
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LORA-PRO: ARE LOW-RANK ADAPTERS PROPERLY
OPTIMIZED?

Anonymous authors
Paper under double-blind review

ABSTRACT

Low-rank adaptation, also known as LoRA, has emerged as a prominent method
for parameter-efficient fine-tuning of foundation models. Despite its computa-
tional efficiency, LoRA still yields inferior performance compared to full fine-
tuning. In this paper, we first uncover a fundamental connection between the opti-
mization processes of LoRA and full fine-tuning: using LoRA for optimization is
mathematically equivalent to full fine-tuning using a low-rank gradient for param-
eter updates. And this low-rank gradient can be expressed in terms of the gradi-
ents of the two low-rank matrices in LoRA. Leveraging this insight, we introduce
LoRA-Pro, a method that enhances LoRA’s performance by strategically adjust-
ing the gradients of these low-rank matrices. This adjustment allows the low-rank
gradient to more accurately approximate the full fine-tuning gradient, thereby nar-
rowing the performance gap between LoRA and full fine-tuning. Furthermore, we
theoretically derive the optimal solutions for adjusting the gradients of the low-
rank matrices, applying them during fine-tuning in LoRA-Pro. We conduct ex-
tensive experiments across natural language understanding, dialogue generation,
mathematical reasoning, code generation, and image classification tasks, demon-
strating that LoRA-Pro substantially improves LoRA’s performance, effectively
narrowing the gap with full fine-tuning. Code is available in the supplementary.

1 INTRODUCTION

Foundational models (Radford et al., 2021; Brown et al., 2020; Achiam et al., 2023; Kirillov et al.,
2023; Rombach et al., 2022; Touvron et al., 2023) have become the cornerstone of modern deep
learning. By undergoing pre-training on massive datasets, these models typically exhibit excellent
generalization and versatility. Remarkably, some foundation models even demonstrate emergent
properties (Hoffmann et al., 2022; Kaplan et al., 2020). Due to these advantages, foundational
models have been widely applied to various downstream applications.

Nevertheless, it still requires additional fine-tuning when applied to downstream tasks, where the
huge parameter size of foundation models result in high cost in this stage. To address this issue,
recent research has focused on parameter-efficient fine-tuning (PEFT) methods (Hu et al., 2022;
Houlsby et al., 2019; Lester et al., 2021). PEFT methods reduce the fine-tuning cost by keeping
the foundation models frozen and only fine-tuning small, additional lightweight adapters. With the
majority of parameters frozen, PEFT enables faster fine-tuning and requires fewer resources.

Low-rank adaptation (Hu et al., 2022), also known as LoRA, is one of the most famous PEFT meth-
ods, which has been widely adopted across various domains. Inspired by previous works (Agha-
janyan et al., 2021; Li et al., 2018), LoRA hypothesizes that the changes in weights during model
adaptation exhibit a low-rank structure. To capture this, LoRA re-parameterizes these changes by
expressing them as the product of two low-rank matrices: W = W0 +∆W ≈W0 + sBA, where s
is a scaling factor, and A ∈ Rr×n and B ∈ Rm×r are low-rank matrices with rank r ≪ min(m,n).
LoRA reduces the number of trainable parameters from m× n to r × (m+ n), thereby decreasing
the cost of fine-tuning. However, despite its efficiency, LoRA’s fine-tuning performance often falls
short compared to full fine-tuning (Hu et al., 2022; Liu et al., 2024; Ding et al., 2023).

In this paper, we propose a novel PEFT method, LoRA-Pro, aimed at bridging the gap between
LoRA and full fine-tuning. To begin with, we uncover a crucial connection between the optimization
processes of LoRA and full fine-tuning: using LoRA for optimization is equivalent to full fine-tuning

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

using a low-rank gradient for parameter updates. In LoRA, we discover that the change in weight
W is connected to the changes in matrices A and B, expressed as dW = ∂W

∂A dA + ∂W
∂B dB. This

relationship implies that updating matrices A and B with gradients gA and gB is equivalent to
updating W with a low-rank equivalent gradient g̃ in full fine-tuning, where:

g̃ =
∂W

∂A
gA +

∂W

∂B
gB = sBgA + sgBA. (1)

Leveraging this insight, our goal is to bridge LoRA’s gap with full fine-tuning by minimizing the
discrepancy between the low-rank equivalent gradient g̃ and the full fine-tuning gradient g, by ad-
justing the gradients of matrices A and B, i.e., mingA,gB ∥g̃ − g∥2F . Furthermore, we theoretically
demonstrate that this optimization problem admits an optimal closed-form solution, as shown in
Theorem 2.1. Notably, the optimal gradients for the low-rank matrices do not explicitly de-
pend on the full fine-tuning gradient.

Our main contributions are summarized as follows:

• We first uncover a crucial connection between LoRA and full fine-tuning in optimization
process: optimizing with LoRA is mathematically equivalent to full fine-tuning using a
low-rank gradient for updating.

• We propose a novel PEFT method called LoRA-Pro. Our approach minimizes the distance
between the true gradient and the low-rank gradient by adjusting the gradients of matrices
A and B. We theoretically prove the optimal gradients and optimize using these gradients.

• Extensive experiments across tasks in natural language understanding, dialogue genera-
tion, mathematical reasoning, code generation, and image classification demonstrate the
effectiveness of our method.

2 METHOD

In this section, we begin by revisiting LoRA (Hu et al., 2022) in Section 2.1. Following this, we
conduct a comparison between LoRA and full fine-tuning, and point out their connection in the
optimization process in Section 2.2. Finally, in Section 2.3, we introduce LoRA-Pro as a solution to
bridge the gap between LoRA and full fine-tuning.

2.1 REVISITING LOW-RANK ADAPTATION

First of all, let’s dive back into Low-Rank Adaptation (LoRA) (Hu et al., 2022). LoRA’s core idea
revolves around recognizing the low-rank structure of the change matrix ∆W in the standard fine-
tuning process. This insight allows LoRA (Hu et al., 2022) to re-parameterize the change matrix
into the product of two low-rank matrices,

W = W0 +∆W ≈W0 + sBA. (2)

Here, W0 ∈ Rm×n represents the pre-trained weight matrix, B ∈ Rm×r and A ∈ Rr×n are
the low-rank matrices, and s is a scaling factor. For LoRA (Hu et al., 2022), s = α

r , while for
rsLoRA (Kalajdzievski, 2023), s = α√

r
. Here, α is the hyper-parameter and r ≪ min(m,n)

denotes the rank. Consequently, LoRA significantly reduces the number of fine-tuning parameters
from m× n to r × (m+ n), thereby decreasing the computational cost of fine-tuning.

2.2 LORA V.S. FULL FINE-TUNING

Despite its widespread applications across various domains, LoRA’s performance still falls short
when compared to full fine-tuning. In this part, we compare LoRA and full fine-tuning in the op-
timization process. Then, we demonstrate that optimizing using LoRA is equivalent to using a
low-rank gradient in full fine-tuning for updating the parameters.

Full fine-tuning. In full fine-tuning, we utilize differential to analyze the relationship between
changes in the loss and changes in the weights:

dL = ⟨ ∂L
∂W

,dW ⟩F , (3)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

where dL and dW denotes the changes of the parameter W and the loss L, and ⟨·, ·⟩F is the Frobe-
nius inner product. To minimize the loss function, we typically set dW = − ∂L

∂W ≜ −g (omitting
the learning rate for simplicity), which results in dL = −∥ ∂L

∂W ∥
2
F ≤ 0.

Low-rank adaptation. In LoRA optimization, given that W = W0 + sBA, we compute the
differential using the chain rule:

dL = ⟨ ∂L
∂W

,dW ⟩F

= ⟨ ∂L
∂W

,
∂W

∂A

T

dA+
∂W

∂B

T

dB⟩F

= ⟨ ∂L
∂W

∂W

∂A
,dA⟩F + ⟨ ∂L

∂W

∂W

∂B
,dB⟩F

= ⟨∂L
∂A

,dA⟩F + ⟨ ∂L
∂B

,dB⟩F .

(4)

Similarly, LoRA sets dA = − ∂L
∂A ≜ −gAlora and dB = − ∂L

∂B ≜ −gBlora, and thus dL = −∥ ∂L∂A∥
2
F −

∥ ∂L∂B ∥
2
F ≤ 0. Moreover, employing the chain rule, we derive:

gAlora =
∂L

∂W

∂W

∂A
= sBT g, gBlora =

∂L

∂W

∂W

∂B
= sgAT . (5)

Why LoRA performs worse than full fine-tuning. With Equation (3) and (4), we observe a critical
connection between full fine-tuning and LoRA in the optimization process. In LoRA, changes in
matrices A and B are inherently linked to changes in matrix W , i.e., dW = ∂W

∂A

T
dA + ∂W

∂B

T
dB.

This indicates that updating A and B with gradient gA and gB is equivalent to performing full
fine-tuning on W via the following update:

dW =
∂W

∂A

T

dA+
∂W

∂B

T

dB = −(sBgA + sgBA). (6)

Equation (6) reveals that LoRA optimization is equivalent to full fine-tuning using a low-rank gra-
dient g̃ = sBgA + sgBA (which rank is at most to 2r1) for optimization. Consequently, the per-
formance gap between LoRA and full fine-tuning may stem from differences between g̃ and the
full gradient g. The low-rank gradient g̃ may lose important information contained in g, leading to
distinct optimization trajectories and ultimately causing LoRA to converge to a sub-optimal solution.

2.3 LOW-RANK ADAPTATION WITH EQUIVALENT GRADIENT

Definition 1 (Equivalent Gradient). In the context of LoRA optimization, we define the equiv-
alent gradient as,

g̃ ≜ sBgA + sgBA,

where s is the scaling factor, and gA and gB are gradients with respect to A and B, respec-
tively.

In this part, we introduce our LoRA-Pro method, which bridges the performance gap by minimizing
the discrepancy between the gradients. For convenience, we define the concept of equivalent gradi-
ent in Definition 1. Equivalent gradient describes the virtual low-rank gradient of the matrix W in
LoRA optimization process, despite W not being a trainable parameter. To narrow the performance
gap, our goal is to carefully adjust gA and gB of matrices A and B to minimize the distance between
the equivalent gradient g̃ and the full gradient g in full fine-tuning. Hence, our objective is:

min
gA,gB

∥g̃ − g∥2F

s.t. g̃ = sBgA + sgBA,

dL ≤ 0.

(7)

1We provide the proof in Appendix B.1

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

𝑊 𝑔 =
𝜕𝐿

𝜕𝑊

Gradients Frozen Tunable

෤𝑔 = 𝑠𝐵𝑔𝐴

+𝑠𝑔𝐵𝐴

× 𝑠

𝐵

𝐴
W0

𝑔𝐴

𝑔𝐵

Re-
parameter

෤𝑔 = 𝑠𝐵𝑔𝐴

+𝑠𝑔𝐵𝐴

𝑔 =
𝜕𝐿

𝜕𝑊

𝑔𝐴

𝑔𝐵

Low-rank Subspace

min
𝑔𝐴,𝑔𝐵

෤𝑔 − 𝑔 𝐹
2

Figure 1: Illustration of LoRA-Pro. LoRA (Hu et al., 2022) reduces the trainable parameter by re-
parameterizing the weight into the product of two low-rank matrices, i.e., W = W0+sBA. We have
discovered a connection between the optimization processes of full fine-tuning and LoRA. Updating
matrices B and A using gradients gB and gA is equivalent to updating weight W using a virtual
low-rank gradient g̃ = sBgA + sgBA. Therefore, in LoRA-Pro, we aim to adjust gradients gB and
gA to minimize the distance between the equivalent gradient g̃ and the full fine-tuning gradient g,
thereby reducing their performance gap. In Theorem 2.1, we provide the optimal update gradients,
and in Appendix C, we present the pseudo-code for the optimization algorithm.

Here, ∥ · ∥F denotes the Frobenius norm, and dL denotes the change in loss when updating with
gradients gA and gB . The objective aims to minimize the distance of the gradients while ensuring a
decrease in loss using the solutions for gA and gB .

Closed-form solution. Fortunately, we prove that the optimization problem (7) admits an optimal
closed-form solution, as stated in Theorem 2.1. Additionally, an interesting observation arises from
Theorem 2.1: while the full gradient g serves as the ground truth in the objective, it does not neces-
sarily explicit appear in the closed-form solution. Instead, the closed-form solution for the optimal
gradients can be expressed in terms of the gradients of LoRA. This allows for an efficient gradient
adjustment process, where we backpropagate using the standard LoRA and adjust the gradients of
matrices A and B based on the closed-form solution presented in Theorem 2.1. 2

Theorem 2.1. Assume matrices B ∈ Rm×r, A ∈ Rr×n are both full rank. For the objective
mingA,gB ∥g̃ − g∥2F , the optimal solutions are given by:

gA =
1

s
(BTB)−1BT g +XA =

1

s2
(BTB)−1gAlora +XA, (8)

gB =
1

s
[I −B(BTB)−1BT ]gAT (AAT )−1 −BX (9)

=
1

s2
[I −B(BTB)−1BT ]gBlora(AAT )−1 −BX. (10)

Here, X ∈ Rr×r represents an arbitrary matrix.

Proof. See Appendix B.2.

Loss minimization. While Theorem 2.1 offers a closed-form solution to the optimization problem
mingA,gB ∥g̃ − g∥2F , it’s crucial to understand that this solution does not inherently guarantee a
decrease in loss when updating the matrices A and B. To address this concern, we introduce The-
orem 2.2. In this theorem, we prove that the change in loss dL can be expressed as a negative sum
of two Frobenius norms, which leads to dL < 0. This result ensures that the optimization process
consistently drives towards a lower loss.

Selection of matrix X. Although the equivalent gradient itself is not directly related to the matrix
X , the presence of X plays a significant role in the updates of matrices A and B. We select an
appropriate X such that gA and gB remain close to gAlora and gBlora respectively. To achieve this,
we minimize their Frobenius norm, as demonstrated in Equation (14). In practical terms, BTB and

2We provide detailed algorithms in Appendix C.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

−AAT do not share common eigenvalues. Therefore, according to Theorem 2.3, we can determine
a unique optimal X for updating matrices A and B.

Theorem 2.2. When updating matrices A and B using the closed-form solution from Theo-
rem 2.1, we proceed as follows:

A← A− γgA (11)

B ← B − γgB , (12)

where γ ≥ 0 denotes the learning rate. Our method ensures a decrease in the loss, akin to
the standard gradient descent algorithm, expressed by:

dL = −γ{⟨gAlora,
1

s2
(BTB)−1gAlora⟩F+⟨gBlora,

1

s2
[I−B(BTB)−1BT ]gBlora(AAT )−1⟩F } ≤ 0.

(13)

Proof. See Appendix B.3.

Theorem 2.3. Consider the optimization problem,

min
X
∥gA − gAlora∥2F + ∥gB − gBlora∥2F , (14)

where gA and gB are the optimal solutions as stated in Theorem 2.1. The optimal X can be
determined by solving the Sylvester equation:

BTBX +XAAT = − 1

s2
(BTB)−1gAloraA

T , (15)

which has a unique solution X provided that BTB and −AAT do not have any shared
eigenvalues.

Proof. See Appendix B.4.

3 EXPERIMENTAL RESULTS

In this section, we present extensive experiments to evaluate the effectiveness of LoRA-Pro across
various tasks and models. First, we assess natural language understanding capabilities using the
GLUE benchmark by fine-tuning the T5-base (Raffel et al., 2020) model in Section 3.1. Next, we
evaluate its capabilities in dialogue generation, mathematical reasoning, and code generation using
the Llama-2-7B model (Touvron et al., 2023), covered in Section 3.2. We then examine LoRA-Pro’s
effectiveness on image classification tasks using the CLIP-ViT-B/16 (Radford et al., 2021) model in
Section 3.3. Finally, we conduct an ablation study of LoRA-Pro in Section 3.4.

Training details. To ensure a fair comparison, we align our experimental setup with that of LoRA-
GA (Wang et al., 2024). By default, we fine-tune the model using the AdamW optimizer (Loshchilov
& Hutter, 2019) with hyper-parameters β1 = 0.9, β2 = 0.999, and weight decay set to 0. We
implement a cosine learning rate schedule with a warmup ratio of 0.03. LoRA is applied to all linear
modules, excluding the embedding layer, normalization layer, and classification head. By default,
we set the rank r = 8 and α = 16.

For natural language understanding tasks, we fine-tune T5-base (Raffel et al., 2020) model with
learning rate 1e-4. The sequence length is set to 128, and the training batch size is 32. For dialogue
generation, mathematical reasoning and code generation tasks, we fine-tune the Llama-2-7B (Tou-
vron et al., 2023) model with a learning rate of 2e-5. We set the sequence length to 1024 and the
macro batch size to 32. For image classification tasks, we fine-tune the CLIP-ViT-B/16 (Radford
et al., 2021) model with learning rate 1e-4. The classifier is obtained using prompts such as “a photo
of a {class}” and kept frozen during fine-tuning. And the training batch size is set to 64.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

All experiments are conducted on NVIDIA RTX A6000 GPUs. To obtain a reliable estimate of
model performance, we perform three runs with different random seeds and report the average and
standard deviation of the results.

3.1 RESULTS ON NATURAL LANGUAGE UNDERSTANDING TASKS

Table 1: Results of fine-tuning T5-base using full fine-tuning and various LoRA variants on a subset
of the GLUE datasets. The LoRA rank is set to 8 by default. Bold and underline indicate the highest
and second-highest scores, respectively.

Method MNLI SST2 CoLA QNLI MRPC Average
Full FT 86.33±0.00 94.75±0.21 80.70±0.24 93.19±0.22 84.56±0.73 87.91
LoRA 85.30±0.04 94.04±0.11 69.35±0.05 92.96±0.09 68.38±0.01 82.08

PiSSA 85.75±0.07 94.07±0.06 74.27±0.39 93.15±0.14 76.31±0.51 84.71
rsLoRA 85.73±0.10 94.19±0.23 72.32±1.12 93.12±0.09 52.86±2.27 79.64
LoRA+ 85.81±0.09 93.85±0.24 77.53±0.20 93.14±0.03 74.43±1.39 84.95
LoRA-GA 85.70±0.09 94.11±0.18 80.57±0.20 93.18±0.06 85.29±0.24 87.77

DoRA 85.67±0.09 94.04±0.53 72.04±0.94 93.04±0.06 68.08±0.51 82.57
AdaLoRA 85.45±0.11 93.69±0.20 69.16±0.24 91.66±0.05 68.14±0.28 81.62

LoRA-Pro 86.03±0.19 94.19±0.13 81.94±0.24 93.42±0.05 86.60±0.14 88.44

In this section, we evaluate our LoRA-Pro across various natural language understanding datasets.
To provide a comprehensive comparison, we include several baseline methods: 1) full fine-tuning
and the standard LoRA (Hu et al., 2022). 2) LoRA variants maintaining the original structure, such
as rsLoRA (Kalajdzievski, 2023), LoRA+ (Hayou et al., 2024), PiSSA (Meng et al., 2024), and
LoRA-GA (Wang et al., 2024), 3) LoRA variants with modified structures, including DoRA (Liu
et al., 2024) and AdaLoRA (Zhang et al., 2023).

The results are presented in Table 1. We fine-tune the T5-base model (Raffel et al., 2020) with
the baseline methods on a subset of GLUE datasets: MNLI, SST2, CoLA, QNLI, and MRPC. As
shown in Table 1, we observe that LoRA-Pro achieves the highest scores on 3 out of 5 datasets and
the highest average score across all 5 datasets, and achieves the highest accuracy on average over
the 5 datasets. Specifically, on average over 5 datasets, LoRA-Pro surpasses standard LoRA (Hu
et al., 2022) with a margin of 6.36. And LoRA-Pro even achieve higher than full fine-tuning. This
superior performance may be attributed to overfitting in full fine-tuning, where optimizing all model
parameters can lead to overfitting on the training data, thus reducing the model’s generalization to
the test set. This effect is particularly pronounced on small datasets, such as MRPC, which contains
only 3.7k training data. These results validate the effectiveness of our methods.

3.2 RESULTS ON LARGE LANGUAGE MODELS

In this section, we evaluate the performance of LoRA-Pro on large language models, focusing on
dialogue generation, mathematical reasoning, and code generation capabilities. Our experimental
setup follows the configuration used in LoRA-GA (Wang et al., 2024).

• For the dialogue generation task, we fine-tune the Llama-2-7B (Touvron et al., 2023) model
on a 52k subset of the WizardLM dataset (Xu et al., 2024) and evaluate it using the MT-
Bench dataset (Zheng et al., 2024a). GPT-4 is used to assess the quality of the model’s
responses, and we report the first-turn score as the metric.

• For the math task, we fine-tune the Llama-2-7B (Touvron et al., 2023) model on a 100k
sample from the MetaMathQA dataset (Yu et al., 2024). The model is then evaluated on
the GSM8K test set (Cobbe et al., 2021), and we report the accuracy as the metric.

• For the coding task, we fine-tune the Llama-2-7B (Touvron et al., 2023) model on a 100k
subset of the CodeFeedback dataset (Zheng et al., 2024b) and test it on the HumanEval
dataset (Chen et al., 2021), reporting the PASS@1 metric.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Fine-tuning results of Llama-2-7B model. We fine-tune the Llama-2-7B model using full
fine-tuning and LoRA variants on subsets of the WizardLM (Xu et al., 2024), MetaMathQA (Yu
et al., 2024), and CodeFeedback (Zheng et al., 2024b) datasets, respectively. And we assess dialogue
generation, mathematical reasoning, and coding abilities on MT-Bench, GSM8K, and HumanEval
datasets. Bold and underline indicate the highest and second-highest scores, respectively.

MT-Bench GSM8K HumanEval

Full FT 5.30±0.11 59.36±0.85 35.31±2.13
LoRA 5.61±0.10 42.08±0.04 14.76±0.17

PiSSA 5.30±0.02 44.54±0.27 16.02±0.78
rsLoRA 5.25±0.03 45.62±0.10 16.01±0.79
LoRA+ 5.71±0.08 52.11±0.62 18.17±0.52

DoRA 5.97±0.02 53.07±0.75 19.75±0.41
AdaLoRA 5.57±0.05 50.72±1.39 17.80±0.44

LoRA-GA 5.95±0.16 53.60±0.30 19.81±1.46
LoRA-GA (rank=32) 5.79±0.09 55.12±0.30 20.18±0.19
LoRA-GA (rank=128) 6.13±0.07 55.07±0.18 23.05±0.37

LoRA-Pro 5.86±0.06 54.23±0.79 22.76±0.35
LoRA-Pro (rank=32) 6.01±0.05 55.14±1.73 28.05±0.00
LoRA-Pro (rank=128) 5.68±0.14 56.48±0.23 34.55±2.46

We compare LoRA-Pro with several baselines, including full fine-tuning, LoRA (Hu et al., 2022),
PiSSA (Meng et al., 2024), rsLoRA (Kalajdzievski, 2023), LoRA+(Hayou et al., 2024), DoRA(Liu
et al., 2024), AdaLoRA (Zhang et al., 2023), and LoRA-GA (Wang et al., 2024). By default, we set
the rank to 8 and α = 16. Following LoRA-GA (Wang et al., 2024), we initialize the scaling factor
as in rsLoRA (Kalajdzievski, 2023), i.e., s = α√

r
.

Table 2 presents our experimental results, which demonstrate LoRA-Pro’s superior performance.
With a rank of 8, LoRA-Pro achieves notable improvements over the original LoRA: 0.25 on MT-
Bench, 11.98 on GSM8K, and 8.00 on HumanEval. When compared to the second-best PEFT
method, LoRA-GA, LoRA-Pro shows consistent gains: 0.46 on GSM8K and a substantial 2.95 on
HumanEval. These results validate the effectiveness of our LoRA-Pro method.

Interestingly, we observe that full fine-tuning unexpectedly underperforms on MT-Bench. We at-
tribute this to potential discrepancies between the WizardLM training data distribution and the MT-
Bench evaluation set. The extensive learning capacity of full fine-tuning may lead to overfitting on
the training distribution, compromising generalization to MT-Bench. Since LoRA-Pro aligns more
closely with full fine-tuning during optimization, its relatively poor performance on MT-Bench may
also be attributed to overfitting.

To further explore the scalability of our method, we increase the rank in LoRA-Pro from 8 to 128.
Our observations reveal a clear trend: as the rank increases, the performance gap between LoRA-
Pro and full fine-tuning narrows rapidly. Notably, LoRA-Pro consistently outperforms LoRA-GA at
the same ranks on both GSM8K and HumanEval datasets. At rank 32, LoRA-Pro surpasses LoRA-
GA by 0.02 on GSM8K and 7.87 on HumanEval. This performance disparity becomes even more
pronounced at rank 128, where LoRA-Pro outperforms LoRA-GA by 1.41 on GSM8K and 11.5
on HumanEval. These results demonstrate the superior scalability and effectiveness of LoRA-Pro
across various rank settings.

3.3 RESULTS ON IMAGE CLASSIFICATION TASKS

In this section, we assess the performance of LoRA-Pro on image classification tasks. To pro-
vide a comprehensive comparison, we compare it with several baselines: zero-shot CLIP (Rad-
ford et al., 2021), full fine-tuning, vanilla LoRA (Hu et al., 2022), rsLoRA (Kalajdzievski, 2023),
LoRA+ (Hayou et al., 2024), DoRA (Liu et al., 2024), and LoRA-GA (Wang et al., 2024).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Fine-tuning results of CLIP-ViT-B/16 on image classification tasks. We fine-tune CLIP-
ViT-B/16 using full fine-tuning and LoRA variants across StanfordCars, DTD, EuroSAT, GTSRB,
RESISC45, SUN397, and SVHN datasets. Bold indicates the highest results, while underline rep-
resents the second-highest results.

Method Cars DTD EuroSAT GTSRB RESISC45 SUN397 SVHN Average
Zero-shot 63.75 44.39 42.22 35.22 56.46 62.56 15.53 45.73
Full FT 84.23±0.06 77.44±0.19 98.09±0.03 94.31±0.28 93.95±0.0 75.35±0.10 93.04±0.18 88.06

LoRA 72.81±0.13 73.92±0.38 96.93±0.07 92.40±0.10 90.03±0.14 70.12±0.18 88.02±0.07 83.46
rsLoRA 82.38±0.20 78.03±0.76 98.06±0.08 95.04±0.11 93.96±0.18 75.38±0.24 92.74±0.18 87.94
LoRA+ 72.87±0.18 74.07±0.45 97.01±0.02 92.42±0.18 89.96±0.11 70.17±0.15 88.08±0.05 83.51
DoRA 73.72±0.06 73.72±0.33 96.95±0.01 92.38±0.17 90.03±0.08 70.20±0.19 88.23±0.05 83.48
LoRA-GA 85.18±0.41 77.50±0.12 98.05±0.27 95.28±0.10 94.43±0.19 75.44±0.06 93.68±0.35 88.51

LoRA-Pro 85.87±0.08 78.64±0.25 98.46±0.03 95.66±0.05 94.75±0.21 76.42±0.14 94.63±0.20 89.20

We fine-tune the CLIP-ViT-B/16 (Radford et al., 2021) model on various datasets, including Stan-
fordCars (Krause et al., 2013), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019), GT-
SRB (Houben et al., 2013), RESISC45 (Cheng et al., 2017), SUN397 (Xiao et al., 2010), and
SVHN (Netzer et al., 2011). Accuracy is used as the evaluation metric. During fine-tuning, only the
visual backbone of the CLIP-ViT-B/16 model is updated, while the classifier, derived from prompts
such as “a photo of a {class}”, remains frozen.

The results are presented on Table 3. LoRA-Pro achieves the highest accuracy across all seven
datasets. Specifically, on average, LoRA-Pro surpasses zero-shot classification by 43.47, outper-
forms LoRA (Hu et al., 2022) by 5.74, and exceeds rsLoRA (Kalajdzievski, 2023) by 1.26. These
results validate the effectiveness of our LoRA-Pro method.

3.4 ABLATION STUDY

Table 4: Ablation study on the selection of different X in LoRA-Pro.

choice of X MT-Bench GSM8K HumanEval

Zero 5.76±0.02 53.83±1.16 22.96±1.96
Sylvester (Thm. 2.3) 5.86±0.06 54.23±0.79 22.76±0.35
Symmetry (Eq. (16)) 5.63±0.12 54.46±0.88 22.56±1.06

Ablation study on the selection of X. Based on Theorem 2.1, in LoRA-Pro, the matrix X can be
chosen arbitrarily. While its selection does not affect the equivalent gradient, it does influence the
updates of matrices A and B in LoRA. Here, we conduct an ablation study on the choice of X .

We compare three possible values for X . 1) Zero solution: In this simplest case, we set X =
0. 2) Sylvester solution: Here, X is obtained by solving the Sylvester equation, as described in
Theorem 2.3. 3) Symmetry solution: This approach aims to balance the contributions of both terms
in the equation g̃ = sgBA + sBgA, enforcing the condition gBA = BgA. For the symmetry
solution, solving for X yields:

X = − 1

2s
B(BTB)−1BT gA(ATA)−1A = − 1

2s2
B(BTB)−1BT gBlora(A

TA)−1A. (16)

The comparison of the selection of X is presented in Table 4. As shown in the table, the results
obtained from different choices of X are similar, and, except on MT-Bench, they outperform the
other PEFT baselines listed in Table 2. However, considering the high variance in the results for
both the zero solution and the symmetry solution, we ultimately select the sylvester solution as the
default choice for the matrix X .

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: We compare LoRA, LoRA-Pro, and Full Fine-Tuning in terms of memory cost, training
time, and performance on the MT-Bench, GSM8K, and HumanEval datasets. Memory cost is mea-
sured using a single A6000 GPU with a batch size of 1. Training time is recorded on the WizardLM
dataset using 8 A100 GPUs with DeepSpeed ZeRO-2 stage optimization.

Memory Cost Training Time MT-Bench GSM8K HumanEval

Full FT > 48 GB 2h 33min 5.30±0.11 59.36±0.85 35.31±2.13
LoRA 22.26 GB 1h 22min 5.61±0.10 42.08±0.04 14.76±0.17
LoRA-GA 22.60 GB 1h 25min 5.95±0.16 53.60±0.30 19.81±1.46
LoRA-Pro 23.05 GB 1h 23min 5.86±0.06 54.23±0.79 22.76±0.35

Ablation study on the full-rank assumption.
In Theorem 2.1, we assume that the matrices
A ∈ Rr×n and B ∈ Rm×r are full-rank dur-
ing training. Our goal here is to verify whether
this assumption holds in practice. We track the
rank changes of all A and B matrices during the
fine-tuning process of Llama-2-7B on the Meta-
MathQA (Yu et al., 2024) dataset.
In Figure 2, we illustrate the rank changes of ma-
trices A and B from the q projection of layer 9
during the training process, with rank set to 8 and
32, respectively. We observed that, although A
and B do not initially satisfy the full rank assump-
tion (with matrix B initialized as a zero matrix),
both matrices achieve full rank after the first up-
date step. The rank behavior of A and B in other
layers also exhibits similar results.

0 1 500 1500 2000 3000
0

2

4

6

8

M
at

rix
 R

an
k

matrix A
matrix B

0 1 500 1500 2000 3000
Training Step

0

10

20

30

M
at

rix
 R

an
k

matrix A
matrix B

Figure 2: Visualization of matrix ranks of A and
B during training, with ranks set to 8 and 32,
respectively.

This observation provides practical evidence that the assumption in Theorem 2.1 is reasonable and
supports the validity of the proposed solutions.

Memory footprint and training time. Here, we evaluate the additional costs associated with using
LoRA-Pro compared to LoRA. We primarily focus on comparing the differences in memory cost
and training time between LoRA-Pro, LoRA, and full fine-tuning. The results of the experiments
are presented in Table 5. We measure memory cost using a single A6000 GPU with a batch size of
1. Training time is recorded on the WizardLM dataset using 8 A100 GPUs with DeepSpeed (Rasley
et al., 2020) ZeRO-2 stage optimization.

The results are shown in Table 5. From the table, we observe the following: 1) LoRA-Pro requires
approximately 0.8GB more GPU memory compared to LoRA. This difference likely stems from the
need to compute BTB, AAT , and their inverses during the calculation of the optimal gradients. 2)
Surprisingly, the training time for LoRA-Pro is nearly identical to that of LoRA, with only about a
1% increase in additional training time. We attribute this to the fact that the matrices A and B in
LoRA are low-rank. Consequently, the extra computations required by LoRA-Pro (such as matrix
inversion and the calculation of X) are performed on small r × r matrices, resulting in negligible
computational overhead.

Considering that LoRA-Pro uses less memory and trains faster than full fine-tuning, while also pro-
viding performance improvements over LoRA, we believe that the additional memory and training
time costs are acceptable.

4 RELATED WORK

Parameter-Efficient Fine-Tuning. Given the huge size of foundation models, recent research has
focused on developing parameter-efficient fine-tuning methods (Hu et al., 2022; Liu et al., 2024;
Ding et al., 2023; Houlsby et al., 2019; Liu et al., 2023; Lester et al., 2021). These methods aim to
reduce the cost of fine-tuning by adjusting only a small portion of the model’s parameters. Generally,
these methods fall into two main categories. The first category is adapter tuning (Houlsby et al.,
2019; Sung et al., 2022; He et al., 2021; Zhang et al., 2024; Bapna & Firat, 2019; Hu et al., 2022),

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

which involves inserting small neural network modules, called adapters, into specific layers of the
model. During fine-tuning, we keep the model frozen and only fine-tune the lightweight adapter
modules, significantly reducing the memory footprint for fine-tuning. The second category is prompt
tuning (Lester et al., 2021; Zhou et al., 2022; Li & Liang, 2021; Liu et al., 2022). Prompt tuning
adapts the models to specific tasks by adding specially designed prompts or learnable tokens to
the input data, rather than directly modifying the internal parameters of foundation models. In this
paper, we focus on LoRA (Hu et al., 2022), a prominent method within the realm of adapter tuning.

Low-Rank Adaptation. Low-rank adaptation, initially referred to as LoRA (Hu et al., 2022), has
evolved into a broad category encompassing parameter-efficient fine-tuning methods based on low-
rank approximations (Hu et al., 2022; Liu et al., 2024; Hayou et al., 2024; Kalajdzievski, 2023;
Zhang et al., 2023; Kopiczko et al., 2024; Hyeon-Woo et al., 2022; Zhang & Pilanci, 2024; Wang
et al., 2024; Zhao et al., 2024; Wang et al., 2024). LoRA (Hu et al., 2022) assumes that the changes
in the weights of pre-trained models exhibit a low-rank structure. Consequently, it re-parameterizes
these changes as the product of low-rank matrices, thereby reducing the cost during fine-tuning.

Several variants of LoRA have been proposed to address different aspects of this approach. For
example, DoRA (Liu et al., 2024) improves LoRA (Hu et al., 2022) by incorporating a learn-
able magnitude vector to re-scale the normalized product of low-rank matrices. Another variant,
rsLoRA (Kalajdzievski, 2023), introduces a new scaling factor to stabilize training in high-rank sce-
narios. LoRA+(Hayou et al., 2024) improves upon LoRA by applying different learning rates to
the two low-rank matrices. Additionally, Galore (Zhao et al., 2024) employs SVD to project the
gradients and its first and second momentum of full training into a low-rank space, thereby reducing
the memory footprint during pre-training and fine-tuning.

5 CONCLUSION

In this paper, we introduce LoRA-Pro, a novel approach designed to bridge the performance gap
between LoRA and full fine-tuning. We have discovered that using LoRA for fine-tuning is equiv-
alent to fine-tuning the original weights with a virtual equivalent low-rank gradient. Based on this
insight, we propose adjusting the gradients of matrices A and B to make the equivalent gradient
match the true full fine-tuning gradient, thereby reducing their performance gap. Fortunately, we
theoretically prove that there exists an optimal closed-form solution for updating matrices A and
B, which are applied during fine-tuning in LoRA-Pro. To validate the effectiveness of our method,
we conduct extensive experiments across various domains, including natural language understand-
ing, dialogue generation, mathematical reasoning, code generation, and image classification tasks.
The results demonstrate that LoRA-Pro significantly improves LoRA performance and narrows the
performance gap with full fine-tuning.

Limitations. LoRA-Pro still have some limitations: (1) LoRA-Pro still adheres to LoRA’s assump-
tion that ∆W is of low rank. However, this assumption may break down in cases of pre-training or
when there is a large amount of fine-tuning data, potentially leading to suboptimal results. (2) So far,
we have only applied LoRA-Pro to variants that have a structure similar to LoRA. It currently cannot
be applied to structurally different LoRA models, such as DoRA (Liu et al., 2024) or FLoRA (Wen
& Chaudhuri, 2024). We plan to explore these directions in future research.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality explains the ef-
fectiveness of language model fine-tuning. In ACL-IJCNLP, 2021.

Ankur Bapna and Orhan Firat. Simple, scalable adaptation for neural machine translation. In
EMNLP-IJCNLP, 2019.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In NeurIPS, 2020.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Bench-
mark and state of the art. Proceedings of the IEEE, 105(10):1865–1883, 2017.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild. In CVPR, 2014.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained
language models. Nature Machine Intelligence, 5(3):220–235, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models.
arXiv preprint arXiv:2402.12354, 2024.

Ruidan He, Linlin Liu, Hai Ye, Qingyu Tan, Bosheng Ding, Liying Cheng, Jiawei Low, Lidong
Bing, and Luo Si. On the effectiveness of adapter-based tuning for pretrained language model
adaptation. In ACL-IJCNLP, 2021.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 12(7):2217–2226, 2019.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. In NeurIPS, 2022.

Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc Schlipsing, and Christian Igel. Detection
of traffic signs in real-world images: The german traffic sign detection benchmark. In IJCNN,
2013.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In ICML, 2019.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In ICLR, 2022.

Nam Hyeon-Woo, Moon Ye-Bin, and Tae-Hyun Oh. Fedpara: Low-rank hadamard product for
communication-efficient federated learning. In ICLR, 2022.

Damjan Kalajdzievski. A rank stabilization scaling factor for fine-tuning with lora. arXiv preprint
arXiv:2312.03732, 2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In ICCV,
2023.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. Vera: Vector-based random matrix
adaptation. In ICLR, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In ICCV Workshop, 2013.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In EMNLP, 2021.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimension
of objective landscapes. In ICLR, 2018.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
ACL-IJCNLP, 2021.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
train, prompt, and predict: A systematic survey of prompting methods in natural language pro-
cessing. ACM Computing Surveys, 55(9):1–35, 2023.

Shih-yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In ICML,
2024.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning:
Prompt tuning can be comparable to fine-tuning across scales and tasks. In ACL, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular
vectors adaptation of large language models. arXiv preprint arXiv:2404.02948, 2024.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NeurIPS workshop, 2011.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System opti-
mizations enable training deep learning models with over 100 billion parameters. In SIGKDD,
pp. 3505–3506, 2020.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, 2022.

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Vl-adapter: Parameter-efficient transfer learning for
vision-and-language tasks. In CVPR, 2022.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initializa-
tion and momentum in deep learning. In ICML, 2013.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Shaowen Wang, Linxi Yu, and Jian Li. Lora-ga: Low-rank adaptation with gradient approximation.
In NeurIPS, 2024.

Yeming Wen and Swarat Chaudhuri. Batched low-rank adaptation of foundation models. In ICLR,
2024.

Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
Large-scale scene recognition from abbey to zoo. In CVPR, 2010.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qing-
wei Lin, and Daxin Jiang. Wizardlm: Empowering large pre-trained language models to follow
complex instructions. In ICLR, 2024.

Longhui Yu, Weisen Jiang, Han Shi, YU Jincheng, Zhengying Liu, Yu Zhang, James Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. In ICLR, 2024.

Fangzhao Zhang and Mert Pilanci. Riemannian preconditioned lora for fine-tuning foundation mod-
els. In ICML, 2024.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In ICLR, 2023.

Renrui Zhang, Jiaming Han, Chris Liu, Aojun Zhou, Pan Lu, Yu Qiao, Hongsheng Li, and Peng Gao.
Llama-adapter: Efficient fine-tuning of large language models with zero-initialized attention. In
ICLR, 2024.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. In ICML, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. In NeurIPS, 2024a.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen, and
Xiang Yue. OpenCodeInterpreter: Integrating code generation with execution and refinement. In
Findings of ACL, 2024b.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
language models. International Journal of Computer Vision, 130(9):2337–2348, 2022.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

LoRA-Pro: Are Low-Rank Adapters Properly
Optimized?

————Appendix————
The structure of Appendix is as follows,

• Appendix A contains the notation usage in our paper.

• Appendix B contains the proofs of the theorems in the main manuscript.

• Appendix C details the optimization algorithms of the proposed method.

• Appendix D presents additional experimental results.

A NOTATION

In Table 6, we detail the notations utilized in our paper.

Table 6: Description of notations used in the paper.

Notation Description
s scaling factor in LoRA
B ∈ Rm×r, A ∈ Rr×n low rank matrices in LoRA
g = ∂L

∂W ∈ Rm×n gradients of full fine-tuning
gAlora = ∂L

∂A = sBT g ∈ Rr×n gradients of matrix A in LoRA
gBlora = ∂L

∂B = sgAT ∈ Rm×r gradients of matrix B in LoRA
dL differential of the loss function
dA differential of the matrix A
dB differential of the matrix B
∥ · ∥F Frobenius Norm
⟨·, ·⟩F Frobenius inner product

B PROOF OF THEORETICAL RESULTS

B.1 PROOF THAT THE EQUIVALENT GRADIENT IS LOW-RANK

Lemma. Assume B ∈ Rm×r, A ∈ Rr×n and gB ∈ Rm×r, gA ∈ Rr×n represent matrices
and their corresponding gradients in LoRA optimization. We demonstrate that the equivalent
gradient:

g̃ = sgBA+ sBgA, (17)
where s > 0 is the scaling factor, has matrix rank at most 2r.

Proof. Since matrix rank satisfies the property of subadditivity, we have:

rank(g̃) = rank(sgBA+ sBgA) ≤ rank(gBA) + rank(BgA). (18)

Furthermore, for any matrices A and B, rank(AB) ≤ min(rank(A), rank(B)). Therefore, we
can bound the ranks as follows:

rank(gBA) ≤ min(rank(gB), rank(A)) ≤ r (19)

rank(BgA) ≤ min(rank(B), rank(gA)) ≤ r (20)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Thus, in conclusion, the equivalent gradient has a rank of at most 2r:

rank(g̃) ≤ rank(gBA) + rank(BgA) (21)

≤ min(rank(gB), rank(A)) + min(rank(B), rank(gA)) (22)
≤ 2r. (23)

B.2 PROOF OF THEOREM 2.1

Theorem. Assume matrices B ∈ Rm×r, A ∈ Rr×n are both full rank. For the objective
mingA,gB ∥g̃ − g∥2F , the solutions are given by:

gA =
1

s
(BTB)−1BT g +XA =

1

s2
(BTB)−1gAlora +XA (24)

gB =
1

s
[I −B(BTB)−1BT ]gAT (AAT )−1 −BX (25)

=
1

s2
[I −B(BTB)−1BT ]gBlora(AAT )−1 −BX. (26)

Here, X ∈ Rr×r represents an arbitrary matrix.

Proof. For simplicity, we denote L = ∥sBgA + sgBA − g∥2F . To solve the optimization problem,
we need to satisfy the following conditions:

∂L

∂gA
= 2sBT (sBgA + sgBA− g) = 0 (27)

∂L

∂gB
= 2(sBgA + sgBA− g)sAT = 0 (28)

Given that matrices A and B are full-rank, AAT and BTB are invertible. And from Equation (28),
we derive:

gB =
1

s
gAT (AAT )−1 −BgAAT (AAT )−1. (29)

Substituting this into Equation (27), we obtain the following linear equation:

gA[I −AT (AAT )−1A] =
1

s
(BTB)−1BT g[I −AT (AAT )−1A]. (30)

Here, we notice that the matrix P = I −AT (AAT )−1A is a projection matrix with rank n− r. The
solution to the linear equation (30) is:

gA =
1

s
(BTB)−1BT g +XA, (31)

where X ∈ Rr×r represents an arbitrary matrix. We take the solution (31) into Equation (29), we
derive:

gB =
1

s
[I −B(BTB)−1BT ]gAT (AAT )−1 −BX (32)

While we have obtained closed-form solutions for gA and gB , these solutions explicitly depend on
the gradient of the matrix W , i.e., g, which is undesirable since g is unknown during LoRA opti-
mization. Fortunately, the solutions can be transformed into the forms of the gradients of standard
LoRA, where the gradients are:

gAlora = sBT g, gBlora = sgAT . (33)
Therefore, the solutions to the optimization problem can be written as:

gA =
1

s2
(BTB)−1gAlora +XA, (34)

gB =
1

s2
[I −B(BTB)−1BT ]gBlora(AAT )−1 −BX. (35)

In our method, we perform the standard forward and backward passes of LoRA, then adjust the
gradients of A and B using Solutions (34) and (35), and subsequently update them.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B.3 PROOF OF THEOREM 2.2

Theorem. When updating matrices A and B using the closed-form solution from Theo-
rem 2.1, we proceed as follows:

A← A− γgA, (36)

B ← B − γgB , (37)

where γ ≥ 0 denotes the learning rate. Our method ensures a decrease in the loss, akin to
the standard gradient descent algorithm, expressed by:

dL = −γ{⟨gAlora,
1

s2
(BTB)−1gAlora⟩F+⟨gBlora,

1

s2
[I−B(BTB)−1BT ]gBlora(AAT )−1⟩F } ≤ 0

(38)

Proof. In summary, the proof of Theorem 2.2 is divided into two distinct parts. To begin with, we
demonstrate that dL can be expressed in the following form:

dL = −γ{⟨gAlora,
1

s2
(BTB)−1gAlora⟩F + ⟨gBlora,

1

s2
[I −B(BTB)−1BT ]gBlora(AAT )−1⟩F }. (39)

In the second part, we prove that this expression for dL is always less than or equal to zero: dL ≤ 0.

Part I. Therefore, in this part, we first prove Equation (39). During the optimization process, the
differential change in the loss function, dL, can be expressed in terms of the differentials dA and
dB as follows:

dL = ⟨∂L
∂A

,dA⟩F + ⟨ ∂L
∂B

,dB⟩F . (40)

From Equation (36) and (37), we can derive that:

dA = −γgA, dB = −γgB . (41)

Given that ∂L
∂A = gAlora and ∂L

∂B = gBlora, it follows that:

dL = −γ(⟨gAlora, gA⟩F + ⟨gBlora, gB⟩F )

= −γ(⟨gAlora,
1

s2
(BTB)−1gAlora⟩F + ⟨gBlora,

1

s2
[I −B(BTB)−1BT ]gBlora(AAT )−1⟩F

+ ⟨gAlora, XA⟩F − ⟨gBlora, BX⟩F ).

(42)

And we have the following equation:

⟨gAlora, XA⟩F − ⟨gBlora, BX⟩F
=⟨gAloraAT , X⟩F − ⟨BT gBlora, X⟩F
=⟨gAloraAT −BT gBlora, X⟩F
=⟨(sBT g)AT −BT (sgAT ), X⟩F
=0.

(43)

Therefore, we have:

dL = −γ{⟨gAlora,
1

s2
(BTB)−1gAlora⟩F + ⟨gBlora,

1

s2
[I −B(BTB)−1BT ]gBlora(AAT )−1⟩F }. (44)

Part II. In this part, we aim to prove dL ≤ 0. Given that the learning rate γ > 0, it suffices to show
the following inequalities:

⟨gAlora,
1

s2
(BTB)−1gAlora⟩F ≥ 0, (45)

⟨gBlora,
1

s2
[I −B(BTB)−1BT ]gBlora(AAT )−1⟩F ≥ 0. (46)

By proving these inequalities, we can establish that dL ≤ 0 as derived from Equation (39).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

① Proof of ⟨gAlora, 1
s2 (B

TB)−1gAlora⟩F ≥ 0.

To begin with, we need to show that (BTB)−1 is positive definite. To establish this, it is sufficient
to show that BTB is positive definite, as the inverse of a positive definite matrix is also positive
definite. To achieve this, consider any non-zero vector x, and noting that B is full-rank, we have,

⟨x,BTBx⟩ = ⟨Bx,Bx⟩ = ∥Bx∥2 > 0. (47)
This shows that BTB is positive definite. Consequently, (BTB)−1 is positive definite as well. Since
(BTB)−1 is positive definite, and thus we can apply Cholesky decomposition, and (BTB)−1 =
UUT . With this, we have,

⟨gAlora,
1

s2
(BTB)−1gAlora⟩F =

1

s2
⟨gAlora, UUT gAlora⟩F

=
1

s2
⟨UT gAlora, U

T gAlora⟩F

=
1

s2
∥UT gAlora∥2F ≥ 0

(48)

② Proof of ⟨gBlora, 1
s2 [I −B(BTB)−1BT ]gBlora(AAT )−1⟩F ≥ 0.

Similarly, we can prove that matrix (AAT )−1 is positive-definite. By employing Cholesky decom-
position, we express (AAT )−1 = UUT , where U is a lower-triangle matrix. Subsequently, we
define P = I − B(BTB)−1BT . It can be shown that P 2 = P and P is symmetry, indicating that
P is a projection matrix. Consequently, the eigenvalues of P are either 0 or 1, which implies that P
is positive semi-definite. Utilizing the Cholesky decomposition, we derive that P = V V T , where
V is a lower-triangle matrix. Finally, we have:

⟨gBlora,
1

s2
[I −B(BTB)−1BT ]gBlora(AAT )−1⟩F =

1

s2
⟨gBlora, V V T gBloraUUT ⟩F

=
1

s2
⟨V T gBloraU, V

T gBloraU⟩F

=
1

s2
∥V T gBloraU∥2F ≥ 0

(49)

In summary, based on the above proofs, we have demonstrated that:

dL = −γ{⟨gAlora,
1

s2
(BTB)−1gAlora⟩F︸ ︷︷ ︸

≥ 0 as shown in ①

+ ⟨gBlora,
1

s2
[I −B(BTB)−1BT ]gBlora(AAT )−1⟩F︸ ︷︷ ︸

≥ 0 as shown in ②

} ≤ 0

(50)

B.4 PROOF OF THEOREM 2.3

Theorem. Consider the optimization problem,

min
X
∥gA − gAlora∥2F + ∥gB − gBlora∥2F , (51)

where gA and gB are the optimal solutions as stated in Theorem 2.1. The optimal X can be
determined by solving the Sylvester equation:

BTBX +XAAT = − 1

s2
(BTB)−1gAloraA

T , (52)

which has a unique solution X provided that BTB and −AAT do not have any shared
eigenvalues.

Proof. For simplicity, we denote L = ∥gA − gAlora∥2F + ∥gB − gBlora∥2F . To solve the optimization
problem, we need to satisfy the following conditions:

∂L

∂X
= 0. (53)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Since gA and gB are solutions in Theorem 2.1 and gAlora = sBT g and gBlora = sgAT , we obtain
that:

2(gA − gAlora)A
T − 2BT (gB − gBlora) = 0,

⇒ gAAT −BT gB = gAloraA
T −BT gBlora,

⇒ BTBX +XAAT = − 1

s2
(BTB)−1gAloraA

T ,

(54)

which is a Sylvester equation. This equation has a unique solution for X if and only if BTB and
−AAT have no shared eigenvalues.

C OPTIMIZATION ALGORITHMS

In this section, we present the pseudo-codes for implementing our LoRA-Pro method using the
SGD (Sutskever et al., 2013) and AdamW (Loshchilov & Hutter, 2019) optimizers. The details are
provided in Algorithm 1, Algorithm 2, and Algorithm 3, respectively.

LoRA-Pro with SGD optimizer. In the standard SGD algorithm, as illustrated in Algorithm 1, all
we need to do is adjusting the gradients of matrices A and B with the solutions in Theorem 2.1.

Algorithm 1 LoRA-Pro with SGD optimizer

Require: Given initial learning rate γ, scaling factor s.
1: Initialize time step t← 0, low-rank matrices A0 ∈ Rr×n and B0 ∈ Rm×r

2: repeat
3: t← t+ 1
4: gAlora, g

B
lora ← SelectBatch(At−1, Bt−1) ▷ Select batch and return the corresponding

gradients
5: A,B ← At−1, Bt−1 ▷ Obtain the low-rank matrices A and B
6: X ← SolveSylvester(BTBX +XAAT = − 1

s2 (B
TB)−1gAloraA

T ) ▷ Compute X by solving
the sylvester equation

7: gA = 1
s2 (B

TB)−1gAlora +XA ▷ Adjust the gradients of LoRA with Theorem 2.1
8: gB = 1

s2 [I −B(BTB)−1BT ]gBlora(AAT )−1 −BX

9: At ← At−1 − γgA

10: Bt ← Bt−1 − γgB

11: until stopping criterion is met
12: return optimized parameters At and Bt

LoRA-Pro with AdamW optimizer. In AdamW optimizer, the implementation becomes more
complex. We offer two scalable implementation modes for LoRA-Pro with AdamW: efficient mode
and full mode. We use the efficient mode by default. In efficient mode, the memory usage of LoRA-
Pro’s optimizer remains the same as that of standard LoRA, but this mode tends to be less stable.
In full mode, LoRA-Pro aligns more closely with full fine-tuning during the optimization process,
resulting in higher memory usage but improved stability.

In efficient mode, we only need to modify the gradients of matrices A and B. Then, we separately
compute the first- and second-order gradient information for A and B before performing the update.
The detailed algorithm is shown in Algorithm 2. In this mode, memory usage remains consistent
with that of LoRA (Hu et al., 2022), delivering better results, though not as stable as full mode.

In full mode, we aim to closely approximate full fine-tuning during optimization. Several modi-
fications are necessary. Firstly, in order to mimic full fine-tuning, after adjusting the gradients of
matrices A and B, we need to compute the equivalent gradient,

g̃ = sgBA+ sBgA. (55)

Subsequently, we calculate the first and second moments of this equivalent gradient to derive the
corresponding AdamW gradient, g̃AdamW . Secondly, we determine the gradients with respect to
matrices A and B as follows:

g̃A = sBT g̃AdamW , g̃B = sg̃AdamWAT . (56)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 7: Comparison of the AdamW optimizer implementations with LoRA-Pro. We present two
types of AdamW optimizers for LoRA-Pro: the efficient mode, which maintains the same memory
cost as the vanilla LoRA optimizer, and the full mode, which is more aligned with full fine-tuning
and offers greater stability during training.

Memory Cost MT-Bench GSM8K HumanEval

Full FT > 48 GB 5.30±0.11 59.36±0.85 35.31±2.13
LoRA-Pro (Efficient) 23.05 GB 5.86±0.06 54.23±0.79 22.76±0.35
LoRA-Pro (Full) 43.87 GB 6.05±0.25 54.06±0.46 23.98±0.35

Thirdly, the weight decay process must be adjusted. In line with full fine-tuning, the weight decay
is given by:

W ← (1− γλ)(W0 + sBA). (57)

This can be decomposed into:

W0 ← (1− γλ)W0, B ←
√
1− γλB, A←

√
1− γλA (58)

Ablation study on the AdamW optimizer. We conducted experiments to compare the memory cost
differences between the two implementations of the AdamW optimizer, as well as their performance
on MT-Bench, GSM8K, and HumanEval. The results of the study are presented in Table 7. As
shown in the table, the full mode achieves better performance compared to the efficient mode. We
believe this is because the full mode more closely aligns with full fine-tuning during the optimization
process. However, as a trade-off, full mode incurs a higher GPU memory cost due to the calculation
of the first- and second-order momentum information for the equivalent gradients g̃. Despite this, its
memory usage is still significantly lower than that of full fine-tuning (which theoretically requires
56GB of memory). Therefore, we use efficient mode as the default setting for LoRA-Pro.

D ADDITIONAL EXPERIMENTS

D.1 CONVERGENCE SPEED

0 200 400 600 800 1000 1200 1400 1600

0.6

0.7

0.8

0.9

1.0
Wizard-LM

LoRA
LoRA-GA
LoRA-Pro
Full Fine-Tuning

0 500 1000 1500 2000 2500 3000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

MetaMathQA
LoRA
LoRA-GA
LoRA-Pro
Full Fine-Tuning

0 500 1000 1500 2000 2500 3000
0.45

0.50

0.55

0.60

0.65

CodeFeedback
LoRA
LoRA-GA
LoRA-Pro
Full Fine-Tuning

Figure 3: Training loss curves of LoRA, LoRA-GA, LoRA-Pro, and Full Fine-tuning on WizardLM,
MetaMathQA, and CodeFeedback.

In this part, we present the training loss curves for LoRA, LoRA-GA, LoRA-Pro, and Full Fine-
tuning across WizardLM, MetaMathQA, and CodeFeedback datasets. As illustrated in Figure 3,
LoRA-Pro demonstrates a faster convergence speed compared to LoRA and LoRA-GA. Further-
more, LoRA-Pro achieves a lower final loss value upon convergence, indicating its improved effi-
ciency and effectiveness.

D.2 VISUALIZATION OF DIFFERENCES BETWEEN EQUIVALENT GRADIENTS AND FULL
GRADIENTS

In this section, we fine-tune Llama-2-7B on the MetaMathQA100k dataset and visualize the dis-
crepancies between the equivalent gradients of LoRA and LoRA-Pro and the full gradients during
training, i.e., the differences before and after gradient adjustments. We present visualizations for

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Algorithm 2 LoRA-Pro with AdamW optimizer (Efficient Mode)

Require: Given initial learning rate γ, scaling factor s, and β1 = 0.9, β2 = 0.999, ϵ = 10−8, λ ∈ R

1: Initialize time step t ← 0, low-rank matrices A0 ∈ Rr×n and B0 ∈ Rm×r, first momentum
mA

0 ∈ Rr×n, mB
0 ∈ Rm×r, second momentum vAt ∈ Rr×n, vBt ∈ Rm×r

2: repeat
3: t← t+ 1
4: gAlora, g

B
lora ← SelectBatch(At−1, Bt−1) ▷ Select batch and return the corresponding

gradients
5: A,B ← At−1, Bt−1 ▷ Obtain the low-rank matrices A and B
6: X ← SolveSylvester(BTBX +XAAT = − 1

s2 (B
TB)−1gAloraA

T ) ▷ Compute X by solving
the sylvester equation

7: gA = 1
s2 (B

TB)−1gAlora +XA ▷ Adjust the gradients of LoRA with Theorem 2.1
8: gB = 1

s2 [I −B(BTB)−1BT ]gBlora(AAT )−1 −BX

9: mA
t ← β1m

A
t−1 + (1− β1)g

A

10: vAt ← β2v
A
t−1 + (1− β2)g

A ∗ gA

11: m̂A
t ←

mA
t

1−βt
1

12: v̂At ←
vA
t

1−βt
2

13: g̃A ← m̂t√
v̂t+ϵ

14: At ← (1− λγ)At−1

15: At ← At − γg̃A

16: mB
t ← β1m

B
t−1 + (1− β1)g

B

17: vBt ← β2v
B
t−1 + (1− β2)g

B ∗ gB

18: m̂B
t ←

mB
t

1−βt
1

19: v̂Bt ←
vB
t

1−βt
2

20: g̃B ← m̂t√
v̂t+ϵ

21: Bt ← Bt−1 − γg̃B

22: until stopping criterion is met
23: return optimized parameters At and Bt

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Algorithm 3 LoRA-Pro with AdamW optimizer (Full Mode)

Require: Given initial learning rate γ, scaling factor s, original weight matrix W0 ∈ Rm×n, and
β1 = 0.9, β2 = 0.999, ϵ = 10−8, λ ∈ R

1: Initialize time step t ← 0, low-rank matrices A0 ∈ Rr×n and B0 ∈ Rm×r, first momentum
m0 ∈ Rm×n, second momentum vt ∈ Rm×n

2: repeat
3: t← t+ 1
4: gAlora, g

B
lora ← SelectBatch(At−1, Bt−1) ▷ Select batch and return the corresponding

gradients
5: A,B ← At−1, Bt−1 ▷ Obtain the low-rank matrices A and B
6: X ← 0 ▷ X’s value does not affect equivalent gradient
7: gA = 1

s2 (B
TB)−1gAlora +XA ▷ Adjust the gradients of LoRA with Theorem 2.1

8: gB = 1
s2 [I −B(BTB)−1BT ]gBlora(AAT )−1 −BX

9: g̃ ← sgBA+ sBgA ▷ Compute equivalent gradient
10: mt ← β1mt−1 + (1− β1)g̃
11: vt ← β2vt−1 + (1− β2)g̃

2

12: m̂t ← mt

1−βt
1

13: v̂t ← vt
1−βt

2

14: g̃AdamW ← m̂t√
v̂t+ϵ

15: g̃Alora ← sBT g̃AdamW

16: g̃Blora ← sg̃AdamWAT

17: X ← SolveSylvester(BTBX +XAAT = − 1
s2 (B

TB)−1g̃AloraA
T ) ▷ Compute X by solving

the sylvester equation
18: g̃A = 1

s2 (B
TB)−1g̃Alora +XA ▷ Adjust the gradients of LoRA with Theorem 2.1

19: g̃B = 1
s2 [I −B(BTB)−1BT ]g̃Blora(AAT )−1 −BX

20: A←
√
1− γλA ▷ Weight Decay

21: B ←
√
1− γλB

22: W0 ← (1− γλ)W0

23: At ← At−1 − γg̃A

24: Bt ← Bt−1 − γg̃B

25: until stopping criterion is met
26: return optimized parameters At and Bt

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

different optimization modules, including the Q, K, V, O, Up, Down, and Gate layers, and provide
results for these modules across the shallow (1), medium (15), and deep (31) layers of Llama-2-7B.

The results are shown in Figure 4. From the figure, we can draw the following conclusions:

• After gradient adjustments in LoRA-Pro, we observe a significant reduction in the distance
between the equivalent gradients and the full gradients.

• In certain layers, the discrepancy between LoRA’s equivalent gradients and the full gradi-
ents continues to increase (e.g., Layer 1 O, Up, Gate projections; Layer 15 Up and Gate
projections; and Layer 31 O projection). However, in these layers, the discrepancy for
LoRA-Pro remains stable, indicating that LoRA-Pro can consistently align with the full
gradients during training, preventing the model from settling into sub-optimal solutions.

• In deep layers, the discrepancy between equivalent gradients and full gradients decreases
as training progresses, whereas in shallow and medium layers, the discrepancy first in-
creases and then stabilizes. The cause of this phenomenon is not yet clear, and we plan to
investigate it further in future research.

These findings highlight that LoRA-Pro effectively reduces the distance between LoRA and full
gradients during training and ensures continuous alignment with full gradients, underscoring the
efficacy of LoRA-Pro.

D.3 EXPERIMENTS RESULTS WITH DIFFERENT LEARNING RATES

To demonstrate the effectiveness of LoRA-Pro, we evaluated its performance on GSM8K under
learning rates of 1e-5 and 5e-5, comparing it with LoRA and LoRA-GA. The results, presented in
Table 8, show that LoRA-Pro maintains its advantages under both learning rates, highlighting its
robustness to variations in learning rate.

Table 8: Performance comparison of LoRA, LoRA-GA, LoRA-Pro on GSM8K with learning rates
1e-5, 2e-5, and 5e-5.

GSM8K LoRA LoRA-GA LoRA-Pro

1e-5 36.65±0.82 50.25±0.62 52.05±0.12
2e-5 42.08±0.04 53.60±0.30 54.23±0.79
5e-5 46.41±0.16 52.89±0.19 55.70±0.96

D.4 ADDITIONAL EXPERIMENTS ON LATEST MODELS

To further demonstrate the effectiveness of LoRA-Pro, we conducted additional experiments using
the latest model, LLaMA-3.1-8B (Dubey et al., 2024). We fine-tuned the model using these three
methods,LoRA, LoRA-GA, and LoRA-Pro,on the MetaMath100k dataset and evaluated its perfor-
mance on the GSM8k dataset. All results are averaged over three different random seeds.

As shown in Table 9, LoRA-Pro demonstrates a clear advantage over both LoRA and LoRA-GA
when applied to the LLaMA-3.1-8B model, further highlighting its effectiveness.

Table 9: Performance comparison of LoRA, LoRA-GA, and LoRA-Pro with Llama-2-7B and
Llama-3.1-8B.

GSM8K LoRA LoRA-GA LoRA-Pro

Llama-2-7B 42.08±0.04 53.60±0.30 54.23±0.79
Llama-3.1-8B 71.04±0.26 72.20±1.15 73.77±0.80

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0 500 1000 1500 2000 2500 3000
0.0050

0.0055

0.0060

0.0065

0.0070

0.0075

0.0080

0.0085

Diff_lorapro_eq_g_Layer_1_q_proj
Diff_lora_eq_g_Layer_1_q_proj

0 500 1000 1500 2000 2500 3000
0.026

0.028

0.030

0.032

0.034

0.036

0.038

0.040

Diff_lorapro_eq_g_Layer_15_q_proj
Diff_lora_eq_g_Layer_15_q_proj

0 500 1000 1500 2000 2500 3000

0.0100

0.0105

0.0110

0.0115

0.0120

0.0125

0.0130 Diff_lorapro_eq_g_Layer_31_q_proj
Diff_lora_eq_g_Layer_31_q_proj

0 500 1000 1500 2000 2500 3000

0.0050

0.0055

0.0060

0.0065

0.0070 Diff_lorapro_eq_g_Layer_1_k_proj
Diff_lora_eq_g_Layer_1_k_proj

0 500 1000 1500 2000 2500 3000

0.024

0.026

0.028

0.030

0.032

0.034

0.036

0.038

Diff_lorapro_eq_g_Layer_15_k_proj
Diff_lora_eq_g_Layer_15_k_proj

0 500 1000 1500 2000 2500 3000
0.0105

0.0110

0.0115

0.0120

0.0125

0.0130

0.0135

0.0140 Diff_lorapro_eq_g_Layer_31_k_proj
Diff_lora_eq_g_Layer_31_k_proj

0 500 1000 1500 2000 2500 3000
0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

Diff_lorapro_eq_g_Layer_1_v_proj
Diff_lora_eq_g_Layer_1_v_proj

0 500 1000 1500 2000 2500 3000

0.07

0.08

0.09

0.10

0.11

Diff_lorapro_eq_g_Layer_15_v_proj
Diff_lora_eq_g_Layer_15_v_proj

0 500 1000 1500 2000 2500 3000

0.020

0.022

0.024

0.026

0.028

0.030 Diff_lorapro_eq_g_Layer_31_v_proj
Diff_lora_eq_g_Layer_31_v_proj

0 500 1000 1500 2000 2500 3000

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Diff_lorapro_eq_g_Layer_1_o_proj
Diff_lora_eq_g_Layer_1_o_proj

0 500 1000 1500 2000 2500 3000

0.05

0.06

0.07

0.08

0.09

Diff_lorapro_eq_g_Layer_15_o_proj
Diff_lora_eq_g_Layer_15_o_proj

0 500 1000 1500 2000 2500 3000

0.015

0.016

0.017

0.018

0.019

0.020 Diff_lorapro_eq_g_Layer_31_o_proj
Diff_lora_eq_g_Layer_31_o_proj

0 500 1000 1500 2000 2500 3000

0.022

0.024

0.026

0.028

0.030

Diff_lorapro_eq_g_Layer_1_up_proj
Diff_lora_eq_g_Layer_1_up_proj

0 500 1000 1500 2000 2500 3000

0.045

0.050

0.055

0.060

0.065

0.070

Diff_lorapro_eq_g_Layer_15_up_proj
Diff_lora_eq_g_Layer_15_up_proj

0 500 1000 1500 2000 2500 3000

0.06

0.07

0.08

0.09

0.10

Diff_lorapro_eq_g_Layer_31_up_proj
Diff_lora_eq_g_Layer_31_up_proj

0 500 1000 1500 2000 2500 3000

0.54

0.56

0.58

0.60

0.62

0.64

0.66
Diff_lorapro_eq_g_Layer_1_down_proj
Diff_lora_eq_g_Layer_1_down_proj

0 500 1000 1500 2000 2500 3000

0.050

0.055

0.060

0.065

Diff_lorapro_eq_g_Layer_15_down_proj
Diff_lora_eq_g_Layer_15_down_proj

0 500 1000 1500 2000 2500 3000

0.10

0.12

0.14

0.16

0.18 Diff_lorapro_eq_g_Layer_31_down_proj
Diff_lora_eq_g_Layer_31_down_proj

0 500 1000 1500 2000 2500 3000
0.018

0.019

0.020

0.021

0.022

0.023

0.024

0.025

0.026

Diff_lorapro_eq_g_Layer_1_gate_proj
Diff_lora_eq_g_Layer_1_gate_proj

0 500 1000 1500 2000 2500 3000

0.040

0.045

0.050

0.055

0.060

Diff_lorapro_eq_g_Layer_15_gate_proj
Diff_lora_eq_g_Layer_15_gate_proj

0 500 1000 1500 2000 2500 3000
0.030

0.035

0.040

0.045

0.050

0.055 Diff_lorapro_eq_g_Layer_31_gate_proj
Diff_lora_eq_g_Layer_31_gate_proj

Figure 4: Visualization of the differences between the equivalent gradients of LoRA, LoRA-Pro, and
the full-parameter gradients during training, i.e., ∥g̃−g∥F . The rows illustrate the differences across
various modules, including Q, K, V, O, Up, Down, and Gate. The columns show the differences at
different depths, categorized as shallow (1), medium (15), and deep layers (31).

23


	Introduction
	Method
	Revisiting Low-Rank Adaptation
	LoRA v.s. Full Fine-Tuning
	Low-Rank Adaptation with Equivalent Gradient

	Experimental Results
	Results on Natural Language Understanding Tasks
	Results on Large Language Models
	Results on Image Classification Tasks
	Ablation Study

	Related Work
	Conclusion
	Notation
	Proof of Theoretical Results
	Proof that the Equivalent Gradient is Low-Rank
	Proof of Theorem 2.1
	Proof of Theorem 2.2
	Proof of Theorem 2.3

	Optimization Algorithms
	Additional Experiments
	Convergence Speed
	Visualization of Differences Between Equivalent Gradients and Full Gradients
	Experiments Results with Different Learning Rates
	Additional Experiments on Latest Models


