
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LLM-ASSISTED STATIC ANALYSIS FOR DETECTING
SECURITY VULNERABILITIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Software is prone to security vulnerabilities. Program analysis tools to detect
them have limited effectiveness in practice due to their reliance on human labeled
specifications. Large language models (or LLMs) have shown impressive code
generation capabilities but they cannot do complex reasoning over code to detect
such vulnerabilities especially since this task requires whole-repository analysis.
We propose IRIS, a neuro-symbolic approach that systematically combines LLMs
with static analysis to perform whole-repository reasoning for security vulnera-
bility detection. Specifically, IRIS leverages LLMs to infer taint specifications
and perform contextual analysis, alleviating needs for human specifications and
inspection. For evaluation, we curate a new dataset, CWE-Bench-Java, compris-
ing 120 manually validated security vulnerabilities in real-world Java projects. A
state-of-the-art static analysis tool CodeQL detects only 27 of these vulnerabilities
whereas IRIS with GPT-4 detects 55 (+28) and improves upon CodeQL’s average
false discovery rate by 5% points. Furthermore, IRIS identifies 6 previously un-
known vulnerabilities which cannot be found by existing tools.

1 INTRODUCTION

Security vulnerabilities pose a major threat to the safety of software applications and its users. In
2023 alone, more than 29,000 CVEs were reported—almost 4000 higher than in 2022 (CVE Trends).
Detecting vulnerabilities is extremely challenging despite advances in techniques to uncover them.
A promising such technique called static taint analysis is widely used in popular tools such as GitHub
CodeQL (Avgustinov et al., 2016), Facebook Infer (FB Infer), Checker Framework Checker Frame-
work, and Snyk Code (Snyk.io). These tools, however, face several challenges that greatly limit
their effectiveness and accessibility in practice.

CWE-22: Path-Traversal
Improper Limitation of a Pathname to a
Restricted Directory: The product uses
external input to construct pathname…

src/main/

README.md

Spark.java

Service.java
AbstractResourceHandler.java
pathInfo = request
 .getPathInfo();

ClassPathResource.java
String pathToUse = replace(
 path,
 WINDOWS_FOLDER_SEPARATOR,
 FOLDER_SEPARATOR);

ClassPathResource.java
is = this.clazz
 .getResourceAsStream(
 this.path);

pathInfo = request.getPathInfo();

AbstractResourceHandler.java

ClassPathResource.java

is = clazz.getResourceAsStream(path);

Interim Steps without Sanitization…

…

Vulnerable Paths Vulnerability
Explanation

 Is Vulnerable:
CWE-22: The source is
a user-controlled input
from a
HttpServletRequest,
which is a common
source of taint. The
sink is a method that
uses this potentially
tainted path to
retrieve a resource,
which could lead to
Path Traversal…

…
AVG. >300K lines of code

request.getAttribute(...);

…

+IRIS

CWE Information

Repository

otherRes = (ClassPathResource) obj;

Handler.javaAccess.java

Figure 1: Overview of the IRIS neuro-symbolic system. It checks a given whole repository for a
given type of vulnerability (CWE) and outputs a set of potential vulnerable paths with explanations.

False negatives due to missing taint specifications of third-party library APIs. First, static
taint analysis predominantly relies on specifications of third-party library APIs as sources, sinks, or
sanitizers. In practice, developers and analysis engineers have to manually craft such specifications
based on their domain knowledge and API documentation. This is a laborious and error-prone
process that often leads to missing specifications and incomplete analysis of vulnerabilities. Further,
even if such specifications may exist for many libraries, they need to be periodically updated to
capture changes in newer versions of such libraries and also cover new libraries that are developed.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

False positives due to lack of precise context-sensitive and intuitive reasoning. Second, it is
well-known that static analysis often suffers from low precision, i.e., it may generate many false
alarms (Kang et al., 2022; Johnson et al., 2013). Such imprecision stems from multiple sources. For
instance, the source or sink specifications may be spurious, or the analysis may over-approximate
over branches in code or possible inputs. Further, even if the specifications are correct, the context
in which the detected source or sink is used may not be exploitable. Hence, a developer may need
to triage through several potentially false security alerts, wasting significant time and effort.

Limitations of prior data-driven approaches to improve static taint analysis. Many techniques
have been proposed to address the challenges of static taint analysis. For instance, Livshits et al.
(2009) proposed a probabilistic approach, MERLIN, to automatically mine taint specifications. A
more recent work, Seldon (Chibotaru et al., 2019), improves the scalability of this approach by
formulating the taint specification inference problem as a linear optimization task. However, such
approaches rely on analyzing the code of third-party libraries to extract specifications, which is ex-
pensive and hard to scale. Researchers have also developed statistical and learning-based techniques
to mitigate false positive alerts (Jung et al., 2005; Heckman & Williams, 2009; Ranking, 2014).
However, such approaches still have limited effectiveness in practice (Kang et al., 2022).

Large Language Models (or LLMs) have made impressive strides in code generation and summa-
rization. LLMs have also been applied to code related tasks such as program repair (Xia et al.,
2023), code translation (Pan et al., 2024), test generation (Lemieux et al., 2023), and static analy-
sis (Li et al., 2024). Recent studies (Steenhoek et al., 2024; Khare et al., 2023) evaluated LLMs’
effectiveness at detecting vulnerabilities at the method level and showed that LLMs fail to do com-
plex reasoning with code, especially because it depends on the context in which the method is used
in the project. On the other hand, recent benchmarks like SWE-Bench (Jimenez et al., 2023) show
that LLMs are also poor at doing project-level reasoning. Hence, an intriguing question is whether
LLMs can be combined with static analysis to improve their reasoning capabilities. In this work, we
answer this question in the context of vulnerability detection and make the following contributions:

Approach. We propose IRIS, a neuro-symbolic approach for vulnerability detection that combines
the strengths of static analysis and LLMs. Fig. 1 presents an overview of IRIS. Given a project
to analyze for a given vulnerability class (or CWE), IRIS applies LLMs for mining CWE-specific
taint specifications. IRIS augments such specifications with CodeQL, a tool for static taint analysis.
Our intuition here is because LLMs have seen numerous usages of such library APIs, they have an
understanding of the relevant APIs for different CWEs. Further, to address the imprecision problem
of static analysis, we propose a contextual analysis technique with LLMs that reduces the false
positive alarms and minimizes the triaging effort for developers. Our key insight is that encoding
the code-context and path-sensitive information in the prompt elicits more reliable reasoning from
LLMs. Finally, our neuro-symbolic approach allows LLMs to do more precise whole-repository
reasoning and minimizes the human effort involved in using static analysis tools.

Dataset. We curate a dataset of manually vetted and compilable Java projects, CWE-Bench-Java,
containing 120 vulnerabilities (one per project) across four common vulnerability classes. The
projects in the dataset are complex, containing 300K lines of code on average, and 10 projects with
more than a million lines of code, making it a challenging benchmark for vulnerability detection.
Our code and dataset are in the supplementary material and will be open-sourced upon publication.

Results. We evaluate IRIS on CWE-Bench-Java using 8 diverse open- and closed-source LLMs.
Overall, IRIS obtains the best results with GPT-4, detecting 55 vulnerabilities, which is 28 (103.7%)
more than CodeQL, the existing best-performing static analyzer. We show that the increase is not
at the expense of false positives, as IRIS with GPT-4 achieves an average false discovery rate of
84.82%, which is 5.21% lower than that of CodeQL. Further, when applied to the latest versions of
30 Java projects, IRIS with GPT-4 discovered 6 previously unknown vulnerabilities.

2 MOTIVATING EXAMPLE

We illustrate the effectiveness of IRIS in detecting a previously known code-injection (CWE-
094) vulnerability in cron-utils (ver. 9.1.5), a Java library for Cron data manipulation. Fig. 2
shows the relevant code snippets. A user-controlled string value passed into isValid
function is transferred without sanitization to the parse function. If an exception is

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

@override
public boolean isValid(
 String value, ConstraintValidatorContext context) {
 try {
 cronParser.parse(value).validate(); // ...
 } catch (IllegalArgumentException e) {
 context
 .buildConstraintViolationWithTemplate(e.getMessage())
 .addConstraintViolation(); // ...

cronutils/validation/CronValidator.java

/** Parse string with cron expression. ... */
public Cron parse(final String expression) {
 try { /* ... */ } catch {
 throw new IllegalArgumentException(
 String.format("Failed to parse '%s'. %s",
 expression, e.getMessage()), e);
 }
}

cronutils/parser/CronParser.java

public void extractFile(
 String fileName, String destinationPath, String newFileName) throws ZipException {

Detected Source: two formal params of extractFile

// In function `assertCanonicalPathsAreSame`
- if (!completePath.startsWith(outPath)) { /* ... */ }
+ String comp = new File(completePath).getCanonicalPath();
+ String out = new File(outPath).getCanonicalPath());
+ if (!comp.startsWith(out)) { /* ... */ }

The Fix for the CVE-2018-1002202: the sanitizer to check the path

try (OutputStream outputStream =
 new FileOutputStream(outputFile)) {

Detected Sink B: writing to a file potentially
outside of intended directory

if (!destinationPath.mkdirs()) {
 // ...

Detected Sink A: creating a
directory in the file system

Not Vulnerable❌ Is Vulnerable✅

1
3

4
2

5

6

Figure 2: An example of Code Injection (CWE-94) vulnerability found in cron-utils (CVE-2021-
41269) that CodeQL fails to detect. We number the program points of the vulnerable path.

thrown, the function constructs an error message with the input. However, the error mes-
sage is used to invoke method buildConstraintViolationWithTemplate of class
ConstraintValidatorContext in javax.validator, which interprets the message
string as a Java Expression Language (Java EL) expression. A malicious user may exploit this
vulnerability by crafting a string containing a shell command such as Runtime.exec(‘rm -rf
/’) to delete critical files on the server.

Detecting this vulnerability poses several challenges. First, the cron-utils library consists of 13K
SLOC (lines of code excluding blanks and comments), which needs to be analyzed to find this
vulnerability. This process requires analyzing data and control flow across several internal meth-
ods and third-party APIs. Second, the analysis needs to identify relevant sources and sinks. In
this case, the value parameter of the public isValid method may contain arbitrary strings
when invoked, and hence may be a source of malicious data. Additionally, external APIs like
buildConstraintViolationWithTemplate can execute arbitrary Java EL expressions,
hence they should be treated as sinks that are vulnerable to Code Injection attacks. Finally, the
analysis also requires identifying any sanitizers that block the flow of untrusted data.

Modern static analysis tools, like CodeQL, are effective at tracing taint data flows across complex
codebases. However, CodeQL fails to detect this vulnerability due to missing specifications. Cod-
eQL includes many manually curated specifications for sources and sinks across more than 360
popular Java library modules. However, manually obtaining such specifications requires significant
human effort to analyze, specify, and validate. Further, even with perfect specifications, CodeQL
may often generate numerous false positives due to a lack of contextual reasoning, increasing the
developer’s burden of triaging the results.

In contrast, IRIS takes a different approach by inferring project- and vulnerability-specific specifica-
tions on-the-fly by using LLMs. The LLM-based components in IRIS correctly identify the untrusted
source and the vulnerable sink. IRIS augments CodeQL with these specifications and successfully
detects the unsanitized data-flow path between the detected source and sink in the repository. How-
ever, augmented CodeQL produces many false positives, which are hard to eliminate using logical
rules. To solve this challenge, IRIS encodes the detected code paths and the surrounding context
into a simple prompt and uses an LLM to classify it as true or false positive. Specifically, out of 8
paths reported by static analysis, 5 false positives are filtered out, leaving the path in Fig. 2 as one of
the final alarms. Overall, we observe that IRIS can detect many such vulnerabilities that are beyond
the reach of CodeQL-like static analysis tools, while keeping false alarms to a minimum.

3 IRIS FRAMEWORK

At a high level, IRIS takes a Java project P , the vulnerability class C to detect, and a large language
model LLM, as inputs. IRIS statically analyzes the project P , checks for vulnerabilities specific to
C, and returns a set of potential security alerts A. Each alert is accompanied by a unique code path
from a taint source to a taint sink that is vulnerable to C (i.e., the path is unsanitized).

As illustrated in Fig. 3, IRIS has four main stages: First, IRIS builds the given Java project and uses
static analysis to extract all candidate APIs, including invoked external APIs and internal function
parameters. Second, IRIS queries an LLM to label these APIs as sources or sinks that are specific
to the given vulnerability class C. Third, IRIS transforms the labeled sources and sinks into spec-
ifications that can be fed into a static analysis engine, such as CodeQL, and runs a vulnerability
class-specific taint analysis query to detect vulnerabilities of that class in the project. This step gen-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Section 3.3
Label Source/Sinks

Java Project

API Calls
Src/Snk Candidates

Function Params
Source Candidates

Source & Sink
Specifications

Candidate
Extractor

API Spec
Inference

Function
Param Spec
Infrerence

Static Taint
Analysis

CWE
Information

Vulnerable Path
Candidates

Contextual
Filtering

Vulnerabilities
w/ explanations

4.1

4.2

4.3 4.4

4.2

Program
Dataflow

Graph

- addsTo: { pack: codeql/java-all, extensible: sourceModel }
 data:
 - ["javax.validation", "ConstraintValidator", True, "isValid", ..., "Parameter[0]", ...]
- addsTo: { pack: codeql/java-all, extensible: sinkModel }
 data:
 - ["javax.validation", "ConstraintValidatorContext", True,
 "buildConstraintViolationWithTemplate", ..., "Argument[0]", ...]

codeql/java-all/…/ext/javax.validation.model.yml

Section 3.2
Candidate Extractor

Invoked External API Internal Function Formal Parameters

Section 4.2: Label Sources

Build CodeQL Database
Candidate
Extraction

javax.va…

java.io ObjectInputStream readObject

package class method

ConstraintValida… buildConstra…

class method documentation

FieldExpression accept “Accept a visitor…”

CronParser parse “Parse string…”

External API Candidates

Internal Function Param Candidates

source return-value

sink argument[0]

source parameter[0]

sink parameter[0]

type target

type target

Function Param Labels

API Labels

…

…

…

…

Section 3.4
Static Taint Analysis

Data-Flow Path

boolean isValid(
 String value, …) {

throw new IllegalA…

context.buildConstra
 intViolationWith
 Template(e.get…())

…

…

Section 3.5
Contextual Analysis

Cron parse(
 String expr) {

Vulnerability Analysis

 Is Vulnerable: The
source is user input being
parsed and validated,
which can lead to an
exception with a controlled
message. The sink is using
the exception message in a
context that could
potentially be used for
execution, satisfying the
criteria for a Code Injection
vulnerability (CWE-094).

Figure 3: An illustration of the IRIS pipeline.

erates a set of vulnerable code paths (or alerts) in the project. Finally, IRIS triages the generated
alerts by automatically filtering false positives, and presents them to the developer.

3.1 PROBLEM STATEMENT

We formally define the static taint analysis problem for vulnerability detection. Given a project P ,
taint analysis extracts an inter-procedural data flow graph G = (V,E), where V is the set of nodes
representing program expressions and statements, and E ⊆ V × V is the set of edges representing
data or control flow edges between the nodes. A vulnerability detection task comes with two sets
V C

source ⊆ V, V C
sink ⊆ V that denote source nodes where tainted data may originate and sink nodes

where a security vulnerability can occur if tainted data reaches it, respectively. Naturally, different
classes C of vulnerabilities (or CWEs) have different source and sink specifications. Additionally,
there can be sanitizer specifications, V C

sanitizer ∈ V, that block the flow of tainted data (such as
escaping special characters in strings).

The goal of taint analysis is to find pairs of sources and sinks, (Vs ∈ V C
source, Vt ∈ V C

sinks), such that
there is an unsanitized path from the source to the sink. More formally, Unsanitized Paths(Vs, Vt) =
∃ Path(Vs, Vt) s.t. ∀Vn ∈ Path(Vs, Vt), Vn /∈ V C

sanitizer. Here, Path(V1, Vk) denotes a sequence of
nodes (V1, V2, . . . , Vk), such that Vi ∈ V and ∀i ∈ 1 to k − 1 : (vi, vi+1) ∈ E.

Two key challenges in taint analysis include: 1) identifying relevant taint specifications for each
class C that can be mapped to V C

source, V C
sink for any project P , and 2) effectively eliminating false

positive paths in Unsanitized Paths(Vs, Vt) identified by taint analysis. In the following sections,
we discuss how we address each challenge by leveraging LLMs.

3.2 CANDIDATE SOURCE/SINK EXTRACTION

A project may use various third-party APIs whose specifications may be unknown—reducing the
effectiveness of taint analysis. In addition, internal APIs might accept untrusted input from down-
stream libraries. Hence, our goal is to automatically infer specifications for such APIs. We define
a specification SC as a 3-tuple ⟨T, F,R⟩, where T ∈ {ReturnValue,Argument,Parameter, . . . }
is the type of node to match in G, F is an N-tuple of strings describing the package, class,
method name, signature, and argument/parameter position (if applicable) of an API, and R ∈
{Source, Sink,Taint-Propagator, Sanitizer} is the role of the API. For example, the specification
⟨Argument, (java.lang,Runtime,exec, (String[]), 0), Sink⟩ denotes that the first argu-
ment of exec method of Runtime class is a sink for a vulnerability class (OS command injection).
A static analysis tool maps these specifications to sets of nodes V C

source or V C
sink in G.

To identify taint specifications SC
source and SC

sink, we first extract Sext: external library APIs that are
invoked in the given Java project and are potential candidates to be taint sources or sinks. We also
extract Sint, internal library APIs that are public and may be invoked by a downstream library. We
use CodeQL to extract such candidates and their corresponding metadata such as method name, type
signature, enclosing packages and classes, and even JavaDoc documentations, if applicable.

3.3 INFERRING TAINT SPECIFICATIONS USING LLMS

We develop an automated specification inference technique: LabelSpecs(S#,LLM, C,R) = SC
R ,

where S# = Sext ∪ Sint are candidate specifications for sources and sinks. In this work, we do

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

not consider sanitizer specifications, because they typically do not vary for the vulnerability classes
that we consider. We use LLMs to infer taint specifications. Specifically, external APIs in Sext can
be classified as either source or sink, while internal APIs in Sint can have their formal parameters
identified as sources. In the Appendix, we show the user prompts for inferring source and sink
specifications from external APIs and internal function formal parameters.

Due to the sheer number of APIs to be labeled, we insert a batch of APIs in a single prompt and
ask the LLM to respond with JSON formatted strings. The batch size is a tunable hyper-parameter.
We adopt few-shot (usually 3-shot) prompting strategy for labeling external APIs, while zero-shot
is used for labeling internal APIs. Notably for internal APIs, we also include information from
repository readme and JavaDoc documentations, if applicable. In practice, we find that this extra
information helps LLM understand the high-level purpose and usage of the codebase, resulting in
better labeling accuracy. Due to space limitation, we leave the full prompt templates and other
implementations details in the Appendix. At the end of this stage, we have successfully obtained
SC

source and SC
sink which are going to be used by the static analysis engine in the next stage.

3.4 VULNERABILITY DETECTION

Once we obtain all the source and sink specifications from the LLM, the next step is to combine it
with a static analysis engine to detect vulnerable paths, i.e., Unsanitized Paths(Vs, Vt), in a given
project. In this work, we use CodeQL (GitHub, 2024a) for this step. CodeQL represents programs
as data flow graphs and provides a query language, akin to Datalog (Smaragdakis & Bravenboer,
2010), to analyze such graphs. Many security vulnerabilities can be modeled using queries written
in CodeQL and can be executed against data flow graphs extracted from such programs. Given a
data flow graph GP of a project P , CWE-specific source and sink specifications, and a query for a
given vulnerability class C, CodeQL returns a set of unsanitized paths in the program. Formally,

CodeQL(GP ,SC
source,S

C
sink,QueryC) = {Path1, . . . ,Pathk}

CodeQL itself contains numerous specifications of third-party APIs for each vulnerability class.
However, as we show later in our evaluation, despite having such specialized queries and extensive
specifications, CodeQL fails to detect a majority of vulnerabilities in real-world projects. For our
analysis, we write a specialized CodeQL query for each vulnerability that uses our mined specifica-
tions instead of those provided by CodeQL. Our query for Path Traversal vulnerability (CWE 22) is
shown in Listing 3 in the appendix. We develop similar queries for each CWE that we evaluate.

3.5 TRIAGING OF ALERTS VIA CONTEXTUAL ANALYSIS

Inferring taint specifications only solves part of the challenge. We observe that while LLMs help
uncover many new API specifications, sometimes they detect specifications that are not relevant
to the vulnerability class being considered, resulting in too many predicted sources or sinks and
consequently many spurious alerts as a result. For context, even a few hundred taint specifi-
cations may sometimes produce thousands of Unsanitized Paths(Vs, Vt) that a developer needs
to triage. To reduce the developer burden, we also develop an LLM-based filtering method,
FilterPath(Path,G,LLM, C) = True|False that classifies a detected vulnerable path (Path) in
G as a true or false positive by leveraging context-based and natural language information.

Fig. 4 presents an example prompt for contextual analysis. The prompt includes CWE information
and code snippets for nodes along the path, with an emphasis on the source and sink. Specifically,
we include ±5 lines surrounding the exact source and sink location, as well as the enclosing function
and class. The exact line of source and sink is marked with a comment. For the intermediate steps,
we include the file names and the line of code. When the path is too long, we keep only a subset
of nodes to limit the size of the prompt. As such, we provide the full context for the potential
vulnerability to be thoroughly analyzed.

We expect the LLM to respond in JSON format with the final verdict as well as an explanation to
the verdict. The JSON format prompts the LLM to generate the explanation before delivering the
final verdict, as presenting the judgment after the reasoning process is known to yield better results.
In addition, if the verdict is false, we ask the LLM to indicate whether the source or sink is a false
positive, which helps to prune other paths and thereby save on the number of calls to the LLM.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Analyze the following dataflow path in a Java project and
predict whether it contains a Code-Injection vulnerability
(CWE-094), or a relevant vulnerability. Please note that
injection of malicious expression might lead to arbitrary
code execution as well.

Source (expression : String):
 public class CronParser {
 public Cron parse(String expression) { // ← SOURCE
 Preconditions.checkNotNull(expression, ...);
 ... } }
Steps:
- Step 1 [CronParser.java]: String rep = expr.replace(...);
 ...
Sink (getMessage(...)):
 public class CronValidator implements ConstraintValidator {
 public boolean isValid(String value, ...) {
 ...
 } catch (IllegalArgumentException e) {
 ctx.disableDefaultConstraintViolation();
 ctx.build…(e.getMessage()).addCo…(); // ← SINK
 return false;
 } ... } }

User Prompt

public void extractFile(
 String fileName, String destinationPath, String newFileName) throws ZipException {

Detected Source: two formal params of extractFile

// In function `assertCanonicalPathsAreSame`
- if (!completePath.startsWith(outPath)) { /* ... */ }
+ String comp = new File(completePath).getCanonicalPath();
+ String out = new File(outPath).getCanonicalPath());
+ if (!comp.startsWith(out)) { /* ... */ }

The Fix for the CVE-2018-1002202: the sanitizer to check the path

try (OutputStream outputStream =
 new FileOutputStream(outputFile)) {

Detected Sink B: writing to a file potentially
outside of intended directory

if (!destinationPath.mkdirs()) {
 // ...

Detected Sink A: creating a
directory in the file system

Not Vulnerable❌ Is Vulnerable✅

LLM JSON Response (GPT-4)

{
 "explanation": "The source is user
 input being parsed and validated,
 which is a common entry point for
 tainted data. The sink is an error
 message being used in a way that
 could potentially be executed by
 downstream code, fitting the
 criteria for a CWE-094 vulnerability
 if the error message is mishandled.
 However, without evidence of the
 error message being executed, it's
 speculative to confirm vulnerability
 solely based on this dataflow.",
 "source_is_false_positive": false,
 "sink_is_false_positive": false,
 "is_vulnerable": true
}

La
rg

e
La

ng
ua

ge
 M

od
el

 (
ze

ro
-s

ho
t)

CWE Information

Context surrounding
the source

Marking the exact source
location in comment

Context surrounding
the sink

Intermediate Steps

Marking the exact sink
location in comment

Figure 4: LLM user prompt and response for contextual analysis of data-flow paths. In the user
prompt, we mark with color the CWE and path information that is filling the prompt template. For
cleaner presentation, we modify the snippets and left out the system prompt.

3.6 EVALUATION METRICS

We evaluate the performance of IRIS and its baselines using three key metrics: number of vulner-
ability detected (#Detected), average false discovery rate (AvgFDR), and average F1 (AvgF1). For
evaluation, we assume that we have a dataset D = {P1, . . . , Pn} where each Pi is a Java project, and
known to contain at least one vulnerability. The label for a project P is provided as a set of crucial
program points VP

vul = {V1, . . . , Vn} where the vulnerable paths should pass through, indicated by
Path∩VP

vul ̸= ∅. In practice, these are typically the patched methods that can be collected from each
vulnerability report. If at least one detected vulnerable path passes through a fixed location for the
given vulnerability, then we consider the vulnerability detected. Let PathsP be the set of detected
paths for each project P from prior stages. The metrics are formally defined as follows:

#VulPath(P) = |{Path ∈ PathsP | Path ∩ VP
vul ̸= ∅}|, Rec(P) = 1#VulPath(P)>0,

#Detected(D) =
∑

P∈D Rec(P), Prec(P) = #VulPath(P)
|PathsP | ,

AvgFDR(D) = AvgP∈D,|PathsP |>01− Prec(P), AvgF1(D) = 1
|D|

∑
P∈D

2·Prec(P)·Rec(P)
Prec(P)+Rec(P)

We note that Prec(P) might sometimes be undefined due to division-by-zero if the detection tool
retrieves no path (|PathsP | = 0). Therefore, for AvgFDR to be meaningful, we only consider the
projects where the detection tool produces at least one positive result. On the other hand, AvgF1
would not suffer from this problem because Rec(P) = 0 when no positive result is returned, making
the whole F1 term 0 regardless of undefinedness of Prec(P).

4 CWE-BENCH-JAVA: A DATASET OF SECURITY VULNERABILITIES IN JAVA

To evaluate our approach, we require a dataset of vulnerable versions of Java projects with several
important characteristics: 1) Each benchmark should have relevant vulnerability metadata, such as
the CWE ID, CVE ID, fix commit, and vulnerable project version, 2) each project in the dataset must
be compilable, which is a key requirement for static analysis and data flow graph extraction, 3) the
projects must be real-world, which are typically more complex and hence challenging to analyze
compared to synthetic benchmarks, and 4) finally, each vulnerability and its location (e.g., method)
in the project must be validated so that this information can be used for robust evaluation of vul-
nerability detection tools. Unfortunately, no existing dataset satisfies all these requirements. Table 5
presents a comparison of our dataset, which we discuss next, with prior vulnerability datasets.

To address these requirements, we curate our own dataset of vulnerabilities. For this paper, we
focus only on vulnerabilities in Java libraries that are available via the widely used Maven package

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Java Project

API Calls
Src/Snk Candidates

Function Params
Source Candidates

Source & Sink
Specifications

Candidate
Extractor

API Spec
Inference

Function
Param Spec
Infrerence

Static Taint
Analysis

CWE
Information

Vulnerable Path
Candidates

Contextual
Filtering

Vulnerabilities
w/ explanations

4.1

4.2

4.3 4.4

4.2

Program
Dataflow

Graph

- addsTo: { pack: codeql/java-all, extensible: sourceModel }
 data:
 - ["javax.validation", "ConstraintValidator", True, "isValid", ..., "Parameter[0]", ...]
- addsTo: { pack: codeql/java-all, extensible: sinkModel }
 data:
 - ["javax.validation", "ConstraintValidatorContext", True,
 "buildConstraintViolationWithTemplate", ..., "Argument[0]", ...]

codeql/java-all/…/ext/javax.validation.model.yml

Invoked External API Internal Function Formal Parameters

Section 4.2: Label Sources

Build CodeQL Database
Candidate
Extraction

Select Vul Classes
CWE-22: Path-Traversal
CWE-78: OS Command Injection
CWE-79: Cross-Site Scripting
CWE-94: Code Injection

1 Fetch Vulnerabilities2

Obtain CVE, CWE, MAVEN Pkg,
GitHub URL, etc.

i
GitHub Advisory Database

#CVE: 1065

430
430

Obtain Git Info3

GitHub URL, vulnerable ver.
and fix Ver.

libraries.io

#CVE: 430

4 Cross-Validate Fixes
snyk.io

Adding fix information and
fixing commits #CVE: 265

5 Build and Compile
MAVEN build

Manually specify Java and
MAVEN versions

i

#CVE: 149

#CVE: 430

6 Manual Checks
CWE is classified correctly

#CVE: 120

✓
Vulnerability not in dependency✓
Manually label vulnerable code✓
…

Check if some java code is fixed✓

Num Vuls: 120
- CWE-22: 55
- CWE-78: 13
- CWE-79: 31
- CWE-94: 21

Project Size:
- Avg. SLOC: 300K
- Max. SLOC: 7M

Statistics

Figure 5: Steps for curating CWE-Bench-Java, and dataset statistics.

Table 1: Overall performance comparison of CodeQL vs IRIS on Detection Rate (↑), Average FDR
(↓), and Average F1 (↑). We present results of IRIS with different LLMs including OpenAI GPT-4
and GPT-3.5, Llama-3 (L3) 8B and 70B, and DeepSeekCoder (DSC) 7B.

Method #Detected (/120) Detection Rate (%) Avg FDR (%) Avg F1 Score

CodeQL 27 22.50 90.03 0.076

IRIS +

GPT-4 55 (↑ 28) 45.83 (↑ 23.33) 84.82 (↓ 5.21) 0.177 (↑ 0.101)
GPT-3.5 47 (↑ 20) 39.17 (↑ 16.67) 90.42 (↑ 0.39) 0.096 (↑ 0.020)
L3 8B 41 (↑ 14) 34.17 (↑ 11.67) 95.55 (↑ 5.52) 0.058 (↓ 0.018)
L3 70B 54 (↑ 27) 45.00 (↑ 22.50) 90.96 (↑ 0.93) 0.113 (↑ 0.037)
DSC 7B 52 (↑ 25) 43.33 (↑ 20.83) 95.40 (↑ 5.37) 0.062 (↓ 0.014)

manager. We choose Java because it is commonly used to develop server-side, Android, and web
applications, which are prone to security risks. Further, due to Java’s long history, there are many
existing CVEs in numerous Java projects that are available for analysis. We initially use the GitHub
Advisory database (GitHub, 2024b;c) to obtain such vulnerabilities, and further filter it with cross-
validated information from multiple sources, including manual verification. Fig. 5 illustrates the
complete set of steps for curating CWE-Bench-Java.

As shown in the statistics (Fig. 5), the sheer size of these projects make them challenging to ana-
lyze for any static analysis tool or ML-based tool. Each project in CWE-Bench-Java comes with
GitHub information, vulnerable and fix version, CVE metadata, a script that automatically fetches
and builds, and the set of program locations that involve the vulnerability.

5 EVALUATION

We perform extensive experimental evaluations of IRIS and demonstrate its practical effectiveness in
detecting vulnerabilities in real-world Java repositories in CWE-Bench-Java. Due to space limits, we
include additional results and analyses in the appendix. We answer the following research questions:

• RQ 1: How many previously known vulnerabilities can IRIS detect?
• RQ 2: Does IRIS detect new, previously unknown vulnerabilities?
• RQ 3: How good are the inferred source/sink specifications by IRIS?
• RQ 4: How effective are the individual components of IRIS?

5.1 EXPERIMENTAL SETUP

We select two closed-source LLMs from OpenAI: GPT 4 (gpt-4-0125-preview) and GPT 3.5
(gpt-3.5-turbo-0125) for our evaluation. We also select instruction-tuned versions of three
open-source LLMs via huggingface API: Llama 3 8B and 70B, and DeepSeekCoder 7B. For the
CodeQL baseline, we use version 2.15.3 and its built-in Security queries specifically designed
for each CWE. Other baselines included are Facebook Infer (FB Infer), SpotBugs (Lavazza et al.,
2020), and Snyk (Snyk.io). We expand further on the other experimental setups in the appendix.

5.2 RQ1: EFFECTIVENESS OF IRIS ON DETECTING EXISTING VULNERABILITIES

Effectiveness of IRIS. The results in Table 1 highlight IRIS’s superior performance compared to
CodeQL. Specifically, IRIS, when paired with GPT-4, identifies 55 vulnerabilities—28 more than

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Per-CWE statistics of number of vulnerabilities detected (#Detected) by baselines and IRIS.
The compared baselines are CodeQL (QL), Facebook Infer (Infer), Spotbugs (SB), and Snyk. The
values in parentheses show the differences of detection by IRIS against CodeQL.

CWE #Vuls Baselines IRIS with

QL Infer SB Snyk GPT-4 GPT-3.5 L3 8B L3 70B DSC 7B

CWE-22 55 22 0 2 21 31 (↑ 9) 25 (↑ 3) 19 (↓ 3) 29 (↑ 7) 25 (↑ 3)
CWE-78 13 1 0 1 1 3 (↑ 2) 1 (= 0) 2 (↑ 1) 2 (↑ 1) 3 (↑ 2)
CWE-79 31 4 0 1 1 13 (↑ 9) 13 (↑ 9) 9 (↑ 9) 14 (↑ 10) 14 (↑ 10)
CWE-94 21 0 0 0 0 8 (↑ 8) 8 (↑ 8) 11 (↑ 11) 9 (↑ 9) 10 (↑ 10)

All 120 27 0 4 23 55 (↑ 28) 47 (↑ 20) 41 (↑ 14) 54 (↑ 27) 52 (↑ 25)

CodeQL. While GPT-4 shows the highest efficacy, smaller, specialized LLMs like DeepSeekCoder
7B still detect 52 vulnerabilities, suggesting that our approach can effectively leverage smaller-scale
models, enhancing accessibility. Notably, this increase in detected vulnerabilities does not com-
promise precision, as evidenced by IRIS’s lower average false discovery rate (FDR) with GPT-4
compared to CodeQL. Moreover, IRIS improves average F1 by 0.1, reflecting a better balance be-
tween precision and recall. We note that the reported average FDR is an upper bound, as our metrics
may overlook other true vulnerabilities in the repository. To further assess detection accuracy, we
randomly sampled 50 alarms reported by IRIS using GPT-4, and found that 27 out of 50 exhibit
potential attack surfaces, yielding a more refined estimated false discovery rate of 46%.

Table 2 presents a detailed breakdown of detected vulnerabilities, comparing IRIS against various
baselines. With the exception of IRIS using Llama-3 8B, which underperforms in detecting CWE-22
vulnerabilities, IRIS consistently outperforms all other baselines. Notably, CWE-78 (OS Command
Injection) remains particularly challenging for all LLMs. Our manual investigation revealed that the
vulnerability patterns in CWE-78 are highly intricate, often involving OS command injections via
gadget-chains (Cao et al., 2023) or external side effects, such as file writes, which are difficult to
track using static analysis. This highlights the inherent limitations of static analysis, as opposed to
dynamic approaches—an area that we leave for future work.

5.3 RQ2: PREVIOUSLY UNKNOWN VULNERABILITIES BY IRIS

We applied IRIS with GPT-4 to the latest versions of 30 Java projects. Among the 16 inspected
projects where IRIS raised at least one alert, we identified 6 potential vulnerabilities, of which 4
have been reported to the developers and are pending confirmation. These reported vulnerabilities
include 3 instances of path injection (CWE-22) and one case of cross-site scripting (CWE-94). To
ensure that these vulnerabilities were indeed uncovered due to IRIS’s integration with LLMs, we
verified that they were not detectable by CodeQL alone. Detailed findings are presented in the
appendix, but we highlight one such vulnerability in Fig. 8. CodeQL was unable to detect this
issue due to a missing source specification, while GPT-4 successfully flagged the API endpoint
restoreFromCheckpoint as a potential entry point for attack.

5.4 RQ3: QUALITY OF LLM-INFERRED TAINT SPECIFICATIONS

The LLM-inferred taint specifications are fundamental to IRIS’s effectiveness. To assess the quality
of these specifications, we conducted two experiments. First, we used CodeQL’s taint specifica-
tions as a benchmark to estimate the recall of both source and sink specifications inferred by LLMs
(Fig. 6). However, since CodeQL offers a limited set of specifications, we also needed to assess
the quality of inferred specifications outside of its known coverage. To this end, we manually ana-
lyzed 960 randomly selected samples of LLM-inferred source and sink labels (30 per combination
of CWE and LLM) and estimated the overall precision of the specifications (Fig. 7).

LLM-inferred sinks can replace CodeQL sinks. Overall, LLMs demonstrated high recall when
tested against CodeQL’s sink specifications (Fig. 6), with GPT-4 scoring the highest (87.11%).
While the recall for source specifications was generally lower, we found that CodeQL tends to over-
approximate its source specifications to compensate for a low detection rate. On the other hand,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 6: Recall of LLM-inferred taint specifi-
cations against CodeQL’s taint specifications.

Figure 7: Estimated precision of LLM-inferred
specifications on randomly sampled labels.

void restoreFromCheckpoint(CheckpointInputStream input) ... {
 // ...
 try (FileOutputStream fos = new FileOutputStream(tmpPath)) {
 IOUtils.copy(input, fos);
 }
 ZipUtils.decompress(Paths.get(mDbPath), tmpZipFilePath, ...);
 // ...

alluxio/dora/core/…/rocks/RocksStore.java

public void extractFile(
 String fileName, String destinationPath, String newFileName) throws ZipException {

Detected Source: two formal params of extractFile

// In function `assertCanonicalPathsAreSame`
- if (!completePath.startsWith(outPath)) { /* ... */ }
+ String comp = new File(completePath).getCanonicalPath();
+ String out = new File(outPath).getCanonicalPath());
+ if (!comp.startsWith(out)) { /* ... */ }

The Fix for the CVE-2018-1002202: the sanitizer to check the path

try (OutputStream outputStream =
 new FileOutputStream(outputFile)) {

Detected Sink B: writing to a file potentially
outside of intended directory

if (!destinationPath.mkdirs()) {
 // ...

Detected Sink A: creating a
directory in the file system

Not Vulnerable❌ Is Vulnerable✅

void unzipEntry(ZipFile zipFile, ZipArchiveEntry entry, ...) ... {
 File outputFile = new File(dirPath.toFile(), entry.getName());
 // ...
 if (!entry.isDirectory()) {
 try (FileOutputStream out = new FileOutputStream(outputFile)) {
 // ...
 } // ...

alluxio/dora/core/…/util/compression/ParallelZipUtils.java
1

2

3

4
56

7 Sink

Source

Figure 8: A previously unknown vulnerability found in alluxio 2.9.4. The snippets are slightly mod-
ified for presentation purpose. A user with database restoration permission may supply a database
checkpoint Zip file with malicious entry name. When unzipped, the entry may be written to an arbi-
trary directory, causing a Zip-Slip vulnerability (CWE-022) that could corrupt the hosting server.

GPT-4 achieved high precision (over 70%) in manual evaluations (Fig. 7), aligning with the lower
false discovery rate previously reported in Table 1. For other LLMs, the combination of high recall
but lower precision suggests a tendency to over-approximate sink specifications.

Over-approximating specifications can benefit IRIS. Although the precision for LLMs other than
GPT-4 is lower, over-approximation can actually help address a core limitation of CodeQL—its
restricted set of taint specifications. By over-approximating, LLMs expand the coverage of taint
analysis, offering a partial solution to CodeQL’s limited scope. The impact of this imprecision can
be mitigated through contextual analysis as we show next in the ablation studies.

5.5 RQ4: ABLATION STUDIES

Both LLM-inferred sources and sinks are necessary. Table 3 presents additional results when
using either only the source or sink specification from an LLM in IRIS. For this experiment, we only
use the results with GPT-4 for comparison. Each row present the number of detected vulnerabilities
per CWE. We observe that omitting either source or sink specifications inferred by GPT-4 causes a
drastic reduction in overall recall.

Performance gain of contextual analysis depends on LLM’s reasoning capability. As shown
in Fig. 9, contextual analysis is highly necessary for the precision and F1 score improvements.
However, only GPT-4, GPT-3.5, and Llama-3 70B see a positive impact after contextual analysis,
while the smaller models see negative. The false positive reduction of contextual analysis is the
most effective when the LLM possesses decent reasoning capability. Indeed, smaller models are
more likely to respond with “vulnerable” than larger models.

6 RELATED WORK

ML-based approaches for vulnerability detection. Numerous prior techniques incorporate deep
learning for detecting vulnerabilities. This includes techniques that use Graph Neural Network
(GNN)-based representations of code such as Devign (Zhou et al., 2019), Reveal (Chakraborty et al.,
2020), LineVD (Hin et al., 2022), and IVDetect (Li et al., 2021); LSTM-based models for represent-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Ablation on LLM inferred source
and sink specifications (CodeQL (QL) versus
GPT-4), evaluated using the #Detected met-
rics. When replacing either source or sink
with CodeQL specs, we see significantly less
vulnerabilities detected.

CWE 22 78 79 94 Total

SrcQL + SnkQL 22 1 4 0 27 (↓ 28)
SrcGPT4 + SnkQL 28 3 5 0 36 (↓ 19)
SrcQL + SnkGPT4 10 1 9 4 24 (↓ 31)

SrcGPT4 + SnkGPT4 31 3 13 8 55
Figure 9: Improvements of Avg. Precision and
Avg. F1 after contextual analysis.

ing program slices and data dependencies such as VulDeePecker (Li et al., 2020) and SySeVR (Li
et al., 2018); and fine-tuning of Transformer-based models such as LineVul (Fu & Tantithamthavorn,
2022), DeepDFA (Steenhoek et al., 2023), and ContraFlow (Cheng et al., 2022). These approaches
focus on method-level detection of vulnerabilities and provide only a binary label classifying a
method as vulnerable or not. In contrast, IRIS performs whole-project analysis and provides a dis-
tinct code path from a source to a sink and can be tailored for detecting different CWEs. More
recently, multiple studies demonstrated that LLMs are not effective at detecting vulnerabilities in
real-world code (Steenhoek et al., 2024; Ding et al., 2024; Khare et al., 2023). While these stud-
ies only focused on method-level vulnerability detection, it reinforces our motivation that detecting
vulnerabilities requires whole-project reasoning, which LLMs currently cannot do alone.

Static analysis tools. Apart from CodeQL (Avgustinov et al., 2016), other static analysis tools like
CppCheck (CPPCheck), Semgrep (Semgrep, 2023), FlawFinder (FlawFinder), Infer (FB Infer), and
CodeChecker (Code Checker) also include analyses for vulnerability detection. But, these tools are
not as feature-rich and effective as CodeQL (Li et al., 2023; Lipp et al., 2022). Recently, proprietary
tools such as Snyk (Snyk.io) and SonarQube (SonarQube) are also gaining in popularity. However,
like CodeQL, these tools share the same fundamental limitations of missing specifications and false
positives, which IRIS improves upon. Potentially, our techniques stand to benefit all such tools.

LLM-based approaches for software engineering. Researchers are increasingly combining LLMs
with program reasoning tools for challenging tasks such as fuzzing (Lemieux et al., 2023; Xia
et al., 2024), program repair (Xia et al., 2023; Joshi et al., 2023; Xia & Zhang, 2022), and fault
localization (Yang et al., 2023). While we are on a similar direction as (Li et al., 2024), to our
knowledge, our work is among the first to combine LLMs with static analysis to detect application
level security vulnerabilities via whole-project analysis. Recently, LLM-based agents such as Au-
toCodeRover (Zhang et al., 2024) and SWE-Agent (SWE Agent) are also pushing the boundaries
on whole-project repair. Hence, in future, we plan to explore a richer combination of tools in IRIS
to further improve the performance of vulnerability detection.

7 CONCLUSION AND LIMITATIONS

We presented IRIS, a novel neuro-symbolic approach that combines LLMs with static analysis for
vulnerability detection. We curate a dataset, CWE-Bench-Java, containing 120 security vulnera-
bilities across four classes in real-world projects. Our results show that systematically combining
LLMs with static analysis significantly improves upon traditional static analysis alone in terms of
both detected bugs and the alleviation of developer burden.

Limitations. There are still many vulnerabilities that IRIS cannot detect. Future approaches may
explore a tighter integration of these two tools to improve performance. In addition, IRIS makes
numerous calls to LLMs for specification inference and filtering false positives, increasing the po-
tential cost of analysis. While our results on Java are promising, it is unknown if IRIS will perform
well on other languages. Moreover, there is still a gap between the IRIS generated report and the
report that the developers would like to see. We plan to explore this further in future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max Schäfer. Ql: Object-oriented
queries on relational data. In European Conference on Object-Oriented Programming, 2016.
URL https://api.semanticscholar.org/CorpusID:13385963.

Sicong Cao, Xiaobing Sun, Xiaoxue Wu, Lili Bo, Bin Li, Rongxin Wu, Wei Liu, Biao He,
Yu Ouyang, and Jiajia Li. Improving java deserialization gadget chain mining via overriding-
guided object generation. In Proceedings of the 45th International Conference on Software Engi-
neering (ICSE), 2023. doi: 10.1109/ICSE48619.2023.00044.

Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray. Deep learning based
vulnerability detection: Are we there yet? IEEE Transactions on Software Engineering, 48:3280–
3296, 2020. URL https://api.semanticscholar.org/CorpusID:221703797.

Checker Framework, 2024. https://checkerframework.org/.

Xiao Cheng, Guanqin Zhang, Haoyu Wang, and Yulei Sui. Path-sensitive code embedding via
contrastive learning for software vulnerability detection. Proceedings of the 31st ACM SIG-
SOFT International Symposium on Software Testing and Analysis, 2022. URL https://api.
semanticscholar.org/CorpusID:250562410.

Victor Chibotaru, Benjamin Bichsel, Veselin Raychev, and Martin Vechev. Scalable taint spec-
ification inference with big code. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 760–774, 2019.

Code Checker, 2023. https://github.com/Ericsson/codechecker.

CPPCheck, 2023. https://cppcheck.sourceforge.io/.

CVE Trends, 2024. https://www.cvedetails.com.

Yangruibo Ding, Yanjun Fu, Omniyyah Ibrahim, Chawin Sitawarin, Xinyun Chen, Basel Alomair,
David Wagner, Baishakhi Ray, and Yizheng Chen. Vulnerability detection with code language
models: How far are we? arXiv preprint arXiv:2403.18624, 2024.

FB Infer, 2023. https://fbinfer.com/.

FlawFinder, 2023. URL https://dwheeler.com/flawfinder.

Michael Fu and Chakkrit Tantithamthavorn. Linevul: A transformer-based line-level vulnerability
prediction. In 2022 IEEE/ACM 19th International Conference on Mining Software Repositories
(MSR). IEEE, 2022.

GitHub. Codeql, 2024a. https://codeql.github.com.

GitHub. Github advisory database, 2024b. https://github.com/advisories.

GitHub. Github security advisories, 2024c. https://github.com/github/
advisory-database.

Jingxuan He and Martin Vechev. Large language models for code: Security hardening and adver-
sarial testing. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communi-
cations Security, pp. 1865–1879, 2023.

Sarah Heckman and Laurie Williams. A model building process for identifying actionable static
analysis alerts. In 2009 International conference on software testing verification and validation,
pp. 161–170. IEEE, 2009.

David Hin, Andrey Kan, Huaming Chen, and Muhammad Ali Babar. Linevd: Statement-level
vulnerability detection using graph neural networks. 2022 IEEE/ACM 19th International Con-
ference on Mining Software Repositories (MSR), pp. 596–607, 2022. URL https://api.
semanticscholar.org/CorpusID:247362653.

11

https://api.semanticscholar.org/CorpusID:13385963
https://api.semanticscholar.org/CorpusID:221703797
https://checkerframework.org/
https://api.semanticscholar.org/CorpusID:250562410
https://api.semanticscholar.org/CorpusID:250562410
https://github.com/Ericsson/codechecker
https://cppcheck.sourceforge.io/
https://www.cvedetails.com
https://fbinfer.com/
https://dwheeler.com/flawfinder
https://codeql.github.com
https://github.com/advisories
https://github.com/github/advisory-database
https://github.com/github/advisory-database
https://api.semanticscholar.org/CorpusID:247362653
https://api.semanticscholar.org/CorpusID:247362653

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. Why don’t software
developers use static analysis tools to find bugs? In 2013 35th International Conference on
Software Engineering (ICSE), pp. 672–681. IEEE, 2013.

Harshit Joshi, José Cambronero Sanchez, Sumit Gulwani, Vu Le, Gust Verbruggen, and Ivan
Radiček. Repair is nearly generation: Multilingual program repair with llms. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 37, pp. 5131–5140, 2023.

Yungbum Jung, Jaehwang Kim, Jaeho Shin, and Kwangkeun Yi. Taming false alarms from a
domain-unaware c analyzer by a bayesian statistical post analysis. In International Static Analysis
Symposium, pp. 203–217. Springer, 2005.

Hong Jin Kang, Khai Loong Aw, and David Lo. Detecting false alarms from automatic static anal-
ysis tools: How far are we? In Proceedings of the 44th International Conference on Software
Engineering, pp. 698–709, 2022.

Avishree Khare, Saikat Dutta, Ziyang Li, Alaia Solko-Breslin, Rajeev Alur, and Mayur Naik. Un-
derstanding the effectiveness of large language models in detecting security vulnerabilities. arXiv
preprint arXiv:2311.16169, 2023.

Luigi Lavazza, Davide Tosi, and Sandro Morasca. An Empirical Study on the Persistence of Spot-
Bugs Issues in Open-Source Software Evolution, pp. 144–151. 08 2020. ISBN 978-3-030-58792-
5. doi: 10.1007/978-3-030-58793-2 12.

Caroline Lemieux, Jeevana Priya Inala, Shuvendu K Lahiri, and Siddhartha Sen. Codamosa: Escap-
ing coverage plateaus in test generation with pre-trained large language models. In International
conference on software engineering (ICSE), 2023.

Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian. Enhancing static analysis for practical bug
detection: An llm-integrated approach. Proceedings of the ACM on Programming Languages
(PACMPL), Issue OOPSLA, 2024.

Kaixuan Li, Sen Chen, Lingling Fan, Ruitao Feng, Han Liu, Chengwei Liu, Yang Liu, and Yixiang
Chen. Comparison and evaluation on static application security testing (sast) tools for java. In
Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pp. 921–933, 2023.

Yi Li, Shaohua Wang, and Tien Nhut Nguyen. Vulnerability detection with fine-grained in-
terpretations. Proceedings of the 29th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering, 2021. URL
https://api.semanticscholar.org/CorpusID:235490574.

Z. Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, Zhaoxuan Chen, Sujuan Wang, and Jialai
Wang. Sysevr: A framework for using deep learning to detect software vulnerabilities. IEEE
Transactions on Dependable and Secure Computing, 19:2244–2258, 2018. URL https://
api.semanticscholar.org/CorpusID:49869471.

Zhuguo Li, Deqing Zou, Shouhuai Xu, Zhaoxuan Chen, Yawei Zhu, and Hai Jin. Vuldeelocator: A
deep learning-based fine-grained vulnerability detector. IEEE Transactions on Dependable and
Secure Computing, 19:2821–2837, 2020. URL https://api.semanticscholar.org/
CorpusID:210064554.

Stephan Lipp, Sebastian Banescu, and Alexander Pretschner. An empirical study on the effectiveness
of static c code analyzers for vulnerability detection. In Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis, pp. 544–555, 2022.

Benjamin Livshits, Aditya V Nori, Sriram K Rajamani, and Anindya Banerjee. Merlin: Specifica-
tion inference for explicit information flow problems. ACM Sigplan Notices, 44(6):75–86, 2009.

12

https://api.semanticscholar.org/CorpusID:235490574
https://api.semanticscholar.org/CorpusID:49869471
https://api.semanticscholar.org/CorpusID:49869471
https://api.semanticscholar.org/CorpusID:210064554
https://api.semanticscholar.org/CorpusID:210064554

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, Divya Sankar, Lambert Pouguem Wassi,
Michele Merler, Boris Sobolev, Raju Pavuluri, Saurabh Sinha, and Reyhaneh Jabbarvand. Lost in
translation: A study of bugs introduced by large language models while translating code. In 2024
IEEE/ACM 46th International Conference on Software Engineering (ICSE), pp. 866–866. IEEE
Computer Society, 2024.

Improving Actionable Alert Ranking. Finding patterns in static analysis alerts. In Proceedings of
the 11th working conference on mining software repositories. Citeseer, 2014.

Semgrep. The semgrep platform. https://semgrep.dev/, 2023.

Yannis Smaragdakis and Martin Bravenboer. Using datalog for fast and easy program analysis. In
International Datalog 2.0 Workshop, pp. 245–251. Springer, 2010.

Snyk.io, 2024. https://snyk.io.

SonarQube, 2024. https://www.sonarsource.com/products/sonarqube.

Benjamin Steenhoek, Hongyang Gao, and Wei Le. Dataflow analysis-inspired deep learning for
efficient vulnerability detection, 2023.

Benjamin Steenhoek, Md Mahbubur Rahman, Monoshi Kumar Roy, Mirza Sanjida Alam, Earl T
Barr, and Wei Le. A comprehensive study of the capabilities of large language models for vulner-
ability detection. arXiv preprint arXiv:2403.17218, 2024.

SWE Agent, 2024. https://swe-agent.com.

Chunqiu Steven Xia and Lingming Zhang. Less training, more repairing please: revisiting automated
program repair via zero-shot learning. In Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 959–
971, 2022.

Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. Automated program repair in the era
of large pre-trained language models. In Proceedings of the 45th International Conference on
Software Engineering (ICSE 2023). Association for Computing Machinery, 2023.

Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Lingming Zhang. Fuzz4all:
Universal fuzzing with large language models. In Proceedings of the IEEE/ACM 46th Interna-
tional Conference on Software Engineering, pp. 1–13, 2024.

Aidan ZH Yang, Ruben Martins, Claire Le Goues, and Vincent J Hellendoorn. Large language
models for test-free fault localization. arXiv preprint arXiv:2310.01726, 2023.

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover: Autonomous
program improvement. arXiv preprint arXiv:2404.05427, 2024.

Yaqin Zhou, Shangqing Liu, J. Siow, Xiaoning Du, and Yang Liu. Devign: Effective vulnerability
identification by learning comprehensive program semantics via graph neural networks. In Neu-
ral Information Processing Systems, 2019. URL https://api.semanticscholar.org/
CorpusID:202539112.

13

https://semgrep.dev/
https://snyk.io
https://www.sonarsource.com/products/sonarqube
https://swe-agent.com
https://api.semanticscholar.org/CorpusID:202539112
https://api.semanticscholar.org/CorpusID:202539112

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A IMPLEMENTATION DETAILS OF IRIS

A.1 SELECTING CANDIDATE SPECIFICATIONS

While extracting external APIs, we filter out commonly-used Java libraries that are unlikely to con-
tain any potential sources or sinks. Such libraries include testing libraries like JUnit and Hamcrest
or mocking libraries like Mockito. While we filter out methods that are defined in the project, we
specifically allow methods that are inherited from an external class or interface. An example is the
getResource method of the generic class Class in java.lang package, which takes a path
as a string and accesses a file in the module. Many projects commonly inherit this class and use
this method. If the input path is unchecked, it may lead to a Path-Traversal vulnerability if the path
accesses resources outside the given module. Hence, detecting such API usages is crucial.

Taint sources are typically values returned by methods that obtain inputs from external sources,
such as response of an HTTP request or a command line argument. Hence, we select external
APIs that have a “non-void” return type as candidate sources. Another type of taint sources are
commonly seen in Java libraries. When used by downstream libraries, tainted information maybe
passed into the library through function calls. Therefore, we also collect the formal parameters for
public internal function as source candidates. Due to the excessive amount of such candidates, we
pose a further constraint that the public internal function must be directly invoked by a unit test case
within the same repository. Here, the test cases are identified by checking whether the residing file
path has src/test within it.

On the other hand, taint sinks are typically arguments to an external API. This involves explicit argu-
ments, such as the command argument passed to Runtime.exec(String command)method,
and implicit this argument to non-static functions, such as the file variable in the function call
file.delete(). This is the only type of sink that we consider within IRIS.

We note that this is not the entire story as there might be other kinds of sources and
sinks. Other types of source candidates include the formal parameter of protected but over-
ridden internal functions (the req parameter in protected HTTPServeletResponse
doGet(HTTPServeletRequest req)), arguments to an impure external function (the
buffer argument to void read(byte[] buffer, int size)), etc. Sink candidates in-
clude the return value of public facing functions, thrown exceptions, and even static methods without
any parameter (System.exit()). Due to the complexity, we do not tackle such kind of sources
of sinks in this work. However, we plan to explore further in future works.

A.2 LLM PROMPTS FOR SPECIFICATION INFERENCE

There are two prompts that we use to query LLM for specification inference. The first one is used
to label external APIs as either sources or sinks, illustrated in Listing 1. At a high level, this is a
classification task that classifies each API into one of {Source, Sink,Taint-Propagator,None}. As
shown in the listing, the system prompt involves general instruction about the task and the expected
output format, which is JSON. In the user prompt, we give the description of CWE, since the source
and sink specifications of external APIs are dependent on the CWE. We additionally give few-shot
examples that cover both sources and sinks for the given CWE. At the end, we list out a batch of
methods akin to the format of CSV. Notably for sink specifications, we expect the LLM to give
extra information about which exact argument to be considered as the sink. This include explicit
arguments as well as the implicit this argument. We also note that while taint-propagators are
included in the prompt, we do not actually use it in the subsequent stages of IRIS. Primarily, the
notion of taint-propagator is to help LLMs differentiate between sinks and summary models, which
are sometimes mistakened as sinks. In general, we find the prompt to serve the purpose well.

The second prompt, depicted in Listing 2, is used to label the formal parameters of internal APIs as
sources. Since we are analyzing internal API, the information such as project README and function
documentations are commonly available. The goal is to find whether this internal API might be
invoked by a downstream library with a malicious input passed to this formal parameter. This
information is not CWE specific, hence no CWE information is included in this prompt.

We hypothesize that since LLMs are pre-trained on internet-scale data, they have knowledge about
the behavior of widely used libraries and their APIs. Hence, it is natural to ask whether LLMs can be

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

1 System: You are a security expert. You are given a list of APIs to be
labeled as potential taint sources, sinks, or APIs that propagate
taints. Taint sources are values that an attacker can use for
unauthorized and malicious operations when interacting with the
system. Taint source APIs usually return strings or custom object
types. Setter methods are typically NOT taint sources. Taint sinks
are program points that can use tainted data in an unsafe way, which
directly exposes vulnerability under attack. Taint propagators carry
tainted information from input to the output without sanitization,
and typically have non-primitive input and outputs. Return the result
as a json list with each object in the format:

2

3 { "package": <package name>,
4 "class": <class name>,
5 "method": <method name>,
6 "signature": <signature of the method>,
7 "sink_args": <list of arguments or ‘this‘; empty if the API is not sink

>,
8 "type": <"source", "sink", or "taint-propagator"> }
9

10 DO NOT OUTPUT ANYTHING OTHER THAN JSON.
11

12

13 User: [CWE_LONG_DESCRIPTION]
14

15 Some example source/sink/taint-propagator methods are:
16 [CWE_SOURCE_SINK_EXAMPLES]
17

18 Among the following methods, \
19 assuming that the arguments passed to the given function is malicious, \
20 what are the functions that are potential source, sink, or taint-

propagators to [CWE_TITLE] attack (CWE-[CWE_ID])?
21

22 Package,Class,Method,Signature
23 [Package1],[Class1],[Method1],[Signature1]
24 [Package2],[Class2],[Method2],[Signature2]
25 [...]

Listing 1: LLM prompt for labelling external APIs as sources or sinks

used to identify APIs that are relevant as sources or sinks for any vulnerability class. If successful,
LLMs can alleviate manual effort, and drastically improve the effectiveness of static analysis tools.

A.3 CODEQL QUERIES FOR STATIC ANALYSIS

Listing 3 presents our CodeQL query for Path Traversal vulnerability (CWE 22). In Listing 3,
Lines 10-29 describe a taint analysis configuration that describes which nodes in the data flow
graph should be considered as sources or sinks. Here, Line 12 specifies our custom predicate
isLLMDetectedSource that checks whether the method called is taint source based on our
specifications. Similarly, our predicates isLLMDetectedSink checks whether the node is a taint
sink based on our specifications. Line 16 checks if a method call or method argument node is a taint
sink based on our specifications. We generate the source and sink specifications as predicates in QL
file as shown in Listings 4 and 5 respectively. Given a taint configuration and the source and sink
specifications, CodeQL can automatically perform taint analysis on a given project.

We use template to convert LLM inferred specifications into CodeQL queries. There are three kinds
of queries:

1. a formal parameter of an internal function as a source;
2. the return value of an external function as a source;
3. an argument to an external function as a sink.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

1 System: You are a security expert. You are given a list of APIs
implemented in established Java libraries, and you need to identify
whether some of these APIs could be potentially invoked by downstream
libraries with malicious end-user (not programmer) inputs. For

instance, functions that deserialize or parse inputs might be used by
downstream libraries and would need to add sanitization for

malicious user inputs. On the other hand, functions like HTTP request
handlers are typically final and won’t be called by a downstream

package. Utility functions that are not related to the primary
purpose of the package should also be ignored. Return the result as a
json list with each object in the format:

2

3 { "package": <package name>,
4 "class": <class name>,
5 "method": <method name>,
6 "signature": <signature>,
7 "tainted_input": <a list of argument names that are potentially tainted

> }
8

9 In the result list, only keep the functions that might be used by
downstream libraries and is potentially invoked with malicious end-
user inputs. Do not output anything other than JSON.

10

11

12 User: You are analyzing the Java package [PROJECT_AUTHOR]/[PROJECT_NAME].
Here is the package summary:

13

14 [PROJECT_README_SUMMARY]
15

16 Please look at the following public methods in the library and their
documentations (if present). What are the most important functions
that look like can be invoked by a downstream Java package that is
dependent on [PROJECT_NAME], and that the function can be called with
potentially malicious end-user inputs? If the package does not seem

to be a library, just return empty list as the result. Utility
functions that are not related to the primary purpose of the package
should also be ignored.

17

18 Package,Class,Method,Doc
19 [Package1],[Class1],[Method1],[Documentation1]
20 [Package2],[Class2],[Method2],[Documentation2]
21 [...]

Listing 2: LLM prompt for labeling formal parameters of internal APIs as sources.

Example queries for the two kinds of sources are specified in Listing 4, while the example query for
the sink is illustrated in Listing 5. As shown in the listings, we not only match on function package,
class, and name, but also match on individual arguments or parameters. Moreover, our query han-
dles generic functions or function in generic classes through the getSourceDeclaration()
predicate provided by CodeQL. Notably, when the number of inferred specifications is too large, we
will split the single predicate into multiple hierarchical ones, improving the CodeQL performance.

A.4 VISUALIZATION OF METRICS

We provide a visualization of our VulDetected metric in Fig. 10. For evaluation, we assume that
the label for a project P is provided as a set of crucial program points VP

vul = {V1, . . . , Vn} where
the vulnerable paths should pass through. In practice, these are typically the patched methods that
can be collected from each vulnerability report. As illustrated in Fig. 10, if at least one detected
vulnerable path passes through a fixed location for the given vulnerability, then we consider the
vulnerability detected. Let PathsP be the set of detected paths for each project P from prior stages.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

1 import java
2 // other imports ...
3 import MySources
4 import MySinks
5

6 /**
7 * A taint-tracking configuration for tracking flow from remote sources

to the
8 * creation of a path.
9 */

10 module MyTaintedPathConfig implements DataFlow::ConfigSig {
11 predicate isSource(DataFlow::Node source) {
12 isLLMDetectedSource(source)
13 }
14

15 predicate isSink(DataFlow::Node sink) {
16 isLLMDetectedSink(sink)
17 }
18

19 predicate isBarrier(DataFlow::Node sanitizer) {
20 sanitizer.getType() instanceof BoxedType or
21 sanitizer.getType() instanceof PrimitiveType or
22 sanitizer.getType() instanceof NumberType or
23 sanitizer instanceof PathInjectionSanitizer
24 }
25

26 predicate isAdditionalFlowStep(DataFlow::Node n1, DataFlow::Node n2) {
27 isLLMDetectedStep(n1, n2)
28 }
29 }
30

31 /** Tracks flow from remote sources to the creation of a path. */
32 module MyTaintedPathFlow = TaintTracking::Global<MyTaintedPathConfig>;
33

34 from MyTaintedPathFlow::PathNode source, MyTaintedPathFlow::PathNode sink
35 where MyTaintedPathFlow::flowPath(source, sink)
36 select
37 getReportingNode(sink.getNode()),
38 source,
39 sink,
40 "This path depends on a $@.",
41 source.getNode(),
42 sourceType(source.getNode())

Listing 3: QL Script for Detecting Vulnerabilities for Path Traversal (CWE 22)

The vulnerable paths inside project P is given by:
VulPaths(P) = {Path ∈ PathsP | Path ∩ VP

vul ̸= ∅}

B ADDITIONAL DETAILS OF CWE-BENCH-JAVA

B.1 DETAILS OF DATASET EXTRACTION PROCESS

Because we use CodeQL for static analysis, we further need to build each project for CodeQL to
extract data flow graphs from the projects. To build each project, we need to determine the correct
Java and Maven compiler versions. We developed a semi-automated script that tries to build each
project with different combinations of Java and Maven versions. The fourth row in Table 4 presents
the number of projects we were able to build successfully. Overall, this results in (⋆) 149 projects.

Finally, we manually check each fix commit and validate whether the commit actually contains a
fix to the given CVE in a Java file. For instance, we found that in some cases the fix is in files

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

1 predicate isLLMDetectedSource(DataFlow::Node src) {
2 // Sources: Return value from external APIx
3 (
4 src.asExpr().(Call).getCallee().getName() = "getName" and
5 src.asExpr().(Call).getCallee().getDeclaringType().

getSourceDeclaration().hasQualifiedName("java.util.zip", "ZipEntry")
6)
7 ...
8 or
9 // Sources: Function formal parameters of internal API

10 exists(Parameter p |
11 src.asParameter() = p and
12 p.getCallable().getName() = "setUserName" and
13 p.getCallable().getDeclaringType().getSourceDeclaration().

hasQualifiedName("org.apache.dolphinscheduler.dao.entity", "DqRule")
and

14 (p.getName() = "userName")
15)
16 ...
17 }

Listing 4: QL Predicates for Source Specifications

1 predicate isLLMDetectedSink(DataFlow::Node snk) {
2 exists(Call c |
3 c.getCallee().getName() = "createTempFile" and
4 c.getCallee().getDeclaringType().getSourceDeclaration().

hasQualifiedName("java.io", "File") and
5 (c.getArgument(0) = snk.asExpr().(Argument))
6)
7 or
8 ...
9 }

Listing 5: QL Predicates for Sink Specification

Table 4: Vulnerability Dataset Collection Statistics

Step CWE-22 CWE-78 CWE-79 CWE-94 Total
Initial CVEs 236 39 681 109 1065
W/ Github URL and Version 119 37 219 55 430
W/ Fix Commit 89 27 99 50 265
Compilable 56 17 50 26 149
Fixes in Java Code 56 16 25 47 144
Manual Validation 55 13 31 21 120

written in other languages (such as Scala or JSP). While code written in other languages may flow to
the Java components in the project during runtime or via compilation, it is not possible to correctly
determine if static analysis can correctly detect such a vulnerability. Hence, we exclude such CVEs.
Further, we exclude cases where the vulnerability was in a dependency and the fix was just a version
upgrade or if the vulnerability was mis-classified. Finally, we end up with (⋆) 120 projects that
we evaluate with IRIS. For this task, we divide the CVEs among two co-authors of the project,
who independently validate each case. The co-authors cross-check each other’s results and discuss
together to come up with the final list of projects.

The closest dataset to ours, in terms of features, is the Java dataset curated by Li et al. Li et al.
(2023), containing 165 CVEs. While we initially considered using their dataset for our work, we
found several issues. First, their dataset does not come with build scripts, which makes it hard to

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Path is Considered
Vulnerable

Path is NOT
Considered
Vulnerable

A B ✅❌

public void extractFile(
 String fileName, String destinationPath, String newFileName
) throws ZipException {
 // ...

Detected Source: the formal param fileName and destinationPath

// In function `assertCanonicalPathsAreSame`
+ String comp = new File(completePath).getCanonicalPath();
+ String out = new File(outPath).getCanonicalPath());
+ if (!comp.startsWith(out)) {
+ ...
+ }

The Fix for the CVE: the sanitizer to check the output path

try (OutputStream outputStream = new FileOutputStream(outputFile)) {
 while ((readLength = inputStream.read(buff)) != -1) {
 outputStream.write(buff, 0, readLength);
 // ...
 } }

Detected Sink: writing to a file that lies outside of the intended directory

public void extractFile(
 String fileName, String destinationPath, String newFileName) throws ZipException {

Detected Source: two formal params of extractFile

// In function `assertCanonicalPathsAreSame`
- if (!completePath.startsWith(outPath)) { /* ... */ }
+ String comp = new File(completePath).getCanonicalPath();
+ String out = new File(outPath).getCanonicalPath());
+ if (!comp.startsWith(out)) { /* ... */ }

The Fix for the CVE-2018-1002202: the sanitizer to check the path

try (OutputStream outputStream =
 new FileOutputStream(outputFile)) {

Detected Sink A: write to output file
if (!destinationPath.mkdirs()) {
 // ...

Detected Sink B: creating a new dir

Not Vulnerable❌Path Is Vulnerable✅

(no sanitization)

Figure 10: A visualization of our metrics used for vulnerability detection, where the snippets are
adapted from Zip4j v2.11.5-2, with slight changes for clearer presentation. While both sinks are
potential causes of path-traversal (CWE-22), only the dataflow path on the left passes through the
fixed sanitizer function. Therefore, we consider only the path on the left as a vulnerability.

automatically run each project with CodeQL. Second, their dataset only has few CVEs for all but
one CWE, which makes it difficult to thoroughly analyze a tool for different vulnerability classes.
Finally, they do not provide any automated scripts to curate more CVEs. Hence, we curated our own
dataset and our framework also allows to easily extend to more vulnerability classes.

B.2 COMPARISON OF OUR CWE-BENCH-JAVA WITH EXISTING VULNERABILITY DATASETS

We compare CWE-Bench-Java with existing datasets for vulnerability detection in Java, C, and C++
codebases, on the following criteria:

1. CVE Metadata: whether CVE Metadata is contained in the dataset;

2. Real-World: whether the dataset contains real-world projects;

3. Fix Locations: whether the dataset contains fix information about the vulnerabilities;

4. Compilable: whether the dataset ensures that the projects are end-to-end and automatically
compilable;

5. Vetted: whether the vulnerability in the dataset is manually verified and confirmed.

As shown in Table 5, compared to existing datsets, CWE-Bench-Java, is the only one that checks
every criterion. This underscores the significance of our new dataset.

Table 5: Comparison of CWE-Bench-Java with existing vulnerability datasets

Dataset Languages CVE Metadata Real-World Fix Locations Compilable Vetted

BigVul C/C++ ✓ ✓ ✗ ✗ ✗
Reveal C/C++ ✗ ✓ ✗ ✗ ✗
CVEFixes C/C++, Java, ... ✓ ✓ ✓ ✓ ✗
DiverseVul C/C++ ✗ ✓ ✓ ✗ ✗
DeepVD C/C++ ✗ ✓ ✗ ✗ ✗
Juliet C++, Java ✗ ✗ ✓ ✓ ✓
Li et al. Li et al. (2023) Java ✓ ✓ ✓ ✗ ✓
SVEN He & Vechev (2023) C++ ✗ ✓ ✓ ✗ ✓

Our Dataset Java ✓ ✓ ✓ ✓ ✓

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C EVALUATION DETAILS

C.1 EXPERIMENTAL SETTINGS

We select two closed-source LLMs from OpenAI: GPT 4 (gpt-4-0125-preview) and GPT 3.5
(gpt-3.5-turbo-0125) for our evaluation. GPT 4 and GPT 3.5 queries used in the paper are
performed through OpenAI API during April and May of 2024.

We also select instruction-tuned versions of six state-of-the-art open-source LLMs via huggingface
API: Llama 3 8B and 70B, DeepSeekCoder 7B and 33B, Mistral 7B, and Gemma 7B. To run the
open-source LLMs we use two groups of machines: a 2.50GHz Intel Xeon machine, with 40 CPUs,
four GeForce RTX 2080 Ti GPUs, and 750GB RAM, and another 3.00GHz Intel Xeon machine
with 48 CPUs, 8 A100s, and 1.5T RAM.

We use CodeQL version 2.15.3 as the backbone of our static analysis. We have patched CodeQL
with an additional feature that augments the Dataflow edge between throw statement and its closest
surrounding try-catch block. We use this CodeQL pull request as the base of our patch.

C.2 CODEQL BASELINE

For baseline comparison with CodeQL, we use the built-in Security queries specifically designed
for each CWE that comes with CodeQL 2.15.3. Note that there are multiple security queries for each
CWE, and each produce alarms of different levels (error, warning, and recommendation). For each
CWE, we take the union of alerts generated by all queries and do not differentiate between alarms
of different levels. For instance, there are 3 queries from CodeQL for detecting CWE-22 vulnera-
bilities, namely TaintedPath, TaintedPathLocal, and ZipSlip. While TaintedPath
and ZipSlip produce error level alarms, TaintedPathLocal produces only alarm recommen-
dations. To CodeQL’s advantage, all alarms are treated equally in our comparisons.

C.3 HYPER-PARAMETERS AND FEW-SHOT EXAMPLES

During IRIS, we have 2 prompts that are used to label external and internal APIs. Recall that the
prompts contain batched APIs. We use batch size of 20 and 30 for internal and external, respectively.
In terms of few-shot examples passed to labeling external APIs, we use 4 examples for CWE-22, 3
examples for CWE-78, 3 examples for CWE-79, and 3 examples for CWE-94. We use a temperature
of 0, maximum tokens to 2048, and top-p of 1 for inference with all the LLMs. For GPT 3.5 and
GPT 4, we also fix a seed to mitigate randomness as much as possible.

C.4 DETAILS OF SELECTED LLMS

We include the versions of selected LLMs in Table 6.

Table 6: Selected LLM Versions

LLM Version and Size Model ID

GPT 4 gpt-4-0125-preview
GPT 3.5 gpt-3.5-turbo-0125
Llama 3 8B meta-llama/Meta-Llama-3-8B-Instruct
Llama 3 70B meta-llama/Meta-Llama-3-70B-Instruct
DeepSeekCoder 7B deepseek-ai/deepseek-coder-7b-instruct

C.5 PREVIOUSLY UNKNOWN BUGS FOUND BY IRIS

We have applied IRIS with GPT-4 to 30 open-source Java projects in order to find previously un-
known vulnerabilities. The detailed statistics, at the time of this paper’s submission, is listed in
Table 7. We inspect vulnerabilities in detail, and will only file when we think that there is a vulnera-
bility with high severity and an easily accessible attack surface. 3 out of the 4 filed vulnerabilities are
filed on HackerOne to abide to the rules of the individual open-source project, which prohibit us to

20

https://github.com/github/codeql/pull/9914

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 7: Statistics related our effort to identify previously unknown vulnerabilities with IRIS + GPT-
4, to the date of this paper’s submission.

#Projects 30

#Projects where IRIS reports > 0 alarm 16

Average #alarms per investigated project 5.78

#Projects with potential vul 4

#Vuls with potential attack surface 6

#Vuls filed for developer confirmation 4

#Vuls of CWE-22 3

#Vuls of CWE-78 0

#Vuls of CWE-79 0

#Vuls of CWE-94 1

#Developer Response 0

#Developer Confirmation 0

#Fixed Vulnerability 0

disclose the details before the vulnerability is fixed. The remaining one is found in the Java project
alluxio 2.9.4, which we disclose and discuss in detail in Fig. 8. For the already filed vulnerabilities,
we are committed to work till the end to make sure that they are fixed in the open-source project.
The paper will be updated when they are fixed by the developer.

Our experience with finding unknown vulnerabilities using IRIS is pleasant, especially given that we
have built a custom web-based interface for us to inspect and triage the vulnerabilities. A screenshot
of the user-interface is illustrated in Fig. 11. We may quickly scan over the vulnerabilities by looking
at their source, sink, and LLM explanation of whether it is a bug. Additionally, all the dataflows
and nodes have hyperlinks to Github and the source code, making it easy to navigate through the
codebase. Overall, it does not take too much time to dive deep into each vulnerability. Anecdotally,
the first two real CWE-22 vulnerabilities are found among the first two projects that we inspected.

C.6 STATISTICS OF UNIQUE AND RECURRING SPECIFICATIONS

Table 8: Unique Source and Sink Specifications
Across All Projects in CWE-Bench-Java.

CWE 22 78 79 94

#Unique Sources 1348 899 598 810
#Unique Sinks 1069 575 514 1281

Table 9: Recurring Source and Sink Specifica-
tions in CWE-Bench-Java.

CWE 22 78 79 94

#Recurring Sources 908 232 1118 626
#Recurring Sinks 919 201 911 961

Continuous taint specification inference is necessary. Our results show that there is a high number
of both unique and recurring sources and sinks. Table 8 presents the number of inferred source and
sink specifications that occur only in a single project in CWE-Bench-Java, whereas Table 9 presents
the specifications that occur in at least two projects. This indicates that even if previously inferred
specifications are useful, a significant number of new relevant APIs still remain and need to be
labeled for effective vulnerability detection. This observation strongly motivates the design of IRIS
that infers these specifications on-the-fly for each project via LLMs, instead of relying on a fixed
corpus of specifications like CodeQL.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 11: Our web-based user-interface for inspecting and triaging vulnerabilities. The screenshot
shows the detected known vulnerability CVE-2021-41269 which we also detail in our motivating
example section. For detecting unknown vulnerability, the information about CWE and golden
labels will not be available to the users.

C.7 STATISTICS OF INFERRED TAINT SPECIFICATIONS

We show the statistics of inferred taint specifications in Table 10. As shown by the percentage,
GPT-4 generates smaller set of sources and sinks than smaller-scale LLMs like DeepSeekCoder 7B.

Table 10: Ratio of API candidates labeled as source (S) or sink (N) by GPT-4 and DeepSeekCoder
(DSC) 7B, per CWE and in total.

CWE #Cand. GPT-4 DSC 7B

%S %N %S %N

22 130,974 2.03% 1.90% 4.27% 4.01%
78 25,605 4.73% 3.37% 3.67% 3.33%
79 37,138 5.69% 4.69% 4.28% 4.56%
94 36,325 5.12% 7.83% 6.11% 6.21%

Total 230,042 3.41% 3.45% 4.50% 4.37%

D ANALYSIS RUNTIME

We include the full table containing statistics to provide more details about projects and our analysis
(Table 11). For each project, we present its corresponding CWE ID, the lines-of-code (SLOC), the
time it takes to run the full analysis, the number candidate APIs and the number of labeled source
and sinks by Llama 3 8B. We also color code cells of interest: For SLOC, we mark a cell as red if
>1M; yellow if >100k. For Time, we mark a cell as red if ≥1h; yellow if ≥5m. For the number of
candidates, we mark a cell as red if >10k. Lastly for sources and sinks, we mark a cell as red if the
number is larger than 200.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 11: Details of analysis runtime, candidates, and inferred sources and sinks for all projects
(Llama 3 8B)

CWE-ID Project SLOC Time #Candidates #Sources #Sinks
22 DSpace 218.2K 15s 3.61K 162 217
22 spark 10.7K 1m 679 35 27
22 spark 9.77K 57s 598 33 22
22 wildfly 496.28K 4m 14.13K 457 425
22 vertx-web 51.01K 1m 2.06K 80 77
22 camel 1.16M 8m 293 22 9
22 hutool 135.34K 4m 6.17K 115 211
22 tika 106.3K 2m 3.84K 277 177
22 retrofit 19.28K 1m 880 28 13
22 jspwiki 149.45K 1m 1.83K 62 80
22 camel 1.21M 11m 4.43K 53 80
22 tapestry-5 160.06K 1m 3.04K 91 66
22 spring-cloud-co 18.56K 1m 1.16K 40 64
22 spring-cloud-co 18.44K 59s 1.16K 40 64
22 rocketmq 94.64K 1m 2.78K 28 54
22 mpxj 181.55K 1m 1.6K 37 43
22 flink 1.14M 2h 5.16K 39 61
22 java 1M 2m 8.04K 96 41
22 commons-io 29.24K 58s 1.07K 12 47
22 karaf 135.22K 1m 5.43K 150 210
22 james-project 434.32K 4m 14.58K 209 226
22 vertx-web 49.28K 1m 2.36K 83 96
22 esapi-java-lega 35.26K 59s 1.48K 43 67
22 xwiki-commons 103.05K 1m 3.76K 104 137
22 zip4j 16.78K 58s 532 6 34
22 one-java-agent 5.19K 51s 327 11 20
22 myfaces 161.02K 1m 2.4K 68 44
22 undertow 86.03K 1m 2.58K 66 93
22 DependencyCheck 28.57K 1m 1.23K 47 66
22 plexus-archiver 13.04K 51s 573 34 47
22 plexus-archiver 13.04K 51s 573 34 47
22 zt-zip 6.64K 52s 337 14 31
22 curekit 511 43s 73 2 4
22 aws-sdk-java 7.72M 38m 12K 62 65
22 venice 115.44K 1m 2.27K 36 79
22 DSpace 237.33K 1m 3.67K 179 233
22 Payara 1.12M 7m 16.05K 379 427
22 DSpace 237.33K 1m 3.67K 179 233
22 goomph 12.68K 59s 1.12K 35 111
22 dolphinschedule 90.69K 1m 3.36K 65 92
22 dolphinschedule 91.94K 1m 3.4K 65 92
22 testng 95.53K 1m 2.08K 33 73
22 uima-uimaj 226.81K 2m 5.66K 103 176
22 keycloak 614.82K 12m 13.34K 325 252
22 glassfish 1.19M 5m 12.19K 293 346
22 graylog2-server 382K 4m 13.3K 227 171
22 mina-sshd 130.14K 1m 3.64K 52 120
22 shiro 38.68K 1m 1.5K 41 42
22 plexus-archiver 15.51K 57s 666 37 56
22 plexus-utils 23.3K 58s 754 16 36
22 yamcs 693.6K 2m 11K 98 113
22 yamcs 693.6K 2m 11K 98 113
22 shiro 38.94K 1m 1.53K 41 43
22 sling-org-apach 8.34K 54s 695 28 25

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

78 xstream 43.49K 1m 1.39K 91 30
78 xstream 59.79K 1m 1.64K 107 42
78 xstream 52.25K 1m 1.64K 107 43
78 docker-commons- 2.79K 54s 362 25 20
78 workflow-cps-pl 17.02K 1m 1.38K 72 61
78 workflow-cps-gl 4.31K 55s 523 40 38
78 workflow-multib 3.45K 53s 500 30 30
78 activemq 442.42K 4m 6.34K 234 192
78 plexus-utils 22.76K 1m 714 34 17
78 git-client-plug 16.41K 1m 1.06K 83 50
78 perfecto-plugin 667 54s 107 5 10
78 nifi 915.95K 11m 22.44K 894 614
78 script-security 8.17K 1m 678 40 46
79 antisamy 6.38K 57s 381 42 33
79 antisamy 6.38K 56s 381 42 33
79 jspwiki 149.33K 1m 1.84K 156 110
79 jspwiki 149.33K 1m 1.84K 156 110
79 jspwiki 149.33K 1m 1.84K 156 110
79 jspwiki 157.09K 1m 1.85K 157 110
79 hibernate-valid 93.6K 1m 2.06K 79 57
79 cxf 798.53K 1h 16.54K 821 756
79 xxl-job 9.32K 60s 540 42 41
79 json-sanitizer 1.47K 52s 67 4 5
79 hawkbit 112.09K 1m 4.07K 144 151
79 nacos 203.78K 2m 4.08K 201 139
79 antisamy 4.93K 1m 362 43 34
79 esapi-java-lega 35.26K 1m 1.48K 107 85
79 antisamy 5.14K 1m 377 44 36
79 jolokia 29.97K 1m 1.66K 117 97
79 keycloak 60.6K 1m 2.1K 170 136
79 cxf 722.83K 15m 15.09K 766 710
79 sling-org-apach 1.37K 55s 136 4 13
79 DSpace 237.33K 2m 3.67K 347 320
79 keycloak 615.6K 3h 13.37K 606 461
79 keycloak 615.6K 3h 13.37K 606 461
79 xwiki-commons 105.92K 1m 3.94K 244 151
79 xwiki-commons 105.94K 1m 3.94K 244 151
79 xwiki-rendering 97.01K 1m 1.22K 73 92
79 xwiki-commons 106.87K 1m 3.99K 254 161
79 jspwiki 158.7K 1m 2.22K 176 126
79 keycloak 617.15K 4h 14.04K 643 479
79 xwiki-commons 107.09K 1m 3.03K 209 143
79 jstachio 53.02K 54s 792 40 46
79 xwiki-rendering 97.63K 1m 1.24K 74 92
94 spring-security 43.9K 1m 1.83K 120 176
94 xstream 52.25K 1m 1.64K 111 145
94 cron-utils 13.08K 1m 476 13 26
94 struts 160.51K 12m 4.39K 301 357
94 activemq 547.68K 1h 7.55K 370 607
94 spring-framewor 666.11K 45m 17.71K 688 846
94 spring-cloud-ga 25.56K 1m 2.01K 130 153
94 dubbo 175.63K 2m 6.73K 342 383
94 incubator-dubbo 96.35K 1m 3.68K 194 255
94 spring-security 57.34K 1m 2.43K 192 234
94 kubernetes-clie 806.35K 3m 2.33K 93 130
94 commons-text 24.87K 1m 962 40 47
94 ff4j 46.21K 1m 2.39K 133 274
94 spring-boot-adm 18.29K 1m 1.83K 92 157
94 sqlite-jdbc 17.71K 59s 732 50 74

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

94 nifi 993.76K 25m 57 2 11
94 rocketmq 108.39K 2m 3.4K 117 164
94 nifi 1.01M 27m 261 27 24
94 rocketmq 197.78K 2m 6.28K 205 252
94 dolphinschedule 154.95K 4m 5.78K 229 353
94 dolphinschedule 154.95K 4m 5.78K 229 353

25

	Introduction
	Motivating Example
	IRIS Framework
	Problem Statement
	Candidate Source/Sink Extraction
	Inferring Taint Specifications using LLMs
	Vulnerability Detection
	Triaging of Alerts via Contextual Analysis
	Evaluation Metrics

	CWE-Bench-Java: A Dataset of Security Vulnerabilities in Java
	Evaluation
	Experimental Setup
	RQ1: Effectiveness of IRIS on Detecting Existing Vulnerabilities
	RQ2: Previously Unknown Vulnerabilities by IRIS
	RQ3: Quality of LLM-Inferred Taint Specifications
	RQ4: Ablation Studies

	Related Work
	Conclusion and Limitations
	Implementation Details of IRIS
	Selecting Candidate Specifications
	LLM Prompts for Specification Inference
	CodeQL Queries for Static Analysis
	Visualization of Metrics

	Additional Details of CWE-Bench-Java
	Details of Dataset Extraction Process
	Comparison of our CWE-Bench-Java with Existing Vulnerability Datasets

	Evaluation Details
	Experimental Settings
	CodeQL Baseline
	Hyper-Parameters and Few-Shot Examples
	Details of Selected LLMs
	Previously Unknown Bugs Found by IRIS
	Statistics of Unique and Recurring Specifications
	Statistics of Inferred Taint Specifications

	Analysis Runtime

