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ABSTRACT

Software is prone to security vulnerabilities. Program analysis tools to detect
them have limited effectiveness in practice due to their reliance on human labeled
specifications. Large language models (or LLMs) have shown impressive code
generation capabilities but they cannot do complex reasoning over code to detect
such vulnerabilities especially since this task requires whole-repository analysis.
We propose IRIS, a neuro-symbolic approach that systematically combines LLMs
with static analysis to perform whole-repository reasoning for security vulnera-
bility detection. Specifically, IRIS leverages LLMs to infer taint specifications
and perform contextual analysis, alleviating needs for human specifications and
inspection. For evaluation, we curate a new dataset, CWE-Bench-Java, compris-
ing 120 manually validated security vulnerabilities in real-world Java projects. A
state-of-the-art static analysis tool CodeQL detects only 27 of these vulnerabilities
whereas IRIS with GPT-4 detects 55 (+28) and improves upon CodeQL’s average
false discovery rate by 5% points. Furthermore, IRIS identifies 6 previously un-
known vulnerabilities which cannot be found by existing tools.

1 INTRODUCTION

Security vulnerabilities pose a major threat to the safety of software applications and its users. In
2023 alone, more than 29,000 CVEs were reported—almost 4000 higher than in 2022 (CVE Trends).
Detecting vulnerabilities is extremely challenging despite advances in techniques to uncover them.
A promising such technique called static taint analysis is widely used in popular tools such as GitHub
CodeQL (Avgustinov et al., 2016), Facebook Infer (FB Infer), Checker Framework Checker Frame-
work, and Snyk Code (Snyk.io). These tools, however, face several challenges that greatly limit
their effectiveness and accessibility in practice.

CWE-22: Path-Traversal
Improper Limitation of a Pathname to a 
Restricted Directory: The product uses 
external input to construct pathname…

src/main/

README.md

Spark.java
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AbstractResourceHandler.java
pathInfo = request
             .getPathInfo();

ClassPathResource.java
String pathToUse = replace(
  path,
  WINDOWS_FOLDER_SEPARATOR,
  FOLDER_SEPARATOR);

ClassPathResource.java
is = this.clazz
  .getResourceAsStream(
     this.path);

pathInfo = request.getPathInfo();

AbstractResourceHandler.java

ClassPathResource.java

is = clazz.getResourceAsStream(path);

Interim Steps without Sanitization…

…

Vulnerable Paths Vulnerability
Explanation

     Is Vulnerable: 
CWE-22: The source is 
a user-controlled input 
from a 
HttpServletRequest, 
which is a common 
source of taint. The 
sink is a method that 
uses this potentially 
tainted path to 
retrieve a resource, 
which could lead to 
Path Traversal…

…
AVG. >300K lines of code

request.getAttribute(...);

…

+IRIS

CWE Information

Repository

otherRes = (ClassPathResource) obj;

Handler.javaAccess.java

Figure 1: Overview of the IRIS neuro-symbolic system. It checks a given whole repository for a
given type of vulnerability (CWE) and outputs a set of potential vulnerable paths with explanations.

False negatives due to missing taint specifications of third-party library APIs. First, static
taint analysis predominantly relies on specifications of third-party library APIs as sources, sinks, or
sanitizers. In practice, developers and analysis engineers have to manually craft such specifications
based on their domain knowledge and API documentation. This is a laborious and error-prone
process that often leads to missing specifications and incomplete analysis of vulnerabilities. Further,
even if such specifications may exist for many libraries, they need to be periodically updated to
capture changes in newer versions of such libraries and also cover new libraries that are developed.
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False positives due to lack of precise context-sensitive and intuitive reasoning. Second, it is
well-known that static analysis often suffers from low precision, i.e., it may generate many false
alarms (Kang et al., 2022; Johnson et al., 2013). Such imprecision stems from multiple sources. For
instance, the source or sink specifications may be spurious, or the analysis may over-approximate
over branches in code or possible inputs. Further, even if the specifications are correct, the context
in which the detected source or sink is used may not be exploitable. Hence, a developer may need
to triage through several potentially false security alerts, wasting significant time and effort.

Limitations of prior data-driven approaches to improve static taint analysis. Many techniques
have been proposed to address the challenges of static taint analysis. For instance, Livshits et al.
(2009) proposed a probabilistic approach, MERLIN, to automatically mine taint specifications. A
more recent work, Seldon (Chibotaru et al., 2019), improves the scalability of this approach by
formulating the taint specification inference problem as a linear optimization task. However, such
approaches rely on analyzing the code of third-party libraries to extract specifications, which is ex-
pensive and hard to scale. Researchers have also developed statistical and learning-based techniques
to mitigate false positive alerts (Jung et al., 2005; Heckman & Williams, 2009; Ranking, 2014).
However, such approaches still have limited effectiveness in practice (Kang et al., 2022).

Large Language Models (or LLMs) have made impressive strides in code generation and summa-
rization. LLMs have also been applied to code related tasks such as program repair (Xia et al.,
2023), code translation (Pan et al., 2024), test generation (Lemieux et al., 2023), and static analy-
sis (Li et al., 2024). Recent studies (Steenhoek et al., 2024; Khare et al., 2023) evaluated LLMs’
effectiveness at detecting vulnerabilities at the method level and showed that LLMs fail to do com-
plex reasoning with code, especially because it depends on the context in which the method is used
in the project. On the other hand, recent benchmarks like SWE-Bench (Jimenez et al., 2023) show
that LLMs are also poor at doing project-level reasoning. Hence, an intriguing question is whether
LLMs can be combined with static analysis to improve their reasoning capabilities. In this work, we
answer this question in the context of vulnerability detection and make the following contributions:

Approach. We propose IRIS, a neuro-symbolic approach for vulnerability detection that combines
the strengths of static analysis and LLMs. Fig. 1 presents an overview of IRIS. Given a project
to analyze for a given vulnerability class (or CWE), IRIS applies LLMs for mining CWE-specific
taint specifications. IRIS augments such specifications with CodeQL, a tool for static taint analysis.
Our intuition here is because LLMs have seen numerous usages of such library APIs, they have an
understanding of the relevant APIs for different CWEs. Further, to address the imprecision problem
of static analysis, we propose a contextual analysis technique with LLMs that reduces the false
positive alarms and minimizes the triaging effort for developers. Our key insight is that encoding
the code-context and path-sensitive information in the prompt elicits more reliable reasoning from
LLMs. Finally, our neuro-symbolic approach allows LLMs to do more precise whole-repository
reasoning and minimizes the human effort involved in using static analysis tools.

Dataset. We curate a dataset of manually vetted and compilable Java projects, CWE-Bench-Java,
containing 120 vulnerabilities (one per project) across four common vulnerability classes. The
projects in the dataset are complex, containing 300K lines of code on average, and 10 projects with
more than a million lines of code, making it a challenging benchmark for vulnerability detection.
Our code and dataset are in the supplementary material and will be open-sourced upon publication.

Results. We evaluate IRIS on CWE-Bench-Java using 8 diverse open- and closed-source LLMs.
Overall, IRIS obtains the best results with GPT-4, detecting 55 vulnerabilities, which is 28 (103.7%)
more than CodeQL, the existing best-performing static analyzer. We show that the increase is not
at the expense of false positives, as IRIS with GPT-4 achieves an average false discovery rate of
84.82%, which is 5.21% lower than that of CodeQL. Further, when applied to the latest versions of
30 Java projects, IRIS with GPT-4 discovered 6 previously unknown vulnerabilities.

2 MOTIVATING EXAMPLE

We illustrate the effectiveness of IRIS in detecting a previously known code-injection (CWE-
094) vulnerability in cron-utils (ver. 9.1.5), a Java library for Cron data manipulation. Fig. 2
shows the relevant code snippets. A user-controlled string value passed into isValid
function is transferred without sanitization to the parse function. If an exception is
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@override
public boolean isValid(
  String value, ConstraintValidatorContext context) {
  try {
    cronParser.parse(value).validate(); // ...
  } catch (IllegalArgumentException e) {
    context
      .buildConstraintViolationWithTemplate(e.getMessage())
      .addConstraintViolation(); // ...

cronutils/validation/CronValidator.java

/** Parse string with cron expression. ... */
public Cron parse(final String expression) {
  try { /* ... */ } catch {
  throw new IllegalArgumentException(
    String.format("Failed to parse '%s'. %s",
      expression, e.getMessage()), e);
  }
}

cronutils/parser/CronParser.java

public void extractFile(
  String fileName, String destinationPath, String newFileName) throws ZipException {

Detected Source: two formal params of extractFile

// In function `assertCanonicalPathsAreSame`
- if (!completePath.startsWith(outPath)) { /* ... */ }
+ String comp = new File(completePath).getCanonicalPath();
+ String out = new File(outPath).getCanonicalPath());
+ if (!comp.startsWith(out)) { /* ... */ }

The Fix for the CVE-2018-1002202: the sanitizer to check the path

try (OutputStream outputStream = 
  new FileOutputStream(outputFile)) {

Detected Sink B: writing to a file potentially 
outside of intended directory

if (!destinationPath.mkdirs()) {
  // ...

Detected Sink A: creating a 
directory in the file system

Not Vulnerable❌ Is Vulnerable✅

1
3

4
2

5

6

Figure 2: An example of Code Injection (CWE-94) vulnerability found in cron-utils (CVE-2021-
41269) that CodeQL fails to detect. We number the program points of the vulnerable path.

thrown, the function constructs an error message with the input. However, the error mes-
sage is used to invoke method buildConstraintViolationWithTemplate of class
ConstraintValidatorContext in javax.validator, which interprets the message
string as a Java Expression Language (Java EL) expression. A malicious user may exploit this
vulnerability by crafting a string containing a shell command such as Runtime.exec(‘rm -rf
/’) to delete critical files on the server.

Detecting this vulnerability poses several challenges. First, the cron-utils library consists of 13K
SLOC (lines of code excluding blanks and comments), which needs to be analyzed to find this
vulnerability. This process requires analyzing data and control flow across several internal meth-
ods and third-party APIs. Second, the analysis needs to identify relevant sources and sinks. In
this case, the value parameter of the public isValid method may contain arbitrary strings
when invoked, and hence may be a source of malicious data. Additionally, external APIs like
buildConstraintViolationWithTemplate can execute arbitrary Java EL expressions,
hence they should be treated as sinks that are vulnerable to Code Injection attacks. Finally, the
analysis also requires identifying any sanitizers that block the flow of untrusted data.

Modern static analysis tools, like CodeQL, are effective at tracing taint data flows across complex
codebases. However, CodeQL fails to detect this vulnerability due to missing specifications. Cod-
eQL includes many manually curated specifications for sources and sinks across more than 360
popular Java library modules. However, manually obtaining such specifications requires significant
human effort to analyze, specify, and validate. Further, even with perfect specifications, CodeQL
may often generate numerous false positives due to a lack of contextual reasoning, increasing the
developer’s burden of triaging the results.

In contrast, IRIS takes a different approach by inferring project- and vulnerability-specific specifica-
tions on-the-fly by using LLMs. The LLM-based components in IRIS correctly identify the untrusted
source and the vulnerable sink. IRIS augments CodeQL with these specifications and successfully
detects the unsanitized data-flow path between the detected source and sink in the repository. How-
ever, augmented CodeQL produces many false positives, which are hard to eliminate using logical
rules. To solve this challenge, IRIS encodes the detected code paths and the surrounding context
into a simple prompt and uses an LLM to classify it as true or false positive. Specifically, out of 8
paths reported by static analysis, 5 false positives are filtered out, leaving the path in Fig. 2 as one of
the final alarms. Overall, we observe that IRIS can detect many such vulnerabilities that are beyond
the reach of CodeQL-like static analysis tools, while keeping false alarms to a minimum.

3 IRIS FRAMEWORK

At a high level, IRIS takes a Java project P , the vulnerability class C to detect, and a large language
model LLM, as inputs. IRIS statically analyzes the project P , checks for vulnerabilities specific to
C, and returns a set of potential security alerts A. Each alert is accompanied by a unique code path
from a taint source to a taint sink that is vulnerable to C (i.e., the path is unsanitized).

As illustrated in Fig. 3, IRIS has four main stages: First, IRIS builds the given Java project and uses
static analysis to extract all candidate APIs, including invoked external APIs and internal function
parameters. Second, IRIS queries an LLM to label these APIs as sources or sinks that are specific
to the given vulnerability class C. Third, IRIS transforms the labeled sources and sinks into spec-
ifications that can be fed into a static analysis engine, such as CodeQL, and runs a vulnerability
class-specific taint analysis query to detect vulnerabilities of that class in the project. This step gen-
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     Is Vulnerable: The 
source is user input being 
parsed and validated, 
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exception with a controlled 
message. The sink is using 
the exception message in a 
context that could 
potentially be used for 
execution, satisfying the 
criteria for a Code Injection 
vulnerability (CWE-094).

Figure 3: An illustration of the IRIS pipeline.

erates a set of vulnerable code paths (or alerts) in the project. Finally, IRIS triages the generated
alerts by automatically filtering false positives, and presents them to the developer.

3.1 PROBLEM STATEMENT

We formally define the static taint analysis problem for vulnerability detection. Given a project P ,
taint analysis extracts an inter-procedural data flow graph G = (V,E), where V is the set of nodes
representing program expressions and statements, and E ⊆ V × V is the set of edges representing
data or control flow edges between the nodes. A vulnerability detection task comes with two sets
V C

source ⊆ V, V C
sink ⊆ V that denote source nodes where tainted data may originate and sink nodes

where a security vulnerability can occur if tainted data reaches it, respectively. Naturally, different
classes C of vulnerabilities (or CWEs) have different source and sink specifications. Additionally,
there can be sanitizer specifications, V C

sanitizer ∈ V, that block the flow of tainted data (such as
escaping special characters in strings).

The goal of taint analysis is to find pairs of sources and sinks, (Vs ∈ V C
source, Vt ∈ V C

sinks), such that
there is an unsanitized path from the source to the sink. More formally, Unsanitized Paths(Vs, Vt) =
∃ Path(Vs, Vt) s.t. ∀Vn ∈ Path(Vs, Vt), Vn /∈ V C

sanitizer. Here, Path(V1, Vk) denotes a sequence of
nodes (V1, V2, . . . , Vk), such that Vi ∈ V and ∀i ∈ 1 to k − 1 : (vi, vi+1) ∈ E.

Two key challenges in taint analysis include: 1) identifying relevant taint specifications for each
class C that can be mapped to V C

source, V C
sink for any project P , and 2) effectively eliminating false

positive paths in Unsanitized Paths(Vs, Vt) identified by taint analysis. In the following sections,
we discuss how we address each challenge by leveraging LLMs.

3.2 CANDIDATE SOURCE/SINK EXTRACTION

A project may use various third-party APIs whose specifications may be unknown—reducing the
effectiveness of taint analysis. In addition, internal APIs might accept untrusted input from down-
stream libraries. Hence, our goal is to automatically infer specifications for such APIs. We define
a specification SC as a 3-tuple ⟨T, F,R⟩, where T ∈ {ReturnValue,Argument,Parameter, . . . }
is the type of node to match in G, F is an N-tuple of strings describing the package, class,
method name, signature, and argument/parameter position (if applicable) of an API, and R ∈
{Source, Sink,Taint-Propagator, Sanitizer} is the role of the API. For example, the specification
⟨Argument, (java.lang,Runtime,exec, (String[]), 0), Sink⟩ denotes that the first argu-
ment of exec method of Runtime class is a sink for a vulnerability class (OS command injection).
A static analysis tool maps these specifications to sets of nodes V C

source or V C
sink in G.

To identify taint specifications SC
source and SC

sink, we first extract Sext: external library APIs that are
invoked in the given Java project and are potential candidates to be taint sources or sinks. We also
extract Sint, internal library APIs that are public and may be invoked by a downstream library. We
use CodeQL to extract such candidates and their corresponding metadata such as method name, type
signature, enclosing packages and classes, and even JavaDoc documentations, if applicable.

3.3 INFERRING TAINT SPECIFICATIONS USING LLMS

We develop an automated specification inference technique: LabelSpecs(S#,LLM, C,R) = SC
R ,

where S# = Sext ∪ Sint are candidate specifications for sources and sinks. In this work, we do
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not consider sanitizer specifications, because they typically do not vary for the vulnerability classes
that we consider. We use LLMs to infer taint specifications. Specifically, external APIs in Sext can
be classified as either source or sink, while internal APIs in Sint can have their formal parameters
identified as sources. In the Appendix, we show the user prompts for inferring source and sink
specifications from external APIs and internal function formal parameters.

Due to the sheer number of APIs to be labeled, we insert a batch of APIs in a single prompt and
ask the LLM to respond with JSON formatted strings. The batch size is a tunable hyper-parameter.
We adopt few-shot (usually 3-shot) prompting strategy for labeling external APIs, while zero-shot
is used for labeling internal APIs. Notably for internal APIs, we also include information from
repository readme and JavaDoc documentations, if applicable. In practice, we find that this extra
information helps LLM understand the high-level purpose and usage of the codebase, resulting in
better labeling accuracy. Due to space limitation, we leave the full prompt templates and other
implementations details in the Appendix. At the end of this stage, we have successfully obtained
SC

source and SC
sink which are going to be used by the static analysis engine in the next stage.

3.4 VULNERABILITY DETECTION

Once we obtain all the source and sink specifications from the LLM, the next step is to combine it
with a static analysis engine to detect vulnerable paths, i.e., Unsanitized Paths(Vs, Vt), in a given
project. In this work, we use CodeQL (GitHub, 2024a) for this step. CodeQL represents programs
as data flow graphs and provides a query language, akin to Datalog (Smaragdakis & Bravenboer,
2010), to analyze such graphs. Many security vulnerabilities can be modeled using queries written
in CodeQL and can be executed against data flow graphs extracted from such programs. Given a
data flow graph GP of a project P , CWE-specific source and sink specifications, and a query for a
given vulnerability class C, CodeQL returns a set of unsanitized paths in the program. Formally,

CodeQL(GP ,SC
source,S

C
sink,QueryC) = {Path1, . . . ,Pathk}

CodeQL itself contains numerous specifications of third-party APIs for each vulnerability class.
However, as we show later in our evaluation, despite having such specialized queries and extensive
specifications, CodeQL fails to detect a majority of vulnerabilities in real-world projects. For our
analysis, we write a specialized CodeQL query for each vulnerability that uses our mined specifica-
tions instead of those provided by CodeQL. Our query for Path Traversal vulnerability (CWE 22) is
shown in Listing 3 in the appendix. We develop similar queries for each CWE that we evaluate.

3.5 TRIAGING OF ALERTS VIA CONTEXTUAL ANALYSIS

Inferring taint specifications only solves part of the challenge. We observe that while LLMs help
uncover many new API specifications, sometimes they detect specifications that are not relevant
to the vulnerability class being considered, resulting in too many predicted sources or sinks and
consequently many spurious alerts as a result. For context, even a few hundred taint specifi-
cations may sometimes produce thousands of Unsanitized Paths(Vs, Vt) that a developer needs
to triage. To reduce the developer burden, we also develop an LLM-based filtering method,
FilterPath(Path,G,LLM, C) = True|False that classifies a detected vulnerable path (Path) in
G as a true or false positive by leveraging context-based and natural language information.

Fig. 4 presents an example prompt for contextual analysis. The prompt includes CWE information
and code snippets for nodes along the path, with an emphasis on the source and sink. Specifically,
we include ±5 lines surrounding the exact source and sink location, as well as the enclosing function
and class. The exact line of source and sink is marked with a comment. For the intermediate steps,
we include the file names and the line of code. When the path is too long, we keep only a subset
of nodes to limit the size of the prompt. As such, we provide the full context for the potential
vulnerability to be thoroughly analyzed.

We expect the LLM to respond in JSON format with the final verdict as well as an explanation to
the verdict. The JSON format prompts the LLM to generate the explanation before delivering the
final verdict, as presenting the judgment after the reasoning process is known to yield better results.
In addition, if the verdict is false, we ask the LLM to indicate whether the source or sink is a false
positive, which helps to prune other paths and thereby save on the number of calls to the LLM.
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Analyze the following dataflow path in a Java project and 
predict whether it contains a Code-Injection vulnerability 
(CWE-094), or a relevant vulnerability. Please note that 
injection of malicious expression might lead to arbitrary 
code execution as well.

Source (expression : String):
 public class CronParser {
   public Cron parse(String expression) { // ← SOURCE
     Preconditions.checkNotNull(expression, ...);
     ... } }
Steps:
- Step 1 [CronParser.java]: String rep = expr.replace(...);
  ...
Sink (getMessage(...)):
 public class CronValidator implements ConstraintValidator {
   public boolean isValid(String value, ...) {
     ...
     } catch (IllegalArgumentException e) {
       ctx.disableDefaultConstraintViolation();
       ctx.build…(e.getMessage()).addCo…(); // ← SINK
       return false;
     } ...  } }

User Prompt

public void extractFile(
  String fileName, String destinationPath, String newFileName) throws ZipException {

Detected Source: two formal params of extractFile

// In function `assertCanonicalPathsAreSame`
- if (!completePath.startsWith(outPath)) { /* ... */ }
+ String comp = new File(completePath).getCanonicalPath();
+ String out = new File(outPath).getCanonicalPath());
+ if (!comp.startsWith(out)) { /* ... */ }

The Fix for the CVE-2018-1002202: the sanitizer to check the path

try (OutputStream outputStream = 
  new FileOutputStream(outputFile)) {

Detected Sink B: writing to a file potentially 
outside of intended directory

if (!destinationPath.mkdirs()) {
  // ...

Detected Sink A: creating a 
directory in the file system

Not Vulnerable❌ Is Vulnerable✅

LLM JSON Response (GPT-4)

{
  "explanation": "The source is user 
    input being parsed and validated, 
    which is a common entry point for 
    tainted data. The sink is an error 
    message being used in a way that 
    could potentially be executed by 
    downstream code, fitting the 
    criteria for a CWE-094 vulnerability 
    if the error message is mishandled. 
    However, without evidence of the 
    error message being executed, it's 
    speculative to confirm vulnerability 
    solely based on this dataflow.", 
  "source_is_false_positive": false, 
  "sink_is_false_positive": false, 
  "is_vulnerable": true
}
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CWE Information

Context surrounding 
the source

Marking the exact source 
location in comment

Context surrounding 
the sink

Intermediate Steps

Marking the exact sink 
location in comment

Figure 4: LLM user prompt and response for contextual analysis of data-flow paths. In the user
prompt, we mark with color the CWE and path information that is filling the prompt template. For
cleaner presentation, we modify the snippets and left out the system prompt.

3.6 EVALUATION METRICS

We evaluate the performance of IRIS and its baselines using three key metrics: number of vulner-
ability detected (#Detected), average false discovery rate (AvgFDR), and average F1 (AvgF1). For
evaluation, we assume that we have a dataset D = {P1, . . . , Pn} where each Pi is a Java project, and
known to contain at least one vulnerability. The label for a project P is provided as a set of crucial
program points VP

vul = {V1, . . . , Vn} where the vulnerable paths should pass through, indicated by
Path∩VP

vul ̸= ∅. In practice, these are typically the patched methods that can be collected from each
vulnerability report. If at least one detected vulnerable path passes through a fixed location for the
given vulnerability, then we consider the vulnerability detected. Let PathsP be the set of detected
paths for each project P from prior stages. The metrics are formally defined as follows:

#VulPath(P ) = |{Path ∈ PathsP | Path ∩ VP
vul ̸= ∅}|, Rec(P ) = 1#VulPath(P )>0,

#Detected(D) =
∑

P∈D Rec(P ), Prec(P ) = #VulPath(P )
|PathsP | ,

AvgFDR(D) = AvgP∈D,|PathsP |>01− Prec(P ), AvgF1(D) = 1
|D|

∑
P∈D

2·Prec(P )·Rec(P )
Prec(P )+Rec(P )

We note that Prec(P ) might sometimes be undefined due to division-by-zero if the detection tool
retrieves no path (|PathsP | = 0). Therefore, for AvgFDR to be meaningful, we only consider the
projects where the detection tool produces at least one positive result. On the other hand, AvgF1
would not suffer from this problem because Rec(P ) = 0 when no positive result is returned, making
the whole F1 term 0 regardless of undefinedness of Prec(P ).

4 CWE-BENCH-JAVA: A DATASET OF SECURITY VULNERABILITIES IN JAVA

To evaluate our approach, we require a dataset of vulnerable versions of Java projects with several
important characteristics: 1) Each benchmark should have relevant vulnerability metadata, such as
the CWE ID, CVE ID, fix commit, and vulnerable project version, 2) each project in the dataset must
be compilable, which is a key requirement for static analysis and data flow graph extraction, 3) the
projects must be real-world, which are typically more complex and hence challenging to analyze
compared to synthetic benchmarks, and 4) finally, each vulnerability and its location (e.g., method)
in the project must be validated so that this information can be used for robust evaluation of vul-
nerability detection tools. Unfortunately, no existing dataset satisfies all these requirements. Table 5
presents a comparison of our dataset, which we discuss next, with prior vulnerability datasets.

To address these requirements, we curate our own dataset of vulnerabilities. For this paper, we
focus only on vulnerabilities in Java libraries that are available via the widely used Maven package
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Java Project
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CWE 
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Vulnerable Path 
Candidates

Contextual 
Filtering

Vulnerabilities
w/ explanations

4.1

4.2

4.3 4.4

4.2

Program 
Dataflow 

Graph

- addsTo: { pack: codeql/java-all, extensible: sourceModel }
  data:
    - ["javax.validation", "ConstraintValidator", True, "isValid", ..., "Parameter[0]", ...]
- addsTo: { pack: codeql/java-all, extensible: sinkModel }
  data:
    - ["javax.validation", "ConstraintValidatorContext", True, 
       "buildConstraintViolationWithTemplate", ..., "Argument[0]", ...]

codeql/java-all/…/ext/javax.validation.model.yml

Invoked External API Internal Function Formal Parameters

Section 4.2: Label Sources

Build CodeQL Database
Candidate 
Extraction

Select Vul Classes
CWE-22: Path-Traversal
CWE-78: OS Command Injection
CWE-79: Cross-Site Scripting
CWE-94: Code Injection

1 Fetch Vulnerabilities2

Obtain CVE, CWE, MAVEN Pkg, 
GitHub URL, etc.

i
GitHub Advisory Database

#CVE: 1065

430
430

Obtain Git Info3

GitHub URL, vulnerable ver. 
and fix Ver.

libraries.io

#CVE: 430

4 Cross-Validate Fixes
snyk.io

Adding fix information and 
fixing commits #CVE: 265

5 Build and Compile
MAVEN build

Manually specify Java and 
MAVEN versions

i

#CVE: 149

#CVE: 430

6 Manual Checks
CWE is classified correctly

#CVE: 120

✓
Vulnerability not in dependency✓
Manually label vulnerable code✓
…

Check if some java code is fixed✓

Num Vuls: 120
- CWE-22: 55
- CWE-78: 13
- CWE-79: 31
- CWE-94: 21

Project Size:
- Avg. SLOC: 300K
- Max. SLOC: 7M

Statistics

Figure 5: Steps for curating CWE-Bench-Java, and dataset statistics.

Table 1: Overall performance comparison of CodeQL vs IRIS on Detection Rate (↑), Average FDR
(↓), and Average F1 (↑). We present results of IRIS with different LLMs including OpenAI GPT-4
and GPT-3.5, Llama-3 (L3) 8B and 70B, and DeepSeekCoder (DSC) 7B.

Method #Detected (/120) Detection Rate (%) Avg FDR (%) Avg F1 Score

CodeQL 27 22.50 90.03 0.076

IRIS +

GPT-4 55 (↑ 28) 45.83 (↑ 23.33) 84.82 (↓ 5.21) 0.177 (↑ 0.101)
GPT-3.5 47 (↑ 20) 39.17 (↑ 16.67) 90.42 (↑ 0.39) 0.096 (↑ 0.020)
L3 8B 41 (↑ 14) 34.17 (↑ 11.67) 95.55 (↑ 5.52) 0.058 (↓ 0.018)
L3 70B 54 (↑ 27) 45.00 (↑ 22.50) 90.96 (↑ 0.93) 0.113 (↑ 0.037)
DSC 7B 52 (↑ 25) 43.33 (↑ 20.83) 95.40 (↑ 5.37) 0.062 (↓ 0.014)

manager. We choose Java because it is commonly used to develop server-side, Android, and web
applications, which are prone to security risks. Further, due to Java’s long history, there are many
existing CVEs in numerous Java projects that are available for analysis. We initially use the GitHub
Advisory database (GitHub, 2024b;c) to obtain such vulnerabilities, and further filter it with cross-
validated information from multiple sources, including manual verification. Fig. 5 illustrates the
complete set of steps for curating CWE-Bench-Java.

As shown in the statistics (Fig. 5), the sheer size of these projects make them challenging to ana-
lyze for any static analysis tool or ML-based tool. Each project in CWE-Bench-Java comes with
GitHub information, vulnerable and fix version, CVE metadata, a script that automatically fetches
and builds, and the set of program locations that involve the vulnerability.

5 EVALUATION

We perform extensive experimental evaluations of IRIS and demonstrate its practical effectiveness in
detecting vulnerabilities in real-world Java repositories in CWE-Bench-Java. Due to space limits, we
include additional results and analyses in the appendix. We answer the following research questions:

• RQ 1: How many previously known vulnerabilities can IRIS detect?
• RQ 2: Does IRIS detect new, previously unknown vulnerabilities?
• RQ 3: How good are the inferred source/sink specifications by IRIS?
• RQ 4: How effective are the individual components of IRIS?

5.1 EXPERIMENTAL SETUP

We select two closed-source LLMs from OpenAI: GPT 4 (gpt-4-0125-preview) and GPT 3.5
(gpt-3.5-turbo-0125) for our evaluation. We also select instruction-tuned versions of three
open-source LLMs via huggingface API: Llama 3 8B and 70B, and DeepSeekCoder 7B. For the
CodeQL baseline, we use version 2.15.3 and its built-in Security queries specifically designed
for each CWE. Other baselines included are Facebook Infer (FB Infer), SpotBugs (Lavazza et al.,
2020), and Snyk (Snyk.io). We expand further on the other experimental setups in the appendix.

5.2 RQ1: EFFECTIVENESS OF IRIS ON DETECTING EXISTING VULNERABILITIES

Effectiveness of IRIS. The results in Table 1 highlight IRIS’s superior performance compared to
CodeQL. Specifically, IRIS, when paired with GPT-4, identifies 55 vulnerabilities—28 more than
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Table 2: Per-CWE statistics of number of vulnerabilities detected (#Detected) by baselines and IRIS.
The compared baselines are CodeQL (QL), Facebook Infer (Infer), Spotbugs (SB), and Snyk. The
values in parentheses show the differences of detection by IRIS against CodeQL.

CWE #Vuls Baselines IRIS with

QL Infer SB Snyk GPT-4 GPT-3.5 L3 8B L3 70B DSC 7B

CWE-22 55 22 0 2 21 31 (↑ 9) 25 (↑ 3) 19 (↓ 3) 29 (↑ 7) 25 (↑ 3)
CWE-78 13 1 0 1 1 3 (↑ 2) 1 (= 0) 2 (↑ 1) 2 (↑ 1) 3 (↑ 2)
CWE-79 31 4 0 1 1 13 (↑ 9) 13 (↑ 9) 9 (↑ 9) 14 (↑ 10) 14 (↑ 10)
CWE-94 21 0 0 0 0 8 (↑ 8) 8 (↑ 8) 11 (↑ 11) 9 (↑ 9) 10 (↑ 10)

All 120 27 0 4 23 55 (↑ 28) 47 (↑ 20) 41 (↑ 14) 54 (↑ 27) 52 (↑ 25)

CodeQL. While GPT-4 shows the highest efficacy, smaller, specialized LLMs like DeepSeekCoder
7B still detect 52 vulnerabilities, suggesting that our approach can effectively leverage smaller-scale
models, enhancing accessibility. Notably, this increase in detected vulnerabilities does not com-
promise precision, as evidenced by IRIS’s lower average false discovery rate (FDR) with GPT-4
compared to CodeQL. Moreover, IRIS improves average F1 by 0.1, reflecting a better balance be-
tween precision and recall. We note that the reported average FDR is an upper bound, as our metrics
may overlook other true vulnerabilities in the repository. To further assess detection accuracy, we
randomly sampled 50 alarms reported by IRIS using GPT-4, and found that 27 out of 50 exhibit
potential attack surfaces, yielding a more refined estimated false discovery rate of 46%.

Table 2 presents a detailed breakdown of detected vulnerabilities, comparing IRIS against various
baselines. With the exception of IRIS using Llama-3 8B, which underperforms in detecting CWE-22
vulnerabilities, IRIS consistently outperforms all other baselines. Notably, CWE-78 (OS Command
Injection) remains particularly challenging for all LLMs. Our manual investigation revealed that the
vulnerability patterns in CWE-78 are highly intricate, often involving OS command injections via
gadget-chains (Cao et al., 2023) or external side effects, such as file writes, which are difficult to
track using static analysis. This highlights the inherent limitations of static analysis, as opposed to
dynamic approaches—an area that we leave for future work.

5.3 RQ2: PREVIOUSLY UNKNOWN VULNERABILITIES BY IRIS

We applied IRIS with GPT-4 to the latest versions of 30 Java projects. Among the 16 inspected
projects where IRIS raised at least one alert, we identified 6 potential vulnerabilities, of which 4
have been reported to the developers and are pending confirmation. These reported vulnerabilities
include 3 instances of path injection (CWE-22) and one case of cross-site scripting (CWE-94). To
ensure that these vulnerabilities were indeed uncovered due to IRIS’s integration with LLMs, we
verified that they were not detectable by CodeQL alone. Detailed findings are presented in the
appendix, but we highlight one such vulnerability in Fig. 8. CodeQL was unable to detect this
issue due to a missing source specification, while GPT-4 successfully flagged the API endpoint
restoreFromCheckpoint as a potential entry point for attack.

5.4 RQ3: QUALITY OF LLM-INFERRED TAINT SPECIFICATIONS

The LLM-inferred taint specifications are fundamental to IRIS’s effectiveness. To assess the quality
of these specifications, we conducted two experiments. First, we used CodeQL’s taint specifica-
tions as a benchmark to estimate the recall of both source and sink specifications inferred by LLMs
(Fig. 6). However, since CodeQL offers a limited set of specifications, we also needed to assess
the quality of inferred specifications outside of its known coverage. To this end, we manually ana-
lyzed 960 randomly selected samples of LLM-inferred source and sink labels (30 per combination
of CWE and LLM) and estimated the overall precision of the specifications (Fig. 7).

LLM-inferred sinks can replace CodeQL sinks. Overall, LLMs demonstrated high recall when
tested against CodeQL’s sink specifications (Fig. 6), with GPT-4 scoring the highest (87.11%).
While the recall for source specifications was generally lower, we found that CodeQL tends to over-
approximate its source specifications to compensate for a low detection rate. On the other hand,
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Figure 6: Recall of LLM-inferred taint specifi-
cations against CodeQL’s taint specifications.

Figure 7: Estimated precision of LLM-inferred
specifications on randomly sampled labels.

void restoreFromCheckpoint(CheckpointInputStream input) ... {
  // ...
  try (FileOutputStream fos = new FileOutputStream(tmpPath)) {
    IOUtils.copy(input, fos);
  }
  ZipUtils.decompress(Paths.get(mDbPath), tmpZipFilePath, ...);
  // ...

alluxio/dora/core/…/rocks/RocksStore.java

public void extractFile(
  String fileName, String destinationPath, String newFileName) throws ZipException {

Detected Source: two formal params of extractFile

// In function `assertCanonicalPathsAreSame`
- if (!completePath.startsWith(outPath)) { /* ... */ }
+ String comp = new File(completePath).getCanonicalPath();
+ String out = new File(outPath).getCanonicalPath());
+ if (!comp.startsWith(out)) { /* ... */ }

The Fix for the CVE-2018-1002202: the sanitizer to check the path

try (OutputStream outputStream = 
  new FileOutputStream(outputFile)) {

Detected Sink B: writing to a file potentially 
outside of intended directory

if (!destinationPath.mkdirs()) {
  // ...

Detected Sink A: creating a 
directory in the file system

Not Vulnerable❌ Is Vulnerable✅

void unzipEntry(ZipFile zipFile, ZipArchiveEntry entry, ...) ... {
  File outputFile = new File(dirPath.toFile(), entry.getName());
  // ...
  if (!entry.isDirectory()) {
    try (FileOutputStream out = new FileOutputStream(outputFile)) {
      // ...
    } // ...

alluxio/dora/core/…/util/compression/ParallelZipUtils.java
1

2

3

4
56

7 Sink

Source

Figure 8: A previously unknown vulnerability found in alluxio 2.9.4. The snippets are slightly mod-
ified for presentation purpose. A user with database restoration permission may supply a database
checkpoint Zip file with malicious entry name. When unzipped, the entry may be written to an arbi-
trary directory, causing a Zip-Slip vulnerability (CWE-022) that could corrupt the hosting server.

GPT-4 achieved high precision (over 70%) in manual evaluations (Fig. 7), aligning with the lower
false discovery rate previously reported in Table 1. For other LLMs, the combination of high recall
but lower precision suggests a tendency to over-approximate sink specifications.

Over-approximating specifications can benefit IRIS. Although the precision for LLMs other than
GPT-4 is lower, over-approximation can actually help address a core limitation of CodeQL—its
restricted set of taint specifications. By over-approximating, LLMs expand the coverage of taint
analysis, offering a partial solution to CodeQL’s limited scope. The impact of this imprecision can
be mitigated through contextual analysis as we show next in the ablation studies.

5.5 RQ4: ABLATION STUDIES

Both LLM-inferred sources and sinks are necessary. Table 3 presents additional results when
using either only the source or sink specification from an LLM in IRIS. For this experiment, we only
use the results with GPT-4 for comparison. Each row present the number of detected vulnerabilities
per CWE. We observe that omitting either source or sink specifications inferred by GPT-4 causes a
drastic reduction in overall recall.

Performance gain of contextual analysis depends on LLM’s reasoning capability. As shown
in Fig. 9, contextual analysis is highly necessary for the precision and F1 score improvements.
However, only GPT-4, GPT-3.5, and Llama-3 70B see a positive impact after contextual analysis,
while the smaller models see negative. The false positive reduction of contextual analysis is the
most effective when the LLM possesses decent reasoning capability. Indeed, smaller models are
more likely to respond with “vulnerable” than larger models.

6 RELATED WORK

ML-based approaches for vulnerability detection. Numerous prior techniques incorporate deep
learning for detecting vulnerabilities. This includes techniques that use Graph Neural Network
(GNN)-based representations of code such as Devign (Zhou et al., 2019), Reveal (Chakraborty et al.,
2020), LineVD (Hin et al., 2022), and IVDetect (Li et al., 2021); LSTM-based models for represent-
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Table 3: Ablation on LLM inferred source
and sink specifications (CodeQL (QL) versus
GPT-4), evaluated using the #Detected met-
rics. When replacing either source or sink
with CodeQL specs, we see significantly less
vulnerabilities detected.

CWE 22 78 79 94 Total

SrcQL + SnkQL 22 1 4 0 27 (↓ 28)
SrcGPT4 + SnkQL 28 3 5 0 36 (↓ 19)
SrcQL + SnkGPT4 10 1 9 4 24 (↓ 31)

SrcGPT4 + SnkGPT4 31 3 13 8 55
Figure 9: Improvements of Avg. Precision and
Avg. F1 after contextual analysis.

ing program slices and data dependencies such as VulDeePecker (Li et al., 2020) and SySeVR (Li
et al., 2018); and fine-tuning of Transformer-based models such as LineVul (Fu & Tantithamthavorn,
2022), DeepDFA (Steenhoek et al., 2023), and ContraFlow (Cheng et al., 2022). These approaches
focus on method-level detection of vulnerabilities and provide only a binary label classifying a
method as vulnerable or not. In contrast, IRIS performs whole-project analysis and provides a dis-
tinct code path from a source to a sink and can be tailored for detecting different CWEs. More
recently, multiple studies demonstrated that LLMs are not effective at detecting vulnerabilities in
real-world code (Steenhoek et al., 2024; Ding et al., 2024; Khare et al., 2023). While these stud-
ies only focused on method-level vulnerability detection, it reinforces our motivation that detecting
vulnerabilities requires whole-project reasoning, which LLMs currently cannot do alone.

Static analysis tools. Apart from CodeQL (Avgustinov et al., 2016), other static analysis tools like
CppCheck (CPPCheck), Semgrep (Semgrep, 2023), FlawFinder (FlawFinder), Infer (FB Infer), and
CodeChecker (Code Checker) also include analyses for vulnerability detection. But, these tools are
not as feature-rich and effective as CodeQL (Li et al., 2023; Lipp et al., 2022). Recently, proprietary
tools such as Snyk (Snyk.io) and SonarQube (SonarQube) are also gaining in popularity. However,
like CodeQL, these tools share the same fundamental limitations of missing specifications and false
positives, which IRIS improves upon. Potentially, our techniques stand to benefit all such tools.

LLM-based approaches for software engineering. Researchers are increasingly combining LLMs
with program reasoning tools for challenging tasks such as fuzzing (Lemieux et al., 2023; Xia
et al., 2024), program repair (Xia et al., 2023; Joshi et al., 2023; Xia & Zhang, 2022), and fault
localization (Yang et al., 2023). While we are on a similar direction as (Li et al., 2024), to our
knowledge, our work is among the first to combine LLMs with static analysis to detect application
level security vulnerabilities via whole-project analysis. Recently, LLM-based agents such as Au-
toCodeRover (Zhang et al., 2024) and SWE-Agent (SWE Agent) are also pushing the boundaries
on whole-project repair. Hence, in future, we plan to explore a richer combination of tools in IRIS
to further improve the performance of vulnerability detection.

7 CONCLUSION AND LIMITATIONS

We presented IRIS, a novel neuro-symbolic approach that combines LLMs with static analysis for
vulnerability detection. We curate a dataset, CWE-Bench-Java, containing 120 security vulnera-
bilities across four classes in real-world projects. Our results show that systematically combining
LLMs with static analysis significantly improves upon traditional static analysis alone in terms of
both detected bugs and the alleviation of developer burden.

Limitations. There are still many vulnerabilities that IRIS cannot detect. Future approaches may
explore a tighter integration of these two tools to improve performance. In addition, IRIS makes
numerous calls to LLMs for specification inference and filtering false positives, increasing the po-
tential cost of analysis. While our results on Java are promising, it is unknown if IRIS will perform
well on other languages. Moreover, there is still a gap between the IRIS generated report and the
report that the developers would like to see. We plan to explore this further in future work.
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A IMPLEMENTATION DETAILS OF IRIS

A.1 SELECTING CANDIDATE SPECIFICATIONS

While extracting external APIs, we filter out commonly-used Java libraries that are unlikely to con-
tain any potential sources or sinks. Such libraries include testing libraries like JUnit and Hamcrest
or mocking libraries like Mockito. While we filter out methods that are defined in the project, we
specifically allow methods that are inherited from an external class or interface. An example is the
getResource method of the generic class Class in java.lang package, which takes a path
as a string and accesses a file in the module. Many projects commonly inherit this class and use
this method. If the input path is unchecked, it may lead to a Path-Traversal vulnerability if the path
accesses resources outside the given module. Hence, detecting such API usages is crucial.

Taint sources are typically values returned by methods that obtain inputs from external sources,
such as response of an HTTP request or a command line argument. Hence, we select external
APIs that have a “non-void” return type as candidate sources. Another type of taint sources are
commonly seen in Java libraries. When used by downstream libraries, tainted information maybe
passed into the library through function calls. Therefore, we also collect the formal parameters for
public internal function as source candidates. Due to the excessive amount of such candidates, we
pose a further constraint that the public internal function must be directly invoked by a unit test case
within the same repository. Here, the test cases are identified by checking whether the residing file
path has src/test within it.

On the other hand, taint sinks are typically arguments to an external API. This involves explicit argu-
ments, such as the command argument passed to Runtime.exec(String command)method,
and implicit this argument to non-static functions, such as the file variable in the function call
file.delete(). This is the only type of sink that we consider within IRIS.

We note that this is not the entire story as there might be other kinds of sources and
sinks. Other types of source candidates include the formal parameter of protected but over-
ridden internal functions (the req parameter in protected HTTPServeletResponse
doGet(HTTPServeletRequest req)), arguments to an impure external function (the
buffer argument to void read(byte[] buffer, int size)), etc. Sink candidates in-
clude the return value of public facing functions, thrown exceptions, and even static methods without
any parameter (System.exit()). Due to the complexity, we do not tackle such kind of sources
of sinks in this work. However, we plan to explore further in future works.

A.2 LLM PROMPTS FOR SPECIFICATION INFERENCE

There are two prompts that we use to query LLM for specification inference. The first one is used
to label external APIs as either sources or sinks, illustrated in Listing 1. At a high level, this is a
classification task that classifies each API into one of {Source, Sink,Taint-Propagator,None}. As
shown in the listing, the system prompt involves general instruction about the task and the expected
output format, which is JSON. In the user prompt, we give the description of CWE, since the source
and sink specifications of external APIs are dependent on the CWE. We additionally give few-shot
examples that cover both sources and sinks for the given CWE. At the end, we list out a batch of
methods akin to the format of CSV. Notably for sink specifications, we expect the LLM to give
extra information about which exact argument to be considered as the sink. This include explicit
arguments as well as the implicit this argument. We also note that while taint-propagators are
included in the prompt, we do not actually use it in the subsequent stages of IRIS. Primarily, the
notion of taint-propagator is to help LLMs differentiate between sinks and summary models, which
are sometimes mistakened as sinks. In general, we find the prompt to serve the purpose well.

The second prompt, depicted in Listing 2, is used to label the formal parameters of internal APIs as
sources. Since we are analyzing internal API, the information such as project README and function
documentations are commonly available. The goal is to find whether this internal API might be
invoked by a downstream library with a malicious input passed to this formal parameter. This
information is not CWE specific, hence no CWE information is included in this prompt.

We hypothesize that since LLMs are pre-trained on internet-scale data, they have knowledge about
the behavior of widely used libraries and their APIs. Hence, it is natural to ask whether LLMs can be
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1 System: You are a security expert. You are given a list of APIs to be
labeled as potential taint sources, sinks, or APIs that propagate
taints. Taint sources are values that an attacker can use for
unauthorized and malicious operations when interacting with the
system. Taint source APIs usually return strings or custom object
types. Setter methods are typically NOT taint sources. Taint sinks
are program points that can use tainted data in an unsafe way, which
directly exposes vulnerability under attack. Taint propagators carry
tainted information from input to the output without sanitization,
and typically have non-primitive input and outputs. Return the result
as a json list with each object in the format:

2

3 { "package": <package name>,
4 "class": <class name>,
5 "method": <method name>,
6 "signature": <signature of the method>,
7 "sink_args": <list of arguments or ‘this‘; empty if the API is not sink

>,
8 "type": <"source", "sink", or "taint-propagator"> }
9

10 DO NOT OUTPUT ANYTHING OTHER THAN JSON.
11

12

13 User: [CWE_LONG_DESCRIPTION]
14

15 Some example source/sink/taint-propagator methods are:
16 [CWE_SOURCE_SINK_EXAMPLES]
17

18 Among the following methods, \
19 assuming that the arguments passed to the given function is malicious, \
20 what are the functions that are potential source, sink, or taint-

propagators to [CWE_TITLE] attack (CWE-[CWE_ID])?
21

22 Package,Class,Method,Signature
23 [Package1],[Class1],[Method1],[Signature1]
24 [Package2],[Class2],[Method2],[Signature2]
25 [...]

Listing 1: LLM prompt for labelling external APIs as sources or sinks

used to identify APIs that are relevant as sources or sinks for any vulnerability class. If successful,
LLMs can alleviate manual effort, and drastically improve the effectiveness of static analysis tools.

A.3 CODEQL QUERIES FOR STATIC ANALYSIS

Listing 3 presents our CodeQL query for Path Traversal vulnerability (CWE 22). In Listing 3,
Lines 10-29 describe a taint analysis configuration that describes which nodes in the data flow
graph should be considered as sources or sinks. Here, Line 12 specifies our custom predicate
isLLMDetectedSource that checks whether the method called is taint source based on our
specifications. Similarly, our predicates isLLMDetectedSink checks whether the node is a taint
sink based on our specifications. Line 16 checks if a method call or method argument node is a taint
sink based on our specifications. We generate the source and sink specifications as predicates in QL
file as shown in Listings 4 and 5 respectively. Given a taint configuration and the source and sink
specifications, CodeQL can automatically perform taint analysis on a given project.

We use template to convert LLM inferred specifications into CodeQL queries. There are three kinds
of queries:

1. a formal parameter of an internal function as a source;
2. the return value of an external function as a source;
3. an argument to an external function as a sink.

15
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1 System: You are a security expert. You are given a list of APIs
implemented in established Java libraries, and you need to identify
whether some of these APIs could be potentially invoked by downstream
libraries with malicious end-user (not programmer) inputs. For

instance, functions that deserialize or parse inputs might be used by
downstream libraries and would need to add sanitization for

malicious user inputs. On the other hand, functions like HTTP request
handlers are typically final and won’t be called by a downstream

package. Utility functions that are not related to the primary
purpose of the package should also be ignored. Return the result as a
json list with each object in the format:

2

3 { "package": <package name>,
4 "class": <class name>,
5 "method": <method name>,
6 "signature": <signature>,
7 "tainted_input": <a list of argument names that are potentially tainted

> }
8

9 In the result list, only keep the functions that might be used by
downstream libraries and is potentially invoked with malicious end-
user inputs. Do not output anything other than JSON.

10

11

12 User: You are analyzing the Java package [PROJECT_AUTHOR]/[PROJECT_NAME].
Here is the package summary:

13

14 [PROJECT_README_SUMMARY]
15

16 Please look at the following public methods in the library and their
documentations (if present). What are the most important functions
that look like can be invoked by a downstream Java package that is
dependent on [PROJECT_NAME], and that the function can be called with
potentially malicious end-user inputs? If the package does not seem

to be a library, just return empty list as the result. Utility
functions that are not related to the primary purpose of the package
should also be ignored.

17

18 Package,Class,Method,Doc
19 [Package1],[Class1],[Method1],[Documentation1]
20 [Package2],[Class2],[Method2],[Documentation2]
21 [...]

Listing 2: LLM prompt for labeling formal parameters of internal APIs as sources.

Example queries for the two kinds of sources are specified in Listing 4, while the example query for
the sink is illustrated in Listing 5. As shown in the listings, we not only match on function package,
class, and name, but also match on individual arguments or parameters. Moreover, our query han-
dles generic functions or function in generic classes through the getSourceDeclaration()
predicate provided by CodeQL. Notably, when the number of inferred specifications is too large, we
will split the single predicate into multiple hierarchical ones, improving the CodeQL performance.

A.4 VISUALIZATION OF METRICS

We provide a visualization of our VulDetected metric in Fig. 10. For evaluation, we assume that
the label for a project P is provided as a set of crucial program points VP

vul = {V1, . . . , Vn} where
the vulnerable paths should pass through. In practice, these are typically the patched methods that
can be collected from each vulnerability report. As illustrated in Fig. 10, if at least one detected
vulnerable path passes through a fixed location for the given vulnerability, then we consider the
vulnerability detected. Let PathsP be the set of detected paths for each project P from prior stages.
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1 import java
2 // other imports ...
3 import MySources
4 import MySinks
5

6 /**
7 * A taint-tracking configuration for tracking flow from remote sources

to the
8 * creation of a path.
9 */

10 module MyTaintedPathConfig implements DataFlow::ConfigSig {
11 predicate isSource(DataFlow::Node source) {
12 isLLMDetectedSource(source)
13 }
14

15 predicate isSink(DataFlow::Node sink) {
16 isLLMDetectedSink(sink)
17 }
18

19 predicate isBarrier(DataFlow::Node sanitizer) {
20 sanitizer.getType() instanceof BoxedType or
21 sanitizer.getType() instanceof PrimitiveType or
22 sanitizer.getType() instanceof NumberType or
23 sanitizer instanceof PathInjectionSanitizer
24 }
25

26 predicate isAdditionalFlowStep(DataFlow::Node n1, DataFlow::Node n2) {
27 isLLMDetectedStep(n1, n2)
28 }
29 }
30

31 /** Tracks flow from remote sources to the creation of a path. */
32 module MyTaintedPathFlow = TaintTracking::Global<MyTaintedPathConfig>;
33

34 from MyTaintedPathFlow::PathNode source, MyTaintedPathFlow::PathNode sink
35 where MyTaintedPathFlow::flowPath(source, sink)
36 select
37 getReportingNode(sink.getNode()),
38 source,
39 sink,
40 "This path depends on a $@.",
41 source.getNode(),
42 sourceType(source.getNode())

Listing 3: QL Script for Detecting Vulnerabilities for Path Traversal (CWE 22)

The vulnerable paths inside project P is given by:
VulPaths(P ) = {Path ∈ PathsP | Path ∩ VP

vul ̸= ∅}

B ADDITIONAL DETAILS OF CWE-BENCH-JAVA

B.1 DETAILS OF DATASET EXTRACTION PROCESS

Because we use CodeQL for static analysis, we further need to build each project for CodeQL to
extract data flow graphs from the projects. To build each project, we need to determine the correct
Java and Maven compiler versions. We developed a semi-automated script that tries to build each
project with different combinations of Java and Maven versions. The fourth row in Table 4 presents
the number of projects we were able to build successfully. Overall, this results in (⋆) 149 projects.

Finally, we manually check each fix commit and validate whether the commit actually contains a
fix to the given CVE in a Java file. For instance, we found that in some cases the fix is in files
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1 predicate isLLMDetectedSource(DataFlow::Node src) {
2 // Sources: Return value from external APIx
3 (
4 src.asExpr().(Call).getCallee().getName() = "getName" and
5 src.asExpr().(Call).getCallee().getDeclaringType().

getSourceDeclaration().hasQualifiedName("java.util.zip", "ZipEntry")
6 )
7 ...
8 or
9 // Sources: Function formal parameters of internal API

10 exists(Parameter p |
11 src.asParameter() = p and
12 p.getCallable().getName() = "setUserName" and
13 p.getCallable().getDeclaringType().getSourceDeclaration().

hasQualifiedName("org.apache.dolphinscheduler.dao.entity", "DqRule")
and

14 ( p.getName() = "userName" )
15 )
16 ...
17 }

Listing 4: QL Predicates for Source Specifications

1 predicate isLLMDetectedSink(DataFlow::Node snk) {
2 exists(Call c |
3 c.getCallee().getName() = "createTempFile" and
4 c.getCallee().getDeclaringType().getSourceDeclaration().

hasQualifiedName("java.io", "File") and
5 ( c.getArgument(0) = snk.asExpr().(Argument) )
6 )
7 or
8 ...
9 }

Listing 5: QL Predicates for Sink Specification

Table 4: Vulnerability Dataset Collection Statistics

Step CWE-22 CWE-78 CWE-79 CWE-94 Total
Initial CVEs 236 39 681 109 1065
W/ Github URL and Version 119 37 219 55 430
W/ Fix Commit 89 27 99 50 265
Compilable 56 17 50 26 149
Fixes in Java Code 56 16 25 47 144
Manual Validation 55 13 31 21 120

written in other languages (such as Scala or JSP). While code written in other languages may flow to
the Java components in the project during runtime or via compilation, it is not possible to correctly
determine if static analysis can correctly detect such a vulnerability. Hence, we exclude such CVEs.
Further, we exclude cases where the vulnerability was in a dependency and the fix was just a version
upgrade or if the vulnerability was mis-classified. Finally, we end up with (⋆) 120 projects that
we evaluate with IRIS. For this task, we divide the CVEs among two co-authors of the project,
who independently validate each case. The co-authors cross-check each other’s results and discuss
together to come up with the final list of projects.

The closest dataset to ours, in terms of features, is the Java dataset curated by Li et al. Li et al.
(2023), containing 165 CVEs. While we initially considered using their dataset for our work, we
found several issues. First, their dataset does not come with build scripts, which makes it hard to
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Path is Considered 
Vulnerable

Path is NOT 
Considered 
Vulnerable

A B ✅❌

public void extractFile(
  String fileName, String destinationPath, String newFileName
) throws ZipException {
  // ... 

Detected Source: the formal param fileName and destinationPath

// In function `assertCanonicalPathsAreSame`
+ String comp = new File(completePath).getCanonicalPath();
+ String out = new File(outPath).getCanonicalPath());
+ if (!comp.startsWith(out)) {
+   ...
+ }

The Fix for the CVE: the sanitizer to check the output path

try (OutputStream outputStream = new FileOutputStream(outputFile)) {
  while ((readLength = inputStream.read(buff)) != -1) {
    outputStream.write(buff, 0, readLength);
    // ... 
  } }

Detected Sink: writing to a file that lies outside of the intended directory

public void extractFile(
  String fileName, String destinationPath, String newFileName) throws ZipException {

Detected Source: two formal params of extractFile

// In function `assertCanonicalPathsAreSame`
- if (!completePath.startsWith(outPath)) { /* ... */ }
+ String comp = new File(completePath).getCanonicalPath();
+ String out = new File(outPath).getCanonicalPath());
+ if (!comp.startsWith(out)) { /* ... */ }

The Fix for the CVE-2018-1002202: the sanitizer to check the path

try (OutputStream outputStream = 
  new FileOutputStream(outputFile)) {

Detected Sink A: write to output file
if (!destinationPath.mkdirs()) {
  // ...

Detected Sink B: creating a new dir

Not Vulnerable❌Path Is Vulnerable✅

(no sanitization)

Figure 10: A visualization of our metrics used for vulnerability detection, where the snippets are
adapted from Zip4j v2.11.5-2, with slight changes for clearer presentation. While both sinks are
potential causes of path-traversal (CWE-22), only the dataflow path on the left passes through the
fixed sanitizer function. Therefore, we consider only the path on the left as a vulnerability.

automatically run each project with CodeQL. Second, their dataset only has few CVEs for all but
one CWE, which makes it difficult to thoroughly analyze a tool for different vulnerability classes.
Finally, they do not provide any automated scripts to curate more CVEs. Hence, we curated our own
dataset and our framework also allows to easily extend to more vulnerability classes.

B.2 COMPARISON OF OUR CWE-BENCH-JAVA WITH EXISTING VULNERABILITY DATASETS

We compare CWE-Bench-Java with existing datasets for vulnerability detection in Java, C, and C++
codebases, on the following criteria:

1. CVE Metadata: whether CVE Metadata is contained in the dataset;

2. Real-World: whether the dataset contains real-world projects;

3. Fix Locations: whether the dataset contains fix information about the vulnerabilities;

4. Compilable: whether the dataset ensures that the projects are end-to-end and automatically
compilable;

5. Vetted: whether the vulnerability in the dataset is manually verified and confirmed.

As shown in Table 5, compared to existing datsets, CWE-Bench-Java, is the only one that checks
every criterion. This underscores the significance of our new dataset.

Table 5: Comparison of CWE-Bench-Java with existing vulnerability datasets

Dataset Languages CVE Metadata Real-World Fix Locations Compilable Vetted

BigVul C/C++ ✓ ✓ ✗ ✗ ✗
Reveal C/C++ ✗ ✓ ✗ ✗ ✗
CVEFixes C/C++, Java, ... ✓ ✓ ✓ ✓ ✗
DiverseVul C/C++ ✗ ✓ ✓ ✗ ✗
DeepVD C/C++ ✗ ✓ ✗ ✗ ✗
Juliet C++, Java ✗ ✗ ✓ ✓ ✓
Li et al. Li et al. (2023) Java ✓ ✓ ✓ ✗ ✓
SVEN He & Vechev (2023) C++ ✗ ✓ ✓ ✗ ✓

Our Dataset Java ✓ ✓ ✓ ✓ ✓
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C EVALUATION DETAILS

C.1 EXPERIMENTAL SETTINGS

We select two closed-source LLMs from OpenAI: GPT 4 (gpt-4-0125-preview) and GPT 3.5
(gpt-3.5-turbo-0125) for our evaluation. GPT 4 and GPT 3.5 queries used in the paper are
performed through OpenAI API during April and May of 2024.

We also select instruction-tuned versions of six state-of-the-art open-source LLMs via huggingface
API: Llama 3 8B and 70B, DeepSeekCoder 7B and 33B, Mistral 7B, and Gemma 7B. To run the
open-source LLMs we use two groups of machines: a 2.50GHz Intel Xeon machine, with 40 CPUs,
four GeForce RTX 2080 Ti GPUs, and 750GB RAM, and another 3.00GHz Intel Xeon machine
with 48 CPUs, 8 A100s, and 1.5T RAM.

We use CodeQL version 2.15.3 as the backbone of our static analysis. We have patched CodeQL
with an additional feature that augments the Dataflow edge between throw statement and its closest
surrounding try-catch block. We use this CodeQL pull request as the base of our patch.

C.2 CODEQL BASELINE

For baseline comparison with CodeQL, we use the built-in Security queries specifically designed
for each CWE that comes with CodeQL 2.15.3. Note that there are multiple security queries for each
CWE, and each produce alarms of different levels (error, warning, and recommendation). For each
CWE, we take the union of alerts generated by all queries and do not differentiate between alarms
of different levels. For instance, there are 3 queries from CodeQL for detecting CWE-22 vulnera-
bilities, namely TaintedPath, TaintedPathLocal, and ZipSlip. While TaintedPath
and ZipSlip produce error level alarms, TaintedPathLocal produces only alarm recommen-
dations. To CodeQL’s advantage, all alarms are treated equally in our comparisons.

C.3 HYPER-PARAMETERS AND FEW-SHOT EXAMPLES

During IRIS, we have 2 prompts that are used to label external and internal APIs. Recall that the
prompts contain batched APIs. We use batch size of 20 and 30 for internal and external, respectively.
In terms of few-shot examples passed to labeling external APIs, we use 4 examples for CWE-22, 3
examples for CWE-78, 3 examples for CWE-79, and 3 examples for CWE-94. We use a temperature
of 0, maximum tokens to 2048, and top-p of 1 for inference with all the LLMs. For GPT 3.5 and
GPT 4, we also fix a seed to mitigate randomness as much as possible.

C.4 DETAILS OF SELECTED LLMS

We include the versions of selected LLMs in Table 6.

Table 6: Selected LLM Versions

LLM Version and Size Model ID

GPT 4 gpt-4-0125-preview
GPT 3.5 gpt-3.5-turbo-0125
Llama 3 8B meta-llama/Meta-Llama-3-8B-Instruct
Llama 3 70B meta-llama/Meta-Llama-3-70B-Instruct
DeepSeekCoder 7B deepseek-ai/deepseek-coder-7b-instruct

C.5 PREVIOUSLY UNKNOWN BUGS FOUND BY IRIS

We have applied IRIS with GPT-4 to 30 open-source Java projects in order to find previously un-
known vulnerabilities. The detailed statistics, at the time of this paper’s submission, is listed in
Table 7. We inspect vulnerabilities in detail, and will only file when we think that there is a vulnera-
bility with high severity and an easily accessible attack surface. 3 out of the 4 filed vulnerabilities are
filed on HackerOne to abide to the rules of the individual open-source project, which prohibit us to
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Table 7: Statistics related our effort to identify previously unknown vulnerabilities with IRIS + GPT-
4, to the date of this paper’s submission.

#Projects 30

#Projects where IRIS reports > 0 alarm 16

Average #alarms per investigated project 5.78

#Projects with potential vul 4

#Vuls with potential attack surface 6

#Vuls filed for developer confirmation 4

#Vuls of CWE-22 3

#Vuls of CWE-78 0

#Vuls of CWE-79 0

#Vuls of CWE-94 1

#Developer Response 0

#Developer Confirmation 0

#Fixed Vulnerability 0

disclose the details before the vulnerability is fixed. The remaining one is found in the Java project
alluxio 2.9.4, which we disclose and discuss in detail in Fig. 8. For the already filed vulnerabilities,
we are committed to work till the end to make sure that they are fixed in the open-source project.
The paper will be updated when they are fixed by the developer.

Our experience with finding unknown vulnerabilities using IRIS is pleasant, especially given that we
have built a custom web-based interface for us to inspect and triage the vulnerabilities. A screenshot
of the user-interface is illustrated in Fig. 11. We may quickly scan over the vulnerabilities by looking
at their source, sink, and LLM explanation of whether it is a bug. Additionally, all the dataflows
and nodes have hyperlinks to Github and the source code, making it easy to navigate through the
codebase. Overall, it does not take too much time to dive deep into each vulnerability. Anecdotally,
the first two real CWE-22 vulnerabilities are found among the first two projects that we inspected.

C.6 STATISTICS OF UNIQUE AND RECURRING SPECIFICATIONS

Table 8: Unique Source and Sink Specifications
Across All Projects in CWE-Bench-Java.

CWE 22 78 79 94

#Unique Sources 1348 899 598 810
#Unique Sinks 1069 575 514 1281

Table 9: Recurring Source and Sink Specifica-
tions in CWE-Bench-Java.

CWE 22 78 79 94

#Recurring Sources 908 232 1118 626
#Recurring Sinks 919 201 911 961

Continuous taint specification inference is necessary. Our results show that there is a high number
of both unique and recurring sources and sinks. Table 8 presents the number of inferred source and
sink specifications that occur only in a single project in CWE-Bench-Java, whereas Table 9 presents
the specifications that occur in at least two projects. This indicates that even if previously inferred
specifications are useful, a significant number of new relevant APIs still remain and need to be
labeled for effective vulnerability detection. This observation strongly motivates the design of IRIS
that infers these specifications on-the-fly for each project via LLMs, instead of relying on a fixed
corpus of specifications like CodeQL.
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Figure 11: Our web-based user-interface for inspecting and triaging vulnerabilities. The screenshot
shows the detected known vulnerability CVE-2021-41269 which we also detail in our motivating
example section. For detecting unknown vulnerability, the information about CWE and golden
labels will not be available to the users.

C.7 STATISTICS OF INFERRED TAINT SPECIFICATIONS

We show the statistics of inferred taint specifications in Table 10. As shown by the percentage,
GPT-4 generates smaller set of sources and sinks than smaller-scale LLMs like DeepSeekCoder 7B.

Table 10: Ratio of API candidates labeled as source (S) or sink (N) by GPT-4 and DeepSeekCoder
(DSC) 7B, per CWE and in total.

CWE #Cand. GPT-4 DSC 7B

%S %N %S %N

22 130,974 2.03% 1.90% 4.27% 4.01%
78 25,605 4.73% 3.37% 3.67% 3.33%
79 37,138 5.69% 4.69% 4.28% 4.56%
94 36,325 5.12% 7.83% 6.11% 6.21%

Total 230,042 3.41% 3.45% 4.50% 4.37%

D ANALYSIS RUNTIME

We include the full table containing statistics to provide more details about projects and our analysis
(Table 11). For each project, we present its corresponding CWE ID, the lines-of-code (SLOC), the
time it takes to run the full analysis, the number candidate APIs and the number of labeled source
and sinks by Llama 3 8B. We also color code cells of interest: For SLOC, we mark a cell as red if
>1M; yellow if >100k. For Time, we mark a cell as red if ≥1h; yellow if ≥5m. For the number of
candidates, we mark a cell as red if >10k. Lastly for sources and sinks, we mark a cell as red if the
number is larger than 200.
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Table 11: Details of analysis runtime, candidates, and inferred sources and sinks for all projects
(Llama 3 8B)

CWE-ID Project SLOC Time #Candidates #Sources #Sinks
22 DSpace 218.2K 15s 3.61K 162 217
22 spark 10.7K 1m 679 35 27
22 spark 9.77K 57s 598 33 22
22 wildfly 496.28K 4m 14.13K 457 425
22 vertx-web 51.01K 1m 2.06K 80 77
22 camel 1.16M 8m 293 22 9
22 hutool 135.34K 4m 6.17K 115 211
22 tika 106.3K 2m 3.84K 277 177
22 retrofit 19.28K 1m 880 28 13
22 jspwiki 149.45K 1m 1.83K 62 80
22 camel 1.21M 11m 4.43K 53 80
22 tapestry-5 160.06K 1m 3.04K 91 66
22 spring-cloud-co 18.56K 1m 1.16K 40 64
22 spring-cloud-co 18.44K 59s 1.16K 40 64
22 rocketmq 94.64K 1m 2.78K 28 54
22 mpxj 181.55K 1m 1.6K 37 43
22 flink 1.14M 2h 5.16K 39 61
22 java 1M 2m 8.04K 96 41
22 commons-io 29.24K 58s 1.07K 12 47
22 karaf 135.22K 1m 5.43K 150 210
22 james-project 434.32K 4m 14.58K 209 226
22 vertx-web 49.28K 1m 2.36K 83 96
22 esapi-java-lega 35.26K 59s 1.48K 43 67
22 xwiki-commons 103.05K 1m 3.76K 104 137
22 zip4j 16.78K 58s 532 6 34
22 one-java-agent 5.19K 51s 327 11 20
22 myfaces 161.02K 1m 2.4K 68 44
22 undertow 86.03K 1m 2.58K 66 93
22 DependencyCheck 28.57K 1m 1.23K 47 66
22 plexus-archiver 13.04K 51s 573 34 47
22 plexus-archiver 13.04K 51s 573 34 47
22 zt-zip 6.64K 52s 337 14 31
22 curekit 511 43s 73 2 4
22 aws-sdk-java 7.72M 38m 12K 62 65
22 venice 115.44K 1m 2.27K 36 79
22 DSpace 237.33K 1m 3.67K 179 233
22 Payara 1.12M 7m 16.05K 379 427
22 DSpace 237.33K 1m 3.67K 179 233
22 goomph 12.68K 59s 1.12K 35 111
22 dolphinschedule 90.69K 1m 3.36K 65 92
22 dolphinschedule 91.94K 1m 3.4K 65 92
22 testng 95.53K 1m 2.08K 33 73
22 uima-uimaj 226.81K 2m 5.66K 103 176
22 keycloak 614.82K 12m 13.34K 325 252
22 glassfish 1.19M 5m 12.19K 293 346
22 graylog2-server 382K 4m 13.3K 227 171
22 mina-sshd 130.14K 1m 3.64K 52 120
22 shiro 38.68K 1m 1.5K 41 42
22 plexus-archiver 15.51K 57s 666 37 56
22 plexus-utils 23.3K 58s 754 16 36
22 yamcs 693.6K 2m 11K 98 113
22 yamcs 693.6K 2m 11K 98 113
22 shiro 38.94K 1m 1.53K 41 43
22 sling-org-apach 8.34K 54s 695 28 25
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78 xstream 43.49K 1m 1.39K 91 30
78 xstream 59.79K 1m 1.64K 107 42
78 xstream 52.25K 1m 1.64K 107 43
78 docker-commons- 2.79K 54s 362 25 20
78 workflow-cps-pl 17.02K 1m 1.38K 72 61
78 workflow-cps-gl 4.31K 55s 523 40 38
78 workflow-multib 3.45K 53s 500 30 30
78 activemq 442.42K 4m 6.34K 234 192
78 plexus-utils 22.76K 1m 714 34 17
78 git-client-plug 16.41K 1m 1.06K 83 50
78 perfecto-plugin 667 54s 107 5 10
78 nifi 915.95K 11m 22.44K 894 614
78 script-security 8.17K 1m 678 40 46
79 antisamy 6.38K 57s 381 42 33
79 antisamy 6.38K 56s 381 42 33
79 jspwiki 149.33K 1m 1.84K 156 110
79 jspwiki 149.33K 1m 1.84K 156 110
79 jspwiki 149.33K 1m 1.84K 156 110
79 jspwiki 157.09K 1m 1.85K 157 110
79 hibernate-valid 93.6K 1m 2.06K 79 57
79 cxf 798.53K 1h 16.54K 821 756
79 xxl-job 9.32K 60s 540 42 41
79 json-sanitizer 1.47K 52s 67 4 5
79 hawkbit 112.09K 1m 4.07K 144 151
79 nacos 203.78K 2m 4.08K 201 139
79 antisamy 4.93K 1m 362 43 34
79 esapi-java-lega 35.26K 1m 1.48K 107 85
79 antisamy 5.14K 1m 377 44 36
79 jolokia 29.97K 1m 1.66K 117 97
79 keycloak 60.6K 1m 2.1K 170 136
79 cxf 722.83K 15m 15.09K 766 710
79 sling-org-apach 1.37K 55s 136 4 13
79 DSpace 237.33K 2m 3.67K 347 320
79 keycloak 615.6K 3h 13.37K 606 461
79 keycloak 615.6K 3h 13.37K 606 461
79 xwiki-commons 105.92K 1m 3.94K 244 151
79 xwiki-commons 105.94K 1m 3.94K 244 151
79 xwiki-rendering 97.01K 1m 1.22K 73 92
79 xwiki-commons 106.87K 1m 3.99K 254 161
79 jspwiki 158.7K 1m 2.22K 176 126
79 keycloak 617.15K 4h 14.04K 643 479
79 xwiki-commons 107.09K 1m 3.03K 209 143
79 jstachio 53.02K 54s 792 40 46
79 xwiki-rendering 97.63K 1m 1.24K 74 92
94 spring-security 43.9K 1m 1.83K 120 176
94 xstream 52.25K 1m 1.64K 111 145
94 cron-utils 13.08K 1m 476 13 26
94 struts 160.51K 12m 4.39K 301 357
94 activemq 547.68K 1h 7.55K 370 607
94 spring-framewor 666.11K 45m 17.71K 688 846
94 spring-cloud-ga 25.56K 1m 2.01K 130 153
94 dubbo 175.63K 2m 6.73K 342 383
94 incubator-dubbo 96.35K 1m 3.68K 194 255
94 spring-security 57.34K 1m 2.43K 192 234
94 kubernetes-clie 806.35K 3m 2.33K 93 130
94 commons-text 24.87K 1m 962 40 47
94 ff4j 46.21K 1m 2.39K 133 274
94 spring-boot-adm 18.29K 1m 1.83K 92 157
94 sqlite-jdbc 17.71K 59s 732 50 74
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94 nifi 993.76K 25m 57 2 11
94 rocketmq 108.39K 2m 3.4K 117 164
94 nifi 1.01M 27m 261 27 24
94 rocketmq 197.78K 2m 6.28K 205 252
94 dolphinschedule 154.95K 4m 5.78K 229 353
94 dolphinschedule 154.95K 4m 5.78K 229 353
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