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Abstract

Learning the causality between variables, known as DAG structure learning, is
critical yet challenging due to issues such as insufficient data and noise. While
prior knowledge can improve the learning process and refine the DAG structure,
incorporating prior knowledge is not without pitfalls. In particular, we find that
the gap between the imprecise prior knowledge and the exact weights modeled
by existing methods may result in deviation in edge weights. Such deviation can
subsequently cause significant inaccuracies when learning the DAG structure. This
paper addresses this challenge by providing a theoretical analysis of the impact of
deviation in edge weights during the optimization process of structure learning. We
identify two special graph patterns that arise due to the deviation and show that their
occurrence increases as the degree of deviation grows. Building on this analysis,
we propose the Pattern-Guided Adaptive Prior (PGAP) framework. PGAP detects
these patterns as structural signals during optimization and adaptively adjusts the
structure learning process to counteract the identified weight deviation, thereby
improving the integration of prior knowledge. Experiments verify the effectiveness
and robustness of the proposed method.

1 Introduction

Discovering directed acyclic graph (DAG) structures of variable associations from observational
data, also known as structure learning [Scanagatta et al., 2019, Heinze-Deml et al., 2018]], is gaining
significant attention in many practical applications [Peters et al.,|2017,|Gong et al.,[2022]. However,
the broad application of structure learning is frequently hindered when relying on data alone. Such
difficulties arise primarily from challenges like insufficient data and unavoidable noise [Ramsey et al.|
2018]]. To overcome these limitations and improve practical applicability, prior knowledge is often
incorporated. This knowledge, typically derived from domain expertise about the existence of specific
relationships [Constantinou et al., |2023]], allows for the integration of established insights. By doing
s0, prior knowledge can guide the DAG’s structure, reduce the search space, and thereby enhance the
efficiency and reliability of the learning process [Eggeling et al.,[2019| (Chen et al.l 2023]].

In practical scenarios, the prior knowledge available from domain experts is often imprecise, since it
typically indicates the existence of dependencies between variables rather than specifying their exact
magnitude or detailed functional fornﬂ [Kitson et al., [2023]]. This imprecision contrasts with the
requirements of existing modeling approaches, which often describe the relationships within a DAG
structure using precise numerical weights for the connections between variables [Zheng et al.| 2018]].
Indeed, most current methods widely incorporate such imprecise prior knowledge, yet the potential

'This paper refers to priors that correctly assert the existence of a directional relationship (e.g., variable A
influences variable B) as accurate, but not precise because they do not specify an exact numerical strength.
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risks and problems arising from the inherent gap between the non-specific nature of these priors and
the precise parameter demands of models have not been fully explored. This direct introduction of
imprecise priors often means that existing methods face difficulties in the reconciliation process,
potentially leading to suboptimal learning outcomes.

One critical consequence of this issue is what we term “deviation”. Because imprecise prior knowl-
edge typically lacks exact numerical specification for relationship strengths, forcibly applying con-
straints based on it can compel learned edge weights to diverge from their true underlying values.
Such deviation has two critical properties. Firstly, the misspecification of one edge’s weight due to
deviation can propagate and interfere with the accurate learning of other parameters within models.
Secondly, the extent of this adverse impact can increase with the magnitude of the initial deviation.

Despite the potential for such deviations, existing prior-based structure learning methods primarily
aim to align the learned graph with given prior knowledge. These methods often overlook the risk
that forcing adherence to imprecise priors can cause edge weight deviations that can distort the
learned structure. Generally, approaches to integrate priors range from more rigid enforcement
(e.g., compelling edge existence and specific weight ranges) to more flexible techniques (e.g., using
penalty terms to encourage adherence)’| Both types of methods can inadvertently lead to deviations.
Rigid enforcement can result in weights unrepresentative of the true data-generating process if the
constraints sharply conflict with data evidence or true relationship strengths. Similarly, flexible
methods can also induce deviations by disproportionately emphasizing prior conformance over data
fidelity, ultimately affecting the learned structure.

To address this challenge, this paper first theoretically explores the impact of edge weight deviation
on structure learning within the widely-used linear Structural Equation Model (SEM) framework.
We demonstrate that such deviation gives rise to two kinds of graph patterns. The prevalence of
these patterns increases with the degree of deviation. To assess their association with the deviation,
we quantify their expected frequency. This analysis shows they are likely markers of deviation-
induced errors rather than naturally occurring structures. Therefore, leveraging these patterns as
structural signals of edge weight deviation during the optimization process, this paper proposes the
Pattern-Guided Adaptive Prior (PGAP) framework for learning reasonable edge weights. Our main
contributions are outlined below.

* A comprehensive theoretical exploration of how imprecise priors cause edge weight deviation
and impact continuous optimization in structure learning.

* The formal identification and analysis of two graph patterns manifesting as reliable structural
signals of such edge weight deviation.

* The development of the PGAP framework, which leverages these patterns as structural
signals to adaptively adjust the learning process, mitigating erroneous structures.

2 Related Work

Structure learning aims to discover variable associations from observational data. Traditional ap-
proaches include constraint-based methods relying on conditional independence tests [Spirtes et al.,
2001} |Colombo et al.|, [2012]], score-based methods evaluating graph fit [Chickering| 2002]], and hybrid
techniques [Tsamardinos et al., [ 2006]]. A significant recent advancement frames structure learning as
a continuous optimization problem [Zheng et al., 2018]], enabling the use of gradient-based algorithms
and spurring developments like NOTEARS, GOLEM [Ng et al.|[2020], DAGMA [Bello et al.| [2022],
and various extensions addressing non-linear relationships or using different optimization strategies
[Wei et al., [2020, |Yu et al., 2019} [Lachapelle et al.| [2019, |Deng et al., 2023]].

Prior knowledge is often used to improve learning accuracy, especially with limited data [Constantinou
et al.,|2023]). In traditional combinatorial search, priors may be enforced via hard constraints (e.g.,
requiring/forbidding specific edges or ancestral relationships [De Campos and Castellanol 2007}
De Campos et al.,|2009, (Chen et al., | 2016]) or used as soft constraints to guide the search process
or scoring [Castelo and Siebes| 2000, Borboudakis and Tsamardinos}, 2014} [Eggeling et al., 2019].
Similar strategies have been adapted for continuous optimization frameworks. Hard constraints can

These two main strategies are often termed “hard” and “soft” prior integration methods, respectively. A
detailed discussion of these approaches can be found in Section@



restrict edge weight parameters to specific ranges [Sun et al.,|2023| |Chen and Gel 2022]], while soft
constraints typically add prior-based penalty terms to the objective function [[Yang et al., [2023| Wang
et al.| 2024] or directly manipulate gradients during optimization [Bello et al., 2022].

However, existing methods for incorporating prior knowledge in continuous optimization often focus
primarily on ensuring the resulting graph qualitatively satisfies the given constraints. They may
overlook a crucial side effect: enforcing a qualitative prior (e.g., edge existence) within a quantitative
model can lead to deviations in the enforced edge’s weight, which, as we show, can propagate and
distort the learned weights of other edges. Addressing this challenge is the central motivation for our
work. A more detailed discussion of related work can be found in Appendix [A]

3 Preliminaries

Notation This paper employs standard matrix and vector notation. Subscripts typically indicate
specific elements, column vectors, or selections based on index sets. For example, given a matrix A,
A;; denotes the element in the i-th row and j-th column, and A; may denote the j-th column vector.
For a subset of indices S C {1,...,d}, X denotes the subvector (X;);cs.

Bayesian Network Consider a Bayesian network defined over a set of random variables X =
(X1,...,Xa). Its structure is represented by a DAG G = (V, E), where V = { X7, ..., X4} denotes
the set of nodeﬂ and E denotes the set of edges. The joint distribution of X, denoted as P(X), is
Markov with respect to DAG G, which means P(X) = szl P(X; | Xpa, ), where Pa; represents
the set of parent nodes of node X; in graph G.

Structural Equation Model This paper considers the case where the random variables follow a
linear structural equation model (SEM), described by:

X =BTX +¢ ()

Here, B € R?*9 represents the weighted adjacency matrix of graph G, with each non-zero el-
ement B;; indicating an edge (X;, X;) in E and describing the linear dependency. The vector
€ = (e1,...,€q)T denotes the noise, which is assumed to have zero mean and possess a diagonal
covariance matrix {2 = diag(o?,...,03).

Structure Learning The primary objective of structure learning is to estimate the DAG structure
G (characterized by an estimated adjacency matrix W during estimation) by analyzing an n x d data
matrix X, where each row corresponds to an independent and identically distributed sample X from
the joint distribution P(X). This task is often formulated as a constrained optimization problem:
min  Q(W;X) subjectto G(W) € DAGs )
w ERd xd
Here, () is a scoring function that assesses the fit between the data matrix X and the graph G(W)
corresponding to the candidate adjacency matrix W. Common scoring functions for linear SEMs
include least squares [Loh and Bithimann, |[2014] and negative log-likelihood [Biihlmann et al.| [2014]:

1
le(W;X) = %HXW - X||2F

L , 3)
Quu(W3X) = 5= > log [ XW; — X3

i=1

Continuous Optimization Recently, [Zheng et al.| 2018] introduced the NOTEARS method,
which employs a continuously differentiable function h(W) to characterize the acyclicity of the
graph G(W). This transforms the combinatorial constraint G(W) € DAGs into a smooth equality
constraint, enabling continuous optimization techniques:

min Q(W;X) subjectto h(W)=0
WeRdXd (4)

h(W) == tr(eVW) —d

3We do not distinguish between nodes and random variables, as this simplification does not lead to confusion.



Here, ® denotes element-wise multiplication and eV ©"W is the matrix exponential. It has been shown
that G(W) is a DAG if and only if (W) = 0. Fulfilling this condition ensures that the solution to the
optimization problem corresponds to a DAG structure. Following NOTEARS, subsequent research
has introduced similar functions to encapsulate the acyclicity of a DAG and further incorporate
properties that benefit the optimization process, such as the work of [Ng et al.,2020] and [Bello et al.|
2022].

Prior Knowledge In practical scenarios, structure learning can be enhanced by incorporating prior
knowledge about the system being modeled, often available from domain experts or previous studies.
This incorporation helps resolve ambiguities within the Markov equivalence class, reduces the search
space, and improves learning accuracy, especially with limited or noisy data.

This paper defines prior knowledge as = = (X; — X ), which indicates the existence of a directed
edge from variable X; to X; in the true DAG G. To ensure prior knowledge benefits structure
learning, most studies assume its accuracy (i.e., that the provided prior knowledge aligns with edges
in the true DAG G). However, even accurate prior knowledge requires careful integration to avoid
unintended negative consequences, particularly concerning learned edge weights.

4 Pattern-Guided Adaptive Prior Framework for Structural Learning

This section unfolds our approach. First, we theoretically analyze how the integration of imprecise
priors can lead to edge weight deviation and subsequently impact the structure learning process.
Second, we explore how this deviation manifests as two specific structural patterns within the learned
graph. Finally, we detail the PGAP framework, which leverages these patterns as structural signals to
adaptively adjust the learning parameters in a two-stage process. Please refer to Appendix [B]for the
proof of the mentioned lemma.

4.1 Impact of Edge Weight Deviation

In this section, we detail our principal findings concerning the impact of edge weight deviation
on structure learning in SEM continuous optimization, showing that enforcing prior knowledge
introduces deviations that interfere with learning other weights.

Our theory is based on the interaction of deviations with other edge weights during optimization of
the scoring function. Therefore, we will first analyze the properties of the scoring function. In fact,
the optimization of the scoring function

W* = arg mv[i/n QW;X) 5)

can decompose into independent sub-problems for each variable X, resembling ordinary least
squares (OLS) regression:

W = argmin (XIW; — X;)° ©)

This conclusion is true for common scoring functions like least squares (Q);s) and negative log-
likelihood (Qy;). Since the variables in DAG have a topological order, for each X ;, we only need to
consider the edge pointing to it from its predecessors:

* . 2
Wy, ;= arg min (X, Wy, ; — X;) )

tj 37
Here, t; is the set of topological predecessor nodes to X; in the graph defined by W. In particular,
if the set of predecessors ¢; aligns with the predecessors in the true DAG, t7, (e.g., if the variables
X1, Xo,..., X, are ordered following the true DAG, then t;f ={1,2,...,75 — 1}), the accurate edge
weights can be determined directly from sufficient data, as stated in the Lemma [T}

Lemma 1. Given a node X, assume that t; represents the set of predecessors of X consistent with
an order of the true DAG G. The regression coefficient obtained by linearly regressing X; on t;
corresponds directly to the relevant element in the adjacency matrix B of the true DAG, i.e.:

2
Bt]*.,j = arg I/rVnin (Xt; Wt]*.,j — Xj) ®)

.5



Now, consider the influence of prior knowledge integration. Assume a prior knowledge (X3 — X))
is incorporated. Let W3 ; be the optimal weight for edge (X g, X ;) obtained from the OLS regression
of X onto its current predecessors t; (Eq. @) If the prior-influenced result (defined as Wgy ;) differs

from this data-optimal weight, we define the deviation as v = Wy ; — W .. This deviation ~y
represents the discrepancy introduced by imposing the prior on the quantitative SEM weight. This
occurs, for example, when methods enforcing this prior either fix the weight W ; (a hard constraint)
or add penalties to strongly push W3 ; towards non-zero values (a soft constraint).

The crucial question is how this deviation «y on the prior edge (Xg — Xj) affects the learning of
other weights, specifically the weights W}, ; for other incoming edges (X3, X;) where k € t; — ﬂﬂ
We analyze this by considering the optimization problem where - is fixed (abstracting the effect of
prior The fix of -y implies the fix of Wp ;, so we only need to optimize the weights Wy, 5 ;:

~ “ 2

Wtjf‘{j?j =arg min (ij,[gwt] -8+ XﬁWﬁyj — XJ) (9)

Wy =B

Let W* _p,; denote the optimal weights for non-prior edges obtained from the original OLS problem

(Eq. @) mvolvmg all predecessors t;. The following lemma quantifies how the deviation -y propagates
to affect these other weights.

Lemma 2. Lety = Wg j — Wy ; represent the deviation of the prior-influenced weight Wg j (derived
from (0)) from the optimal OLS weight W ; ; obtained when regressing X ; onto the set of predecessors
t; (derived frOKn (E)]) ). The difference between the prior-influenced welghts for other incoming edges
Wt”; _pj and Wy, _g ; is a linear function of 7, expressed as:

Wtr/ij Wi ;=7 —01,-58 (10)

9/35

5

where 0 is the inverse of the covariance matrix of the variable set t ;.

We further consider scenarios where the predecessors ¢; align with the true predecessors ¢}. In this
situation, 3 € {1,2,...,j — 1}, and 6;,_3 s can be expressed as:

B Bp,iBu.i
0 M+Zz o1z k<P
kB — B Bg.iBi.; .
Bop pyuml Bubu pog
Equation shows explicitly how the impact term 6}, g depends on the true graph structure B (via
direct edges like By, g or Bg ;, and common children structures) and the noise characteristics €2 (via

o2 terms). Combined with Lemma this illustrates how deviation y on edge (X, X ;) propagates
to affect edge (X, X;) based on the underlying true graph pathways connecting X, and X 3.

(11)

Lemma|]and Lemma [2] elaborate on the dual role of prior knowledge. Firstly, the prior knowledge
can qualitatively guide optimization to better structural approximations by helping identify true
predecessors ¢. However, if the prior knowledge introduces a quantitative deviation y = Wg, W5
this deviation can propagate and affect the learned weights of other edges (X, X;) for k € t; — 3,
potentially leading to the generation of spurious edges or incorrect weights, even when the set
of predecessors t; correctly matches the true predecessors ¢;. This underscores the importance
of judiciously using prior knowledge, considering not just its qualitative correctness but also its
quantitative impact.

Remark 1. In the above analysis, we have not discussed the acyclicity constraint of the optimization
problem (). Although the acyclic constraint of DAG may cause differences between the real
optimization and linear regression, the introduction of the constraint h(1W') = 0 imposes a topological
order among the variables, ensuring that successor nodes do not point to predecessor nodes. During the
continuous optimization process, the constraint A(W) = 0 must be met (or approached), meaning the
learned weight matrix W always corresponds to a graph structure possessing an order. Consequently,
even with the acyclicity constraint, the optimization problem to estimate the incoming edges for node
X still resembles a linear regression.

*We use t; — f3 to represent the deletion of element /3 from set t;.
5Note that although + changes during the learning process, analyzing its impact for a given value allows us
to understand the characteristics of the resulting DAG structure.
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Figure 1: (a,b) If the edge (X}, X) or (Xg, X)) exists in the true graph, then as +y increases, the
learned weight W7, ; will gradually deviate from true weight By, ;. (c) When there is a common child
node X; between Xg and Xy, as +y increases, the difference between Wy, ; and By, ; will increase.

4.2 Deviation-Induced Graph Patterns Formation

In this section, we show that weight deviation introduces spurious edges, disrupting the learned DAG.
This motivates the use of graph patterns as deviation indicators.

Based on the findings from Lemma 2] the impact of the weight difference -y on structure learning
is linear. Setting aside the coefficient g 5 for simplicity, we concentrate on the coefficient 6, 3.
Assuming the noise variance as a positive constant, we explore the conditions within the weighted
adjacency matrix B where 0, g # 0:

Lemma 3. Assuming t; = {1,2,...,j — 1}, let 0 be the inverse of the submatrix of the covariance
of X corresponding to the variable set t;. Then the condition under which 0y, g is non-zero is given
by: By g # 0 or Xg and Xy, have a common child node X;, when k < 3; Bg ) # 0 or Xg and X,
have a common child node X;, when k > f3.

It should be noted that a Lebesgue zero-measure set case is ignored in the Lemma [3| which refers
to the case where X g and X, share a common child X, and there exists a specific non-zero value
By, g such that 0, 3 = 0. Essentially, assuming this special case does not occur is equivalent to the
faithfulness assumption [Koller, 2009, |Spirtes et al., 2001].

When a node X}, meets the conditions specified in Lemma 3] the weight deviation ~ will alter the
solution to the optimization problem (9). In particular, if ~ is significant, it might cause the edge
weight W}, ; obtained in the optimization problem (6)) to deviate from zero in optimization problem

. This means that even if By ; = 0 and all the true predecessor nodes of node j are known, «y
can still induce the formation of new edges. Figure|[T] visually illustrates how weight deviation can
lead to the creation of extra edges. As can be seen in Figure[T] the creation of extra edges gives rise
to two kinds of graph patterns. In cases (a) and (b), a triangular pattern is formed within the DAG
corresponding to the learned adjacency matrix W. This structure involves two nodes associated with
the prior knowledge (Xg — X;) and a third node X, that meets the conditions in Lemma In
case (¢), X3, Xy, and X; form a collision structure, and simultaneously, Xg, X}, and X; constitute
another collision structure. This case is referred to as a “double collision pattern”.

Our focus on these two patterns is not an arbitrary choice but is theoretically grounded. Lemma[3|
precisely characterizes the necessary and sufficient conditions for a deviation on a prior-enforced
edge to propagate and induce a single spurious edge. The two conditions identified in the lemma, a
direct connection or a common child path between the two parent nodes, correspond exactly to the
formation of the triangular and double collision patterns, respectively. This demonstrates that these
patterns are the exhaustive structural manifestations of this fundamental error mechanism. Therefore,
they are not arbitrary heuristics but are leveraged as the principled, theoretically-derived indicators of
prior-induced error in our framework.

As v increases, these extra edges and the associated patterns become more prevalent. To quantify
the potential prevalence of these deviation-induced patterns compared to naturally occurring ones,
we analyze their expected frequency using the standard Erd6s—Rényi random graph model G(d, p),
where d is the number of nodes and p is the probability of an edge existing between any pair of
nodes (Analysis of general models is possible but produces complex results that obscure intuition).
This analysis helps justify using these patterns as indicators, but the underlying mechanism linking
deviation to these patterns (Lemmas [2and[3) is based on general SEM properties and graph structures,
not limited to ER graphs. Indeed, the conditions in Lemma [3| involve local structures (direct
connections or common children paths), implying these patterns may appear in any topology (such as
scale-free networks) meeting these local conditions.



Lemma 4. Assuming the true DAG G adheres to the Erdds-Rényi graph model G(d, p). Assuming
that the prior knowledge m leads to the weight deviation ~y, which is sufficiently large, then the
expected number of triangular patterns resulting from ~y approaches %(d — 2)p, and the number of

double collision patterns approaches %(d —2)(d — 3)p>.

According to the lemma below, the number of both triangular and double collision patterns signifi-
cantly surpasses their natural occurrence in the DAG:

Lemma 5. In the ER graph G(d, p), the expected number of natural triangular patterns and double

collision patterns is ¢d(d — 1)(d — 2)p® and 57;d(d — 1)(d — 2)(d — 3)p*, respectively.

The expected number of the two patterns given in Lemma [ can also be approximately regarded as
%dp and %(dp)Q. This result indicates that the frequency of two graph patterns can be characterized
by dp, which is numerically close to the average degree of the graph and characterizes the sparsity of
the graph. Thus, we can further deduce that triangular patterns predominate when the average node
degree is low, while double collision patterns become more frequent as the average degree increases.

4.3 Pattern-Guided Adaptive Prior Framework

Thus far, we have theoretically established how deviation « on a prior-enforced edge (Xg — X;)
can propagate (Lemma [2) to induce spurious edges (X}, X;) when nodes X}, X satisfy certain
structural relationships (Lemma [3), leading to characteristic triangle or double collision patterns. We
also showed that these patterns strongly indicate deviation-induced errors. (Lemmas[] [5). Leveraging
these insights, this section introduces the Pattern-Guided Adaptive Prior framework, using these
structural signals to mitigate adverse effects and foster more accurate weight learning.

The core idea of PGAP is to employ a two-stage process. First, we learn an initial DAG structure
while incorporating prior knowledge. Second, we detect the number of deviation-induced patterns
associated with each prior edge. If such patterns are found, we adaptively reduce the influence of the
corresponding prior and re-optimize the model to obtain a more refined final graph. This procedure
is detailed in Algorithm [I]for the common case where priors are integrated as soft constraints via a
penalty term in the loss function.

Algorithm 1 PGAP with Soft Prior Constraints

1: Input: Data matrix X, set of prior knowledge II, initial prior loss weights o (vector with
elements «y  for each 7 € II), pattern adjustment step size .

2: Learn Weer using a base structure learning algorithm, incorporating the prior loss term
Lp (W7 H7 O(())-

3: Initialize a1 < ag.

4: for each prior 7 = (Xg — X;) € Il do

5: Npatterns <— 7 Of triangle and double collision patterns in Wigage1 involving m

6: a1 < max(0, agxr — & X Npatterns)

7: end for

8: Learn Wy, using the base structure learning algorithm, incorporating the prior loss term
Lp (W7 H7 al)'

9: Return Wi,

In this procedure, the objective function of the base learning algorithm is augmented with a prior loss
term L p (W11, «). Here, IT denotes the set of provided priors, and « is a vector of weights governing
the enforcement strength for each prior. The algorithm leverages the number of detected patterns,
TNpatterns> t0 adjust these weights, producing an updated weight vector «; for the second optimization
stage. This is discussed in more detail in Appendix [C| This adaptive adjustment allows the model to
counteract the effects of weight deviation by down-weighting priors that cause structural distortions.
In addition, a similar implementation for hard prior constraints, which adjusts local regularization
parameters, is also provided in Appendix

5 Experiments

This section presents a subset of the primary experimental results and analysis. We evaluate the
performance of our proposed method across various synthetic data settings, including different graph



structures, numbers of nodes, dataset sizes, and noise types. We also assess its effectiveness when
combined with different prior integration techniques and compare it against several baseline structure
learning algorithms. Comprehensive details, extended analysis (including the impact of varying prior
knowledge proportions and a detailed parameter analysis), supplementary experiments on real-world
datasets, and explorations into non-linear data scenarios are available in Appendix D]

5.1 Experimental Setup

Synthetic Data Random DAGs are generated using the Erdos-Rényi (ER) model or the Scale-Free
(SF) model, with the number of nodes (d) set to 20, 40, and 60. We use ERk and SFk to denote ER
and SF graphs, respectively, where k represents the edge-to-node ratio. The edge-to-node ratio (k)
varies between 2 and 4, corresponding to average degrees of 4 and 8, respectively. For graphs with 60
nodes, an edge-to-node ratio of k£ = 8 is also tested. The weighted adjacency matrix B is created
with uniform random weights drawn from U(—2, —0.5) U U(0.5, 2), and the data is generated as
X = BT X + €. Noise ¢ is varied among Gaussian, exponential, and Gumbel distributions, referred
to as Gauss, Exp, and Gumbel, respectively. Variance settings include equal variance (-EV) and
non-equal variance (-NV). Sample sizes are set to 2 and 20 times the number of nodes (2d, 20d), and
data is normalized post-generation. For the NV settings, the individual noise variances o7 for each
variable X; were drawn independently from a uniform distribution U (0.5, 2). All reported results on
synthetic data represent the mean values obtained from six independent trials for each experimental
configuration. All used priors are randomly selected from a proportion of edges in the true DAG.

Methods We benchmark PGAP against several established structure learning methods, including
VARSORT [Reisach et al., 2021]], GOLEM [Ng et al., 2020], DAGMA [Bello et al., 2022]], and
NT-LogLL [Deng et al.,|2024]]. To demonstrate its adaptability and effectiveness, PGAP is integrated
with each of these baseline methods, and its performance is compared against the standalone baseline.
The least squares scoring function is used when noise is EV, and NLL is used when noise is NV. We
also evaluate its performance when combined with different prior integration methods on NOTEARS.
These include a hard prior integration method and two soft prior integration methods. The hard
method specifies edge weights learned in the interval (—oo, —th) U (th, co) where th is the threshold.
The soft methods utilize two kinds of prior penalty functions:

Softmax: Lp(W;11) = Y~ Wit — Softmaz(|W|© W)
(12)
ReLU: Lp(W;1I) = Y  Relu(th x Wi — [W|® W)

In these equations, Wy represents the mask matrix derived from the prior knowledge, and 3 denotes
the summation over all elements of the matrix.

Metrics F1 score, Structural Hamming Distance (SHD) or scaled SHD.

Setup The initial weight of the prior loss is 1. The adaptive reduction parameter «, i.e., the amount
of weight reduction for each graph pattern, is 0.1. Other settings follow the default configurations of
the baseline methods. Experiments are conducted on a system equipped with a 4.5 GHz AMD Ryzen
9 7950X CPU, NVIDIA GeForce RTX 3090 GPU, and 32GB of memory.

5.2 Experimental Results and Analysis

Performance of PGAP in Various Graph Settings This experiment evaluates the performance of
the PGAP by comparing it against the baseline NOTEARS-Softmax across a variety of graph settings.
Figure [2]illustrates the performance comparison, showcasing results for different numbers of nodes,
dataset sizes under different noise. Note, “scaled SHD” is calculated as the SHD divided by the
number of nodes. Across these diverse conditions, the lines of proposed PGAP (the dark red and blue
lines) are consistently positioned at the bottom of the plots and demonstrate superior performance.
Results for denser graphs like ER4 and SF4 are detailed in Appendix The supplementary
results also show that the improvement offered by PGAP tends to increase as the proportion of prior
knowledge grows, contrasting with the baseline NOTEARS-Softmax, which can occasionally exhibit
performance degradation with higher proportions of prior knowledge. PGAP helps to alleviate this
issue, underscoring the importance of its mechanism for the reasonable integration of priors.
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Figure 2: Performance of PGAP across Different Graph Settings (ER=2).
Table 1: Improvements of PGAP on different prior integration methods (Gauss-NV case).
Data Size 2d 20d
ER Metric F1 SHD F1 SHD
Prior Proportion 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4
NOTEARS-Hard 33.6+2.1 48.2+20 40.2+1.0 34.8+15 35.1+4.1 48.1+£2.7 37.0£20 31.8+20
+PGAP 37.0+3.0 53.9+21 37.0+21 29.3+14 354425 52.1+44 35.3+1.7 28.3+2.3
2 NOTEARS-ReLU 322450 39.4423 54.7454 60.5+56 33.4+45 42.9+43 498457 52.347.1
+PGAP 34.9+37 42.3%35 49.8+4.1 53.0+8.0 35.1+4.7 47.0x4.5 46.8+49 42.0+94
NOTEARS-Softmax 39.0+3.9 48.9+26 37.8+34 35719 34.5+63 48.3+40 38.7+45 34.7+29
+PGAP 377429 57.8%54 35.2+15 26.7+23 33.4+22 56.4+51 37.5+1.8 26.3+29
NOTEARS-Hard 39.1+37 54.1%1.1 68.0£3.8 54.8+27 37.0+19 55.0+12 70.3%2.7 54.0+2.1
+PGAP 39.8+3.7 55.54£2.0 66.2+4.3 52.2+35 37.6%£2.9 55.5+24 69.3+33 53.2+2.7
4 NOTEARS-ReLU 46.5+3.0 52.5+24 89.3453 89.8+4.1 44.2+19 53.5+20 89.7+36 82.3%57
+PGAP 46.9+3.0 53.2+22 86.3+5.0 86.8+49 45.4+23 53.3+14 86.3+4.2 80.3+5.6
NOTEARS-Softmax 38.8+3.5 55.9+18 72.8+1.9 60.3+2.7 38.5%27 57.5%2.8 73.8433 57.8+43
+PGAP 40.4+4.0 56.9+1.5 69.0£29 57.0x24 39.0+1.6 60.4%29 69.028 50.8+4.6

PGAP on Prior Integrating Methods In this experiment, we integrate PGAP into 3 baseline
prior integration methods: NOTEARS-Hard, -ReLLU, and -Softmax, to evaluate the impact on their
performance. The specific implementation of PGAP can be found in Appendix [C| The results are
detailed in Table[I] Additional performance data under various noise types are available in Appendix
[D-2] The results indicate that PGAP generally enhances the performance of these methods, particularly
in terms of SHD, demonstrating its effectiveness across different prior integration methods.

Comparison of PGAP with Established Methods We integrated PGAP with several mainstream
structure learning methods and compared these PGAP-enhanced versions against their original
counterparts. The mainstream methods included in this comparison are NOTEARS, GOLEM,
DAGMA, and NOTEARS-LogLL. For a fair comparison, these baseline methods, both in their original

Gauss-EV, ER4, DataSize=20d Gauss-NV, ER4, DataSize=20d
VARSORT{ —— c—+—~mmmmm—— | VARSORT| . e e— |
40 60 80 100 120 70 80 90 100 110
NOTEARS , PR—— puine | NOTEARS e — E
EE Prior - 0.2 +PGAP| e — N Prior- 02
+PGAP e e e == prior=04 == prior=0.4
- GOLEM e ——
§ GOLEM . —ry = +PGAP — , H——
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+PGAP vy E—
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NT-LogLL — = 0
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Figure 3: Improvements of PGAP on Mainstream Methods.



and PGAP-enhanced forms, utilized prior knowledge via a soft integration approach. Additionally,
VARSORT is also included, which is a benchmark for structure learning. Comparative experiments
were conducted across various prior proportions and noise types (see[D.3)), with the results presented
in Figure[3] As shown in the figure, the PGAP-enhanced versions of the structural learning methods
consistently outperform their respective original versions. This demonstrates PGAP’s ability to
improve upon existing methods by fostering a superior utilization of prior knowledge.

6 Limitation and Further Discussion

While our theoretical and empirical results demonstrate the effectiveness of the PGAP framework, it
is important to acknowledge its limitations and the assumptions upon which it is built. A primary
consideration is that our formal theoretical analysis is grounded in the linear SEM setting under the
faithfulness assumption. Although our exploratory experiments suggest that PGAP remains beneficial
in some nonlinear scenarios, extending the formal characterization of deviation propagation to general
nonlinear models remains a challenging future direction.

Furthermore, the PGAP framework is designed as an adaptive, two-stage procedure. While it is
theoretically motivated by the analysis of error propagation, the current work does not provide formal
consistency guarantees for the resulting estimator. The framework’s practical performance can also
be context-dependent. As our analysis suggests, PGAP demonstrates robust improvements in sparse
graph settings. However, in denser graphs where the target patterns may occur more frequently by
chance, the framework’s stability becomes a key consideration. We address this challenge and provide
a more extensive discussion on it in Appendix [D.8] Furthermore, a more extensive discussion of these
aspects, alongside topics such as computational complexity and the handling of prior knowledge
quality, is available in Appendix

7 Conclusion

This paper addresses the challenges of integrating prior knowledge into structure learning and offers
practical solutions. Through theoretical analysis, we examine how edge weight deviation impacts the
optimization process and specifically investigate two graph patterns whose prevalence increases with
the magnitude of deviation. To counteract these issues, we introduce the Pattern-Guided Adaptive
Prior (PGAP) Framework, designed to minimize the occurrence of these problematic patterns,
thereby reducing the adverse effects of prior knowledge and improving its integration process. Our
experimental results confirm the effectiveness and robustness of PGAP, demonstrating its superiority
in DAG structure learning. This study highlights overlooked aspects of prior usage in existing research
and pioneers the exploration of applying prior knowledge judiciously in continuous optimization.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main contribution of this paper is to propose a method to counteract edge
weight deviation in the structure learning optimization process. We confirm that this is stated
in both the abstract and introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the proposed method in the Appendix [E]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

15



Answer: [Yes]

Justification: We confirm that complete proofs are provided for all theoretical results used,
as detailed in the Appendix

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The proposed method is understandable and reproducible, and we will provide
the relevant datasets and code.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We provide access to the code and datasets used.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https !
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide descriptions of the experimental settings and details in the Experi-
mental Setup subsection under Experiment section.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For all major tables and figures in the paper, we have included error analysis
or error bars, with their specific interpretations explained in the corresponding sections.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In the Experimental Setup subsection of Experiment section, we provide the
detailed computer configurations.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm the NeurIPS Code of Ethics and ensure that we do not violate
them.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper focuses solely on fundamental methodological research in causal
discovery, and its societal impact is expected to be minimal.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The article does not pose such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The dataset and base model we use are both clearly publicly available. For the

dataset, we have explicitly provided the citation URL; for the base model, we have given
clear citation details.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The paper does not use LLM.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Extended Related Work

This section provides a more detailed discussion of Section [2]in the main paper. Subsection [A.]
discusses the evolution of structure learning, while Subsection explores various methods and
classifications aimed at enhancing the quality of structure learning through the integration of prior
knowledge.

A.1 The Development of Structure Learning

Structural learning seeks to delineate and comprehend the causal relationships between variables
to enhance accuracy and reliability in prediction, decision-making, and intervention strategies.
Numerous methods have been devised to unearth the true DAG structure from observational data.
Constraint-based methods like PC [Spirtes et al.,[2001]] and FCI [[Colombo et al., 2012[] infer DAG
structures through conditional independence tests between variables. Score-based methods evaluate
the fit between a candidate DAG and the data using scoring functions. The hybrid methods, such
as MMHC [Tsamardinos et al.,2006], merge both conditional independence tests and score-based
methods. Additionally, some studies leverage data attributes such as non-Gaussianity, nonlinearity,
and discreteness to investigate the DAG structure, as noted in several studies [Shimizu et al., 2006,
Hoyer et al.l 2008} \Gretton et al., 2009, |Peters et al.,| 2011} |(Ghoshal and Honorio, |2018| |Khemakhem!
et al.,[2021].

Recently, [Zheng et al., 2018]] introduced NOTEARS, transforming the combinatorial search into
a continuous optimization problem for the first time. This innovation streamlines the handling of
acyclic constraints and the search of the vast DAG space, enabling the use of deep learning optimizers
in the search process. Inspired by this breakthrough, subsequent research has expanded on continuous
optimization methods for structure learning [[Chen et al., 2025]]. For instance, [Wei et al., 2020]
expanded the algebraic characterization of DAG acyclicity to a broader class of matrix polynomials,
while [Ng et al.l |2019] developed GOLEM, which employs soft acyclicity constraints to enhance
optimization performance. [Bello et al.,|2022]] introduced DAGMA, noted for its efficacy in detecting
longer cycles and providing better gradients and faster performance.

Extensions of continuous optimization have also been adapted to diverse scenarios. For instance, [Zhu
et al.,|2020] and [Wang et al.,|2021a] applied reinforcement learning to search for DAG structures,
whereas [Yu et al., 2019]] employed graph-based deep generative models to capture the variable
distributions using the variational inference mechanism’s evidence lower bound as an alternative to
traditional scoring functions. [Lachapelle et al.,|2019] utilized neural networks to model nonlinear
relationships between variables, among other innovative approaches [Goudet et al., [2018), |[Kalainathan
et al.,[2022] [Zheng et al.| 2020].

Additionally, some studies have focused on refining the optimization mechanisms of NOTEARS. [Wei
et al.,|2022]] explored the KKT optimality condition to better understand the behavior of NOTEARS
and related algorithms. [Reisach et al.|[2021]] demonstrated that the performance of certain continuous
structure learning methods might be attributed to the consistency between the increase in marginal
variance and causal ordering. Continuing this line of inquiry, [Deng et al., [2023]] introduced a
likelihood-based scoring function that incorporates quasi-MCP regularization, offering scale-invariant
characteristics.

A.2 Structure Learning with Prior Knowledge

In practical applications, the scarcity of data and the presence of noise often hinder accurate results,
prompting many studies to integrate human expertise or findings from previous research as prior
knowledge into structure learning. There have been many works on structure learning under the
combinatorial search framework.

Some studies enforce that the learned structure strictly adheres to prior knowledge, known as hard
constraints. For instance, [De Campos and Castellano| 2007]] adapted both the score-based hill
climbing algorithm and the constraint-based PC algorithm to produce graphs consistent with hard
constraints. Similarly, the Branch & Bound algorithm [De Campos et al.|[2009] specifies mandatory
and prohibited edges. More recently, some researchers have utilized ancestry as a hard constraint.

22



[Chen et al., |2016] combined the branch reduction capability offered by the prior with the A* search
method to explore the application of hard constraints in precise searches. Related studies include
[Borboudakis and Tsamardinos| 2012, |Li and Beek, |2018| [Wang et al.,|2021b]].

Alternatively, soft constraint methods use prior knowledge to guide the structure learning process.
[Castelo and Siebes, [2000] assessed candidate DAGs based on prior knowledge concerning the pres-
ence or absence of edges between variables, as specified by experts. [Borboudakis and Tsamardinos,
2014 employed the joint prior probability distribution of ancestral relationships to score candi-
date DAGs. [Eggeling et al.,|2019]] conducted a broader evaluation of prior knowledge on general
graph characteristics, such as restrictions on maximum in-degree and balancing different in-degree
probabilities.

In the realm of continuous optimization, efforts to integrate prior knowledge continue, which can also
be categorized into soft and hard constraint methods. Hard constraint methods focus on learning edge
weights within a specified feasible range. For example, [Sun et al., [2023]] utilized the L-BFGS-B
optimization algorithm to set boundaries on weighted adjacency matrix parameters by establishing
prior upper and lower bounds. [[Chen and Ge| 2022] improved the NOTEARS framework using
mixed integer linear models, incorporating prior knowledge through logical constraints and a series
of equality/inequality constraints. Similar approaches were also adopted by [Ramsey et al., 2018]
and [Liang et al., 2023]].

Soft constraint methods augment the original objective with a new loss function measuring DAG-prior
consistency and optimize continuously during the learning process. For instance, [[Yang et al.|[2023]]
constructed a loss function tied to a prior matrix that represents edge priors, ensuring that the weighted
adjacency matrix, when masked by the prior matrix, closely resembles the prior matrix to include
indicated edges. Similarly, [Wang et al., [2024] apply the ReLU function to the prior mask to optimize
the degree to which edge weights fall below a fixed threshold, and this approach could be extended to
softer activation functions. [Bello et al.| 2022]] manipulated the gradient of the objective function
directly. They adjust the impact of individual elements on the sparse penalty term during updates
based on prior knowledge to ensure specific edges are included in the result.

While these methods can generate DAGs qualitatively consistent with prior knowledge, they often
overlook the nuanced learning of edge weights during optimization, which is a key distinction
between continuous optimization and combinatorial search. Hard constraint methods exclude edge
weights below a certain threshold to meet edge priors by setting feasible intervals, but they may fail
to discern the positive or negative effects between variables, potentially leading to inappropriate
weight adjustments during optimization. The effectiveness of soft constraint methods relying on
prior loss varies with the loss function’s stringency. Mild loss functions may struggle to shift the
data’s structural tendencies, making it challenging to satisfy prior knowledge. Conversely, when the
loss function strongly emphasizes prior satisfaction, it may excessively increase corresponding edge
weights, diverging from the true weights.

In summary, while these methods offer avenues to integrate causal knowledge into continuous
objective functions, the resulting edge weights can significantly deviate from the ground truth. This
discrepancy may have severe implications. To address this, our paper proposes a posterior strategy
that examines the outcomes when the prior is either too strong or too weak, offering insights into how
prior knowledge should guide learning.

B Proof of the Lemmas in the Main Text

The theoretical framework presented in this paper is grounded in the linear SEM, a widely adopted
model for causal discovery. The validity and interpretation of our results rest on several key assump-
tions, which we delineate here for clarity.

Assumptions for the Linear SEM (Eq. [I)

29

Our model, defined as X = BT X + e, is based on two primary assumptions. First is “Linearity,
which posits that the causal relationship between a variable X; and its parents Pa(X;) is a linear
combination, weighted by the elements of the true adjacency matrix B. While a simplification of
many real world processes, this assumption provides crucial tractability and interpretability. Second
is “Acyclicity,” which requires the underlying graph structure to be a DAG. This is a cornerstone
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assumption in most graphical causal models, ensuring that a variable cannot be its own ancestor and
thus precluding feedback loops.

Assumptions for the Scoring Functions (Eq. [3)

The optimization objective for learning a candidate graph W relies on a scoring function, such
as Qis(W; X) or Qnu(W; X). The choice between these scores implies assumptions about the
noise distribution. The least squares score, (J;, is statistically equivalent to the (negative) log-
likelihood under the assumption of independent and identically distributed Gaussian noise terms,
ie., ¢, ~ N(0,0?) for all i. The more general negative log-likelihood score, Q,,;;, relaxes this by
allowing for differing variances across noise terms, i.e., ¢; ~ N(0,0?).

Furthermore, we wish to emphasize that the core deviation propagation mechanism identified in our
work appears robust even when these statistical assumptions are not perfectly met. As demonstrated
in our experiments with non-Gaussian noise (e.g., Exponential, Gumbel), PGAP consistently pro-
vides improvements. This suggests that the identified triangular and double collision patterns are
fundamental indicators of prior-induced error, and their utility is not strictly confined to scenarios
where the model is perfectly specified. This robustness is a key strength of our proposed framework.

Additional Notations and Formulations

Before proving the lemmas, we first introduce notations not used in the main text. Given that G is an
acyclic graph, we can establish a topological order for the variables in X, ensuring no edges from
lower to higher order variables. This ordering implies that B can be represented as a strictly upper
triangular matrix. According to Eq. (I), random variables X can be expressed as a linear combination
of noises €:

X =(I-B")"1e (13)

The matrix I — B” is invertible due to its upper triangular structure with non-zero diagonal elements.
Let ¥ represent the covariance matrix of X, ¥ = Cov(X) = E[X XT]. It is related to 2 as follows:

Y=(I-B)1TQI-B)" (14)
These equations elucidate the relationship between the causal structure B, the noise characteristics
Q, and the resulting covariance 3. The inverse of the covariance matrix, 6 = »~1, is known as the

precision matrix. Submatrices of ¥ and 6 corresponding to specific subsets of variables play a key
role in the derivation.

B.1 The Proof of Lemma 1
Lemma 1. Given a node X, assume that t; represents the set of predecessors of X consistent with

an order of the true DAG G. The regression coefficient obtained by linearly regressing X; on t}
corresponds directly to the relevant element in the adjacency matrix B of the true DAG, i.e.:

2
Bt;’j = arg I¥Vnin (Xt;_ Wt;’j — Xj> (15)

t* .5
3

Proof. To establish the claim, we need to demonstrate that the optimal weight vector in the minimiza-
tion problem, which corresponds to the OLS solution, is equal to Bt; ;- The OLS solution is given by

(Et;,t;)*lEt;f j- We need to show:
By j = (Et;,t;)_lzt;f,j (16)

Given that ¢} is consistent with the order of the true DAG G, and utilizing the SEM property
Y= (- B)"TQU — B)~!, we have:

Serer = (I = Bz or) ™ Qs s (I = B ) ™ (17

J
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Additionally, the covariance between X e and X is given by Zt;, ; =FE[X t;X ]T ], It can be further
expressed as: ' ' '
Sis = B | X X] |

—F {(I— Btgt;) e-e’ (I=B) e; (18)

=(1-Buy) @ Nu-B

J
where e; is the standard basis vector corresponding to node X ;. Thus, the regression coefficients can
be obtained as follows:

T
=(I = Biy ;)9 (I = Bus )" (I - Bt;,t;) (s 0)(I-B) te
_ _ 19
=(I = Bz 42):" (s 0) (T B) ey (19
=(I = Biz12) (I 0)(I—B)™ ¢
=Bi;.
Hence, we complete the proof of Lemmal[] [

B.2 The Proof of Lemma 2

Lemma 2. Lety = Wgy i—W;§ ; represent the deviation of the prior-influenced weight Wgy j (derived
from @ ) from the optimal OLS weight W . obtained when regressing X ; onto the set of predecessors
t; (derived from @ ). The difference between the prior-influenced weights for other incoming edges

Wi _p.; and Wy, j is a linear function of v, expressed as:

T * Y
Wi,—p.5 = Wi,p; = %%—M (20)

3

where 0 is the inverse of the covariance matrix of the variable set t;.

Proof. According to the definitions of ordinary least squares (OLS) estimates in the main text, the
optimal weights when regressing X; on X, are:

Wy =arg min (Xy, Wy, ; — Xj)2 @D

tj,J Wtj,] J
The weights for X;,_g when W ; is fixed to Wg,j are denoted Wt] —B,j"

~ ~ 2
Wi, g, = arg min (th*ﬁWtrﬁ-,j +XsWp,j — Xj) (22)

Wtj*ﬁ,j

The OLS solutions of Eq. (ZI)) and (22) can be expressed using covariances:

Wi, = () 5, (23)
Wi, = (St,-p,—8) Cov(Xy, g, X; — W Xp) (24)
where R R
Cov(Xy; -3, Xj = Wp ;Xp) = 54,5 —Wp 5,55 (25)
So,
Wi—.5 = (Bi-p,-8) " (Sty—pa = WagZe,-,6) (26)

Let W;‘;i 3,; be the components of Wt”; j corresponding to t; — 3. We consider the case when Wﬁ,j
is set to the optimal OLS weight W ; plus a deviation :

Ws, =Wi,+7 (27)
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The difference we want to calculate is Wt]. -85~ Wi g5
Wtj—ﬂvj - th—ﬂ,j
= (Zompa-s) " (55— (Wi +1)Z058) = Wi, g (28)
= {(th—ﬁ’tj—ﬁ)il (E{j_ﬂ - Wg,jztj—ﬁyﬁ) - Wt’_:—ﬁyj] -7 (Ety‘—ﬁ»t.f—ﬁ)il Et]‘—ﬁ-ﬂ
The term in the square brackets is zero because it represents the difference when v = 0, i.e., VAV@ j =
Wj ;- In this case, Wy, g ; should equal W/ _; .. (This assumes that regressing X; — W3 ;X

onto Xy, g gives the same coefficients W’;_ 3,5 as obtained from the joint regression on X, . This
holds due to properties of OLS.) Therefore,

o « -1
Wi, —p.i — Wtj*b’,j =7 (ztj*ﬁ;tjfﬁ) Xt;-8,8 (29)

The Eq. (29) shows that the difference is linear in v. We proceed by calculating this difference in
more detail. Define the following matrices for convenience:

M=3%,, Ai=%p3, Ao =%g4,-p, A3 =X¢,—pp, As = X¢,—p4,-8 (30)
Thus, the difference can be rewritten as:
Wi, -5 = Wi _p 5 = 1(A1) " 4s (31)

In the above equation, the most difficult thing to deal with is the inverse of A,4. To this end, we first
assume that 5 = 1 and then introduce the Schur complement, which provides us with:

51 —S 1A, AL

-1 _
MU= A 4,5 A7 4 A7 45514547 (32)
where S is the Schur complement of M with respect to A4, defined as:
S =A; — Ay A7 A (33)

From the conclusions of Eq. (32):
(M Y)gj 101 = Ayt + A7 A3S7 1A ALY
(Mil)Q:j—l,l = *A21A3571 (34
(M_1)1,2:j71 =-S5 1A AL

Using these conclusions, we can get the expression of the inverse of Ay:

At = (M Yayo105-1 — (M Va1 (M908

= (M 2121 — (M7 )2ij-10 (M 121 (M7 H)1) ™ 2
When (3 # 1, the permutation matrix P can be used to transform M to the case where 8 = 1:
M = PSy, ; P" (36)
Therefore the inverse of M becomes:
M~ = (P, PT) ' =P(S,4,) ' PT (37)

The second equality in the above equation is due to the fact that the permutation matrix P has the
following property:
pT =p! (38)
Therefore we can obtain:
All = (Mil)Q:jfl,Z:jfl - (M71)2:j71,1(M71)1,2:j71((M71)1,1)71
o (39)
= 0t,-6,5-5 = O;-5,695,6,-5(0p.5)

where
0= (S¢.,)" (40)

26



Therefore: )
_ -1
Ay Az = (O,-.6,-5 — O,-5.898.6,-5(05,8) ") X, 5, 4D
Next, we calculate the components separately:

First Term = e;,ﬁetﬂj,ﬁztﬁm es
=l 5 (I—01;,5%51,) s (42)
= —04—pp2pp
Second Term = —0;, 3 303, -5(03.5) " S¢,—p,5
= =4,-8,808,1,-50;-p,5(03,6)

_ (43)
— (1~ 35,05,5) 01,-5,5(05,5) "
-1
=01, 550p5)  + 50,5
Consequently, by combining these two terms, we obtain:
A Ay =6, 55 (058) (44)
Finally, the difference in the estimates is expressed as:
T * . —1 o Y
Wi~ = Wi—p; =741 Az = %Qtj—w (45)
This concludes the proof, showing that the difference between the adjusted and original weights is a
linear function of the deviation -y, scaled by the term derived above. O
B.3 The Proof of Lemma 3
Lemma 3. Assume t; = {1,2,...,j— 1}, and let 0 be the inverse of the submatrix of the covariance

of X corresponding to the variable set t;. Then the condition under which 0y, g is non-zero is given
by: By g # 0 or Xg and X, have a common child node X;, when k < f3; Bg . # 0 or Xg and X,
have a common child node X;, when k > f3.

Proof. Given that ¢; aligns with the true DAG order (say t; = {1,2,...,5 — 1}), the inverse
covariance matrix 6 = (Et; t )~! can be expressed in terms of the true adjacency matrix B and noise

variances {2 = diag(o?,...,03):

_ T
0= (I —By-15-1) 451 (L= By-up-1) (46)

This leads to a specific formulation for the components of 6:

_ B Bg iBg,i
0 %”22 o1 Tty k<P
k,B = B Bg i Bi,i :

ﬁk Zz k+1 /3’_2]6’7 B<k<j

o

(47)

The analysis now splits based on the relative values of & and 3. Case 1: k < . From Eq. @#7), 0 s
will be non-zero if: (1) The direct edge weight By, g is non-zero. If By, g # 0, the first term —%
B

contributes a non-zero value (assuming Ug > 0). (2) The common child term is non-zero. If X5 and

X}, have a common child node X; such thati € {8 +1,...,7 — 1}, then Bg; # 0 and By, # 0. In

Bs B -
‘3‘;2 ki is non-zero.
;

this case, the summation term Zl G+1

Case 2: k > (3. From Eq. (47), 0,5 will be non-zero if: (1) The direct edge weight Bg j, is non-zero.
If Bgj # 0, the first term BLQ" contributes a non-zero value. (2) The common child term is
non-zero. If Xz and X;, have a common child node X;suchthati € {k+1,...,j — 1}, then

Bg ; # 0 and By; # 0. The summation term Zl kil % will be non-zero.

Combining these conditions yields the statement in the lemma. The exclusion of a Lebesgue zero-
measure set corresponds to the faithfulness assumption, ensuring that terms don’t accidentally cancel
to zero. O
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B.4 The Proof of Lemma 4

Lemma 4. Assuming the true DAG G adheres to the Erdds-Rényi graph model G(d, p). Assuming
that the prior knowledge m leads to the weight deviation v, which is sufficiently large, then the
expected number of triangular patterns resulting from ~y approaches %(d — 2)p, and the number of

double collision patterns approaches &(d — 2)(d — 3)p?

Proof. Assume that the prior knowledge producing the weight deviation is (X3 — X). To calculate
the expected number of triangles generated by a given deviation 7, we denote this expectation as
E(#Triangle | X3 — X, ). This expectation can be decomposed into expected sub-events:

E(#Triangle | m = X3 — X;,7) = ZE (Triangle gy, ; | X5 — X;,7) (48)
k<j

For cases where k < 3:

E (Triangleg,; | 7 = X5 — X;,7) = P(Xy — X5)P(y > th) ToTeeniy e, (49)
And for cases where k > f3:
E (Triangle,; | 7= X5 — X;,7) = P(X5 — Xg)P(y > th) 122ty large, (50)
8l€sk; B 3 Y B Y

Thus, for the prior knowledge X3 — X, the expected number of triangles converges to:
E(#Triangle | 7 = X5 — X;,7) = (j —2)p (51)
To find the expectation over all possible prior knowledge 7 in the graph, we compute the expectation:
d j—1

1 2
E(#Triangle | 7,7) C?l ]22;1 E(#Triangle | 7 = Xg — X,,v) = §(d —2)p (52)
Next, we address the expected number of double collision patterns, defined as:
E(#Double Collision | 7 = Xg — X;,7) (53)
=Y ) E(Double Collisiongy,; | 7 = X5 — X;,7)
k<j k,B<i<j

For cases where k < 3:
Z E (Double Collisiongy;; | 7 = X5 — X;,7) (54)
k,B<i<j
:(j —1- ﬁ)P(XB — Xl)P(Xk — Xi)P(’y > th
And for cases where k& > :
> E (Double Collisiongyi; | m = X3 — X;,7)
k,B<i<j (55)
. ~ is sufficiently large . 2
= —1-k)P(Xs = X;)P(Xy = X;)P(y > th) ————— (j —1—k)p

Summing the contributions for all &, the expected number of double collisions for prior knowledge
™= Xg— Xjis:

(#Double Collision \ T=Xg— X;,7)

) ~ is sufficiently large (
E— W

—1-B)p?

1 (56)
—ijlf p+z (G—-1-k FU=B=1(G+8—4)p°
k=p+1
Finally, we calculate the total expectation:

(#Double Collision | 7, )

1 57
Ve Z Z (#Double Collision | 7 = X5 — X;,7) = =(d = 2)(d - 3)p? (57)
Ca 55,550
Hence, we complete the proof of Lemma 4. O
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B.5 The Proof of Lemma 5

Lemma 5. In the ER graph G(d, p), the expected number of natural triangular patterns and double
collision patterns is ¢d(d — 1)(d — 2)p® and 57d(d — 1)(d — 2)(d — 3)p*, respectively.

Proof. We consider the probability that any three nodes in a DAG form a triangle pattern. Given the
acyclic nature of DAGs, we assume a topological order for the nodes. Therefore, for three nodes a,
b, ¢ arranged in order in the Erdés-Rényi graph model G(d, p), the probability that an edge exists
between each pair of nodes is p, leading to a combined probability of p? for three interconnected
nodes. Therefore, the expected number of triangle patterns in the DAG then calculated as:

E(#Triangle) = C3 x p® = éd(d —1)(d —2)p? (58)

Similarly, for any four nodes a, b, ¢, and d arranged in a DAG, the probability that nodes a and b
simultaneously connect to nodes ¢ and d in a structure resembling two collisions is p*. Thus, the
expected number of double collision patterns is:

1
E(#Double Collision) = C'} x p* = ﬂd(d —1)(d —2)(d - 3)p* (59)

O

C Algorithm for Pattern-Guided Adaptive Prior

This section details the implementation of the Pattern-Guided Adaptive Prior (PGAP) Framework.
As a general strategy, PGAP integrates three key steps: (1) learning a DAG from data using a base
structure learning algorithm, (2) detecting specific graph patterns that indicate potential prior-induced
errors, and (3) adaptively adjusting parameters within the base learning algorithm to mitigate these
errors. The adaptation method varies depending on how prior knowledge is incorporated.

C.1 Implementation for Soft Prior Constraints

When prior knowledge is introduced as soft constraints via a prior loss term in the objective function,
the adaptive adjustment in PGAP involves modifying the weight of this prior loss term. Algorithm|T]
outlines the procedure.

Algorithm 1 PGAP with Soft Prior Constraints

1: Input: Data matrix X, set of prior knowledge II, initial prior loss weights g (vector with
elements «q , for each 7 € II), pattern adjustment step size .

2: Learn Wyger using a base structure learning algorithm, incorporating the prior loss term
LP(I/V7 H, O[(]).

3: Initialize a1 < ag.

4: for each prior 7 = (Xg — X;) € Il do

5: Npaterns <— 7F Of triangle and double collision patterns in Wage1 involving 7

6: Q1,; < maX(O, o, — X npatterns)

7: end for

8: Learn Wypy using the base structure learning algorithm, incorporating the prior loss term
Lp (VV7 H, 011).

9: Return Wipa

In this procedure, Lp(W; 11, o;) represents the total prior loss, typically a sum of individual loss
components for each prior:

Lp(W;ILa) = Y aLp(W;m) (60)
well
where a is the weight for prior 7. Its specific form is problem-dependent, but it should satisfy:

Lp(W;m) — 0 < prior edge exists in the learned G (61)
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The “base structure learning algorithm” refers to a chosen continuous optimization method (e.g.,
based on NOTEARS) that minimizes a scoring function Q(W; X)) subject to acyclicity h(W) = 0,
augmented with the prior loss L p and a sparsity-inducing regularizer.

In this implementation, the weight « of the prior loss term L p is adaptively reduced when deviation-
indicating patterns are detected. This lessens the influence of the prior, allowing the base structure
learning algorithm more freedom to adjust edge weights based on the data.

C.2 Implementation for Hard Prior Constraints

When prior knowledge is enforced using hard constraints (e.g., restricting edge weights to a spe-
cific range), the adaptive adjustment in PGAP involves modifying the local regularization strength.
Algorithm 2] outlines this procedure.

Algorithm 2 PGAP with Hard Prior Constraints

1: Input: Data matrix X, set of prior knowledge II (used as hard constraints), initial regularization
matrix Ay (with elements Agl[k, j] e.g., 0.1), regularization adjustment step size w, maximum
regularization strength Ap -

2: Learn Wage1 using a base structure learning algorithm with hard prior constraints II and regular-
ization matrix Ag.

3: Initialize A1 < Ayp.

4: for each prior 7 = (Xg — X;) € Il do

5: Npatterns <— 7 Of triangle and double collision patterns in Wiage1 involving the ™

6

7

8

if Npagerns > 0 then
for each k # j do
. Al [k,j] — min(AO [kvj] +w X npallernSa )\max)
9: end for

10: end if
11: end for

12: Learn Wy, using the base structure learning algorithm with hard prior constraints 1I and the
adjusted regularization matrix A;.
13: Return Wy

Here, the regularization coefficient A is adaptively increased for edges suspected of being spurious
(i.e., participating in the detected patterns). This encourages these edge weights towards zero,
promoting a sparser and more accurate graph.

In the experiment, each element of the regularization matrix A starts at 0.1 with an upper limit of 0.2,
and the regularization adjustment step size w is 0.02.

D Complete Experimental Results and Analysis
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Figure 4: Performance of PGAP across Different Graph Settings (ER=2).
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Figure 5: Performance of PGAP across Different Graph Settings (ER=4).
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Figure 6: Performance Comparison across Different Prior Proportion Values (Gauss-NV case).
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Figure 8: Performance Comparison across Different Prior Proportion Values (Gumbel-NV case).
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Figure 9: Performance Comparison on Large-scale denser Data (Nodes=60, ER=8).

D.1 Performance of PGAP in Various Graph Settings

The main experiments (e.g., Figure[2]in the main text) have already established that PGAP demon-
strates superior performance compared to the NOTEARS-Softmax baseline across a variety of settings
for ER2 and SF2 graphs, including different numbers of nodes, dataset sizes, and multiple noise
distributions (Gaussian-EV/NV, Exponential-EV/NV, Gumbel-EV/NV), using scaled SHD as the
primary metric.

This appendix section provides further comprehensive details and extends this analysis to showcase
PGAP’s robustness and adaptability under additional conditions. The figures presented herein use
scaled SHD, consistent with the main text. Specifically, this section expands on the findings by
Presenting performance comparisons on denser graphs (ER4 and SF4), detailed in Figure[5] (Figure
Hreiterates the result of ER2 and SF2 scenarios for completeness). We also investigate the impact of
varying proportions of prior knowledge on performance across different graph structures (ER graphs)
and noise types (Gauss-NV, Exp-NV, Gumbel-NV), as illustrated in Figures[6] [7] and[§] Furthermore,
we also evaluate the performance of PGAP on the denser graph with 60 nodes, as shown in Fig. 0]

These extended results (Figures f] through[9) consistently show PGAP outperforming NOTEARS-
Softmax. The enhancement in performance with an increasing proportion of prior knowledge further
suggests that PGAP not only effectively utilizes prior knowledge but also adapts more gracefully to
its integration, alleviating the occasional performance degradation observed with the NOTEARS-
Softmax baseline. This highlights the critical role of PGAP’s mechanism for judiciously handling
prior knowledge to enhance rather than detract from the learning process.

D.2 PGAP on Prior Integrating Methods

The experiment in the main section demonstrated that PGAP enhances the performance of NOTEARS-
Hard, NOTEARS-ReLU, and NOTEARS-Softmax methods, with detailed results for the Gauss-NV
noise case presented in Table[T]

This appendix further expands on these findings by providing performance data under additional
non-equal variance (NV) noise conditions. Table 2] reiterates the Gauss-NV results for completeness
within this appendix. The truly extended results, showcasing PGAP’s impact with Exponential-NV
(Exp-NV) and Gumbel-NV (Gumbel-NV) noise, are presented in Table [3]and Table @] respectively.

These comprehensive results (Tables[2] [3| ) are important for assessing the robustness and adaptability
of PGAP in handling different noise structures when applied to various prior integration strategies.
The findings indicate that PGAP generally maintains or improves both F1 scores and SHD relative to
the baseline methods across most configurations. This reflects PGAP’s capacity to effectively adapt
to different noise characteristics while beneficially integrating prior knowledge into the structure
learning process.

D.3 Comparison of PGAP with Established Methods

The main text has discussed the comparison of the PGAP framework, when integrated with several
established structural learning methods (NOTEARS, GOLEM, DAGMA, and NOTEARS-LogLL),
against their original counterparts. Figure[3|in the main text provides a summary of these comparisons.
This appendix section offers a more comprehensive and detailed graphical breakdown of these
performance comparisons across a broader range of experimental conditions. The subsequent figures
(Figures[I0]through [T5) illustrate these comparisons using SHD as the performance metric. These
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Table 2: Improvements of PGAP on different prior integration methods (Gauss-NV case).

Data Size 2d 20d

ER  Metric F1 SHD F1 SHD
Prior Proportion 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4
NOTEARS-Hard 33.6+2.1 48.2+20 40.2+10 34.8+15 35.1+41 48.1+27 37.0+20 31.8+20
+PGAP 37.0+3.0 53.9+21 37.0%21 29.3+14 354425 52.1+44 35.3%17 28.3+23

’ NOTEARS-ReLU 322450 39.4423 54.7+54 60.5+56 33.4+45 42.9+43 49.8+57 52.3%7.1
+PGAP 34.9+37 42.3+35 49.8+41 53.048.0 35.1+4.7 47.0x45 46.8+49 42.0+9.4
NOTEARS-Softmax 39.0+3.9 48.9+26 37.8434 35.7+1.9 34.5+63 483+4.0 38.7+45 34.7+29
+PGAP 377429 57.8+54 35.2+15 26.7+23 33.4+22 56.4%51 37.5+1.8 26.3+29
NOTEARS-Hard 39.1437 54.1*1.1 68.0+38 54.8+27 37.0x19 55.0+12 70.3+27 54.0+2.1
+PGAP 39.8+3.7 55.54+2.0 66.2+4.3 52.2+35 37.6+2.9 55.5+2.4 69.3133 53.2+2.7

4 NOTEARS-ReLLU 46.543.0 52.54+24 89.3+53 89.844.1 44.2+19 53.5+20 89.7+36 82.3+57
+PGAP 46.9+3.0 53.2+22 86.3+50 86.8+49 454423 53.3+14 86.3x4.2 80.3+5.6
NOTEARS-Softmax 38.8435 55.9+1.8 72.8419 60.3+27 38.5+27 57.5+28 73.8+33 57.8+43
+PGAP 40.4+4.0 56.9+1.5 69.0+29 57.0+24 39.0+1.6 60.4+29 69.0+2.8 50.8+4.6
Table 3: Improvements of PGAP on different prior integration methods (Exp-NV case).
Data Size 2d 20d

ER  Metric Fli SHD Fl SHD
Prior Proportion 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4
NOTEARS-Hard 40.6+7.6 49.5+1.6 35.3%53 32.2+15 35.8+24 51.7+40 37.7x12 31.0+1.8
+PGAP 3907443 52.4+21 34.2+4.1 29.3%+14 35.9+27 53.0+32 37.2+24 28.0x2.0

2 NOTEARS-ReLU 32.6£3.0 41.6x40 54.7+58 57.848.7 33.8+3.1 43.0£3.1 51.5%29 54.3%3.1
+PGAP 304445 44.5%4.6 52.3+52 50.249.8 35.2+29 43.4+25 47.3+22 50.7+26
NOTEARS-Softmax 33.2+7.0 47.2+65 41.7+56 36.7+57 33.3%36 48.4+43 40.8+26 35.84+33
+PGAP 37.1+53 54.3%+6.0 37.7%39 27.5455 35.8+41 61.1+52 37.3x26 23.8+33
NOTEARS-Hard 39.5+15 55.143.1 67.3+27 53.3#4.0 38.2+3.1 54.5+3.0 69.8433 55.2+26
+PGAP 39.5+35 57.3+22 67.5+25 51.0+21 38.3+29 57.4+39 69.5+22 51.2+45

4 NOTEARS-ReLLU 46.7£3.0 54.7+28 84.7+57 78.2+7.0 46.2+33 53.8+1.7 88.0+7.3 83.3%5.1
+PGAP 47.943.1 55.542.7 81.7+45 75.7+63 47.4+3.0 54.4+1.4 84.5+63 79.3+4.3
NOTEARS-Softmax 41.6+4.8 57.7+1.6 69.746.9 58.2+26 37.7+1.8 57.0x1.0 74.8433 59.2+30
+PGAP 40.4+3.6 58.7+21 68.5+3.8 52.7+25 39.1+32 57.7x1.6 70.0%35 56.2+2.5

Table 4: Improvements of PGAP on different prior integration methods (Gumbel-NV case).

Data Size 2d 20d

ER  Metric Fl SHD F1 SHD
Prior Proportion 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4
NOTEARS-Hard 36.9+35 47.6x40 38.0+1.4 33.3+29 38.9+69 47.1+25 36.3+51 33.2+2.1
+PGAP 37.5+47 51.2+48 35.8+3.6 30.0+34 35.1+29 50.2+27 37.3+24 30.8%2.0

’ NOTEARS-ReLLU 314442 429433 55.7+63 553462 33.5%42 424435 52.0+£39 54.5+43
+PGAP 32.244.1 44.6£32 52.3+6.2 49.8+7.1 33.9+43 43.2+32 49.8+29 50.3+4.5
NOTEARS-Softmax 32.6+4.6 48.7+3.1 41.8%25 37.3+33 34.2+49 49.7+70 40.5%3.6 36.3%55
+PGAP 321421 59.1+38 39.2+22 25.7+24 35.3+33 60.7+45 38.2+2.0 24.5+3.0
NOTEARS-Hard 40.0+19 53.4+28 68.0x2.0 56.7+34 38.6+45 54.5+27 69.7%3.1 55.0+2.8
+PGAP 38.5438 54.8+2.8 68.8+4.6 54.7+25 36.3x1.8 55.7+1.8 70.2+29 52.2+23

4 NOTEARS-ReLU 449429 53.5+38 89.8+3.8 86.7+8.1 439422 53.2+22 92.7+6.0 85.2+32
+PGAP 45.0+2.4 55.5+32 88.3+27 81.7+7.1 45.3+23 54.1+23 88.0%65 82.2+4.2
NOTEARS-Softmax 37.2+42 56.4422 74.3+36 59.3%37 37.2+42 57.5+17 75.0+62 57.0%2.7
+PGAP 37.3+32 57.5+12 70.2+3.0 55.5+1.7 38.8+35 58.3+x1.9 68.5+58 53.8+2.2
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figures cover various settings, including different noise distributions with Equal Variance (EV) and
Non-Equal Variance.

These detailed results visually reinforce the findings from the main text, demonstrating that the
PGAP-enhanced versions of the structural learning methods consistently tend to outperform their

respective original versions across these diverse scenarios, highlighting PGAP’s ability to foster a
superior utilization of prior knowledge.
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Figure 10: SHD Performance Comparison of PGAP with Mainstream Methods (Exp-EV case).
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Figure 11: SHD Performance Comparison of PGAP with Mainstream Methods (Gauss-EV case).
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Figure 12: SHD Performance Comparison of PGAP with Mainstream Methods (Gumbel-EV case).

D.4 Ablation Study on the Adaptive Reduction Parameter
The PGAP framework, when applied with soft prior constraints (as detailed in Algorithm 1), utilizes an

‘adaptive reduction parameter’, denoted as «v. This parameter determines the magnitude by which the
weight of a specific prior in the loss function is reduced when deviation-indicating structural patterns
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Figure 13: SHD Performance Comparison of PGAP with Mainstream Methods (Exp-NV case).
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Figure 14: SHD Performance Comparison of PGAP with Mainstream Methods (Gauss-NV case).
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Figure 15: SHD Performance Comparison of PGAP with Mainstream Methods (Gumbel-NV case).
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Figure 17: The Ablation Results for the Adaptive Reduction Parameter o (ER4).

associated with that prior are detected during the initial learning stage (W¢qge1). Understanding the
sensitivity of PGAP’s performance to this o parameter is important for its practical application.

This ablation study investigates the impact of varying the adaptive reduction parameter o on the
performance of PGAP, specifically when integrated with NOTEARS using a softmax-based soft prior
(referred to as NOTEARS-PGAP). Figures [16] and [T7] display the SHD for ER2 and ER4 graphs,
respectively, under different prior proportions (0.2 and 0.4). In these figures, the numerous black
scatter points represent the SHD values from individual runs of the NOTEARS with PGAP’s adaptive
mechanism.

The results show that NOTEARS-PGAP (solid red line) consistently achieves a lower average SHD
than NOTEARS results across a range of « values. For instance, an adaptive reduction parameter
« around 0.1 (the default value used in our other experiments) demonstrates robust performance,
typically falling below the majority of the baseline scatter points. This indicates that PGAP’s adaptive
adjustment of prior loss weights provides a tangible benefit over a static prior weighting. While
extreme values of « might lead to diminishing returns or slight increases in SHD, the mechanism
shows a favorable range of operation.

This study supports the conclusion that PGAP’s adaptive approach to modulating prior influence
based on structural patterns is effective and not overly sensitive to the precise setting of the adaptive
reduction parameter within a reasonable range, generally outperforming the non-adaptive baseline.

D.5 Results on Real-World Data

To evaluate the practical applicability of our framework, we conducted experiments on four real-world
datasets of varying scales and domains. The first is the well-established Sachs dataset, which contains
11 nodes and 17 edges from measurements of protein and phospholipid expression levels [Sachs
et al., 2005]]. We also include three additional datasets: the small-scale PaidSearch dataset (7 nodes,
6 edges) Rutz and Bucklin|[2007], and two larger-scale datasets, Magic-niab (44 nodes, 66 edges)
Scutari et al.|[2014]] and Ecoli70 (46 nodes, 70 edges) |Schifer and Strimmer| [2005].

TableE]presents the performance of three baseline methods (NOTEARS-Hard, -ReLLU, and -Softmax)
with and without PGAP enhancement on these four datasets, using F1 score and SHD as metrics
with prior proportions of 0.2 and 0.4. The results demonstrate a consistent trend across all evaluated
scenarios. Integrating PGAP generally leads to improved outcomes, reflected in higher F1 scores and
lower SHD values. This robust performance across diverse real-world data underscores the practical
value and generalizability of our proposed framework.

D.6 Experiments on Nonlinear Situation

To further test the applicability of the proposed method in different scenarios, we also conducted
experiments under nonlinear conditions, with the results presented in Table[6]
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Table 5: Performance comparison on four real-world datasets: Sachs, PaidSearch, Magic-niab, and
Ecoli70.

Dataset Sachs PaidSearch Magic-niab Ecoli70

Metric Fl1 SHD Fl1 SHD Fl1 SHD Fl1 SHD
Prior Proportion 02 04 02 04 02 04 02 04 02 04 02 04 02 04 02 04
NOTEARS-Hard 48.0 533 11 10 154 429 9 7 349 467 51 45 267 350 123 112
+PGAP 480 571 11 9 154 462 9 6 357 542 50 40 284 387 107 103
NOTEARS-ReLU 480 552 11 10 133 308 11 10 353 427 51 47 230 295 161 176
+PGAP 480 571 11 9 167 429 8 7 372 532 49 41 279 357 117 99
NOTEARS-Softmax 37.0 485 13 13 30.8 400 8 8 353 449 51 46 206 29.0 155 176
+PGAP 400 519 12 10 333 462 17 6 372 547 49 40 252 360 113 108

Table 6: Improved Effect of PGAP on the Nonlinear Conditions (20 Nodes).

Nonlinear Function Type MIM MLP
Prior Proportion 0.2 0.4 0.2 0.4

Graph Type ~ Method Fl1 SHD F1 SHD Fl SHD Fl1 SHD
ER2 NOTEARS-MLP 8899 6.50 95.12 2.83 70.80 1933 79.73 13.67
+PGAP 89.75 583 9621 217 73.05 17.33 82.54 11.83
SF2 NOTEARS-MLP 6845 1633 76.10 1250 53.19 2550 66.62 19.50
+PGAP 67.80 16.50 80.11 11.33 5326 24.33 71.09 16.67
ER4 NOTEARS-MLP 8146 2383 87.56 1683 6490 4033 79.64 25.83
+PGAP 82.81 22,50 8842 15.67 6595 38.50 81.01 23.83
SF4 NOTEARS-MLP 66.16 32.83 82.22 19.67 48.78 50.00 65.81 36.83
+PGAP 72.84 28,50 83.71 18.17 50.86 48.67 66.40 36.00

Compared to previous experiments, we employed nonlinear methods to generate data, including the
MLP and MIM approaches. The MLP method applies the sigmoid function to introduce nonlinear
transformations to the input X, while the MIM method uses trigonometric functions for nonlinear
transformations. Specifically, the former can be expressed as X <« sigmoid(XW7)Ws + z, and
the latter as X < tanh(XW7) + cos(XWs) + sin(XW3) + 2z, where Wy, Wy, W3 are randomly
generated weight matrices, and z is a random noise.

Table [ compares the performance of the proposed method and NOTEARS-MLP under nonlinear
conditions across different settings. The results show that even in non-linear cases, the proposed
method still achieves effective performance improvements in most scenarios. However, we also
observe that in some cases, the performance gains are not significant, which may be attributed to the
complexity of variable dependencies in nonlinear settings, limiting the capability of the proposed
method.

D.7 Sample Analysis of Comparative Experiments

To illustrate the improvement offered by the PGAP method, we analyze a DAG with 10 nodes, ER=2,
and Gauss-NV noise. Figures[I8]showcase the DAGs learned using NOTEARS-Softmax and PGAP,
called DAG-Softmax and DAG-PGAP. The discrepancies between the learned DAGs and the true
DAG are indicated by different colored edges: black lines represent correctly inferred edges, red lines
indicate extra edges not present in the true DAG. Dotted lines represent the incorporation of prior
knowledge in the learning process.

DAG-Softmax results in 6 extra edges, while DAG-PGAP has fewer, with 3 extra edges, demonstrating
PGAP’s superior performance.

DAG-Softmax exhibits 3 triangles that include both prior knowledge and extra edges that point to
the same node, including (5,2,1), (5,2,6), and (6,8,5). In contrast, DAG-PGAP shows a reduction in
such triangle patterns, featuring 2 such instances: (5,2,1),(6,8,5). The structure (5,2,6) is identified,
leading to the extra edge from 6 to 2 being deleted. These 2 triangles in DAG-PGAP involve just 2
extra edges. This reduction indicates that under the influence of PGAP, even when the condition of
Lemma 3]is met, forming triangle patterns becomes more difficult.
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Moreover, regarding the double collision pattern, DAG-Softmax displayed one instance: (6,8,3,9). In
contrast, DAG-PGAP recorded no such instance. This comparison illustrates that PGAP effectively
minimizes the number of special graph patterns, reinforcing its utility in refining the structure learning
process by integrating prior knowledge more efficiently and reducing errors due to extra edges.

Figure 18: The structure learning results of NOTEARS-Softmax (left) and DAG-PGAP (right) for a
DAG with 10 nodes, ER=2, and Gauss-NV noise. 40% priors are utilized.

D.8 Performance on Dense Graphs with a Data-driven Adjustment Mechanism

As discussed in Section [6] the performance of the baseline PGAP adjustment can be sensitive in
denser graphs. This is because the raw count of triangular and double collision patterns, used as the
primary signal, may not be as informative when such patterns occur more frequently by chance in
a highly connected structure. To address this challenge and enhance the robustness of PGAP, we
introduce and validate a refined, data-driven adjustment mechanism that relies on a non-oracle tuning
procedure.

This refined procedure normalizes the pattern count for a prior-enforced edge against a baseline
derived empirically from the graph’s own structure. The process is as follows. First, after learning
an initial graph Wage1, we iterate through every edge in the graph to compute its associated pattern
count, which yields an empirical distribution of these counts for the specific graph. From this
distribution, we establish a baseline for the “normal” level of patterns, npyseline, USing a robust statistic
such as the median or the 75th percentile. For each prior-enforced edge 7, we then calculate its excess
pattern count: 7excess = max(0, Npatterns,m — Tipaseline)- This excess count, representing an anomalous
number of patterns, is then used to determine the adjustment to the prior’s weight ;. This non-oracle
method ensures that the adjustment is sensitive only to pattern counts that are unusually high for the
given graph’s density, thereby stabilizing performance.

To validate this data-driven procedure, we conducted extensive experiments on dense graphs. Table
shows the SHD results for graphs with 20 and 40 nodes with high average degrees. Table [§] presents
results for even more challenging scenarios with 60 nodes and an average degree of 24. We compare
the baseline NOTEARS-Softmax against PGAP enhanced with our data-driven adjustment, using
both the median and the 75th percentile as the baseline statistic.

The results consistently demonstrate that both data-driven variants of PGAP significantly outperform
the baseline method across all tested dense graph scenarios and noise types. This confirms that
the refined adjustment mechanism is not only theoretically sound but also a practical and effective
solution for robustly applying PGAP in challenging, highly-connected environments.

D.9 Performance on Diverse Graph Topologies

To further assess the generalizability of PGAP and ensure its effectiveness is not limited to ER or SF
graphs, we conducted additional experiments on three distinct random graph models that generate
DAGs with diverse structural properties. The Watts-Strogatz (WS) model produces graphs with high
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Table 7: Performance of the data-driven PGAP adjustment on dense graphs (d=20, 40). SHD is

reported.
Node d=20 d=40

Noise  Graph&Edge ER&4d SF&4d ER&8d SF&8d
Prior Proportion 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4
NOTEARS-Softmax  69.2+8.4 64.0+6.3 54.5+7.7 49.246.9 296.0+7.8 259.0+11 218.3+0.8 180.0+13

Exp +PGAP(median) 62.3+7.9 56.7+6.0 51.5+8.5 423473 282.0+4.7 233.8+7.9 213.5+4.6 162.8£10
+PGAP(75th) 622+7.6  59.046.0 522482 432470 2827452 2312483 209.2+54 159.7+11
NOTEARS-Softmax  67.846.2 60.844.5 53.5£9.2 47.3+59 2982+7.1 258.548.0 229.5482 179.8+8.3

Gauss  +PGAP(median) 675448 57.846.7 477478 43.3+8.1 284.8+4.5 238.746.8 2185429 165249.0
+PGAP(75th) 66.744.5 557483 48.849.5 432+7.0 286.8+4.3 238.548.6 214.046.1 159.2+11
NOTEARS-Softmax ~ 71.8+6.1 633453 53.2489 47.849.4 294.5463 256.84+7.6 222.0+5.9 181.5+10

Gumbel +PGAP(median) 66.3+6.7 59.046.7 47.8+8.5 40.048.5 280.5+6.5 2387459 219.0+1.8 164.2+9.2
+PGAP(75th) 64.5+55 577+4.7 487+7.5 407483 286.8+2.1 234.5+8.0 217.8+2.8 161.8+9.5

Table 8: Performance of the data-driven PGAP adjustment on highly dense graphs (d=60, average
degree 24). SHD is reported.

Noise Graph&Edge ER & 12d SF & 12d
Prior Proportion 0.2 0.4 0.2 0.4
NOTEARS-Softmax 648.8+8.9 601.2£20 517.8£18 367.3+8.5
Exp +PGAP(median) 617.8+7.7 541.7£18 473.7£20 351.5+£9.7
+PGAP(75th) 620.3£7.5 548.0+£18 472.7+18 346.0+10
NOTEARS-Softmax  650.0+8.8 601.0£15 513.5£16 376.8£15
Gauss +PGAP(median) 618.3£8.3 547.8+14 4853+12 356.0+10
+PGAP(75th) 627.5+£7.4 549.7£13 478.8t14 353.0£11
NOTEARS-Softmax 647.7£7.2 594.3+17 511.8414 385.8+15
Gumbel +PGAP(median) 613.2+£8.3 541.3+16 480.7+13 345.3%+15
+PGAP(75th) 619.3£6.9 548717 4753£13 344.0f11

clustering coefficients, characteristic of social and biological networks, where triangular patterns
may appear more frequently. The Stochastic Block Model (SBM) creates graphs with community
structures by varying edge probabilities within and between node blocks, causing our target patterns
to be unevenly distributed. Finally, Geometric Random Graphs (GRG) connect nodes based on their
proximity in a metric space, resulting in spatially-driven topologies.

The experimental settings for these models were varied to produce graphs with different densities
and properties. For WS, we adjusted the lattice dimension; for SBM, the number of blocks; and for
GRG, the connection radius. Tables 9] [I0} and[TT] present the performance of NOTEARS-Softmax
(NT-Soft) with and without PGAP enhancement for the WS, SBM, and GRG models, respectively.

The results shown across these tables demonstrate that PGAP consistently improves both F1 and SHD
metrics across all three graph models and their varying parameter settings. This robust performance
is particularly notable because these models generate topologies where the natural frequency and
distribution of triangular and collision patterns can differ significantly from standard ER or SF graphs.
This provides strong evidence that the deviation mechanism identified in our work is a fundamental
phenomenon and that PGAP’s pattern-guided approach is an effective and generalizable strategy for
improving prior integration.

E Limitation and Further Discussion

This section provides further discussion on key aspects of the PGAP framework and its evaluation.
We elaborate on the interpretation of edge weight deviation (), the applicability of our analysis
to different scoring functions, the assumptions and generalizability of our theoretical findings, the
robustness of the identified structural patterns, considerations regarding prior knowledge quality,
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Table 9: Performance of PGAP on WS graphs. (-) indicates the number of edges.
NT-Soft +PGAP

F1 SHD F1 SHD

Lattice=1 (60)  53.5£5.0  50.7#6.6  56.5+4.7  44.8+6.3
Lattice=2 (147) 50.6£3.6  137.749.7 54.5+43 107.0£8.2

Lattice=1 (120) 56.8+#1.4 104.7#49 58.8+1.5  93.3+6.0
Lattice=2 (333) 46.9£2.0 345.7£11.2 50.5+#2.5 290.5%15.5

Nodes Parameter

30

60

Table 10: Performance of PGAP on SBM graphs. (-) indicates the number of edges.

Nodes Parameter NT-Soft +PGAP
F1 SHD F1 SHD
30 Block=5 (71) 57.1+£3.0 55.3+42 58.0+6.5 49.8+5.7
Block=10 (64) 58.9+54 445+3.0 58.3x8.4 448493
60 Block=5 (118) 56.0+8.4 98.3+9.9 57.1+5.3 83.5+7.6

Block=10 (118) 56.9+3.5 90.3x9.3 62.5+2.5 73.8+£3.2

Table 11: Performance of PGAP on GRG. (-) indicates the number of edges.

Nodes Parameter NT-Soft +PGAP
F1 SHD F1 SHD
30 Radius=0.2 (43) 61.1+£3.2 26.0+2.8 62.9+39 23.0+3.3
Radius=0.3 (101) 62.1%£1.7 69.5+3.4 63.2+1.5 62.7+£3.1
60 Radius=0.2 (195) 55.5+1.3 159.5+6.5 56.2+2.9 148.0+7.9

Radius=0.3 (368) 56.7+1.8 280.2+13.6 57.5+#3.5 257.8+8.9

the positioning of PGAP within the landscape of prior integration methods, and its computational
complexity.

On the Interpretation and Magnitude of Deviation Section[4.T] of the main text introduces the
critical concept of edge weight deviation. This phenomenon arises when qualitative prior knowledge
is integrated into the learning of quantitative SEMs, potentially causing learned edge weights to differ
from those purely indicated by the data. Our analysis specifically examined how a localized deviation,
defined as v = Wgﬁ j — Wj ; (representing the difference between a prior-influenced weight Wﬁ, j
and the OLS-optimal weight W; ;) can propagate and influence other weights. This appendix offers
a more detailed exposition of this deviation and its broader implications.

The theoretical framework presented (Lemmas 2] and [3) demonstrates that such a deviation ~ on a
prior-enforced edge can linearly affect the weights of other potential incoming edges to the same
target node. When this deviation -y is substantial, it can lead to the erroneous formation of spurious
edges, where W}, ; becomes non-zero even if no true direct relationship X, — X; exists. As
further elaborated in Section [4.2] these spurious edges, in combination with the prior-influenced
edge and other true connections, result in the characteristic “triangle” and “double collision” graph
patterns. Consequently, these patterns serve as observable structural indicators within the learned
graph, signaling that significant weight deviations, driven by the enforcement of prior knowledge,
may be actively distorting the local structure being learned around a particular node.

While the deviation +y discussed in Section[d.1]is a localized mechanism observed within an optimiza-
tion step, its repeated occurrence due to strong or misaligned prior enforcement is what contributes
to a more significant, global issue: the final learned edge weights in the SEM (W;;) can diverge
considerably from the true, underlying weights of the data-generating process (B;;). This ultimate
discrepancy represents a core challenge when attempting to bridge qualitative priors with the quan-
titative nature of SEMs. The magnitude of this deviation from the true SEM weights is influenced
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by several factors. A primary factor is the inherent inconsistency between the qualitative prior and
the actual quantitative strength and nature of the relationship in the true data-generating system.
Furthermore, the specific strategy used to integrate prior knowledge, be it hard constraints on weight
values or soft constraints via penalty terms in the loss function (as discussed in Section [2), heavily
dictates how strongly the learning process adheres to the prior versus fitting the observational data.
The ‘strength’ or weighting assigned to these prior-related terms in the objective function acts as
a direct modulator of this critical balance. If prior enforcement is too rigid, it can overshadow the
evidence present in the data, leading to learned weights that, while satisfying the prior, poorly reflect
the true underlying causal mechanisms.

Although the precise threshold for the deviation -y to induce the aforementioned spurious patterns
is data-dependent (influenced by aspects such as noise levels and the magnitudes of other true edge
weights), these patterns become increasingly probable as « grows substantial. This typically happens
when the prior-enforcement mechanism compels an edge weight to a value markedly different
from what local data evidence among the current set of predecessors would otherwise support. It
often reflects a situation where a qualitative statement (e.g., “an edge exists”) is translated into a
quantitative target that is excessively strong or misaligned with the underlying reality of the SEM.
The PGAP framework is designed to leverage these observable structural patterns as signals of
such problematic weight deviations. By detecting these patterns, PGAP adaptively adjusts the prior
integration process (detailed in Appendix [C) to mitigate these deviations, aiming for a more accurate
and robust estimation of both the graph structure and its associated edge weights.

Computational Complexity of PGAP The PGAP framework, as detailed in Appendix |C|(Algo-
rithms [T] and [2)), involves a two-stage learning process. First, a base structure learning algorithm
is run to produce an initial graph, W.4.1. Second, after detecting specific structural patterns in
Wistage1 and adaptively adjusting either prior loss weights (for soft constraints) or local regularization
strengths (for hard constraints), the base algorithm is run again to yield the final graph, W;pai.

The primary computational load thus consists of two executions of the chosen base continuous
optimization learning algorithm. The intermediate pattern detection step, which involves checking
local neighborhoods around each of the |II| prior edges for specific triangle or double collision
patterns, is efficient. For a graph with d nodes, the complexity of this pattern search is generally
much lower than that of a full run of the base learning algorithm.

Consequently, if the base algorithm has a computational complexity of Tj, e, the overall complexity
of PGAP is approximately 2 X Tpqse, plus the minor overhead of pattern detection. PGAP therefore
maintains the same asymptotic complexity class as the underlying base structure learning method.

Applicability of PGAP to the Negative Log-Likelihood Scoring Function The theoretical frame-
work underpinning PGAP is developed based on the observation that optimizing common scoring
functions like least squares (();5) often decomposes into node-specific OLS problems. This appendix
briefly discusses the direct applicability of this framework when using the Negative Log-Likelihood
scoring function, commonly employed for SEMs.

The NLL scoring function for a SEM, as presented in the Preliminaries (Eq. 2Jusing Q,,;;), aims to
find the weight matrix W that maximizes the likelihood of the observed data. During the continuous
optimization process, an acyclicity constraint (W) = 0 is enforced, which implies a topological
ordering of the variables for any candidate W. Given this ordering, the estimation of the weights
of incoming edges for any particular node X; from its set of candidate parent nodes ¢; effectively
reduces to a linear regression problem.

d
. . . _ 2 . o 2
li/nQn”(W,X) & min E log | X — XW|5 min IX—-XW;ll; i€[l,2,...d (62)

i=1
This is the same per-node optimization problem as considered for the Q5 score in Section[4.1]

Assumptions and Generalizability of Theoretical Findings Our theoretical framework, while
utilizing assumptions like linear SEMs and faithfulness for analytical tractability (as discussed in
Section and Appendix [B)), builds upon the identification of local graph patterns (triangle and
double collision). As noted in Section[4.2] the conditions in Lemma 3| for pattern formation depend on
local structures (direct connections or common children paths). This suggests that the core mechanism
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of deviation-induced pattern formation might still provide valuable insights even when some global
model assumptions are relaxed. Future work could explore extending the theoretical analysis to
non-linear models or other graph families, building on preliminary investigations such as those in
Appendix |D|regarding non-linear scenarios.

Robustness and Specificity of Deviation-Induced Patterns While our theoretical results (Lem-
mas 4] and [5) suggest that the identified triangle and double collision patterns are expected to be
significantly more prevalent when substantial prior-induced deviation occurs compared to their natural
occurrence in typical sparse graphs, they may not be exclusively caused by this phenomenon. PGAP,
therefore, uses their detection in conjunction with a known prior-enforced edge primarily as a heuristic
signal that such deviation is likely problematic and warrants adaptive adjustment. Investigating a
broader range of structural signals or more sophisticated detection mechanisms could be a direction
for future enhancements.

Handling of Prior Knowledge Quality If a significant portion of the prior knowledge incorporated
into the learning process is fundamentally incorrect, PGAP’s mechanism (reducing the influence of
priors involved in the targeted deviation patterns) might inadvertently down-weight these incorrect
priors if they lead to such structural distortions. In this sense, it could offer some resilience against
grossly misspecified priors by reducing their impact. However, PGAP is not explicitly designed as
a prior validation or correction tool. Its main goal is to rationalize the use of priors assumed to be
qualitatively valuable but potentially quantitatively mis-specified, a common assumption as noted in
Section[3l

Positioning Relative to Proactive Prior Integration Strategies PGAP is designed as an adaptive
framework that can augment a wide range of existing structure learning algorithms and prior inte-
gration techniques (both ‘hard’ and ‘soft’ constraint methods, as demonstrated in our experiments,
e.g., in Section[D.2]and related tables in Appendix D). Its strength lies in identifying and mitigating a
specific, theoretically grounded adverse effect that can occur even with established prior enforcement
methods. While developing more sophisticated upfront prior integration methods (e.g., learning prior
strengths or incorporating prior uncertainty directly) is a valuable and active area of research, PGAP
offers a complementary approach. It addresses an observable consequence of potential mismatches
between qualitative priors and quantitative models, effectively acting as a refinement layer. The
two-stage process allows for an initial assessment of prior impact, followed by a targeted adjustment.
Future work could explore synergies between PGAP’s pattern-guided adaptation and more complex
prior modeling techniques. For example, the structural signals detected by PGAP could potentially
inform the learning of prior confidence scores or guide more nuanced regularization schemes in a
unified framework.

On the Linear Assumption and Generalization to Nonlinear Models Our formal theoretical
analysis is developed within the linear SEM framework. This focus is deliberate. Linear SEMs are a
cornerstone of causal modeling, not only used extensively across scientific and industrial domains
but also serving as a critical object of study for developing more advanced methods. The continued
prevalence of linear models is largely due to their interpretability, where linear coefficients provide a
clear measure of causal influence, and their computational tractability. In many complex systems,
particularly in high-dimensional, low-sample-size settings, linear models serve as powerful first-order
approximations where fitting complex nonlinear models is often statistically infeasible and prone to
overfitting. Addressing the unresolved problem of robustly integrating imprecise prior knowledge
within this foundational domain is therefore a significant contribution.

Although extending our formal analysis to general nonlinear models is a challenging task, the
core principle of the PGAP framework is generalizable. Our path for such an extension begins
by generalizing our core concepts from the parametric to the nonparametric domain, leveraging
the framework of Zheng et al.|[2020]. The concept of an edge weight is replaced by a functional
dependency measure, and “edge weight deviation” becomes a more general “functional dependency
deviation.”

To understand how this functional deviation propagates, we then adopt a local perspective. When
a prior introduces a functional deviation, the learned function f; and the data-optimal function f
are no longer identical. In a linear model, this difference is inherently global. In the nonlinear case,
however, the two functions f; and f7 can be identical over large areas and only diverge in specific
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local regions of the input space. It is within these regions of divergence that we can analyze the
propagation mechanism. Here, the behavior of f; can be approximated by its first-order Taylor
expansion, rendering it locally linear. The partial derivatives of f; act as the coefficients of this local
linear approximation. When pressure from the prior forces one of these “local coefficients” to be
non-optimal, the optimization process is incentivized to adjust other local coefficients to minimize
the loss. This local mechanism is analogous to the error propagation we formally analyzed in the
linear setting. The adjustment of other local coefficients can cause the global functional dependency
measure to become non-zero, signifying the creation of a spurious edge and leading to the formation
of the same topological patterns we leverage in PGAP.

This local perspective also provides a crucial insight into why the effects of deviation might appear
less pronounced in some nonlinear settings. If a local region where the prior causes significant
deviation is sparsely sampled, its contribution to the global loss will be minimal, and the optimizer
may find a solution that largely ignores the prior’s influence in that region. This does not mean the
phenomenon is negligible. On the contrary, it points to an often overlooked aspect of causal discovery.
While global dependency metrics are standard, they can average out important local effects that
occur only in specific regions of the input space. We believe that analyzing and accounting for such
local prior-induced deviation represents a key step forward for the field, especially for emerging
applications such as discovering context-specific causal effects or understanding heterogeneous
treatment effects in subgroups.
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