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ABSTRACT

The direct preference optimization (DPO) method has shown success in align-
ing text-to-image diffusion models with human preference. Previous approaches
typically assume a consistent preference label between final generated images and
their corresponding noisy samples at intermediate steps, and directly apply DPO to
these noisy samples for fine-tuning. However, we identify a significant issue with
this consistency assumption, as directly applying DPO to noisy samples from dif-
ferent generation trajectories based on final preference order may disrupt the op-
timization process. We first demonstrate the issues inherent in previous methods
from two perspectives: gradient direction and preference order, and then propose
a Tailored Preference Optimization (TailorPO) framework for aligning diffusion
models with human preference, underpinned by some theoretical insights. Our ap-
proach directly ranks the preference order of intermediate noisy samples based on
their step-wise reward, and effectively resolves the optimization direction issues
through a simple yet efficient design. Additionally, to the best of our knowledge,
we are the first to consider the distinct structure of diffusion models and leverage
the gradient guidance in preference aligning to enhance the optimization effective-
ness. Experimental results demonstrate that our method significantly improves the
model’s ability to generate aesthetically pleasing and human-preferred images.

1 INTRODUCTION

Direct preference optimization (DPO), which fine-tunes the model on paired data to align the model
generations with human preferences, has demonstrated its success in large language models (LLMs)
(Rafailov et al., 2023). Recently, researchers generalized this method to diffusion models for text-
to-image generation (Black et al., 2024; Yang et al., 2024a; Wallace et al., 2024). Given a pair
of images generated from the same prompt and a ranking of human preference for them, DPO
aims to increase the probability of generating the preferred sample while decreasing the probability
of generating another sample, which enables the model to generate more visually appealing and
aesthetically pleasing images that better align with human preferences.

Specifically, previous researchers (Yang et al., 2024a) leverage the trajectory-level preference to
rank the generated samples. As shown in Figure 1(a), given a text prompt c, they first sample a pair
of denoising trajectories [x0

T , . . . , x
0
0] and [x1

T , . . . , x
1
0] from the diffusion model, and then rank them

according to the human preference on the final generated images x0
0 and x1

0. It is assumed that the
preference order of (x0

0, x
1
0), at the end of the generation trajectory, can consistently represent the

preference order of (x0
t , x

1
t ) at all intermediate steps t. Then, the DPO loss function is implemented

using the generation probabilities p(x0
t−1|x0

t , c) and p(x1
t−1|x1

t , c) at each step t to fine-tune the
diffusion model, which is called the step-level optimization.

However, we notice that the above trajectory-level preference ranking and the step-level optimization
are not fully compatible in diffusion models. First, the trajectory-level preference ranking (i.e., the
preference order of final outputs (x0

0, x
1
0) of trajectories) does not accurately reflect the preference

order of (x0
t , x

1
t ) at intermediate steps. Considering the inherent randomness in the denoising pro-

cess, simply assigning the preference of final outputs to all the intermediate steps will detrimentally
affect the preference optimization performance. Second, the generation probabilities p(x0

t−1|x0
t , c)

and p(x1
t−1|x1

t , c) in two different trajectories are conditioned on different inputs, and this causes the
optimization direction to be significantly affected by the difference between the inputs. In particular,
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Figure 1: Framework overview of (a) previous method and (b) TailorPO. In the previous method,
the preference order is determined based on final outputs and used to guide the optimization of in-
termediate noisy samples in different generation trajectories. In contrast, we generate noisy samples
from the same input xt and directly rank their preference order for optimization.

if x0
t and x1

t are located in the same linear subspace of the diffusion model, then the optimization
of DPO probably increases the output probability of the dis-preferred samples. We conducted a
detailed theoretical analysis of these issues in Section 3.2.

Therefore, in this paper, we propose a Tailored Preference Optimization (TailorPO) framework
to fine-tune diffusion models with DPO, which addresses the aforementioned challenges. As Fig-
ure 1(b) shows, we generate two different noisy samples (x0

t−1, x
1
t−1) from the same input xt at each

denoising step. Then, we directly rank the preference order of two samples (x0
t−1, x

1
t−1) based on

their step-wise reward. To this end, one of the most straightforward methods is to directly evaluate
the reward of these noisy samples using a reward model. However, most existing reward models
are trained on natural images and are not applicable to noisy samples. To address this issue, we for-
mulate the denoising process as a Markov decision process (MDP) and derive a simple yet effective
measurement for the preference reward of noisy samples. Then, given the preference order, we uti-
lize p(x0

t−1|xt, c) and p(x1
t−1|xt, c) to compute the DPO loss function for fine-tuning. In this way,

the gradient direction is proven to increase the probability of generating preferred samples while
decreasing the probability of generating dis-preferred samples.

Moreover, we notice that TailorPO generates paired samples from the same xt, potentially causing
two samples to be similar in late denoising steps with large t. Such similarity may reduce the diver-
sity of paired samples, thereby impacting the effectiveness of the DPO-based method. To mitigate
this issue, we propose to enhance the diversity of noisy samples by increasing their reward gap.
Specifically, we employ gradient guidance (Guo et al., 2024) to generate paired samples, leveraging
the gradient of differentiable reward models to increase the reward of preferred noisy samples. This
strategy, termed TailorPO-G, further improves the effectiveness of our TailorPO framework.

In experiments, we fine-tune Stable Diffusion v1.5 using TailorPO and TailorPO-G to enhance its
ability to generate images that achieve elevated aesthetic scores and align with human preference.
Additionally, we evaluate TailorPO on user-specific preferences, such as image compressibility. The
experimental results indicate that diffusion models fine-tuned with TailorPO and TailorPO-G yield
higher reward scores compared to those fine-tuned with other RLHF and DPO-style methods.

Contributions of this paper can be summarized as follows. (1) Through theoretical analysis and
experimental validation, we demonstrate the mismatch between the trajectory-level ranking and the
step-level optimization in existing DPO methods for diffusion models. (2) Based on these insights,
we propose TailorPO, a simple DPO framework tailored to the unique denoising structure of dif-
fusion models. To the best of our knowledge, this is the first framework that explicitly considers
the properties of diffusion models for DPO. Experimental results have demonstrated that TailorPO
significantly improves the model’s ability to generate human-preferred images. (3) Furthermore,
inspired by the success of gradient guidance in adapting model outputs towards user-specified ob-
jectives, we incorporate gradient guidance of differentiable reward models in TailorPO-G to increase
the diversity of training samples for fine-tuning to further enhance performance.

2 RELATED WORKS

Diffusion models. As a new class of generative models, diffusion models (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2021) transform Gaussian noises into images (Dhariwal &
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Nichol, 2021; Ho et al., 2022b; Nichol et al., 2022; Rombach et al., 2022), audios (Liu et al., 2023),
videos (Ho et al., 2022a; Singer et al., 2023), 3D shapes (Zeng et al., 2022; Poole et al., 2023; Gu
et al., 2023), and robotic trajectories (Janner et al., 2022; Chen et al., 2024) through an iterative de-
noising process. Dhariwal & Nichol (2021) and Ho & Salimans (2022) further propose the classifier
guidance and classifier-free guidance respectively to align the generated images with specific text
descriptions for text-to-image synthesis.

Learning diffusion models from human feedback. Inspired by the success of reinforcement learn-
ing from human feedback (RLHF) in large language models (Ouyang et al., 2022; Bai et al., 2022;
OpenAI, 2023), many reward models have been developed for images preference, including aes-
thetic predictor (Schuhmann et al., 2022), ImageReward (Xu et al., 2023), PickScore model (Kirstain
et al., 2023), and HPSv2 (Wu et al., 2023). Based on these reward models, Lee et al. (2023),
DPOK (Fan et al., 2023) and DDPO (Black et al., 2024) formulated the denoising process of diffu-
sion models as a Markov decision process (MDP) and fine-tuned diffusion models using the policy-
gradient method. DRaFT (Clark et al., 2024), and AlignProp (Prabhudesai et al., 2023) directly
back-propagated the gradient of reward models through the sampling process of diffusion models
for fine-tuning. In comparison, D3PO Yang et al. (2024a) and Diffusion DPO (Wallace et al., 2024)
adapted the direct preference optimization (DPO) (Rafailov et al., 2023) on diffusion models and op-
timized model parameters at each denoising step. Considering the sequential nature of the denoising
process, DenseReward (Yang et al., 2024b) assigned a larger weights for initial steps than later steps
when using DPO. Most close to our work, SPO (Liang et al., 2024) also pointed out the problematic
assumption about the preference consistency of intermediate noisy samples and final output images.
However, they addressed this by training a step-wise reward model on another uncertain assumption.
In comparison, we conduct a detailed analysis of the assumption and develop a new framework to
improve the performance of DPO.

3 METHOD

3.1 PRELIMINARIES

Diffusion models. Diffusion models contain a forward process and a reverse denoising process. In
the forward process, given an input x0 sampled from the real distribution pdata, diffusion models
gradually add Gaussian noises to x0 at each step t ∈ [1, T ], as follows:

xt =
√
αtxt−1 +

√
1− αtϵt−1 =

√
ᾱtx0 +

√
1− ᾱtϵ (1)

where ϵt ∼ N (0, I) denotes the Gaussian noise at step t. α1:T denotes the variance schedule and
ᾱt =

∏t
i=1 αi.

In the reverse denoising process, the diffusion model is trained to learn p(xt−1|x) at each step t.
Specifically, following (Song et al., 2021), the denoising step at step t is formulated as

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtϵθ(xt, t)√

ᾱt

)
︸ ︷︷ ︸

x̂0(xt), predicted x0

+
√

1− ᾱt−1 − σ2
t ϵθ(xt, t)︸ ︷︷ ︸

direction pointing to xt

+ σtϵ
′
t︸︷︷︸

random noise

(2)

where ϵθ(·) is a noise prediction network with trainable parameters θ, which aims to use ϵθ(xt, t) to
predict the noise ϵ in Eq. (1) at each step t. ϵ′t ∼ N (0, I) is sampled from the standard Gaussian
distribution. In fact, xt−1 is sampled from the estimated distributionN (µθ(xt), σ

2
t I). According to

the reverse process, x̂0(xt) = (xt −
√
1− ᾱtϵθ(xt, t)/

√
ᾱt represents the predicted x0 at step x.

Direct preference optimization (DPO) (Rafailov et al., 2023). The DPO method is first proposed
to fine-tune large language models to align with human preferences. Given a prompt x, two re-
sponses y0 and y1 are sampling from the generative model πθ, i.e., y0, y1 ∼ πθ(y|x). Then, y0
and y1 are ranked based on human preferences or the outputs r(x, y0) and r(x, y1) of a pre-trained
reward model r(·). Let yw denote the preferred response in (y0, y1) and yl denote the dis-preferred
response. DPO optimizes parameters θ in πθ by minimizing the following loss function.

LDPO(θ) = −E(x,yw,yl)

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
(3)
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Figure 2: The preference order of intermediate noisy samples is not always consistent with the
preference order of final output images, from both perspectives of the aesthetic score (red) and
ImageReward score (blue).

where σ is the sigmoid function, and β is a hyper-parameter. πref represents the reference model,
usually set as the pre-trained models before fine-tuning. The gradient of the above loss function on
each pair of (x, yw, yl) with respect to the parameters θ is as follows (Rafailov et al., 2023).

∇θLDPO(θ, x, yw, yl) = −f(x, yw, yl) (∇θ log πθ(yw|x)−∇θ log πθ(yl|x)) (4)

where f(x, yw, yl) ≜ β(1−σ(β log πθ(yw|x)
πref(yw|x)−β log πθ(yl|x)

πref(yl|x) )). Therefore, the gradient of the DPO
loss function increases the likelihood of the preferred response yw and decreases the likelihood of
the dis-preferred response yl.

3.2 MISMATCH BETWEEN TRAJECTORY-LEVEL RANKING AND STEP-LEVEL OPTIMIZATION

In this section, we first revisit how existing works implement DPO for diffusion models, using
D3PO (Yang et al., 2024a) as an example for explanation. Then, we identify the mismatch between
their trajectory-level ranking and step-level optimization from two perspectives.

For a text-to-image diffusion model πθ parameterized by θ, given a text prompt c, D3PO first samples
a pair of generation trajectories [x0

T , . . . , x
0
0] and [x1

T , . . . , x
1
0]. Then, they compare the reward scores

r(c, x0
0) and r(c, x1

0) of generated images, using the reward model r(·), and rank their preference
order. The preferred image is denoted by xw

0 and the dis-preferred image is denoted by xl
0. Then,

as Figure 1(a) shows, it is assumed that the preference order of final images (x0
0, x

1
0) represents

the preference order of (x0
t , x

1
t ) at all intermediate steps t. Subsequently, the diffusion model is

fine-tuned by minimizing the following DPO-like loss function at the step level.

LD3PO(θ) = −E(c,xw
t ,xl

t,x
w
t−1,x

l
t−1)

[
log σ

(
β log

πθ(x
w
t−1|xw

t , c)

πref(xw
t−1|xw

t , c)
− β log

πθ(x
l
t−1|xl

t, c)

πref(xl
t−1|xl

t, c)

)]
(5)

We argue that there are two critical issues in the aforementioned process and loss function, which
we will elaborate on and prove through the theoretical analysis in the following sections.

Inaccurate preference order. The first obvious issue is that the preference order of final images
x0 at the end of the trajectory cannot accurately reflect the preference order of noisy samples xt at
intermediate steps. Liang et al. (2024) demonstrated that early steps in the denoising process tend
to handle layout, while later steps focus more on detailed textures. However, the preference order
based on final images primarily reflects layout and composition preferences, misaligning with the
function of later steps. Taking a step further, we rethink this problem from another perspective and
formulate the reward at intermediate steps based on theoretical analysis.

Similar to (Yang et al., 2024a), we formulate the denoising process in a diffusion model as a Markov
decision process (MDP), as follows.

St ≜ (c, xT−t), At ≜ xT−t−1, Rt = R(St, At) ≜ R((c, xT−t), xT−t−1)

P (St+1|St, At) ≜ (δc, δxT−t−1
), π(At|St) ≜ πθ(xT−t−1|xT−t, c)

(6)

where St, At, Rt, P (St+1|St, At), and π(At|St) denote the state, action, reward, state transition
probability, and the policy in MDP, respectively. In this finite MDP, the cumulative return at time t

4
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Figure 3: Framework of TailorPO. At each step t, we start from the same xt to generate two noisy
samples x0

t−1 and x1
t−1. Subsequently, we compare their step-wise reward to determine their prefer-

ence order. For the preferred sample, if the reward model is differentiable, we employ the gradient
guidance to further increase its reward to obtain x+

t−1. Then, we optimize the generating probability
of preferred and dis-preferred samples. After the optimization at step t, the preferred sample is taken
as the input xt−1 of the next step for later sampling and optimization.

can be defined as Gt =
∑T

k=t+1 Rk, and the action value function at time t is Q(s, a) = E[Gt|St =
s,At = a]. For the denoising process of diffusion models, we simplify the cumulative return to the
reward of the generated image, i.e., Gt = RT = r(c, x0). In this way, the action value function is
simplified as follows.

Q(s, a) = E[r(c, x0)|St = (c, xT−t), At = xT−t−1] = E[r(c, x0)|c, xT−t−1] (7)

In other words, the quality of noisy samples xT−t−1 can be determined by the expected reward
value of images generated by different trajectories starting from xT−t−1. In contrast, the reward
value r(c, x0) of an image from a single trajectory does not represent the quality of the intermediate
denoising action. Based on this analysis, we demonstrate that the preference order of final images
cannot accurately represent the preference order of intermediate noisy samples.

To better illustrate this issue, we first propose a method for evaluating the quality of intermediate
noisy samples, followed by an experimental validation using this method. The results shown in Fig-
ure 2 demonstrate that the preference order between a pair of intermediate samples xt can sometimes
conflict with the preference order between the corresponding denoised images x0. This finding like-
wise provides evidence against the validity of the assumption employed in previous methods. The
proposed evaluation method and our framework will be elaborated in the subsequent sections.

Disturbed gradient direction. Moreover, even if we obtain an accurate preference order of noisy
samples at intermediate steps, the loss function in Eq. (5) still has limitations from the gradient
perspective. To gain a mechanistic understanding of the above loss function, we compute its gradient
with respect to parameters θ as follows (please refer to Appendix A for the proof).

∇θLD3PO(θ) = −E
[
(ft/σ

2
t ) · [(xw

t−1 − µθ(x
w
t ))

T∇θµθ(x
w
t )− (xl

t−1 − µθ(x
l
t))

T∇θµθ(x
l
t)]

]
ft ≜ β(1− σ(β log

πθ(x
w
t−1|xw

t , c)

πref(xw
t−1|xw

t , c)
− β log

πθ(x
l
t−1|xl

t, c)

πref(xl
t−1|xl

t, c)
))

(8)

In the above equation, the gradient is significantly affected by the relationship between inputs xw
t

and xl
t from the previous step. This is because the input conditions (xw

t , x
l
t) of generation prob-

abilities for preferred sample xw
t−1 and dis-preferred sample xl

t−1 in Eq. (5) are different. There-
fore, the choice of xw

t and xl
t disturbs the original optimization direction of DPO. In particular, if

∇θµθ(x
w
t ) ≈ ∇θµθ(x

l
t), then the gradient term can be written as:

∇θLD3PO(θ)≈−E
[
(ft/σ

2
t ) · ∇T

θ µθ(x
w
t )[(x

w
t−1 − xl

t−1) + (µθ(x
l
t)− µθ(x

w
t ))]

]
(9)

It shows that if xw
t and xl

t are located in the same linear subspace, then the optimization direction of
the model shifts towards the direction µθ(x

l
t)− µθ(x

w
t ), which points to the dis-preferred samples.

Thus, the fine-tuning effectiveness of DPO is significantly weakened.

3.3 TAILORED PREFERENCE OPTIMIZATION FRAMEWORK FOR DIFFUSION MODELS

To address the aforementioned problems, considering the characteristics of diffusion models, we
propose a Tailored Preference Optimization (TailorPO) framework for fine-tuning diffusion models

5
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in this section. Specifically, given a text prompt c and the time step t, we always start from the
same xt to generate the next time-step noisy samples, i.e., x0

t−1 and x1
t−1. Then, we estimate the

step-wise reward of intermediate noisy samples x0
t−1 and x1

t−1 to directly rank their preference
order. The sample with the higher reward value is represented by xw

t−1, and the sample with the
lower reward is denoted as xl

t−1. Furthermore, if the reward function is differentiable, we apply
the gradient guidance of the reward function (introduced in Section 3.4) to increase the reward of
the preferred sample xw

t−1, which enlarges the reward gap between xw
t−1 and xl

t−1 and enhances
the fine-tuning effectiveness. At the next denoising step (t− 1), the preferred sample xw

t−1 is taken
as xt−1 for further sampling and training. Our framework is illustrated in Figure 3, and the loss
function is given as follows.

L(θ) = −E(c,xt,xw
t−1,x

l
t−1)

[
log σ

(
β log

πθ(x
w
t−1|xt, c)

πref(xw
t−1|xt, c)

− β log
πθ(x

l
t−1|xt, c)

πref(xl
t−1|xt, c)

)]
(10)

We will subsequently elucidate and substantiate the advantages of our proposed TailorPO framework
for diffusion models from the following perspectives.

Consistency between gradient direction and preferred samples. First, TailorPO addresses the
problem with the gradient direction of previous methods by always generating paired samples from
the same xt. This simple operation ensures that the generation probabilities used by the DPO loss
function in Eq. (10) are all based on the same condition, aligning with the original formulation of
DPO in Eq. (3). In this way, the gradient of our loss function is given as follows (please refer to
Appendix A for the proof).

∇θL(θ) = −E
[
(ft/σ

2
t ) · ∇T

θ µθ(xt)(x
w
t−1 − xl

t−1)
]

(11)

Notably, the gradient direction of our loss function clearly points towards the preferred samples.
Therefore, the model is effectively encouraged to generate preferred samples.

Immediate preference ranking at intermediate steps. Instead of performing preference ranking
on final images, we directly rank the preference order of noisy samples at intermediate steps. To this
end, we propose to evaluate the preference quality of noisy samples xt. As discussed in Section 3.2,
the denoising process of a diffusion model can be formulated as an MDP, where the action value
function for generating xt simplifies to the expected reward of images over all trajectories starting
from xt. Therefore, we define the step-wise reward value of the noisy sample xt as follows.

rt(c, xt) ≜ E[r(c, x0)|c, xt] ≈ r(c, x̂0(xt)) (12)

However, computing the above expectation over all trajectories is intractable. Therefore, we em-
ploy an approximation to the expectation value. Previous studies (Chung et al., 2023; Guo et al.,
2024) have proven that E[x0|c, xt] = x̂0(xt), which represents the predicted x0 at step t (defined in
Eq. (2)). Furthermore, Chung et al. (2023) prove the following Proposition 1, which ensures that the
expectation of image rewards E[r(c, x0)|c, xt] can be approximated by the reward of the expected
image r(c,E[x0|c, xt]). Therefore, we compute rt(c, xt) ≈ r(c, x̂0(xt)) to estimate the step-wise
reward of xt for preference ranking.

Proposition 1 (proven by Chung et al. (2023)) Let a measurement g(x0) = A(x0) + n, where
A(·) is a measure operator defined on images x9 and n ∼ N (0, σ2I) is the measurement noise.
The Jensen gap between E[g(x0)|c, xt] and g(E[x0|c, xt]), i.e., J = E[g(x0)|c, xt]− g(E[x0|c, xt])

is bounded by J ≤ d√
2πσ2

e−1/2σ2∥∇xA(x)∥m1, where ∇xA(x) ≜ maxx ∥∇xA(x)∥, m1 ≜∫
∥x0 − x̂0∥p(x0|c, xt)dx0, and x̂0 = E[x0|c, xt]. The Jensen gap can approach 0 as σ increases.

By obtaining the preference order of noisy samples immediately at intermediate steps, we can fine-
tune the model using Eq. (10). Then, the preferred sample xw

t−1 is assigned as the input for the next
step, enabling sampling and optimization in subsequent steps.

3.4 GRADIENT GUIDANCE OF REWARD MODEL FOR FINE-TUNING

In TailorPO, since noisy samples (x0
t−1, x

1
t−1) are generated from the same xt, their similarity in-

creases as t decreases. This increasing similarity potentially reduces the diversity of paired samples
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Table 1: Gradient guidance suc-
cessfully increased/decreased the
reward of most samples.

t 20 16 12 8 4
ratio of rt(c, x+

t−1) > rt(c, xt−1) 0.83 0.97 0.98 0.99 0.99
ratio of rt(c, x−

t−1) < rt(c, xt−1) 0.87 0.98 1.00 0.98 1.00

Algorithm 1: The TailorPO-G framework for aligning diffusion models with human preference.
Input: Diffusion model πθ(·), reference model πref(·), reward model r(·)

1 Sample a text prompt c;
2 Initialize xT ∼ N (0, I);
3 for t = T, . . . , 1 do
4 Sample x0

t−1, x1
t−1 from πθ(·|xt, c);

5 Rank x0
t−1 and x1

t−1 based on their step-wise rewards to obtain xw
t−1 and xl

t−1;
6 Inject gradient guidance to compute x+

t−1 = xw
t−1 − ηt∇xw

t−1
(rhigh − rt(c, x

w
t−1))

2;
7 if rt(c, x+

t−1) > rt(c, x
w
t−1) then

8 xw
t−1 ← x+

t−1

9 end
10 Optimize πθ(·) using Eq. (10);
11 xt−1 ← xw

t−1;
12 end

Output: The fine-tuned diffusion model πθ(·).

for training. On the other hand, Khaki et al. (2024) have shown that a large difference between paired
samples is beneficial to the DPO effectiveness. Therefore, to enhance the DPO performance in this
case, we propose enlarging the difference between two noisy samples from the reward perspective.

To this end, we consider how to adjust the reward of a noisy sample xt−1. Similar to (Guo et al.,
2024), we use rhigh to represent an expected higher reward. Then, the gradient of the conditional
score function is∇xt−1

log p(xt−1|rhigh) = ∇ log p(xt−1)+∇xt−1
log p(rhigh|xt−1), where the first

term∇ log p(xt−1) is estimated by the diffusion model itself, and the second term is to be estimated
by the guidance. Guo et al. (2024) further prove the following relationship for estimation.
∇xt−1

log p(rhigh|xt−1) ∝ ∇xt−1
log p(rhigh|x̂0(xt−1)) ∝ −ηt∇xt−1

(rhigh − rt(c, xt−1))
2 (13)

Therefore, we can inject the gradient term∇xt−1
(rhigh − rt(c, xt−1))

2 as the guidance to the gener-
ation of xt−1 to adjust its reward. Specifically, we update the noisy samples as follows.

x+
t−1 ← xt−1 − ηt∇xt−1(rhigh − rt(c, xt−1))

2, to increase reward

x−
t−1 ← xt−1 + ηt∇xt−1

(rhigh − rt(c, xt−1))
2, to decrease reward

(14)

To demonstrate that the above gradient guidance is able to adjust the reward of noisy samples as
expected, we compared the step-wise rewards of the original sample xt−1, the increased sample
x+
t−1, and the decreased sample x−

t−1. Specifically, we generated 100 noisy samples xt−1 from
Stable Diffusion v1.5 (Rombach et al., 2022), and then computed the corresponding x+

t−1 and x−
t−1.

We set ηt = 0.2 and rhigh = rt(c, xt−1)+ δ following Guo et al. (2024), where the constant δ = 0.5
specified the expected increment of the reward value.

Then, we computed the ratio of increased samples (satisfying rt(c, x
+
t−1) > rt(c, xt−1)) and the

ratio of decreased samples (satisfying rt(c, x
−
t−1) < rt(c, xt−1)). Table 1 shows that for almost

all samples, the gradient guidance successfully increased or decreased their reward as expected,
demonstrating its effectiveness in adapting the reward of samples.

Finally, we apply this method in our training process to enlarge the reward gap between a pair of
noisy samples and develop the TailorPO-G framework. As shown in Figure 3 and Algorithm 1, we
first modify the preferred sample xw

t−1 to increase its reward value, and then use the modified sample
for fine-tuning and subsequent sampling.

4 EXPERIMENTS

Experimental settings. In our experiments, we evaluate the effectiveness of our method in fine-
tuning Stable Diffusion v1.5 (Rombach et al., 2022). We compared our TailorPO method with the
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Table 2: Reward values of images generated by diffusion models fine-tuned using different methods.
The prompts are related to common animals.

Aesthetic scorer ImageReward HPSv2 PickScore Compressibility
Stable Diffusion v1.5 5.79 0.65 27.51 20.20 -105.51

DDPO (Black et al., 2024) 6.57 0.99 28.00 20.24 -37.37
D3PO (Yang et al., 2024a) 6.46 0.95 27.80 20.40 -29.31
SPO (Liang et al., 2024) 5.89 0.95 27.88 20.38 –

TailorPO 6.66 1.20 28.37 20.34 -6.71
TailorPO-G 6.96 1.26 28.03 20.68 –

Aesthetic score
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0 2000 60004000 8000 10000
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Figure 4: The change curve of reward values during the fine-tuning process. Experiments were
conducted for three runs and we plot the average value and standard deviation of the reward.

RLHF method, DDPO (Black et al., 2024), and DPO-style methods, including D3PO (Yang et al.,
2024a) and SPO (Liang et al., 2024). For all methods, we used the aesthetic scorer (Schuhmann
et al., 2022), ImageReward (Xu et al., 2023), PickScore (Kirstain et al., 2023), HPSv2 (Wu et al.,
2023), and JPEG compressibility measurement (Black et al., 2024) as reward models. Considering
that some reward models are non-differentiable, we evaluate both the effectiveness of TailorPO and
TailorPO-G, respectively.

Following the settings in D3PO (Yang et al., 2024a) and SPO (Liang et al., 2024), we applied the
DDIM scheduler (Song et al., 2021) with η = 1.0 and T = 20 inference steps. The generated
images were of resolution of 512×512. We employed LoRA (Hu et al., 2022) to fine-tune the UNet
parameters on a total of 10,000 samples with a batch size of 2. The reference model was set as
the pre-trained Stable Diffusion v1.5 itself. For SPO, we used the same hyper-parameters as in its
original paper, and for other methods, we used the same hyper-parameters as in (Yang et al., 2024a),
except that we set a smaller batch size. In particular, for all our frameworks, we generated images
with T = 20 and uniformly sampled Tfine-tune = 5 steps for fine-tuning, i.e., we only fine-tuned
the model at steps t = 20, 16, 12, 8, 4. In addition, we set the coefficient ηt in gradient guidance
using a cosine scheduler in the range of [0.1, 0.2], which assigned a higher coefficient to smaller t
(samples closer to output images). We have conducted ablation studies in Appendix C to show that
our method is relatively stable with respect to the setting of Tfine-tune and ηt.

4.1 EFFECTIVENESS OF ALIGNING DIFFUSION MODELS WITH PREFERENCE

In this section, we demonstrate that our frameworks outperform previous methods in aligning diffu-
sion models with various preferences, from both quantitative and qualitative perspectives.

Quantitative evaluation. We fine-tuned Stable Diffusion v1.5 on various reward models using a
set of prompts of common animals released by Black et al. (2024). For quantitative evaluation,
we randomly sampled five images for each prompt and computed the average reward value of all
images. Table 2 demonstrates that both TailorPO and TailorPO-G outperform other methods across
all reward models. On the other hand, Figure 4 shows curves of reward values throughout the
fine-tuning process. It can be observed that both of our frameworks rapidly increase the reward of
generations in early iterations.

Qualitative comparison. For qualitative comparison, we first visualize the generated samples given
simple prompts of animals in Figure 5. It is obvious that after fine-tuning using TailorPO and
TailorPO-G, the model generated more colorful and visually appealing images with fine-grained
details. In addition, we fine-tuned Stable Diffusion v1.5 on more complex prompts, using prompts
in the Pick-a-Pic training dataset (Kirstain et al., 2023). Figure 6 shows that both TailorPO and
TailorPO-G encourage the model to generate more aesthetically pleasing images, and these images

8
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SD v1.5

D3PO

TailorPO

TailorPO-G

Figure 5: Visualization of images generated by diffusion models fine-tuned using different methods.
For these animal-related prompts, diffusion models fine-tuned by TailorPO and TailorPO-G gener-
ated more colorful and visually pleasing images.

SD v1.5

DDPO

TailorPO

(1) Dogs playing poker.
(2) A giant robot with flashing lights and 

weapons.
(3) Corgi with helmet on bicycle.
(4) Apocalyptic scenes of a meteor storm 

over a volcano.
(5) Cat knight, portrait, finely detailed 

armor, intricate design, silver, silk, 
cinematic lighting, 4k.

(6) Hello kitty mecha, gears of war, style
      Artstation, octane render,  unreal
      engine 6, epic game Graphics, Fantasy, 
      cyberpunk, conceptual art, Ray tracing.

TailorPO-G

Figure 6: Visualization of images generated by diffusion models fine-tuned on complex prompts in
the Pick-a-Pic dataset. Prompts are given on the right with missing elements in SD v1.5 highlighted.

were better aligned with the given prompts. For example, in the third row of Figure 6, the 5th and
6th images contained more consistent and aligned subjects, scenes, and elements with the prompts.

User study. Additionally, we conducted a user study by requesting five users to label their preference
for generated images from the perspective of visual appeal and general preference. For each fine-
tuned model, we generated five images for each animal-related prompt, Figure 7 reports the win-lose
percentage results of our method versus other baseline methods, where our method exhibits a clear
advantage in aligning with human preference. More experimental details can be seen in Appendix B.

4.2 GENERALIZATION TO DIFFERENT PROMPTS AND REWARD MODELS

In this section, we investigate the generalization ability of the fine-tuned model using our method.
Here, we consider two types of generalization mentioned in (Clark et al., 2024): prompt generaliza-
tion and reward generalization.

Prompt generalization refers to the model’s ability to generate high-quality images for prompts
beyond those used in fine-tuning. To evaluate this, we fine-tuned Stable Diffusion v1.5 on 45
prompts of simple animal (Black et al., 2024) and evaluated its performance on 500 complex prompts
(Kirstain et al., 2023). As shown in Table 3, the model fine-tuned on simple prompts exhibited
higher reward values on complex prompts than the original SD v1.5, with our approach achieving
the highest performance. Figure 8 presents examples of images generated from complex prompts,
demonstrating that despite being fine-tuned on simple prompts, the model was also capable of gen-
erating high-quality images given complex prompts. This highlights the effectiveness of our method

9
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TailorPO SPO

TailorPO SDv1.5Win: ??? Win: ??? lose: ???

Win: ??? Win: ??? lose: ???

TailorPO 
vs. DDPO

60.89%

24.00%

15.11%

53.78%

29.33%

16.89%

61.78%

24.44%

13.78%

54.47%

29.46%

16.07%

TailorPO 
vs. SPO

TailorPO-G 
vs. DDPO

TailorPO-G 
vs. SPO

Win ratio Draw ratio Lose ratio

Figure 7: User-labeled win-lose ra-
tio of TailorPO and TailorPO-G ver-
sus other baseline methods.

SD v1.5

Ours

TailorPO-G

(1) cinematic still of a stainless steel robot 
swimming in a pool.

(2) A cat that is riding a horse without a leg.
(3) crazy frog, on one wheel, motorcycle, dead.
(4) a panda riding a motorcycle.
(5) Fantasy castle on a hilltop.

Figure 8: Diffusion model fine-tuned on simple prompts gen-
eralized well to complex prompts. Prompts from left to right
are: (1) cinematic still of a stainless steel robot swimming in
a pool. (2) A cat that is riding a horse without a leg. (3) Crazy
frog, on one wheel, motorcycle, dead. (4) A panda riding a
motorcycle. (5) Fantasy castle on a hilltop.

Table 3: Prompt generalization: the model fine-tuned on simple prompts also exhibited higher re-
ward values for unseen complex prompts.

Aesthetic scorer ImageReward HPSv2 PickScore Compressibility
SD v1.5 5.69 -0.04 25.79 17.74 -98.95
DDPO 5.94 0.06 26.24 17.74 -49.94
D3PO 6.14 0.11 26.09 17.77 -38.92
SPO 5.79 0.15 26.28 17.16 –

TailorPO 6.26 0.11 26.64 17.85 -7.32
TailorPO-G 6.45 0.25 26.25 17.93 –

Table 4: Reward generalization: the model fine-tuned towards a reward model also exhibited higher
reward values on other different but related reward models.

Train
Evaluate Aesthetic scorer ImageReward HPSv2 PickScore

SD v1.5 5.79 0.65 27.51 20.20
Aesthetic scorer 6.96 1.04 27.63 20.34
ImageReward 6.01 1.26 28.01 20.21

HPSv2 5.45 0.92 28.03 20.04
PickScore 5.94 0.83 27.71 20.68

in enhancing the model’s generalization to human-preferred images across various prompts, rather
than overfitting to simple prompts.

Reward generalization refers to the phenomenon where fine-tuning the model towards a specific
reward model can also enhance its performance on another different but related reward model. We
selected one reward model from the aesthetic scorer, ImageReward, HPSv2, and Pickscore for fine-
tuning, and used the other three reward models for evaluation. Table 4 shows that after being fine-
tuned towards the aesthetic scorer, ImageReward, and PickScore, the model usually exhibited higher
performance on all these four reward models. In other words, our method boosted the overall ability
of the model to generate high-quality images.

5 CONCLUSIONS

In this study, we rethink the existing DPO framework for aligning diffusion models and identify
the potential flaws in these methods. We analyze these issues from both perspectives of preference
order and gradient direction. To address these challenges, we consider the unique characteristics
of diffusion models and introduce a novel tailored preference optimization framework for aligning
diffusion models with human preference. Specifically, at each denoising step, our approach gener-
ates noisy samples from the same input and directly ranks their preference order for optimization.
Furthermore, we propose integrating gradient guidance into the training framework to enhance the
training effectiveness. Experimental results demonstrate that our approach significantly improved
the reward scores of generated images, and exhibited good generalization over different prompts and
different reward models.
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A GRADIENT OF LOSS FUNCTIONS

Gradient of the original DPO loss function. Given the input (x, yw, yl) ∼ D, the loss of DPO is
as follows.

L = −E(x,yw,yl)∼D[log σ(β log
πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)] (15)

Let hθ(x, yw, yl) ≜ β log πθ(yw|x)
πref(yw|x) − β log πθ(yl|x)

πref(yl|x) and f(x, yw, yl) ≜ β(1 − σ(hθ(x, yw, yl))),
then
∂L(x, yw, yl)

∂θ
=

∂ − log σ(hθ(x, yw, yl))

∂θ

= − 1

σ(hθ(x, yw, yl))

∂σ(hθ(x, yw, yl))

∂θ

= − 1

σ(hθ(x, yw, yl))

∂σ(hθ(x, yw, yl))

∂hθ(x, yw, yl)

∂hθ(x, yw, yl)

∂θ

= − 1

σ(hθ(x, yw, yl))
σ(hθ(x, yw, yl))(1− σ(hθ(x, yw, yl)))

∂hθ(x, yw, yl)

∂θ

= −f(x, yw, yl)
∂[log πθ(yw|x)− log πref(yw|x)− log πθ(yl|x) + log πref(yl|x)]

∂θ

= −f(x, yw, yl)(
∂ log πθ(yw|x)

∂θ
− ∂ log πθ(yl|x)

∂θ
)

(16)

Gradient of the loss function of D3PO. To study the generative distribution in the denoising
process of diffusion models, let x ≜ (xt, c), y ≜ xt−1, then we have

πθ(y|x) = πθ(xt−1|xt, c) =
1

(2πσ2
t )

d/2
exp(−∥xt−1 − µθ(xt)∥22

2σ2
t

) (17)

In this case, the gradient of the loglikelihood log πθ(xt−1|xt, c) w.r.t. θ is given as follows.

∂ log πθ(xt−1|xt, c)

∂θ
= (

∂µθ(xt)

∂θ
)T

∂(−∥xt−1−µθ(xt)∥2
2

2σ2
t

− log((2πσ2
t )

d/2))

∂µθ(xt)

= (
∂µθ(xt)

∂θ
)T

(xt−1 − µθ(xt))

σ2
t

(18)

Then, we consider the gradient of the D3PO loss w.r.t. the model output µθ.

∂L(xw
t , x

w
t−1, x

l
t, x

l
t−1)

∂θ
= −ft(

∂ log πθ(x
w
t−1|xw

t , t, c)

∂θ
−

∂ log πθ(x
l
t−1|xl

t, t, c)

∂θ
)

= − ft
σ2
t

[
(
∂µθ(x

w
t )

∂θ
)T (xw

t−1 − µθ(x
w
t ))− (

∂µθ(x
l
t)

∂θ
)T (xl

t−1 − µθ(x
l
t))

]
(19)

Suppose ∆θ = −η ∂L(xw
t ,xw

t−1,x
l
t,x

l
t−1)

∂θ . After the update of θ′ ← θ + ∆θ, ∆µθ(x
w
t ) ≈

η ft
σ2
t
[(

∂µθ(x
w
t )

∂θ )(
∂µθ(x

w
t )

∂θ )T (xw
t−1−µθ(x

w
t ))]−η

ft
σ2
t
[(

∂µθ(x
w
t )

∂θ )(
∂µθ(x

l
t)

∂θ )T (xl
t−1−µθ(x

l
t))]. If xw

t and

xl
t are located in the same linear subspace of the model, i.e., ∂µθ(x

w
t )

∂θ ≈ ∂µθ(x
l
t)

∂θ , then the gradient
can be written as follows.
∂L(xw

t , x
w
t−1, x

l
t, x

l
t−1)

∂θ
= − ft

σ2
t

[
(
∂µθ(x

w
t )

∂θ
)T (xw

t−1 − µθ(x
w
t ))− (

∂µθ(x
l
t)

∂θ
)T (xl

t−1 − µθ(x
l
t))

]
≈ − ft

σ2
t

[
(
∂µθ(x

w
t )

∂θ
)T (xw

t−1 − µθ(x
w
t ))− (

∂µθ(x
w
t )

∂θ
)T (xl

t−1 − µθ(x
l
t))

]
≈ − ft

σ2
t

(
∂µθ(x

w
t )

∂θ
)T

[
(xw

t−1 − xl
t−1) + (µθ(x

l
t)− µθ(x

w
t ))

]
(20)
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Table 5: Effect of the number of steps used in Tai-
lorPO. For each setting of Tfine-tune, we uniformly
sampled Tfine-tune steps for fine-tuning.

Tfine-tune Aesthetic Scorer HPSv2 compressibility
10 6.61 28.14 -20.62
5 6.74 28.43 -4.76
3 6.40 28.15 -9.97

Table 6: Effect of strength ηt of gradient guid-
ance in TailorPO-G. [0.1,0.2] represents we set
ηt ranging from 0.1 to 0.2 for different t.

ηt Aesthetic Scorer ImageReward HPSv2
0.1 5.82 1.22 28.10
0.2 6.97 1.35 28.18
0.5 7.07 0.71 27.48

[0.1, 0.2] 7.11 1.25 28.43

Suppose ∆θ = −η ∂L(xw
t ,xw

t−1,x
l
t,x

l
t−1)

∂θ . After the update of θ′ ← θ + ∆θ, ∆µθ(x
w
t ) ≈

η ft
σ2
t
(
∂µθ(x

w
t )

∂θ )(
∂µθ(x

w
t )

∂θ )T [(xw
t−1 − xl

t−1) + (µθ(x
l
t)− µθ(x

w
t ))].

Gradient of our loss function. Then, we consider the gradient of our loss function w.r.t. the model
output µθ.

∂L(xt, x
w
t−1, x

l
t−1)

∂θ
= −ft(

∂µθ(xt)

∂θ
)T (

∂ log πθ(x
w
t−1|xt, t, c)

∂µθ(xt)
−

∂ log πθ(x
l
t−1|xt, t, c)

∂µθ(xt)
)

= −ft(
∂µθ(xt)

∂θ
)T (

xw
t−1 − µθ(xt)

σ2
t

−
xl
t−1 − µθ(xt)

σ2
t

)

= − ft
σ2
t

(
∂µθ(xt)

∂θ
)T (xw

t−1 − xl
t−1)

(21)

Suppose ∆θ = −η ∂L(xt,x
w
t−1,x

l
t−1)

∂θ . After the update of θ′ ← θ +∆θ, ∆µθ(xt) ≈ (∂µθ(xt)
∂θ )∆θ =

η ft
σ2
t
(∂µθ(xt)

∂θ )(∂µθ(xt)
∂θ )T (xw

t−1 − xl
t−1).

B EXPERIMENTAL SETTINGS FOR THE USER STUDY

To verify that our framework generates more human-preferred images, we conducted a user study
by requesting five human users to label their preference for generated images from the perspective
of visual appeal and general preference. Given each prompt in the set of 45 animal prompts, we
sampled five images from the fine-tuned model and obtained a total of 225 images per model. For
comparison, for each pair of fine-tuned model, we organized their generated images into 225 pairs.
Users were then asked to compare each pair of images and label their preferences. If the images in
a pair looked very similar or were both unappealing, the user labeled “draw” for them. Then, we
computed the ratio of pairs where TailorPO and TailorPO-G received “win”. “draw”, and “lose”
labels, respectively. Figure 7 reports the win-lose percentage results of our method versus other
baseline methods, our method exhibits a clear advantage in aligning with human preference.

C ABLATION STUDIES

In this section, we performed ablation studies to verify the effect of hyper-parameters on perfor-
mance, including the number of steps used for optimization and the strength of gradient guidance.

Effect of steps used for training. We first investigate the effect of the number of steps Tfine-tune used
for fine-tuning in TailorPO. In Section 4, We generated images with T = 20 sampling timesteps and
uniformly sampled only Tfine-tune = 5 steps for training to boost the training efficiency. Here, we
compared the results of setting Tfine-tune = 3, 5, 10 in Table 5, and it shows that while the fine-tuning
performance is relatively stable to the setting of Tfine-tune, fine-tuning on five steps achieved a better
trade-off between performance and efficiency.

Effect of the strength of gradient guidance. We also verify the effect of gradient guidance in
TailorPO-G by applying gradient guidance with different strengths at intermediate steps. Specifi-
cally, we used different settings of ηt in Eq. (14) for fine-tuning. The result in Table 6 shows that
the varying strength ηt for different steps t better enhance the fine-tuning performance.
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