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ABSTRACT

Crystalline materials discovery empowered by deep generative models is criti-
cal for driving progress in applications such as energy storage, electronics, and
catalysis. However, current approaches face significant challenges in accurately
predicting complex structures and ensuring specific properties, thereby hindering
their practical applicability. In this work, we propose GAT-Flow, a flow-based
generative framework designed to address these challenges. We leverage a graph
attention network to jointly predict lattice vectors and atomic coordinates, effec-
tively capturing both local coordination and periodic patterns. We also incorporate
a Predictor-Corrector sample strategy to improve sampling efficiency and numeri-
cal stability. In addition, by leveraging training-free guidance from a pre-trained
language model, we enable property-driven crystalline generation based on textual
prompts. Experimental results demonstrate that GAT-Flow achieves state-of-the-art
performance in crystalline structure prediction. Moreover, our approach enables
material generation with specific properties, offering new perspectives on structure-
property alignment in computational materials design.

1 INTRODUCTION

Crystalline materials discovery with tailored properties has driven breakthroughs in energy storage
(Chen et al., 2022b), electronics (Schweidler et al., 2024), and catalysis (Chen et al., 2022a). Predict-
ing stable atomic configurations from vast structural spaces—termed Crystal Structure Prediction
(CSP) and De Novo Generation (DNG)—remains a fundamental challenge in computational materials
design. These tasks are inherently NP-hard (Stillinger, 1999): as the number of atoms per unit cell
increases linearly, the potential energy surface grows exponentially, creating an astronomical number
of local minima. Traditional approaches relying on Density Functional Theory (DFT) (Kohn & Sham,
1965) face scalability limitations due to their computational cost, making exhaustive exploration
infeasible for systems beyond modest sizes (Pickard & Needs, 2011; Yamashita et al., 2018b; Wang
et al., 2010b; Zhang et al., 2017).

To address the computational challenges associated with traditional methods, recent developments
in generative modeling have proposed alternative frameworks, including those based on variational
autoencoders, diffusion models, and flow-based models. Notable examples include DiffCSP (Jiao
et al., 2023), CrystalFlow (Luo et al., 2024), MatterGen (Zeni et al., 2025), etc. Despite these advances,
several limitations persist. First, these methods do not incorporate Graph Attention Network (GAT),
which limit their ability to capture long-range interactions, leading to physically implausible outputs.
Second, the iterative sampling procedures employed in these models accumulate numerical errors
and are computationally expensive. Finally, most existing frameworks lack inherent property-driven
generation capabilities, thus necessitating costly post-processing and DFT calculations (Zeni et al.,
2025; Sriram et al., 2024) to generate materials with desired properties.

In this work, we propose GAT-Flow, a continuous normalizing flows (CNFs) model which improves
the accuracy of structure prediction and enables efficient structure generation. In the context of the
CSP task, our method employs fractional coordinates to represent crystal structures, thereby encoding
their periodicity. Within a Conditional Flow Matching (CFM) framework, we jointly predict the
lattice vectors and fractional coordinates using a geometric GAT, with the prediction further refined
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through a Predictor-Corrector (PC) sampling strategy. Our method integrates two key innovations:
geometric graph attention network and an efficient Predictor-Corrector sampling strategy. These
components are specifically designed to directly address the aforementioned limitations.

Through comprehensive experiments on real-world datasets and synthetic benchmarks, we demon-
strate that GAT-Flow outperforms state-of-the-art generative models in both reconstruction accuracy
and sampling efficiency within the context of CSP. Furthermore, our LLM-integrated DNG strat-
egy achieves strong alignment between generated structures and target properties, highlighting the
potential of incorporating external knowledge sources into generative frameworks for materials
discovery.

In summary, our main contributions are as follows:

Geometric Graph Attention Network We improve equivariant graph neural networks (Satorras
et al., 2021) by proposing a geometric multi-layer GAT model. Within the network, we first apply
symmetry transformations to the edge features and node features of crystal structure to satisfy
equivariance with respect to the crystal symmetries. Subsequently, multi-head attention mechanism is
employed to process the transformed edge and node features, capturing the interaction relationships
within the crystal. Finally, residual connections are used to integrate the outputs from each network
layer, generating the target structure.

Efficient Predictor-Corrector Sampling Strategy To address the computational inefficiency
and numerical instability of high-order Ordinary Differential Equation (ODE) solvers in flow-based
models, we introduce a PC sampling framework inspired by Langevin dynamics. This method
first utilizes an ODE solver for trajectory prediction, followed by the introduction of a stochastic
perturbation term derived from the Langevin equation to explore the local space around the predicted
trajectory. This combination of deterministic and stochastic elements improves prediction accuracy
while reducing computational costs.

2 RELATED WORK

In traditional computational materials science, researchers have predominantly relied on Density
Functional Theory (DFT) to identify energetically stable crystal structures. While optimization
algorithms such as Bayesian optimization (Yamashita et al., 2018a), genetic algorithms (Yamashita
et al., 2022), and particle swarm optimization (Wang et al., 2010a) have been successfully employed
for generating and screening candidate structures, the inherent computational complexity of DFT
calculations presents a fundamental challenge in balancing efficiency with accuracy.

Recently, generative models have demonstrated significant potential in the field of crystal structure
prediction. Modern approaches leverage powerful frameworks including Variational Autoencoders
(VAEs), Generative Adversarial Networks (GANs), and diffusion models, demonstrating remarkable
potential in this domain. Notably, architectures such as CDVAE (Xie et al., 2022) and SyMat
(Luo et al., 2023) integrate VAEs with score-based diffusion models to operate directly on atomic
coordinates, while maintaining Euclidean and periodic invariance through equivariant graph neural
networks (GNNs). DiffCSP (Jiao et al., 2023) advances this direction by formulating structure
prediction as a joint optimization of atomic coordinates and lattice parameters within a unified
diffusion framework. Further pushing the boundaries of efficiency, FlowMM (Miller et al., 2024)
introduces Riemannian flow matching to crystal generation tasks, achieving superior sampling
performance. To enhance the capability of crystalline materials discovery, we propose the GAT
network, improve the sample strategy, and integrate LLM to develop our flow-based model, GAT-
Flow.

3 PRELIMINARIES

Our method involves modeling probability distributions over crystal lattices, which are defined
as periodic arrangements of atoms in three-dimensional space. A crystal lattice is generated by
periodically repeating a basic building block known as the unit cell, which contains a particular
configuration of atoms. This repetition extends infinitely to form the entire crystalline structure. In
this section, we provide a summary of crystal representation, laying the groundwork for the detailed
description of our model in Section 4. Additional background on crystal can be found in Appendix A.
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Figure 1: GAT-Flow Model Architecture. Given the chemical composition A, we denote kt and Ft

as the lattice matrix and fractional coordinate matrix at time t, respectively. Vector fields uk
t and uF

t
define the continuous normalizing flows at time t. The GAT gets uk

t , u
F
t as inputs and outputs vkt , v

F
t .

In this paper, we represent a crystal containing n ∈ N atoms as a triple:
C := (A,F,L) ∈ C,

where A ∈ An denotes atom types, F ∈ F = [0, 1)n×3 represents fractional coordinates of atomic
positions, and L ∈ L ⊂ R3×3 encodes the geometry of the unit cell. The atomic type matrix
A = [a1, . . . , an]⊤ represents the type of the i-th atom, with each ai ∈ A. The position matrix
F = [f1, . . . , fn]⊤ records the coordinates of each atom, where each f i ∈ [0, 1)3 is expressed in
fractional coordinates under periodic boundary conditions. Finally, the lattice matrix L encapsulates
all geometric information of the unit cell, wherein a, b, c > 0 denote the edge lengths of the unit cell
in Angstroms (Å), and α, β, γ ∈ [60◦, 120◦] represent the internal angles between the edges.

Our crystal representation exhibits several symmetries induced by the following group actions:
permutation invariance, translation invariance, and rotational invariance (Kondor & Trivedi, 2018).
The geometric graph attention network we employed inherently incorporates permutation invariance.
To effectively model the rotational invariance of lattice parameters, we adopt a parameterization
inspired by DiffCSP++ Jiao et al. (2024), which decouples rotational and structural components of
the unit cell. Specifically, the lattice matrix L is expressed through a polar decomposition:

L = Q exp

(
6∑

i=1

kiBi

)
,

where Q is an orthogonal matrix representing rotational degrees of freedom and {Bi}6i=1 forms an
orthonormal basis for the space of symmetric 3× 3 matrices, and k = (k1, . . . , k6)

⊤ ∈ R6 encodes
the shape of the lattice in a rotation-invariant manner. This rotational invariance of lattice and the
fractional coordinate system can fulfill the translation invariance with respect to F (Luo et al., 2024).

4 METHOD

Upon the specification of the external conditions c, CSP task predicts the lattice matrix k and the
fractional matrix F given its chemical composition A as condition for each unit cell while DNG
task predicts k,F,A (detailed in B). We propose GAT-Flow, a graph attention-based continuous
normalizing flow model tailored for CSP task. Within the framework of conditional flow matching, we
employ a graph attention network to model and predict both lattice matrix and fractional coordinates.
To enhance the accuracy of CSP task, we apply Langevin-style correction steps during the sampling
phase. Obviously, our framework can be readily extended to DNG task. The overall architecture of
the proposed GAT-Flow model is illustrated in Fig. 1.
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4.1 JOINT FLOW MODELING

Our model takes (k0,F0) as inputs and produces (k1,F1) as outputs. To model the complex data
distribution of crystal structures, we utilize CNFs Chen et al. (2018) based on a smooth, time-
dependent vector field u : [0, 1]× Rd → Rd, defined by an ordinary differential equation (ODE):

dk

dt
= uk

t (k | c),
dF

dt
= uF

t (F | c). (1)

The ODE solution starting from initial state describes the evolution of k and F over time. By
modeling uk

t (k | c) and uF
t (F | c) using neural networks vt;θ(k, c) and vt;θ(F, c), we can transform

a simple initial density into a complex target density.

Due to the complexity of calculating the vector fields uk
t (k | c) and uF

t (F | c), we employ CFM
Tong et al. (2023), which introduces an additional conditioning variable z, making uk

t (k | c, z)
and uF

t (F | c, z) easier to calculate. Then, the probability paths pkt (k | c) and pFt (F | c) can be
represented as a mixture of conditional probability paths pkt (k | c, z) and pFt (k | c, z), namely,
pt(· | c) =

∫
pt(· | z)q(z | c)dz. Considering the continuity equation ∂pt/∂t = −∇ · (ptut), we

have

−∇ · (pt(· | c)ut(· | c)) =
∂pt(· | c)

∂t
=

∫
∂pt(· | z)

∂t
q(z | c)dz

= −∇ ·
(∫

pt(· | z)ut(· | z)q(z | c)dz
)
.

(2)

Therefore, the vector fields uk
t (k | c) and uF

t (F | c), which generate the probability path pkt (k | c)
and pFt (F | c), are given by:

uk
t (k | c) =

∫
uk
t (k | z)pkt (k | z)q(z | c)

pkt (k | c)
dz, (3)

uF
t (F | c) =

∫
uF
t (F | c, z)pFt (F | z)q(z | c)

pFt (F | c)
dz. (4)

In practice, We use the GAT network output vkt;θ(k, c) and vFt;θ(F, c) to model uk
t (k | c, z) and

uF
t (F | c, z) respectively. Further details are in Appendix C.

Flow on Lattice Matrix The lattice matrix is parameterized using polar decomposition parameters
k. For computational convenience, the initial state distribution pkt (k0 | c, z) is artificially defined as
a Gaussian prior N (k0;µ

k
0 , (σ

k
0 )

2I), with µk
0 = (0, 0, 0, 0, 0, 1) and σk

0 = 0.1. For the conditional
probability path pkt (k | c, z), we suppose that µk

t = tk1 + (1 − t)k0, and σk
t = σk. Thus, the

conditional probability path and vector field are given by:

pkt (k | c, z) = N
(
k
∣∣ tk1 + (1− t)k0, (σ

k)2I
)
, (5)

uk
t (k | c, z) =

dµk
t

dt
= k1 − k0. (6)

Setting σk = 0 reduces the conditional path to deterministic interpolation, consistent with the
Rectified Flow framework Luo et al. (2024); Liu et al. (2022).

Flow on Fractional Coordinates To handle the periodic nature of crystal structures, the push-
forward distribution pFt (F | c, z) must satisfy translational invariance under periodic boundary
conditions. To avoid introducing any bias, We define the prior distribution over fractional coordinates
pFt (F0 | c, z) as a uniform distribution U(F0; [0, 1]

3×N ), where N is the number of atoms in
the unit cell. For the conditional probability path pkt (k | c, z), we suppose that pkt (k | c, z)
follows Nw

(
F;µF

t , (σ
F
t )

2I
)
, µF

t = F0 + t [w(F1 − F0 − 0.5) + 0.5] , and σF
t = σF , where

w(x) = x − ⌊x⌋ ensures values remain within the unit interval. Thus, the conditional probability
path and vector field can be formulated as:

pFt (F | c, z) = Nw

(
F;F0 + t [w(F1 − F0 − 0.5) + 0.5] , (σF )2I

)
, (7)

uF
t (F | c, z) =

dµF
t

dt
= w(F1 − F0 − 0.5) + 0.5. (8)
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where Nw denotes the wrapped Gaussian distribution which ensures the periodicity of the probability
distribution at each time t:

Nw(F;µ,σ
2) ∝

∑
Z∈Z3×N

exp

[
−∥F− µ+ Z∥2

2σ2

]
. (9)

By setting σF = 0, we align with Rectified Flow framework Luo et al. (2024); Liu et al. (2022),
yielding deterministic interpolation between initial and final atomic configurations. See more details
in Appendix D.

Integrating flows over both lattice parameters and fractional coordinates enables effective modeling
of crystal structures while preserving physical constraints like periodicity and geometric plausibility.
This approach enhances the expressiveness of the generative model and ensures sampled structures
adhere to fundamental material symmetries.

4.2 GEOMETRIC GRAPH ATTENTION NETWORK

We design a geometric graph attention network which introduces a unified attention mechanism
to dynamically allocate multi-dimensional feature weights by modeling node and edge features.
We utilize a multi-layer GAT network with residual connections which enables more accurate
capture of complex atomic interactions long-range dependencies in crystalline materials. Our
geometric graph attention layer (GATL) takes as input the set of node features hl = {hl

0, . . . , h
l
M−1},

coordinate embeddings Fl = {f l
0, . . . , f

l
M−1}, atom type embeddings A = {a0, . . . , aM−1} and

lattice embeddings k and outputs a transformation on hl+1 and Fl+1. Concisely: hl+1,Fl+1 =
GATL[hl, xl, k]. We define edge features between atoms i and j as:

eij = [hl
i;h

l
j ;φ(∆f l

ij); k], (10)

where ∆fij = fj − fi is the coordinate difference, ϕ(·) applies fourier transformer. Node feature i is
defined as hl

i = φ0(ft(t), fA(ai))+φy(fy(c\A)), where φ□ represents multi-layer perceptrons and
c \A represents conditions excluding A (Jiao et al., 2023; 2024). Here, ft, fA, and fy correspond to
sinusoidal positional encoding, atomic embedding, and Gaussian basis encoding, respectively. We
design a multi-head attention layer with K heads to handle edge features:

êij := BN

(
K∑

k=1

softmax
(
fk
e (eij(eij)

T )
))

, (11)

where fe(·) denotes neural network layer and BN(·) denotes batch normalization. The edge features
are updated as follows:

ei =
∑

j∈N(i)

∆f l
ijeij , êi :=

1

|N (i)|
∑
j∈i

êij , (12)

where |N (i)| denotes the set of neighbors of node i. The node features are updated by:

ĥi := fα(h
l
i, ei), hl+1

i = hl
i +BN

(
K∑

k=1

softmax
(
fk
h (ĥi(ĥi)

T )
))

, (13)

where fα(·) and fh(·) denote neural network layers. Coordinate embeddings are then updated by:
f l+1
i = f l

i + êi. After message passing through L GATL layers, the vector field is read out by:

vkt;θ(k,A) = fk

(
1

N

N∑
i=1

hL

)
, vFt;θ(F,A) = fF (hL), (14)

where fk, fF denotes multi-layer perceptrons.

Our GAT network governs the evolution of lattice and fractional coordinates within the continuous-
time normalizing flow, ensuring physically valid and symmetry-preserving crystal generation.

5
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4.3 MODEL TRAINING AND INFERENCE

We adopt the CFM Liu et al. (2022) framework for modeling crystal structures, with the training
objective:

LCFM = Et,x0,x1

[
λk

∥∥vkt;θ(k,A)− uk
t (k|A, z)

∥∥2 + λF

∥∥vFt;θ(F,A)− uF
t (F|A, z)

∥∥2] , (15)

where x1 represents (k1,F1),x0 represents (k0,F0), the vector fields vkt;θ(k,A) and vFt;θ(F,A) are
time-dependent vector field parameterized by the GAT network with learnable parameters θ. λk, λF

denote weighting coefficients.

This strategy ensures that the GAT network accurately learns the dynamics of the CFM framework,
enabling stable and property-conditioned generation of crystal structures.

To generate physically valid crystal structures, we propose a PC sampling strategy, combining global
prediction and local refinement for improved quality and stability.

Sampling proceeds in reverse time from t = 1 to t = 0 over N steps with fixed step size ∆t = 1/N ,
ensuring smooth transitions without manual scheduling. The inference process consists of:

Predictor Step In the predictor step, we implement two ODE solvers to update the state: the
explicit Euler method and the second-order Taylor expansion method. The Euler method, a first-order
approximation, updates the state as:

kpred
t−∆t = kt +∆t · vkt;θ(k,A), Fpred

t−∆t = Ft +∆t · vFt;θ(F,A), (16)

This method is computationally simple but limited in accuracy. For improved accuracy, the second-
order Taylor expansion includes the first derivative term:

kpred
t−∆t = kt +∆t · vkt;θ(k,A) +

∆t2

2
·
∂vkt;θ(k,A)

∂t
, (17)

Fpred
t−∆t = Ft +∆t · vFt;θ(F,A) +

∆t2

2
·
∂vFt;θ(F,A)

∂t
, (18)

Since the external condition A is time-independent, the time derivative term is expanded as:

∂vkt;θ(k,A)

∂t
=

∂vkt;θ
∂t

+
∂vkt;θ
∂k
· vkt;θ(k,A),

∂vFt;θ(F,A)

∂t
=

∂vFt;θ
∂t

+
∂vFt;θ
∂F

· vFt;θ(F,A), (19)

While the second-order method improves accuracy, it requires additional derivative calculations,
increasing computational cost.

Corrector Step The evolution of the sample distribution pt(x) during the ODE solution follows:
∂pt(x)

∂t = −∇ · (pt(x)v(t, x)), which is a deterministic flow process that does not introduce new
sample distribution models and is susceptible to pattern collapse. Langevin-style correction steps are
incorporated in (Karras et al., 2022) as: dxt = −∇U(xt)dt+

√
2DdWt, where U(x) is the potential

energy function, D is the diffusion coefficient, and Wt denotes the Wiener process (Brownian motion).
This term is superimposed on the deterministic update term v(t, x)dt in the ODE, thus extending
the original deterministic flow process to a flow process with noise. After correction, we get the
corresponding Fokker-Planck equation (Risken & Risken, 1996) as ∂pt(x)

∂t = −∇ · (pt(x)v(t, x)) +
η2

2 ∇
2pt(x), where the second term represents Gaussian noise diffusion, which randomly perturbs

samples within localized regions to broaden the coverage of the distribution.

Based on the above certification, we apply the following correction:

kcorr
t−∆t = kpred

t−∆t + ηk · ϵk, Fcorr
t−∆t = Fpred

t−∆t + ηF · ϵF , (20)

where ϵ ∼ N (0, I) are independent standard Gaussian noises and η is a small noise scale (e.g.,
η ∼ 0.01). After correction, fractional coordinates are wrapped back into the unit cell via: F corr

t−∆t ←
F corr
t−∆t mod 1, ensuring physical consistency under periodic boundary conditions. The final structure

over the time interval t ∈ [0, 1] is then reconstructed as:

k1 = k0 +

∫ 1

0

s(t)kcorr
t dt, F1 = F0 +

∫ 1

0

s(t)Fcorr
t dt, (21)

6
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Lattice
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Structure Evaluator

Figure 2: Text-guided framework for property-driven crystalline materials generation. At each step,
we perturb both global and local crystal features, use a fine-tuned LLM to predict band-gap energies,
and select the closest match for the next iteration.

where s(t) := 1 + s′t is a scaling term part of the anti-annealing numerical scheme (Miller et al.,
2024; Luo et al., 2024).

Langevin dynamics-based Corrector enhances sampling diversity by introducing stochastic perturba-
tions that mitigate mode collapse and refine local features through simulated thermal fluctuations.
This sampling strategy effectively avoids the accumulation of errors in ODE solvers.

Table 1: Results on MP-20 and MPTS-52 in CSP tasks,
with the best results in bold. Performance is evaluated
using Match Rate (MR) and Root Mean Square Error
(RMSE).

# of MP-20 MPTS-52
samples MR(%)↑ RMSE↓ MR(%)↑ RMSE↓

CDVAE 1 33.90 0.1045 5.34 0.2106
DiffCSP 1 51.49 0.0631 12.19 0.1786
FlowMM 1 61.39 0.0566 17.54 0.1726
CrystalFlow 1 59.06 0.1270 18.73 0.1608
GAT-Flow (ours) 1 62.90 0.0546 24.41 0.1228
CDVAE 20 66.95 0.1026 20.79 0.2085
DiffCSP 20 77.93 0.0492 34.02 0.1749
CrystalFlow 20 78.08 0.0577 38.55 0.1703
GAT-Flow (ours) 20 78.76 0.0523 40.96 0.1516

Table 2: Ablation studies on MP-20 using
Match Rate (MR) and Root Mean Square
Error (RMSE). AttF and AttL denotes
attention block on F and L, respectively.

Match rate (%) ↑ RMSE ↓

GAT-Flow 62.90 0.0546
w/o GAT

w/o AttF 62.25 0.0653

w/o AttL 61.57 0.0699

w/o PC strategy
w/ Euler solver 60.89 0.071

w/ Taylor solver 60.26 0.065

5 EXPERIMENTS

In this section, we present the experimental setup in §5.1 and demonstrate the superior performance
of GAT-Flow in CSP tasks in §5.2. Furthermore, we show the capability of GAT-Flow combined with
LLM in property-driven DNG tasks in §5.3.

5.1 EXPERIMENTAL SETUP

Dataset Description We conduct experiments on two widely recognized benchmark datasets,
MP-20 and MPTS-52 (Jain et al.). MP-20 comprises 45,231 stable inorganic materials from the
Material Projects (Jain et al.), mostly experimentally derived compounds with up to 20 atoms per unit
cell. MPTS-52 extends MP-20 with 40,476 structures containing up to 52 atoms per cell, ordered
by earliest publication year. For MP-20, we use the 60–20–20 split following (Xie et al., 2022); for
MPTS-52, the split is 27,380 training, 5,000 validation, and 8,096 test samples in chronological order
following (Jiao et al., 2023).

Comparison Method This study focuses on performance of generative models. We compare our
model to four prior methods, including variational autoencoders (CDVAE), conditional diffusion

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

model (DiffCSP), flow-matching-based models (FlowMM, CrystalFlow). For previously published
results, we cite the findings from accepted papers; for models that have not yet been published but
are available as open-source, we report our own replication results.

Evaluation Metrics For CSP task, we use Match Rate and RMSE (Xie et al., 2022) to evaluate by
matching the predicted candidates with the ground-truth structure (Ong et al., 2013). Match Rate
is the proportion of the matched structures over the test set and RMSE is calculated between the
ground truth and the best matching candidate, normalized by lattice volume and atom count (seeing
Appendix F). We generate 1 sample and 20 samples of the same composition and consider a match if
any sample aligns with the ground truth. For DNG task, we use Mean Absolute Error (MAE), RMSE
and Tolerance Rate to evaluate how accurately our property-guided generation framework produces
samples whose properties match the specified targets. Tolerance Rate measure the proportion of
samples whose properties fall within a specified range of the target property.
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Figure 3: Match rate as a function of number of integration steps on MP-20. GAT-Flow achieves a
higher maximum match with fewer integration steps.

5.2 CSP EVALUATION RESULTS

As shown in Table 1, our method not only achieves the highest match rate but also maintains a
relatively low RMSE, demonstrating excellent prediction performance. Our method significantly
outperforms other methods on complex dataset MPTS-52, highlighting the effectiveness of GAT
network and the PC sampling strategy. Fig. 3 compares the match rates of DiffCSP, FlowMM and
GAT-Flow as functions of integration steps to evaluate sampling efficiency. GAT-Flow achieves higher
match rates with significantly fewer steps, indicating more efficient inference. Specifically, GAT-Flow
reaches peak performance in about 20 steps, compared to FlowMM’s 50 steps and DiffCSP’s 1000
steps, reducing inference time by at least an order of magnitude.

We ablate each component of GAT-Flow in Table 2. Disabling the attention mechanism for either F or
L leads to performance degradation, with match rates dropping to 62.25% and 61.57%, respectively,
along with increased RMSE, demonstrating its importance in capturing fine-grained interactions
between nodes. Moreover, replacing the PC sampling strategy with first-order Euler or second-order
Taylor approximations further ODE solver reduces the match rate to around 60% and increases
RMSE, highlighting the critical role of the PC strategy in ensuring generation stability and accuracy.

5.3 DNG EVALUATION RESULTS

In DNG scenarios where atom types are not fixed, an additional CNF is used to generate a one-hot
encoded set of atomic types A. To maintain chemical relationships while reducing dimensionality, we
employ the periodic atomic encoding method in (Luo et al., 2024) which is restructured into a 13x15
grid, with each element assigned a unique position (see Appendix E). In order to provide stable crystal
structures for LLM in property-driven DNG task, we also evaluated the model’s performance on the
unconditional DNG task. Table 5 shows that GAT-Flow achieves well-balanced performance across
various property metrics at substantially fewer integration steps compared to other large language
models such as FlowLLM and CrystalLLM. These results confirm that our method is able to produce
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Table 3: Results on property-driven DNG task. Statistics are computed on 10000 samples.Performance
is evaluated using Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Tolerance
Rate, with error thresholds set to 1eV, 0.5eV and 0.1eV, respectively. The best results are in bold.

Method MAE↓ RMSE↓ Tolerance Rate(%) ↑
ε = 1eV ε = 0.5eV ε = 0.1eV

CrystalFlow (Luo et al., 2024) 1.4453 1.7755 43.20 23.40 5.10
MatterGen (Zeni et al., 2025) 1.5204 2.0008 42.10 20.80 4.20
GAT-Flow (ours) 1.4136 1.7524 44.67 26.67 8.33

rational, novel and reliable crystal structures with fewer integration steps for property-driven DNG
task.

Inspired by the exceptional capabilities of LLMs in multimodal understanding and generation
tasks, we developed a text-guided framework for property-driven crystalline materials generation.
Specifically, we fine-tuned an LLM to predict crystal properties from natural-language descriptions.
During the crystal generation process, we then applied rejection sampling to discard candidates that
failed to satisfy the target property thresholds, guiding the generation toward the desired properties.

In this work, we focus on the band-gap energy of materials. To target semiconductor candidates, we
set the desired band-gap at 3.0 eV. Building on previous efforts Rubungo et al. (2023) and noting
that T5 offers both faster inference and better prediction accuracy than BERT-based models, we
chose T5 as our backbone. Following the LLM-prop setup, we added a single linear layer on top of
the T5 encoder to perform band-gap prediction. For fine-tuning, we used the DFT-3D subset of the
JARVIS-DFT database and selected those entries with TB-mBJ–computed band gaps, ensuring more
precise prediction of semiconductor band-gap energy.

Leveraging the LLM’s ability to predict band-gap energy from crystal descriptions, we steer the
sampling process toward our target property via rejection sampling strategy. At each sampling
step, we introduce both global and local perturbations to the crystal’s graph features and use the
fine-tuned LLM to predict the band-gap energy for each perturbed variant. We then select the structure
whose predicted band-gap energy is closest to the target as the basis for the next iteration. To avoid
mode collapse phenomena similar to those seen in GANs, this selection is performed only among
perturbations derived from the same original sample.

For property-driven DNG task, we compared GAT-Flow with several representative methods Luo et al.
(2024); Zeni et al. (2025), both of which adopt traditional conditional generation strategies based on
diffusion models and flow models. In contrast, our proposed GAT-Flow employs an LLM-guided
rejection sampling approach. As shown in Table 3, GAT-Flow outperforms the baselines across all
evaluated metrics, demonstrating the effectiveness and feasibility of leveraging LLM guidance in
property-driven DNG tasks.

6 CONCLUSION

The proposed framework, GAT-Flow, has emerged as a novel approach for crystalline materials
discovery by integrating graph attention networks with flow-based modeling to effectively capture
complex dependencies within crystalline systems. The incorporation of the Predictor-Corrector (PC)
sampling strategy has further enhanced its capability to efficiently explore the vast structural and
compositional space while preserving atomic-level accuracy.

Extensive experiments have demonstrated that GAT-Flow attains state-of-the-art performance in
crystal structure prediction, underscoring its robustness and generalization ability. Additionally, the
PC sampling strategy has been shown to improve prediction accuracy while reducing inference time.
Furthermore, evaluation results indicate that incorporating a text-guided framework guided by a
fine-tuned LLM enhances the model’s ability to generate crystalline materials with specific properties.
These findings underscore the potential of integrating flow-based generative models, graph-structured
representations, and text-guided frameworks to advance computational materials discovery.
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A CRYSTALS PRESENTATION AND SYMMETRIES

A.1 EQUIVARIANCE AND INVARIANCE

Let G be a group acting on spaces X and Y . A function f : X → Y is said to be G-equivariant if it
satisfies

∀x ∈ X , ∀g ∈ G, f(g · x) = g · f(x),
and G-invariant if

∀x ∈ X , ∀g ∈ G, f(g · x) = f(x).

Since crystals cannot be uniquely defined by any specific representation C, but rather by equivalence
classes under symmetry transformations, we assume that the data distribution has a G-invariant
density, where G represents the symmetry group of the crystal.
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A.2 INVARIANT DENSITY.

If a function f : X → Y is G-equivariant and invertible, then the pushforward of a G-invariant
density p through f remains G-invariant. That is, the statistical properties of crystals are preserved
under symmetry transformations, which is essential for modeling and prediction tasks.

Permutation Invariance The symmetric group Sn acts by permuting the indices of atoms:

σ ·C = ([Aσ(1), . . . ,Aσ(n)], [Fσ(1), . . . ,Fσ(n)],L),

for all σ ∈ Sn. This reflects the indistinguishability of identical atoms within the crystal.

Translation Invariance The translation group T3 acts by shifting all fractional coordinates modulo
the unit torus:

τ ·C = (A,F+ τ1⊤ − ⌊+ τ1⊤⌋,L),
where τ ∈ [− 1

2 ,
1
2 ]

3, and ⌊·⌋ denotes element-wise floor operation. This ensures that translations do
not alter the structure due to the periodic nature of crystals.

Rotational Invariance The special orthogonal group SO(3) acts on the unit cell via rotations:

Q ·C = (A,F, QL),

where Q ∈ SO(3). Note that the lattice parameters L encode geometric information without
directional bias, hence the overall structure remains invariant under rotation.
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B DETAILED BACKGROUND ON CSP AND DNG

B.1 CRYSTAL STRUCTURE PREDICTION

In CSP task, the goal is to generate crystal structures conditioned on a fixed chemical composition.
The formulation involves learning:

p(F,L | A, c),

where fractional coordinates F ∈ [0, 1)n×3, lattice parameters L ∈ L ⊂ R6, atomic types a ∈ An

and external conditions c ∈ Rd.

This setup ensures that generated structures strictly follow the specified chemical constraints, making
it ideal for scenarios where the composition is known and fixed.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B.2 DE NOVO GENERATION

For DNG task, the task is to explore new material compositions by learning a joint distribution:

p(F,L,A) = p(F,L | A) · p(A),

where p(A) is a learned prior over atomic compositions.

To enable continuous modeling of discrete atom types, we map each atom type Ai ∈ {1, . . . , h} to a
binary vector bi ∈ {−1, 1}⌈log2 h⌉. The full atomic configuration is then represented as:

b = [b1; . . . ; bn] ∈ {−1, 1}n·⌈log2 h⌉.

At training time, a flow-based model transforms a standard normal distribution N (0, I) into this
binary latent space. During inference, the continuous output is discretized using the sign function:

b̂ = sign(z), where z ∼ N (0, I).

When ⌈log2 h⌉ ̸= log2 h, some bit combinations do not correspond to valid atom types—these are
"unused bits". The model effectively learns to ignore these during generation, ensuring chemically
meaningful outputs.
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B.3 COMPARISON BETWEEN CSP AND DNG

While CSP task focuses on generating structures conditioned on fixed atomic types a, DNG task
extends this framework by learning a distribution over a itself. This enables the model to:

• Generate crystal structures with previously unseen atomic compositions,
• Explore the chemical space beyond known stoichiometries,
• Discover potentially novel materials with unique properties.

Together, CSP task and DNG task provide a comprehensive framework for crystal structure prediction
and material design, covering both constrained and open-ended discovery settings.
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C BACKGROUND ON CNF AND CFM

C.1 CONTINUOUS NORMALIZING FLOWS

Continuous Normalizing Flows Chen et al. (2018) define a time-continuous transformation governed
by an ordinary differential equation (ODE):

dz(t)

dt
= uθ(z(t), t),

where uθ is a neural network parameterizing the velocity field. Starting from a base distribution
p0(z), typically standard normal N (0, I), the final state z(1) represents a sample from the learned
distribution.

The change in log-density along the trajectory is given by:

d log pt(z(t))

dt
= −Tr

(
∂uθ(z(t), t)

∂z(t)

)
.

This allows for exact density evaluation and gradient-based optimization, which is essential for
modeling high-dimensional data like crystal structures.
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C.2 CONDITIONAL FLOW MATCHING

CFM introduces conditioning variables y into the generative process. The goal is to learn a function
gθ(·;y) that maps noise z ∼ p0(z) to samples x distributed according to p∗(x | y).
The loss function used is:

LCFM = Ez,y

[
∥gθ(z;y)− x̂∥22

]
.

To handle complex dependencies, CFM uses a conditional architecture that inputs both z and y
jointly. In practice, we adopt the Independent Coupling variant (I-CFM) Liu et al. (2022); Albergo &
Vanden-Eijnden (2022), where the vector field is conditioned on interpolation paths between initial
and terminal points (x0, x1). Specifically, the marginal path is defined as:

pt(x) =

∫
pt(x | z)q(z)dz,

and the corresponding vector field becomes:

ut(x) =

∫
ut(x | z)pt(x | z)q(z)

pt(x)
dz.

Under I-CFM, the training objective simplifies to minimizing:

LCFM(θ) = Et,q(x1,y),q(x0)∥vt;θ(t, x, y)− ut(x | z)∥2,

where vt;θ is a time-dependent vector field modeled by a neural network.

Proof of CNF training objective The CNF framework can be naturally extended to conditional
generation with respect to a conditioning variable y . In this case, the evolution of the system is
described by:

dx

dt
= ut(x | y), (22)

pt(x | y) =
∫

pt(x | z)q(z | y)dz, (23)

ut(x | y) =
∫

ut(x | z)pt(x | z)q(z | y)
pt(x)

dz. (24)

So the training objective is still ut(x | z).
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D JOINT FLOW OF LATTICE AND COORDINATES

D.1 MATRIX EXPONENTIAL AND INVARIANCE ANALYSIS OF LATTICE DEFORMATION

In our model, the lattice L is represented through a rotation-invariant decomposition: L =

Q exp
(∑6

i=1 kiBi

)
, where Q is a rotation matrix, exp(·) denotes the matrix exponential func-

tion, and k ∈ R6 encodes deformation parameters. This representation ensures that regardless of
how k changes, L maintains its rotational invariance, i.e., for any orthogonal transformation O, there
exists an associated transformation matrix O′ such that OL = LO′.
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D.2 DERIVATION AND PROPERTIES OF THE MINIMUM IMAGE CONVENTION

Considering periodic boundary conditions in crystal structures, we adopt the minimum image
convention to calculate inter-atomic distances or displacement vectors. For any two position vectors
F1, F2, their difference ∆F = F1−F2 can be adjusted as follows: ∆F ′ = w(∆F ) = ∆F −⌊∆F +
0.5⌋, ensuring that ∆F ′ lies within the primary cell. This operation is particularly useful for handling
displacement vectors in fractional coordinate systems.
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D.3 FORM AND SAMPLING METHOD OF WRAPPED GAUSSIAN DISTRIBUTION

To maintain translational invariance under periodic conditions, we use the wrapped Gaussian distribu-
tion: pFt (F | z) = Nw(F ;µF

t (z), (σ
F )2I). Given the initial uniform distribution U([0, 1)3N ), the

mean trajectory of the wrapped Gaussian is defined as: µF
t (z) = F0 + t · w(F1 − F0 − 0.5) + 0.5,

where w(x) is as previously defined. This means that at each time t, we consider the shortest path
within periodic boundary conditions.
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D.4 CONTINUITY OF VECTOR FIELD AND EXISTENCE AND UNIQUENESS OF ODE
SOLUTIONS

For the proposed vector field ut(x | z) = (uk
t , u

F
t ), it is necessary to demonstrate that it satisfies

the Lipschitz condition to guarantee the existence and uniqueness of solutions to the corresponding
ordinary differential equations (ODEs). Specifically, for any x, x′ ∈ R6+3N , ∥ut(x | z) − ut(x

′ |
z)∥ ≤ L∥x − x′∥, where L is the Lipschitz constant. This property ensures that given an initial
condition (k0, F0), there exists a unique solution (kt, Ft) satisfying the defined dynamical equations.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

E REORGANIZED PERIODIC TABLE OF ATOM TYPE FOR DNG

The elements of sub family, lanthanides and actinides are positioned in the bottom.

Table 4: Periodic Table of Elements

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 H – – – – – – He – – – – – – –
1 Li Be B C N O F Ne – – – – – – –
2 Na Mg Al Si P S Cl Ar – – – – – – –
3 K Ca Ga Ge As Se Br Kr – – – – – – –
4 Rb Sr In Sn Sb Te I Xe – – – – – – –
5 Cs Ba Tl Pb Bi Po At Rn – – – – – – –
6 Fr Ra Nh Fl Mc Lv Ts Og – – – – – – –

7 Sc Ti V Cr Mn Fe Co Ni Cu Zn – – – – –
8 Y Zr Nb Mo Tc Ru Rh Pd Ag Cd – – – – –
9 – Hf Ta W Re Os Ir Pt Au Hg – – – – –
10 – Rf Db Sg Bh Hs Mt Ds Rg Cn – – – – –

11 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
12 Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr
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F EVALUATION DETAILS

F.1 EVALUATION DATA

Table 5: Results on unconditional DNG task. Statistics are computed on 10,000 samples. Performance
is evaluated using structural and compositional validity, coverage recall and precision, and property
statistics (density ρ; number of elements Nel), with the best results in bold.

Method Integ.Steps ↓ Validity (%) ↑ Coverage (%) ↑ Property ↓
Structural Compositional Recall Precision wdist (ρ) wdist (Nel)

CrystalLLM - 99.60 95.40 85.80 98.90 0.810 0.44
FlowLLM 250 99.94 90.84 96.95 99.82 1.140 0.150
GAT-Flow (ours) 100 99.65 81.75 98.95 99.84 0.324 0.255
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F.2 EVALUATION METRICS

Specifically, for each structure in the test set, we generate k samples of identical composition
and determine a match if at least one sample aligns with the ground truth, evaluated using the
StructureMatcher class from pymatgen (Ong et al., 2013) with thresholds stol=0.5, angle_tol=10,
and ltol=0.3. The Match Rate is defined as the ratio of matched structures to the total number of
structures in the test set.

The Root Mean Square Error (RMSE) is computed between the ground truth and the best-matching
candidate, normalized by 3

√
V/N , where V represents the lattice volume and N is the number of

atoms. This metric is averaged over all matched structures. For optimization methods, we select the
20 lowest-energy structures from the 5,000 generated during testing as candidates. In the case of
generative baselines and our GAT-Flow model, we evaluate with k = 1 and k = 20.

In DNG task, we follow previous research works by employing the coverage metric to evaluate
the structural and compositional similarity between the test set St and the generated structure set
Sg. Specifically, let dS(M1,M2) and dC(M1,M2) denote the L2 distances of the CrystalNN
(Zimmermann & Jain, 2020) structural fingerprints and the normalized Magpie (Ward et al., 2016)
compositional fingerprints, respectively. The Coverage Recall (Cov-R) is defined as:

Cov-R =
1

|St|
|{Mi | Mi ∈ St, ∃Mj ∈ Sg, dS(Mi,Mj) < δS , dC(Mi,Mj) < δC}| , (25)

where δS and δC are predefined thresholds. Similarly, the Coverage Precision (Cov-P) is defined
by swapping St and Sg. The recall metrics measure the number of correctly predicted ground-truth
materials, while the precision metrics assess the quantity of high-quality generated materials.
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F.3 DATASET DETAILS

Our evaluation employs two distinct datasets, each presenting unique challenges. MP-20 is derived
from a database of stable inorganic compounds, totaling 45,231 samples, each containing up to twenty
atoms. MPTS-52 dataset offers a more complex scenario with 40,476 structures, each potentially
containing up to fifty-two atoms, organized chronologically by their first publication year.

For the MP-20 datasets, we apply a standard split ratio of 60% for training, 20% for validation,
and 20% for testing. Given its chronological nature, the MPTS-52 dataset uses a different splitting
strategy: 27,380 samples for training, 5,000 for validation, and 8,096 for testing, ensuring that the
temporal sequence of data is preserved throughout the experiments. This approach allows for a
thorough assessment of our proposed methodologies across a wide range of material properties and
complexities.
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G HYPERPARAMETERS TABLE FOR GAT-FLOW

Table 6: Training and test parameters of GAT-Flow on MP-20 and MPTS-52 datasets.

MP-20 MPTS-52
Model
Element type encoding dimension 128 (28 in DNG task) 128
Gaussian expansion for pressure, number of bases 80 80
Gaussian expansion for pressure, bases start −2.0 −2.0
Gaussian expansion for pressure, bases stop 5.0 5.0
Time sinusoidal positional encoding dimension 256 256
GAT hidden dimension 512 512
GAT number of layers L 8 7
Number of frequency for FFT

ij 256 256
Loss weight λk 1 1
Loss weight λF 10 10

Optimizer
Optimizer type Adam Adam
Learning rate 1e−3 1e−3
Learning rate scheduler ReduceLROnPlateau ReduceLROnPlateau
Scheduler patience (epoch) 40 40
Scheduler factor (epoch) 0.6 0.6
Minimal learning rate 1e−5 1e−5
Training data batchsize 256 64
Training most epochs 3000 3000

Inference
Integration Steps 200 100
Anneal slope of coordinate 7 5

All models are trained on RTX 3090. GAT-Flow for MP-20 dataset is trained on 4 RTX 3090 for 21.5 hours
while GAT-Flow for MPTS-52 dataset is trained on 4 RTX 3090 for 74 hours.
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H USE OF LARGE LANGUAGE MODELS

We used a large language model to polish the writing of this manuscript (grammar, wording, and stylistic clarity)
after the research, experiments, and analyses were completed. The model did not generate ideas, datasets, code,
or empirical results. All content was reviewed and verified by the authors, who take full responsibility for the
final text.
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