without any online environment interaction.
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Figure 10. Histogram of reward in D4RL datasets.

In RLBench, we adopt DrQ-v2+, an optimized variant of DrQ-v2 proposed by (Seo et al., 2024), as our baseline. DrQ-v2+
incorporates several optimization strategies introduced in the CQN algorithm. Specifically, compared to DrQ-v2, DrQ-v2+
employs a distributional critic instead of a standard critic network, utilizes an exploration strategy with small Gaussian
noise, and features optimized network architectures and hyperparameters tailored for RLBench tasks. These enhancements
strengthen DrQ-v2+’s performance, making it a more robust baseline than DrQ-v2. Additionally, DrQ-v2+ has been
open-sourced by (Seo et al., 2024).

Ablation Study Baselines. As mentioned in Sec. 5.4, we utilize the Separate and Level Shared backbone baselines for an
ablation study to explore the effectiveness of the shared backbone in the advantage network. The network architectures of
these two baselines are illustrated in Fig. 12 and Fig. 13.

D. Additional Results
Sensitivity of Temperature Coefficient α. Our methods are derived from Soft Q-learning, which aims to achieve a
maximum-entropy policy. The temperature coefficient α in Eq. (1) affects the balance between maximizing policy entropy
and the reward from the environment. We conducted experiments to examine how varying α impacts policy learning.

As shown in Fig. 14, a very high α results in reduced performance and unstable training, whereas a very low α also hampers
policy improvement by restricting exploration.

Training Curves of D4RL Main Results. In Section 5.1, we discuss the converged performance of ARSQ, CQN, and BC.
The training curves for each task are shown in Fig. 15. ARSQ converges after approximately 25,000 to 50,000 environment
steps and generally outperforms the CQN and BC baselines across most tasks. This further demonstrates ARSQ’s strength
in managing suboptimal data.
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Figure 11. Example of RLBench tasks used in experiment.
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Figure 12. Network architecture of Separate backbone baseline in ablation study.

D4RL Results per Task for Different Demonstration Quality. In Sec. 5.1, we present the D4RL results, averaged over
all 9 datasets, based on varying demonstration quality. The results for each task are illustrated in Fig. 16. ARSQ consistently
outperforms the CQN and BC baselines in nearly every task, demonstrating its ability to maintain stable performance across
datasets of varying quality.

RLBench Results in All 20 Tasks. In Sec. 5.2, we present results for six selected tasks from RLBench. The complete
results for all 20 tasks are displayed in Fig. 17. These results indicate that ARSQ performs comparably or better across these
tasks, showcasing its ability to learn effectively even when the data collected online is not optimal.

E. Computational Cost Analysis
As discussed in Sec. 4.3, ARSQ generates actions in each dimension in an auto-regressive manner. To analyze the overhead,
we conducted experiments on both D4RL (hopper-medium) and RLBench (Open Oven) tasks. The training and inference
times for ARSQ and CQN were evaluated 1,000 times and averaged. These experiments were conducted on a single Nvidia
RTX 3090 graphics card.

The results are shown in Fig. 3. ARSQ exhibits similar training times to CQN, due to the parallel optimization implemented
and the batch training nature of the auto-regressive model. However, ARSQ experiences higher inference latency compared
to CQN. We aim to address this issue by grouping the action dimensions and outputting the grouped dimensional actions
auto-regressively, a solution we plan to explore in future work.

F. Performance under Fully Online Setting
In addition to the main experimental results presented in Sec. 5.1, we assess the performance of ARSQ in a fully online
setting. We compare the fully online reinforcement learning performance of ARSQ and CQN on the hopper task, using
PPO(Schulman et al., 2017) as a baseline for comparison. The results are depicted in Fig. 18, with all experiments conducted
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Figure 13. Network architecture of Level Shared backbone baseline in ablation study.
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Figure 14. Sensitivity of temperature coefficient α, evaluated on hopper-medium from D4RL and Open Oven from RLBench over three
random seeds.

using three random seeds. We also illustrate the performance of both vanilla and offline ARSQ using the one of the hopper
dataset, specifically hopper-medium-replay.

Online ARSQ achieves a similar converged performance to vanilla ARSQ, albeit requiring more environment steps. This
highlights the importance of using offline datasets to enhance sample efficiency. Furthermore, ARSQ with online interaction
achieves a higher final performance than in the offline setting, suggesting the necessity of online interaction to enhance
policy performance. Additionally, online ARSQ demonstrates greater sample efficiency than CQN and PPO, underscoring
its potential as a versatile reinforcement learning algorithm.

G. Error Analysis of Q Prediction and Action Discretization
To further examine the error introduced by action discretization, as discussed in Sec. 4, we designe a more complex case study
similar to Fig. 1. We create a one-step environment featuring a two-dimensional action space (a1, a2) ∈ A = [−1, 1]2 ⊂ R2.
The agent performs an action at the initial timestamp, receives a reward, and the episode concludes. The Q function’s ground
truth landscape, akin to the reward landscape, is illustrated in Fig. 19a. There is one optimal action mode, two sub-optimal
action modes, and two negative action modes.

We uniformly sample 2,000 data points from the environment to form a dataset. This dataset is then used to train agents with
independent Q decomposition for each action dimension, ARSQ without hierarchical coarse-to-fine action discretization,
and the standard ARSQ. The resulting Q landscapes are displayed in Fig. 19, and Q prediction errors are displayed in Fig. 20.
When independently decomposing Q for each action dimension, the agent learns a blurred Q landscape, complicating the
identification of optimal actions. ARSQ without coarse-to-fine action discretization produces a Q landscape similar to the
vanilla ARSQ but with more ”glitches,” likely because too many action bins make it difficult for the dataset to cover them
comprehensively. This underscores the importance of coarse-to-fine action discretization.

Furthermore, we sample 1,000 data points in the proposed environment and calculate the Q prediction error against the
ground truth for all three methods discussed, over three random seeds. The results are presented in Tab. 4. Independent Q
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Figure 15. Training curves of D4RL main results, evaluated over three random seeds.

decomposition results in a significant error increase compared to ARSQ and continuous Q learning. Additionally, ARSQ
without coarse-to-fine action discretization also results in higher Q error, further highlighting the necessity of our action
discretization strategy.
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Figure 16. D4RL results per task on different demonstration quality, evaluated over three random seeds.

Table 3. Computational time in D4RL and RLBench (ms).

D4RL RLBench

ARSQ Inference 4.1 32.1
ARSQ Training 12.2 290.5
CQN Inference 2.6 6.9
CQN Training 11.6 260.5

Table 4. Q prediction error with different action discretization strategy.

Discretization Method Error

Independent Decomposition 17.57 ± 0.67
ARSQ w/o Coarse-to-fine 0.50 ± 0.21
ARSQ 0.16 ± 0.02
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Figure 17. RLBench results in all 20 tasks.
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(a) Ground truth. (b) Independent action decom-
position.

(c) ARSQ w/o coarse-to-fine
discretization.

(d) ARSQ.

Figure 19. Visualization of Q prediction with different action discretization strategy.

(a) Independent action decom-
position.

(b) ARSQ w/o coarse-to-fine
discretization.

(c) ARSQ.

Figure 20. Q prediction errors with different action discretization strategy.
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