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Abstract

Supervised learning for causal discovery from observational data often achieves competitive
performance despite seemingly avoiding the explicit assumptions that traditional methods
require for identifiability. In this work, we analyze CSIvA (Ke et al., 2023b) on bivariate
causal models, a transformer architecture for amortized inference promising to train on
synthetic data and transfer to real ones. First, we bridge the gap with identifiability theory,
showing that the training distribution implicitly defines a prior on the causal model of
the test observations: consistent with classical approaches, good performance is achieved
when we have a good prior on the test data, and the underlying model is identifiable.
Second, we find that CSIvA can not generalize to classes of causal models unseen during
training: to overcome this limitation, we theoretically and empirically analyze when training
CSIvA on datasets generated by multiple identifiable causal models with different structural
assumptions improves its generalization at test time. Overall, we find that amortized
causal discovery still adheres to identifiability theory, violating the previous hypothesis from
Lopez-Paz et al. (2015) that supervised learning methods could overcome its restrictions.

1 Introduction

Causal discovery aims to uncover the underlying causal relationships between variables of a system from pure
observations, which is crucial for answering interventional and counterfactual queries when experimentation
is impractical or unfeasible (Peters et al., 2017; Pearl, 2009; Spirtes, 2010). Unfortunately, causal discovery
is inherently ill-posed (Glymour et al., 2019): unique identification of causal directions requires restrictive
assumptions on the class of structural causal models (SCMs) that generated the data (Shimizu et al., 2006;
Hoyer et al., 2008; Zhang & Hyvärinen, 2009). These theoretical limitations often render existing methods
inapplicable, as the underlying assumptions are usually untestable or difficult to verify in practice (Montagna
et al., 2023a).

Recently, supervised learning algorithms trained on synthetic data have been proposed to overcome the need for
specific hypotheses, which restrains the application of classical causal discovery methods to real-world problems
(Ke et al., 2023b; Lopez-Paz et al., 2015; Li et al., 2020; Lippe et al., 2022; Lorch et al., 2022). Seminal work from
Lopez-Paz et al. (2015) argues that this learning-based approach to causal discovery would allow dealing with
complex data-generating processes and would greatly reduce the need for explicitly crafting identifiability con-
ditions a-priori: despite this ambitious goal, the output of these methods is generally considered unreliable, as
no theoretical guarantee is provided. A pair of non-identifiable structural causal models can be associated with
different causal directed acyclic graphs (DAGs) G ≠ G̃, while entailing the same joint distribution p on the sys-
tem’s variables. It is thus unclear how a learning algorithm presented with observational data generated from p
would be able to overcome these theoretical limits and correctly identify a unique causal structure. However, the
available empirical evidence seems not to reflect impossibility results, as these methods yield surprising general-
ization abilities on several synthetic benchmarks. Our work aims to bridge this gap by studying the performance
of a transformer architecture for causal discovery through the lens of the theory of identifiability from obser-
vational data. Specifically, we analyze the CSIvA (Causal Structure Induction via Attention) model for causal
discovery (Ke et al., 2023b), focusing on bivariate graphs, as they offer a controlled yet non-trivial setting for the
investigation. As our starting point, we provide closed-form examples that identify the limitations of CSIvA in
recovering causal structures of linear non-Gaussian and nonlinear additive noise models, which are notably iden-
tifiable, and demonstrate the expected failures through empirical evidence. These findings suggest that the class
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of structural causal models that can be identified by CSIvA is inherently dependent on the specific class of SCMs
observed during training. Thus, the need for restrictive hypotheses on the data-generating process is intrinsic to
causal discovery, both in the traditional and modern learning-based approaches: assumptions on the test distri-
bution either are posited when selecting the algorithm (traditional methods) or in the choice of the training data
(learning-based methods). To address this limitation, we theoretically and empirically analyze when training
CSIvA on datasets generated by multiple identifiable SCMs with different structural assumptions improves its
generalization at test time. Our experimental findings are based on the analysis of ∼1M test runs. In summary:

• We show that the class of structural causal models that CSIvA can identify is defined by the class of
SCMs observed through samples during the training. We reinforce the notion that identifiability in
causal discovery inherently requires assumptions, which must be encoded in the training data in the
case of learning algorithms for amortized inference: this violates a previous hypothesis in Lopez-Paz
et al. (2015), which suggests that these methods could exceed the boundaries of identifiability.

• We empirically show that CSIvA is expected to fail to generalize on datasets generated by structural
causal models characterized by mechanism types or noise terms distributions unseen during training.
While this appears as a significant limit of amortized causal discovery, systematic analysis has been
disregarded by previous work in the literature.

• To mitigate this limitation, we study the benefits of CSIvA training on mixtures of causal models.
We analyze when algorithms learned on multiple models are expected to identify broad classes of
SCMs (unlike many classical methods). Empirically, we show that training on samples generated by
multiple identifiable causal models with different assumptions on mechanisms and noise distribution
results in significantly improved generalization abilities.

2 Related works

In this paper, we study amortized inference of bivariate causal graphs, i.e. supervised optimization of an
inference model to directly predict a causal structure from newly provided data. In particular, this is the first
work that draws a connection between identifiability theory and amortized inference of causal DAGs. Dai
et al. (2023) studies supervised learning of the graph skeleton, limiting its analysis to the role of identifiability
of unshielded triplets. Several algorithms have instead been proposed.

Algorithms for amortized inference closely related to CSIvA. In the context of purely observational
data, Lopez-Paz et al. (2015) defines a classification problem mapping the kernel mean embedding of the data
distribution to a causal graph, while Li et al. (2020) relies on equivariant neural network architectures. More
recently, Lippe et al. (2022) and Lorch et al. (2022) proposed learning on interventional data, in addition to
observations (in the same spirit as CSIvA). Despite different algorithmic implementations, the target object of
estimation of most of these methods is the distribution over the space of all possible graphs, conditional on the
input dataset (similarly, the ENCO algorithm in Lippe et al. (2022) models the conditional distribution of indi-
vidual edges). This justifies our choice of restricting our study to the CSIvA architecture (despite this being a
clear limitation), as in the infinite observational sample limit, these methods approximate the same distribution.

Other learning-based algorithms for causal discovery. Out of the scope of this work, there are
methods that necessarily require interventional data (Brouillard et al., 2020; Ke et al., 2023a; Scherrer et al.,
2022), and learning-based algorithms unsuitable for amortized inference (Lachapelle et al., 2020; Ng et al.,
2020; Zheng et al., 2018; Zhang et al., 2022; Bello et al., 2022).

Differences with Lopez-Paz et al. (2015). Before moving forward, we remark on the main differences
between our paper and Lopez-Paz et al. (2015), as both works concentrate on supervised learning for the
inference of bivariate causal graphs. Lopez-Paz et al. (2015) frames causal discovery as a classification
problem, where the goal is estimating and mapping the kernel mean embeddings of the distribution of the
observed data to the correct causal order (assuming a causal relation is in place). Building on the theory of
reproducing kernel Hilbert spaces, they provide finite sample learning rates. In particular, their study assumes
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observations generated by identifiable causal models. In contrast, we aim to (i) empirically investigate what
conditions enable identifiability in amortized causal discovery (ii) theoretically and empirically investigate
how to exploit the known identifiability results to train algorithms with improved test generalization.

3 Background and motivation

We start introducing structural causal models (SCMs), an intuitive framework that formalizes causal relations.
Let X be a set of random variables in R defined according to the set of structural equations:

Xi := fi(XPAG
i
, Ni), ∀i = 1, . . . , k. (1)

Ni ∈ R are noise random variables. The function fi is the causal mechanism mapping the set of direct causes
XPAG

i
of Xi and the noise term Ni, to Xi’s value. The causal graph G is a directed acyclic graph (DAG)

with nodes X = {X1, . . . , Xk}, and edges {Xj → Xi : Xj ∈ XPAG
i
}, with PAGi indices of the parent nodes

of Xi in G. The causal model induces a density pX over the vector X.

3.1 Causal discovery from observational data

Causal discovery from observational data is the inference of the causal graph G from a dataset of i.i.d.
observations of the random vector X. In general, without restrictive assumptions on the mechanisms and the
noise distributions, the direction of edges in the graph G is not identifiable, i.e. it can not be found from the
population density pX . In particular, it is possible to identify only a Markov equivalence class, which is the
set of graphs encoding the same conditional independencies as the density pX . To clarify with an example,
consider the causal graph X1 → X2 associated with a structural causal model inducing a density pX1,X2 . If
the model is not identifiable, there exists an SCM with causal graph X2 → X1 that entails the same joint
density pX1,X2 . The set {X1 → X2, X2 → X1} is the Markov equivalence class of the graph X1 → X2, i.e.
the set of all graphs with X1, X2 mutually dependent. Clearly, in this setting, even the exact knowledge of
pX1,X2 cannot inform us about the correct causal direction.
Definition 1 (Identifiable causal model). Consider a structural causal model with underlying graph G and
pX joint density of the causal variables. We say that the model is identifiable from observational data if
the density pX can not be entailed by a structural causal model with graph G̃ ≠ G.

We define the post-additive noise model (post-ANM) as the causal model with the set of equations:

Xi := f2,i(f1,i(XPAG
i
) + Ni), ∀i = 1, . . . , d, (2)

with f2,i invertible map and mutually independent noise terms. When f2,i is a nonlinear function, the
post-ANM amounts to the identifiable post-nonlinear model (PNL) (Zhang & Hyvärinen, 2009). When f2,i is
the identity function and f1,i nonlinear, it simplifies to the nonlinear additive noise model (ANM)(Hoyer
et al., 2008; Peters et al., 2014), which is known to be identifiable, and is described by the set of structural
equations:

Xi := f1,i(XPAG
i
) + Ni. (3)

If, additionally, we restrict the mechanisms f1,i to be linear and the noise terms Ni to a non-Gaussian
distribution, we recover the identifiable linear non-Gaussian additive model or LiNGAM (Shimizu et al., 2006):

Xi =
∑

j∈PAG
i

αjXj + Ni, αj ∈ R. (4)

3.2 Motivation and problem definition

Causal discovery from observational data relies on specific assumptions, which can be challenging to verify
in practice (Montagna et al., 2023a). To address this, recent methods leverage supervised learning for the
amortized inference of causal graphs (or simply amortized causal discovery), i.e. optimization of an inference

3



Under review as submission to TMLR

model to directly predict a causal structure from newly provided data (Lopez-Paz et al., 2015; Li et al., 2020;
Lippe et al., 2022; Lorch et al., 2022; Ke et al., 2023a; Löwe et al., 2020). While these approaches also aim to
reduce reliance on explicit identifiability assumptions, they often lack a clear connection to the existing causal
discovery theory, making their outputs generally unreliable. We illustrate this limitation through an example.
Example 1. We consider the CSIvA transformer architecture proposed by Ke et al. (2023b), which can learn
a map from observational data to a causal graph. The authors of the paper show that, in the infinite sample
regime, the CSIvA architecture exactly approximates the conditional distribution p(·|D) over the space of
possible graphs, given a dataset D. Identifiability theory in causal discovery tells us that if the class of
structural causal models that generated the observations is sufficiently constrained, then there is only one graph
that can fit the data within that class. For example, consider the case of a dataset that is known to be generated
by a nonlinear additive noise model, and let p(·|D, ANM) be the conditional distribution that incorporates this
prior knowledge on the SCM: then p(·|D, ANM) concentrates all the mass on a single point G∗, the true graph
underlying the D observations. Instead, in the absence of restrictions on the structural causal model, all the
graphs in a Markov equivalence class are equally likely to be the correct solution given the data. Hence, p(·|D),
the distribution learned by CSIvA, assigns equal probability to each graph in the Markov equivalence class of G∗.

Our arguments of Example 1 are valid for all learning methods that approximate the conditional distribution
over the space of graphs given the input data (Ke et al., 2023b; Lopez-Paz et al., 2015; Li et al., 2020;
Lippe et al., 2022; Lorch et al., 2022), and suggest that these algorithms are at most informative about
the equivalence class of the causal graph underlying the observations. However, the available empirical
evidence does not seem to highlight these limitations, as in practice these methods can infer the true causal
DAG on several synthetic benchmarks. Thus, further investigation is necessary if we want to rely on their
output in any meaningful sense. In this work, we analyze these "black-box" approaches through the lens
of established theory of causal discovery from observational data (causal inference often lacks experimental
data, which we do not consider). We study in detail the CSIvA architecture (Ke et al., 2023b) (described in
Appendix A), a variation of the transformer neural network (Vaswani et al., 2017) for the supervised learning
of algorithms for amortized causal discovery. This model is optimized via maximum likelihood estimation,
i.e. finding Θ that minimizes −EG,D[ln p̂(G|D; Θ)], where p̂(G|D; Θ) is the conditional distribution of a graph
G given a dataset D parametrized by Θ. We limit the analysis to CSIvA as it is a simple yet competitive
end-to-end approach to learning causal models. While this is clearly a limitation of the paper, our theoretical
and empirical conclusions exemplify both the role of theoretical identifiability in modern approaches and
the new opportunities they provide. Additionally, it fits well within a line of works arguing that specifically
transformers can learn causal concepts Jin et al. (2024); Zhang et al. (2024); Scetbon et al. (2024) and can
be explicitly trained to identify different assumptions in context (Gupta et al., 2023).

4 Experimental results through the lens of theory

In this section, we present a comprehensive analysis of bivariate causal discovery with transformers and its
relation to the theoretical boundaries of causal discovery from observational data. We show that suitable
assumptions must be encoded in the training distribution to ensure the identifiability of the test data, and
we additionally study the effectiveness of training on mixtures of causal models to overcome these limitations,
improving generalization abilities. In Appendix C we discuss how our findings can be naturally extended to
the case of multivariate causal models: the intuition is that, in this case, identifiability can be guaranteed by
iteratively verifying that the causal order of all bivariate subgraphs is individually identifiable (Theorem 28
in Peters et al. (2014)). As a result, it is common to limit the analyses to bivariate graphs (see e.g. Hoyer
et al. (2008); Zhang & Hyvärinen (2009); Immer et al. (2023); Xi et al. (2025)), which justifies our choice.

4.1 Experimental design

We concentrate our research on causal models of two variables, causally related according to one of the two
graphs X → Y , Y → X. Bivariate models are the simplest non-trivial setting with a well-known theory
of causality inference (Hoyer et al., 2008; Zhang & Hyvärinen, 2009; Peters et al., 2014), but also amenable
to manipulation. This allows for comprehensive training and analysis of diverse SCMs and facilitates a clear
interpretation of the results.
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Datasets. Unless otherwise specified, in our experiments we train CSIvA on a sample of 15000 synthetically
generated datasets, consisting of 1500 i.i.d. observations. Each dataset is generated according to a single
class of SCMs, defined by the mechanism type and the noise terms distribution. The coefficients of the
linear mechanisms are sampled in the range [−3, −0.5] ∪ [0.5, 3], removing small coefficients to avoid
close-to-unfaithful effects (Uhler et al., 2012). Nonlinear mechanisms are parametrized according to a
neural network with random weights, a strategy commonly adopted in the literature of causal discovery
(see Appendix B.2; alternatively, we provide experiments on data generated simulating nonlinear mechanisms
by sampling from a Gaussian process, as described in Appendix D.7). The post-nonlinearity of the PNL
model consists of a simple map z 7→ z3. Noise terms are sampled from common distributions and a
randomly generated density that we call mlp, previously adopted in Montagna et al. (2023a), defined by
a standard Gaussian transformed by a multilayer perceptron (MLP) (Appendix B.2). We name these
datasets mechanism-noise to refer to their underlying causal model. For example, data sampled from a
nonlinear ANM with Gaussian noise are named nonlinear-gaussian. More details on the synthetic data
generation schema are found in Appendix B.2. All data are standardized by their empirical variance to
remove opportunities to learn shortcuts (Geirhos et al., 2020; Reisach et al., 2021; Montagna et al., 2023b).

Metric and random baseline. As our metric we use the structural Hamming distance (SHD), which is
the number of edge removals, insertions or flips required to transform the predicted graph to the ground-truth.
In the context of bivariate causal graphs with a single edge, this is simply an error count, so correct inference
corresponds to SHD = 0, and an incorrect prediction gives SHD = 1. Additionally, we define a reference
random baseline, which assigns a causal direction according to a fair coin, achieving SHD = 0.5 in expectation.
Each architecture we analyze in the experiments is trained 3 times, with different parameter initialization
and training samples: the SHD presented in the plots is the average of each of the 3 models on 1500 distinct
test datasets of 1500 points each, and the error bars are 95% confidence intervals.

We detail the training hyperparameters in Appendix B.1. Next, we analyze our experimental results, starting
by investigating how well CSIvA generalizes on distributions unseen during training.

4.2 Warm up: is CSIvA capable of in and out-of-distribution generalization?

In-distribution generalization. First, we investigate the generalization of CSIvA on datasets sampled
from the structural casual model that generates the train distribution, with mechanisms and noise
distributions fixed between training and testing. We call this in-distribution generalization. The main
goal of these experiments is to validate that the performance of our CSIvA implementation is non-trivial.
As a benchmark, we present the accuracy of two state-of-the-art approaches from the literature on causal
discovery: we consider the DirectLiNGAM and NoGAM algorithms (Shimizu et al., 2011; Montagna et al.,
2023c), respectively designed for the inference on LiNGAM and nonlinear ANM generated data1. The results
of Figure 1 show that CSIvA can properly generalize to unseen samples from the training distribution: the
majority of the trained models present SHD close to zero and comparable to the relative benchmark algorithm.

Out-of-distribution generalization. In practice, we generally do not know the SCM defining the test
distribution, so we are interested in CSIvA’s ability to generalize to data sampled from a class of causal
models that is unobserved during training. We call this out-of-distribution generalization (OOD). We study
OOD generalization to different noise terms, analyzing the network performance on datasets generated from
causal models where the mechanisms are fixed with respect to the training, while the noise distribution
varies (e.g., given linear-mlp training samples, testing occurs on linear-uniform data). Orthogonally to these
experiments, we empirically validate CSIvA’s OOD generalization over different mechanism types (linear,
nonlinear, post-nonlinear), while leaving the noise distribution (mlp) fixed across test and training. In Figure
2a, we observe that CSIvA cannot generalize across the different mechanisms, as the SHD of a network tested
on unseen causal mechanisms approximates that of the random baseline. Further, Figure 2b shows that

1The causal-learn implementation of the PNL algorithm could not perform better than random on our synthetic post-nonlinear
data, and we observed that this was due to the sensitivity of the algorithm to the variance scale. So we report the plot of Figure
1c without benchmark comparison. We remark that the point of this experiment is not to make any claims on CSIvA being
state-of-the-art but to validate that the performance we obtain in our re-implementation is non-trivial. This is clear for PNL,
even without comparison.
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Figure 1: In-distribution generalization of CSIvA trained and tested on data generated according to the same structural
causal models, fixing mechanisms, and noise distributions between training and testing. As baselines for comparison,
we use DirectLiNGAM on linear SCMs and NoGAM on nonlinear ANM (we use their causal-learn and dodiscover
implementations). CSIvA performance is clearly non-trivial and generalizing well.

out-of-distribution generalization across noise terms does not work reliably, and it is hard to predict when
it might occur. We note that these findings are novel in the literature: OOD experiments in the sense we
define can not be found in Ke et al. (2023b) in the first place; Li et al. (2020) empirical results are limited
to the OOD generalization from linear Gaussian models to linear models with Exponential, Gumbel and
Poisson noise. Lorch et al. (2022) analyses generalization from SCMs with Gaussian noise to Laplace and
Cauchy distributions, and fixed mechanisms class. The remaining literature on amortized inference that
we discuss in Section 2 generally disregards these experiments.

Implications. CSIvA generalizes well to test data generated by the same class of SCMs used for training,
in line with the findings in Ke et al. (2023b), which validates our implementation and training procedure.
However, it struggles when the test data are out-of-distribution, generated by causal models with different
mechanism types and noise distributions that those it was trained on. From a practical perspective, this
is a relevant finding, given that existing works on amortized causal discovery lacks systematic experiments
on the OOD setting. While training on a wider class of SCMs might overcome this limitation, it requires
caution. The identifiability of causal graphs indeed results from the interplay between the data-generating
mechanisms and noise distribution. However, as we argue in our Example 1, the class of causal models
that a supervised learning algorithm can identify is generally not clear. In what follows, we investigate this
point and its implications for CSIvA, showing that the identifiability of the test samples can be ensured
by imposing suitable assumptions on the class of SCMs generating the training distribution.

4.3 How does CSIvA relate to identifiability theory for causal graphs?

The CSIvA algorithm does not make structural assumptions about the causal model underlying the input
data. This implies that the output of this method is unclear: as CSIvA should target the conditional
distribution p(·|D) over the space of graphs, in the absence of restrictions on the functional mechanisms
and the distribution of the noise terms, the causal graph X → Y is indistinguishable from Y → X, as they
are both equally likely to underlie the joint density pX,Y generating the data. As we discuss in Example 1,
the graphical output of the trained architecture could at most identify the equivalence class of the true causal
graph. Yet, our experiments of Section 4.2 show that CSIvA is capable of good in-distribution generalization,
often inferring the correct DAG at test time. We explain this seeming contradiction with the following
hypothesis, which motivates the experimental analysis in the remainder of this section.
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Figure 2: Out-of-distribution generalisation. We train three CSIvA models on data sampled from SCMs with linear,
nonlinear additive, and post-nonlinear mechanisms; and fixed mlp noise distribution. In Figure 2a we test across
different mechanism types, with mlp-distributed noise terms both in test and training. In Figure 2b we test across
different noise distributions, with test mechanism types fixed from training. CSIvA struggles to generalize to unseen
causal mechanisms and often displays degraded performance over new noise distributions.

Hypothesis (informal). The class of structural causal models over which CSIvA is expected to
perform well is specified by the class of SCMs on which training occurred, and can be analysed with
the tools of identifiability theory.

Notably, if this hypothesis is verified, we can analyse when CSIvA is expected or not to work well; the
remainder of this work empirically studies this claim. Before moving forward, we present the following
example adapted from Hoyer et al. (2008), which supports and clarifies our statement.

Example 2. Consider the causal model Y = f(X) + N, where f(X) = −X and pX , pN are Gumbel densities
pX(x) = exp(−x − exp(−x)) and pN (n) = exp(−n − exp(−n)). This model satisfies the assumptions of the
LiNGAM, so it is identifiable, in the sense that a backward linear model with the same distribution does not
exist. However, in this special case, we can build a backward nonlinear additive noise model X = g(Y )+Ñ with
independent noise terms: taking pY (y) = exp(−y − 2 log(1 + exp(−y))) to be the density of a logistic distribu-
tion, pÑ (ñ) = exp(−2ñ−exp(−ñ)) and g(y) = log(1+exp(−y)); we see that pX,Y can factorize according to two
opposite causal directions, as pX,Y (x, y) = pN (y−f(x))pX(x) = pÑ (x−g(y))pY (y). Given a dataset D of obser-
vations from the forward linear model, causal discovery methods like DirectLiNGAM (Shimizu et al., 2011) can
provably identify the correct causal direction X → Y , assuming that sufficient samples are provided. Instead,
the behavior of CSIvA seems hard to predict: given that the network approximates the conditional distribution
p(·|D) over the possible graphs, for D with arbitrary many samples we have p(X → Y |D) = p(Y → X|D) = 0.5.
On the other hand, given the prior knowledge that the data-generating SCM is a linear non-gaussian additive
noise model, we have p(X → Y |D, LiNGAM) = 1, because the LiNGAM is identifiable. In this sense, the
class of structural causal models that CSIvA correctly infers appears to be determined by the structural causal
models underlying the generation of the training data. Under this hypothesis, training CSIvA exclusively on
LiNGAM-generated data is equivalent to learning the distribution p(·|D, LiNGAM), such that the network
should be able to identify the forward linear model, whereas it could only infer the equivalence class of the
causal graph if its training datasets include observations from a nonlinear additive noise model.

The empirical results of Figure 3a show that CSIvA behaves according to our hypothesis: when training ex-
clusively occurs on datasets {Di,→}i generated by the forward linear-gumbel model of Example 2, the network
can identify the causal direction of test data generated according to the same SCM. Similarly, the transformer
trained on datasets {Di,←}i from the backward nonlinear model of the example can generalize to test data com-
ing from the same distribution. According to our claim, instead, the network that is trained on the union of the
training samples {Di,→}i ∪{Di,←}i from the forward and backward models (50:50 ratio in Figure 3a) displays
the same test SHD (around 0.5) as a random classifier assigning the causal direction with equal probability.
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Figure 3: Experiments on identifiability theory. Figure 3a shows the SHD of models trained on different ratios of
linear and nonlinear invertible data of Example 2. In Figure 3b we test the performance on linear-Gaussian data.
Models are trained with different ratios of samples from linear and nonlinear SCMs with Gaussian noise terms. The
validation results showcase that the networks were trained successfully. In both cases, CSIvA behaves according to
identifiability theory, failing to predict on invertible data (50:50 ratio) and linear Gaussian models.

Further, we investigate CSIvA’s relation with known identifiability theory by training and testing the
architecture on data from a linear Gaussian model, which is well-known to be unidentifiable. Not surprisingly,
the results of Figure 3b show that none of the algorithms that we learn can infer the causal order of linear
Gaussian models with test SHD any better than a random baseline.

Implications. Our experiments show that CSIvA learns algorithms that closely follow identifiability theory
for causal discovery. In particular, while the method itself does not require explicit assumptions on the
data-generating process, the chosen training data ultimately determines the class of causal models identifiable
during inference. Notably, previous work has argued that supervised learning approaches in causal discovery
would help with "dealing with complex data-generating processes and greatly reduce the need of explicitly
crafting identifiability conditions a-priori", Lopez-Paz et al. (2015). In the case of CSIvA, this expectation
does not appear to be fulfilled, as the assumptions still need to be encoded explicitly in the training data.
However, this observation opens two new important questions: (1) Can we train a single network to encompass
multiple (or even all) identifiable causal structures? (2) How much ambiguity might exist between these
identifiable models? We start by answering this second question.

4.4 An identifiability argument in favor of learning from multiple causal models

Example 2 of the previous section shows that elements of distinct classes of identifiable structural causal
models, such as LiNGAM and nonlinear ANM, may become non-identifiable when we consider their union.
In this section, we discuss the identifiability of the post-additive noise models. Previously, Hoyer et al. (2008)
showed that the set of distributions generated according to the additive noise model equation 3 and that is
non-identifiable is negligible. Later, Zhang & Hyvärinen (2009) characterized non-identifiable post-nonlinear
models in terms of the properties of their functional mechanisms, and the distribution of the noise terms. In
this section, we discuss how these results put together show that the set of distributions generated according
to a post-ANM that is non-identifiable is negligible.

Let X, Y be a pair of random variables generated according to the causal direction X → Y and the
post-additive noise model structural equation:

Y = f2(f1(X) + NY ), (5)

where NY and X are independent random variables, and f2 is invertible. If the SCM is non-identifiable, the
data-generating process can be described by a backward model with the structural equation:

X = g2(g1(Y ) + NX), (6)
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(c) PNL test data

Figure 4: Mixture of causal mechanisms. We train four models on samples from structural casual models with different
mechanism types. We compare their test SHD (the lower, the better) against networks trained on datasets generated
according to a single type of mechanism. The dashed line indicates the test SHD of a model trained on samples with
the same mechanisms as test SCM. Training on multiple causal models with different mechanisms (mixed bars) always
improves performance compared to training on single SCMs.

NX independent from Y , and g2 invertible. We introduce the random variables X̃, Ỹ , such that the forward
and backward equations can be rewritten as

Y = f2(Ỹ ), Ỹ := f1(X) + NY ,

X = g2(X̃), X̃ := g1(Y ) + NX .

We note that equivalently the following invertible additive noise models on X̃, Ỹ hold:

Ỹ = hY (X̃) + NY , hY := f1 ◦ g2, (7)
X̃ = hX(Ỹ ) + NX , hX := g1 ◦ f2. (8)

Equations equation 7 and equation 8 reduce the problem of studying the identifiability of a post-ANM to
that of studying the identifiability of an additive noise model, as done in Theorem 1 of Hoyer et al. (2008),
which we repropose in Appendix E: intuitively, the statement of the theorem says that the space of all
continuous distributions generated according to a bivariate additive noise model and that is non-identifiable
is contained in a 2-dimensional space. As the space of continuous distributions of random variables is
infinite-dimensional, we conclude that the ANM is generally identifiable. Given that, according to Equation
equation 7 and Equation equation 8, the post-ANM can be refactored in an additive noise model, the
guarantees of identifiability still hold (for the formal statement and proof see Appendix E).

Implications. As we discussed, the post-ANM is generally identifiable, which suggests that the setting
of Example 2 is rather artificial. This result provides the theoretical ground for training causal discovery
algorithms on datasets generated from multiple identifiable SCMs. This is particularly appealing in the case
of CSIvA, given the poor OOD generalization ability observed in our experiments of Section 4.2.

4.5 Can we train CSIvA on multiple causal models for better generalization?

In this section, we investigate the benefits of training over multiple causal models, i.e. on samples generated
by a combination of classes of identifiable SCMs characterized by different mechanisms and noise terms
distribution. Our motivation is as follows: given that our empirical evidence shows that CSIvA is capable of
in-distribution generalization, whereas dramatically degrades the performance when testing occurs out-of-
distribution, it is thus desirable to increase the class of causal models represented in the training datasets.
We separately study the effects of training over multiple mechanisms and multiple noise distributions and
compare the testing performance against architectures trained on samples of a single SCM.
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(b) Nonlinear test data
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(c) PNL test data

Figure 5: Mixture of noise distributions. We train three networks on samples from SCMs with different noise terms
distributions and fixed mechanism types: linear, nonlinear, and post-nonlinear. We present their test SHD (the
lower, the better) on data from SCMs with the mechanisms fixed with respect to training, and noise terms changing
between each dataset. Training on multiple causal models with different noises (all distributions bars) always improves
performance compared to training on single SCMs with fixed mlp noise (only mlp bars).

Mixture of causal mechanisms. We consider four networks optimized by training of CSIvA on datasets
generated from pairs (or triples) of distinct SCMs, with fixed mlp noise and which differ in terms of their
mechanisms type: linear and nonlinear; nonlinear and post-nonlinear; linear and post-nonlinear; linear,
nonlinear and post-nonlinear. The number of training datasets for each architecture is fixed (15000) and
equally split between the causal models with different mechanism types. The results of Figure 4 show that
the networks trained on mixtures of mechanisms all present significantly better test SHD compared to CSIvA
models trained on a single mechanism type. We find that learning on multiple SCMs improves the SHD
from ∼ 0.5 to ∼ 0.2 both on linear and nonlinear test data (Figures 4a and 4b), and even better accuracy
is achieved on post-nonlinear samples, as shown in Figure 4c.

Mixture of noise distributions. Next, we analyze the test performance of three CSIvA networks
optimized on samples from structural causal models that have different distributions for their noise terms,
while keeping the mechanism types fixed. Figure 5 shows that training over different noises (beta, gamma,
gumbel, exponential, mlp, uniform) always results in a network that is agnostic with respect to the noise
distributions of the SCM generating the test samples, always achieving SHD < 0.1, with the exception of
datasets with mlp error terms (0.2 average SHD on linear and nonlinear data).

Implications. We have shown that learning on mixtures of SCMs with different noise term distributions
and mechanism types leads to models generalizing to a much broader class of structural causal models during
testing. Hence, combining datasets generated from multiple models looks like a promising framework to
overcome the limited out-of-distribution generalization abilities of CSIvA observed in Section 4.2. However, it
is easier to incorporate prior assumptions on the class of causal mechanisms (linear, non-linear, post-non-linear)
compared to the noise distributions (which are potentially infinite). This introduces a trade-off between
amortized inference and classical methods for causal discovery: for example, RESIT, NoGAM, and CAM
(Peters et al., 2014; Montagna et al., 2023c; Bühlmann et al., 2014) algorithms require no assumptions on the
noise type, but only work for a limited class of mechanisms (nonlinear).

5 Conclusion

In this work, we investigate the interplay between identifiability theory and supervised learning for amortized
inference of causal graphs, using CSIvA as the ground of our study. Consistent with classical algorithms, we
demonstrate that good performance can be achieved if (i) we have a good prior on the structural causal model
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generating the test data (ii) the setting is identifiable. In particular, prior knowledge of the test distribution
is encoded in the training data in the form of constraints on the structural causal model underlying their
generation. With these results, we highlight the need for identifiability theory in modern learning-based
approaches to causality, while past works have mostly disregarded this connection. Further, our findings
provide the theoretical ground for training on observations sampled from multiple classes of identifiable
SCMs, a strategy that improves test generalization to a broad class of causal models. Finally, we highlight an
interesting new trade-off regarding identifiability: traditional methods like LiNGAM, RESIT, and PNL require
strong restrictions on the structural mechanisms underlying the data generation (linear, nonlinear additive, or
post-nonlinear) while generally being agnostic relative to the noise terms distribution. Training on mixtures
of causal models instead offers an alternative that is less reliant on assumptions on the mechanisms, while
incorporating knowledge about all possible noise distributions in the training data is practically impossible to
achieve. We leave it to future work to reproduce our analysis on a wider class of architectures, as well as
extend our study to interventional data with more than two nodes.
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A Learning to induce: causal discovery with transformers

A.1 A supervised learning approach to causal discovery

First, we describe the training procedure for the CSIvA architecture, which aims to learn the distribution of
causal graphs conditioned on observational and/or interventional datasets. We omit interventional datasets
from the discussion as they are not of interest to our work. Training data are generated from the joint
distribution pG,D between a graph G and a dataset D. First, we sample a set of directed acyclic graphs {Gi}n

i=1
with nodes X1, . . . , Xd, from a distribution pG . Then, for each graph we sample a dataset of m observations
of the graph nodes Di = {xj

1, . . . , xj
d}m

j=1, i = 1, . . . , n. Hence, we build a training dataset {Gi, Di}n
i=1.

The CSIvA model defines a distribution p̂G|D(·; Θ) of graphs conditioned on the observational data and
parametrized by Θ. Given an invertible map G 7→ A from a graph to its binary adjacency matrix representation
of d × d entries (where Aij = 1 iff Xi → Xj in G), we consider an equivalent estimated distribution p̂A|D(·; Θ),
which has the following autoregressive form:

p̂A,D(A|D; Θ) =
d2∏

l=1
σ(Al; ρ = fΘ(A1, . . . , Al−1, D)),

where σ(·; ρ) is a Bernoulli distribution parametrized by ρ. ρ itself is a function of fΘ defined by the
encoder-decoder transformer architecture, taking as input previous elements of the matrix A (here represented
as a vector of d2 entries) and the dataset D. Θ is optimized via maximum likelihood estimation, i.e.
Θ∗ = arg minΘ −EG,D[ln p̂(G|D; Θ)], which corresponds to the usual cross-entropy loss for the Bernoulli
distribution. Training is achieved using stochastic gradient descent, in which each gradient update is
performed using a pair (Di, Ai), i = 1 . . . , d. In the infinite sample limit, we have p̂G|D(·; Θ∗) = pG|D(·), while
in the finite-capacity case, it is only an approximation of the target distribution.

A.2 CSIvA architecture

In this section, we summarize the architecture of CSIvA, a transformer neural network that can learn a map
from data to causally interpreted graphs, under supervised training.

Transformer neural network. Transformers (Vaswani et al., 2017) are a popular neural network architec-
ture for modeling structured, sequential data data. They consist of an encoder, a stack of layers that learns
a representation of each element in the input sequence based on its relation with all the other sequence’s
elements, through the mechanism of self-attention, and a decoder, which maps the learned representation to
the target of interest. Note that data for causal discovery are not sequential in their nature, which motivates
the adaptations introduced by Ke et al. (2023b) in their CSIvA architecture.

CSIvA embeddings. Each element xj
i of an input dataset is embedded into a vector of dimensionality E.

Half of this vector is allocated to embed the value xj
i itself, while the other half is allocated to embed the

unique identity for the node Xi. We use a node-specific embedding because the values of each node may have
very different interpretations and meanings. The node identity embedding is obtained using a standard 1D
transformer positional embedding over node indices. The value embedding is obtained by passing xj

i , through
a multi-layer perceptron (MLP).

CSIvA alternating attention. Similarly to the transformer’s encoder, CSIvA stacks a number of identical
layers, performing self-attention followed by a nonlinear mapping, most commonly an MLP layer. The
main difference relative to the standard encoder is in the implementation of the self-attention layer: as
transformers are in their nature suitable for the representation of sequences, given an input sample of D
elements, self-attention is usually run across all elements of the sequence. However, data for causal discovery
are tabular, rather than sequential: one option would be to unravel the n×d matrix of the data, where n is the
number of observations and d the number of variables, into a vector of n · d elements, and let this be the input
sequence of the encoder. CSIvA adopts a different strategy: the self-attention in each encoder layer consists
of alternate passes over the attribute and the sample dimensions, known as alternating attention Kossen et al.
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Hypeparameter Value
Hidden state dimension 64
Encoder transformer layers 8
Decoder transformer layers 8
Num. attention heads 8
Optimizer Adam
Learning rate 10−4

Samples per dataset (n) 1500
Num. training datasets 15000
Num. iterations < 150000
Batch size 5

Table 1: Hyperparameters for the training of the CSIvA models of the experiments in Section 4.

(2021). As a clarifying example, consider a dataset {(xi
1, xi

2)}n
i=1 of n i.i.d. samples from the joint distribution

of the pair of random variables X1, X2. For each layer of the encoder, in the first step (known as attention
between attributes), attention operates across all nodes of a single sample (xi

1, xi
2) to encode the relationships

between the two nodes. In the second step (attention between samples), attention operates across all samples
(x1

k, . . . , xn
k ), k ∈ {1, 2} of a given node, to encode information about the distribution of single node values.

CSIvA encoder summary. The encoder produces a summary vector si with H elements for each node Xi,
which captures essential information about the node’s behavior and its interactions with other nodes. The
summary representation is formed independently for each node and involves combining information across
the n samples. This is achieved with a method often used with transformers that involves a weighted average
based on how informative each sample is. The weighting is obtained using the embeddings of a summary
"sample" n + 1 to form queries, and embeddings of node’s samples {xj

i }n
j=1 to provide keys and values, and

then using standard key-value attention.

CSIvA decoder. The decoder uses the summary information from the encoder to generate a prediction of
the adjacency matrix A of the underlying G. It operates sequentially, at each step producing a binary output
indicating the prediction Âi,j of Ai,j , proceeding row by row. The decoder is an autoregressive transformer,
meaning that each prediction Âi,j is obtained based on all elements of A previously predicted, as well as
the summary produced by the encoder. The method does not enforce acyclicity, although Ke et al. (2023b)
shows that in cyclic outputs genereally don’t occur, in practice.

B Training details

B.1 Hyperparameters

In Table 1 we detail the hyperparameters of the training of the network of the experiments. We define an
iteration as a gradient update over a batch of 5 datasets. Models are trained until convergence, using a
patience of 5 (training until five consecutive epochs without improvement) on the validation loss - this always
occurs before the 25-th epoch (corresponding to ≈ 150000 iterations). The batch size is limited to 5 due to
memory constraints.

B.2 Synthetic data

In this section, we provide additional details on the synthetic data generation, which was performed with
the causally2 Python library (Montagna et al., 2023a). Our data-generating framework follows that of
Montagna et al. (2023a), an extensive benchmark of causal discovery methods on different classes of SCMs.

2https://causally.readthedocs.io/en/latest/
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Distribution of the noise terms. We generated datasets from structural causal models with the following
distribution of the noise terms: Beta, Gamma, Gaussian (for nonlinear data), Gumbel, Exponential, and
Uniform. Additionally, we define the mlp distribution by nonlinear transformations of gaussian samples from
a guassian distribution centered at zero and with standard deviation σ uniformly sampled between 0.5 and 1.
The nonlinear transformation is parametrized by a neural network with one hidden layer with 100 units, and
sigmoid activation function. The weights of the network are uniformly sampled in the range [−1.5, 1.5]. We
additionally standardized the output of each mlp sample by the empirical variance computed over all samples.

Causal mechanisms. The nonlinear mechanisms of the PNL model and the nonlinear ANM model are
generated by a neural network with one hidden layer with 10 hidden units, with a parametric ReLU activation
function. The network weights are randomly sampled according to a standard Gaussian distribution (we refer
to data with nonlinear mechanisms sampled according to this approach as NN-data). The linear mechanisms
are generated by sampling the regression coefficients in the range [−3, −0.5] ∪ [0.5, 3].

NN-data generation: literature review. We present an extensive list of works adopting neural networks
for the sampling of nonlinear mechanisms, similarly to our work: Brouillard et al. (2020; 2021); Lippe et al.
(2022); Bello et al. (2022); Montagna et al. (2023a;b); Ke et al. (2023a;b); Reizinger et al. (2023); Massidda
et al. (2023); Tran et al. (2024). This suggests that our data generation strategy is established in the literature
of causality. Additional experiments with sampling of nonlinear mechanisms from Gaussian processes are
presented in Appendix D.7.

Data are standardized with their empirical variance, which removes the presence of shortcuts which could be
learned by the network, notably varsortability (Reisach et al., 2021) and score-sortability (Montagna et al.,
2023b).

B.3 Computer resources

Our experiments were run on a local computing cluster, using any and all available GPUs (all NVIDIA). For
replication purposes, GTX 1080 Ti’s are entirely suitable, as the batch size was set to match their memory
capacity, when working with bivariate graphs. All jobs ran with 10GB of RAM and 4 CPU cores. The results
presented in this paper were produced after 145 days of GPU time, of which 68 were on GTX 1080 Ti’s, 13
on RTX 2080 Ti’s, 11 on A10s, 19 on A40s, and 35 on RTX 3090s. Together with previous experiments, while
developing our code and experimental design, we used 376 days of GPU time (for reference, at a total cost of
492.14 Euros), similarly split across whichever GPUs were available at the time: 219 on GTX 1080 Ti’s, 38
on RTX 2080 Ti’s, 18 on A10s, 63 on RTX 3090s, 31 on A40s, and 6 on A100s.

C CSIvA identifiability properties on multivariate SCMs

In the main manuscript, we limit our empirical and theoretical analysis of the identifiability guarantees
provided by CSIvA to the case of bivariate causal models. In this section, we show how our findings are
expected to extend to the multivariate setting. Our starting point is Theorem 28 from Peters et al. (2014): the
intuition is that identifiability of multivariate additive noise models can be guaranteed by iteratively verifying
that the causal order of all bivariate subgraphs is individually identifiable. We formalize this reporting the
following set of definitions and results from Peters et al. (2014).
Condition 1 (Condition 19 of Peters et al. (2014)). Consider an additive noise model with structural
equations X2 = f(X1) + N , X1, N independent random variables. The triple (f, pX1 , pN ) does not solve the
following differential equation for all pairs x1, x2 with f ′(x2)ν′′(x2 − f(x1)) ̸= 0:

ξ′′′ = ξ′′
(

f ′′

f ′
− ν′′′f ′

ν′′

)
+ ν′′′ν′f ′′f ′

ν′′
− ν′(f ′′)2

f ′
− 2ν′′f ′′f ′ + ν′f ′′′, (9)

Here, ξ := log pX1 , ν := log pN , the logarithms of the strictly positive densities. The arguments x2 − f(x1),
x1, and x1 of ν, ξ and f respectively, have been removed to improve readability.
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The intuition is that a bivariate additive noise model (which can be seen as a reparametrization of a post-
nonlinear model, as shown in our Section 4.4) is identifiable if it has a density that satisfies the above
Condition 1. This can be generalized to the case of multivariate ANMs where, for identifiability to hold,
Condition 1 must be verified for each pair of causally related variables in the SCM: when this is verified, we
refer to a restricted additive noise model.
Definition 2 (Definition 27 of Peters et al. (2014)). Consider an additive noise model with structural
equations Xi := fi(XPAG

i
) + Ni, i = 1, . . . , k, independent noise terms and causal graph G. We call this

SCM a restricted additive noise model if for all Xj ∈ X, Xi ∈ XPAG
j
, and all sets XS ⊆ X, S ⊂ N, with

XPAG
j

\ {Xi} ⊆ XS ⊆ XGNDj
\ {Xi, Xj} (where NDj is the set of non descendants of the node Xj in the graph

G), there is a value xS with p(xS) > 0, such that the triplet
(fj(xPAG

j
\{i}, ·), pXi|XS=xS

, pNj )

satisfies Condition 1. Here, fj(xPAG
j
\{i}, ·) denotes the mechanism function xi 7→ fj(xPAG

j
). Additionally, we

require the noise variables to have positive densities and the functions fj to be continuous and three times
continuously differentiable.

In the above definition we adopted the following notation: for a random vector X = (X1, . . . , Xn), and a set
S ⊆ {1, . . . , n}, we define XS as the vector with elements {Xi : i ∈ S}.

Finally, the next theorem formalizes the intuition we’ve advocated so far: the restricted additive noise model
of Definition 2, i.e. an SCM whose pairwise causal relations are individually identifiable, is itself identifiable.
Theorem 1 (Theorem 28 of Peters et al. (2014)). Let X be generated by a restricted additive noise model
with graph G, and assume that the causal mechanisms fj are not constant in any of the input arguments, i.e.
for Xi ∈ XPAG

j
, there exist xi ̸= x′i such that fj(xPAG

j
\{i}, xi) ̸= fj(xPAG

j
\{i}, x′i). Then, G is identifiable.

We note that this relation between bivariate and multivariate identifiability was recently exploited for causal
discovery with optimal transport by Tu et al. (2022)

Discussion and multivariate identifiability guarantees of transformers. The above theorem states
that a restricted ANM is identifiable. According to our Definition 2, an additive noise model Xh :=
fh(XPAG

h
) + Nh, h = 1, . . . , k is restricted if each pair of connected nodes Xi → Xj , for each XPAG

j
\ {Xi} ⊆

XS ⊆ XGNDj
\ {Xi, Xj} (think of XS as the set of all possible causes of Xj , except Xi), can define a bivariate

SCM of the form (fj(xPAG
j
\{i}, ·), pXi|XS=xS

, pNj ) that satisfies Condition 1, i.e. that is identifiable. How
does this relate to our findings? Our experiments and analysis of Section 4.3 validate the hypothesis that
transformers align with the theory of identifiability in the case of training and inference on bivariate graphs.
Given Theorem 1, we know that multivariate identifiability is a property of SCMs where each pair of causes
and effects can define a bivariate structural causal model that is itself identifiable: this implies that the
empirical guarantees of identifiability we verify for transformers (via CSIvA) on bivariate models must extend
to multivariate models. This is apparent by contradiction: say we train a CSIvA architecture that can infer
the causal direction of a multivariate linear Gaussian model (which is notoriously non-identifiable). This
means that our algorithm can infer the causal direction for each bivariate subgraph consisting of two variables
connected according to a linear Gaussian structural equation: this would contradict our experimental results
presented in Fig. 3b and analyzed in Section 4.3.

D Further experiments

In this section, we provide additional experiments on real-world data, on the scaling properties of CSIvA in
the number of training samples, and benchmark CSIvA performance in comparison to several well-established
or state-of-the-art methods for causal discovery, with identifiability guarantees under different assumptions:
DirectLiNGAM (Shimizu et al., 2011) for inference on linear non-Gaussian models, CAM (Bühlmann et al.,
2014) for inference of additive noise models with additive mechanisms, NoGAM (Montagna et al., 2023c)
and GraNDAG (Lachapelle et al., 2020) for inference on ANMs (the latter is taken from the continuous
optimization literature of causal discovery, already mentioned in the related works Section 2).
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Figure 6: Average SHD (the lower, the better) on real-world datasets of CSIvA models that are trained on synthetic
datasets generated with linear, nonlinear additive, and post-nonlinear mechanisms and fixed mlp noise distribution
(linear-mlp, anm-mlp, pnl-mlp bars) and mixed mechanisms and mixed noise distributions (mixed-mixed bar).
Performance is tested on bivariate models. We observe that the model optimized with mixed training is on par or
outperforms the other algorithms.

D.1 Experiments on real-world datasets

We consider the accuracy of CSIvA trained on different dataset configurations and tested on real-world
datasets. In particular, we perform evaluation on the Tübingen pairs dataset (Mooij et al., 2016), the Sachs
biological dataset (Sachs et al., 2005), the AutoMPG dataset on cars fuel consumption (Bache & Lichman,
2013) and the Sprinkler dataset, a simple dataset on the causal relations between the binary categorical
variables rain, sprinkler on/off, wet grass. Given that our algorithms are trained on bivariate models,
from each multivariate dataset we extract all possible two variables subgraphs where this operation does not
introduce new confounding effects. This results in 9 datasets from Sachs, 3 datasets from AutoMPG, and 2
datasets from Sprinkler. We consider 102 pairs from the Tübingen dataset.

Real-world generalization of mixed-trained models. In Fig. 6 we illustrate the average accuracy
per dataset type (Sachs, AutoMPG, Sprinkler, Tübingen) of each CSIvA model. In particular, we want to
probe the goodness of mixed training in real-world scenarios. To this end, we train four architectures on the
following dataset configurations: linear-mlp, anm-mlp, pnl-mlp, mixed-mixed, where the latter denotes the
model trained on SCMs with linear, additive nonlinear and post-nonlinear mechanisms, and Beta, Gamma,
Gumbel, Exponential, MLP, and Uniform noise distributions. We find the following interesting outcome: the
mixed-mixed architecture is on par with the others on the Sprinkler and the Sachs datasets and outperforms
the other methods on the AutoMPG and the Tübingen pairs datasets. Despite these results must be taken
cautiously, they provide evidence of a strong result, that mixed training appears to be beneficial even in
real-world scenarios, those of actual interest in applications.

Benchmark with classic causal discovery. We probe CSIvA test generalization in comparison with
DirectLiNGAM, CAM, NoGAM, and GraNDAG methods. According to Fig. 7, interestingly we find that the
mixed-mixed CSIvA model (trained on SCMs with linear, additive nonlinear and post-nonlinear mechanisms,
and Beta, Gamma, Gumbel, Exponential, MLP, Uniform noise distributions) matches with or outperforms
the other methods on all the test tasks. This provides additional empirical evidence on the benefits of the
mixed training procedure we propose to achieve better test generalization.
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Figure 7: Average SHD (the lower, the better) on real-world datasets. The CSIvA model is trained on synthetic
datasets generated with mixed mechanisms and mixed noise distributions (csiva (mixed) bar). As benchmark methods,
we consider DirectLiNGAM, CAM, NoGAM, and GraNDAG. Performance is tested on bivariate models. We observe
that the model optimized with mixed training is on par or outperforms the other algorithms.

D.2 Benchmarking CSIvA generalization with classical causal discovery algorithms

In this section, we analyze the results of Fig. 8, where we compare the CSIvA trained on mixed mechanisms
(linear, nonlinear, post-nonlinear) and mixed noises (all noise except for Gaussian) with the benchmark
methods DirectLiNGAM, CAM, NoGAM, GraNDAG. Given that we want to probe CSIvA test generalization,
we run inference over the following dataset configurations: linear-mixed (i.e. SCMs considering all possible
noise distributions, except for Gaussian), anm-mixed, pnl-mixed, and mixed-mlp (i.e. SCMs with linear,
nonlinear, post-nonlinear mechanisms). Fig. 8 shows results in line with our expectations: DirectLiNGAM,
CAM, NoGAM, and GraNDAG achieve their best accuracy on data generated by SCMs respecting their
assumptions, while degrading their performance on the other models; the CSIvA architecture trained on a
mixture of SCMs with different mechanisms and noise distributions matches with or tops all other methods,
in all the considered settings (while being outperformed on the anm and linear data, CSIvA still retains good
average SHD accuracy).

D.3 Experiments with different sizes of the training dataset

In this section, we explore how CSIvA test generalization scales when training occurs on different numbers of
training samples. In the experiments on the main manuscript, each algorithm is optimized on 15000 datasets,
where each dataset and the underlying causal graph corresponds to a training data point. We now compare
the test SHD when training occurs on 5000 and 10000 datasets. One clear point emerges from the results
of Fig. 9, that is our results on the benefits of the mixed training procedure are consistent for each size of
the training dataset we considered. Moreover, we note that the performance of CSIvA does not appear to
degrade due to the decrease in the number of training points.

D.4 Can we learn to infer causal order from linear Gaussian data?

We ask whether CSIvA trained on non-identifiable models can implicitly learn to predict the causal direction
of identifiable SCMs. For this purpose, we consider CSIvA optimized on linear Gaussian data and test
its performance on several datasets sampled from structural causal models with different configurations of
mechanisms and noise distributions: linear-mixed (with noise terms sampled according to all distributions
except for Gaussian), anm-mixed, pnl-mixed, mixed-mlp (with mechanisms generated according to linear,
nonlinear, post-nonlinear equations), anm-gauss, and pnl-gauss. The results of Fig. 10 present strong evidence
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Figure 8: Average SHD (the lower, the better) on simulated datasets. The CSIvA model is trained on synthetic
datasets generated with mixed mechanisms and mixed noise distributions (csiva (mixed) bar). As benchmark methods,
we consider DirectLiNGAM, CAM, NoGAM, and GraNDAG. Performance is tested on bivariate models. We observe
that, in general, the model optimized with mixed training is on par or outperforms the other algorithms.
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(a) LiNGAM training data (mlp noise)
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(b) ANM training data (mlp noise)
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(c) PNL training data (mlp noise)
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Figure 9: Average SHD (the lower, the better) of CSIvA models trained with 5000, 10000, 15000 data points.
The algorithms are tested on simulated datasets generated with linear, nonlinear and post-nonlinear mechanisms
(linear-mixed, anm-mixed, pnl-mixed entries on the x axis) and mixed-mlp datasets, generated with mixed mechanism
types and fixed mlp noise distribution. We observe that (i) the mixed training improves the test generalization,
irrespective of the training dataset size; (ii) CSIvA maintains its performance stable across different training dataset
sizes.
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Figure 10: Average SHD (the lower, the better) of CSIvA trained on datasets generated by linear Gaussian models, which
are non-identifiable. Performance is tested on simulated datasets generated according to several SCM configurations.
We observe that training on non-identifiable data yields an algorithm that performs with average accuracy of 0.5,
equivalent to a coin flip random baseline, across all the test tasks.

that models trained on non-identifiable SCMs can not infer the causal order: in fact, we see that consistently
across all datasets CSIvA average SHD approximates 0.5, the performance of classification with a coin flip.
This is in line with our expectations. In agreement with our motivating hypothesis (Section 4), in Section 4.3
we have empirically shown that CSIvA can model the class of the SCM generating the observed data and
exploit this information to infer the correct causal DAG (instead of a less specific Markov equivalence class)
when this is identifiable. Moreover, in our Section 4.2 our experiments show that CSIvA can not generalize
to SCM classes unseen during training. In light of these findings, it is intuitive that an architecture trained
on non-identifiable linear Gaussian data can only try to fit a linear Gaussian model, irrespective of the input
data. Then, when inferring the causal direction, given that CSIvA assumes the data to be generated according
to a linear Gaussian SCM, both the forward and backward directions are equally plausible, which explains
the observed SHD close to 0.5.

D.5 Experiments with bivariate independent graphs

In the main manuscript, we consider training and testing of CSIvA on bivariate graphs with an edge: X → Y ,
Y → X. This can be phrased as a classification problem with two labels. We motivate our choice by noticing
that, in the bivariate setting, identifiability is a property of connected graphs: the empty graph with no edge
defines a Markov equivalence class with one element, i.e. a singleton. This is known to be identifiable without
explicit assumptions on the functional form of the mechanisms or the noise term distributions in the causal
model. The goal of this section is to show that, if we include datasets generated according to an empty graph
in the training procedure, CSIvA can learn to disambiguate between the three classes (the empty graph,
X → Y , Y → X). To motivate our claim, we notice that classifying empty and connected graphs can be
done by testing independence between the input variables: previous works phrase independence testing as a
classification task and show that this can be learned via deep neural networks (Bellot & van der Schaar, 2019;
Sen et al., 2017). The experiments of Fig. 11 sustain our claim. We consider three CSIvA architectures, each
trained on independent pairs and one between linear, nonlinear, or post-nonlinear data. Our results show
that the neural network can learn to disambiguate between the three classes in all scenarios.

D.6 Mixed training with unlimited budget

We present our experimental results on one further question, to help clarify the results in the main text of the
paper. We aim to understand when to make tradeoffs between computational resources, and having models
that have been trained on a wider variety of SCMs. We compare training on multiple SCMs to single-SCM
training, when all models see the same amount of training data from each SCM type as a non-mixed model
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Figure 11: Average SHD (the lower, the better) for CSIvA trained on independent pairs and one between linear,
nonlinear, or post-nonlinear data. Each algorithm is tested on the same class of structural causal models it was trained
on. We note that in all three scenarios, CSIvA learns to distinguish all classes with almost optimal accuracy (i.e.,
SHD close to 0.

(i.e. a mixed network trains on 15, 000 linear datasets and 15, 000 PNL datasets, instead of 15, 000 divided
between the two SCM types).

In the main text of this paper, we compare neural networks trained on a mix of structural causal models
(e.g. noise distributions, or mechanism types), to models trained on a single mechanism-noise combination,
where all models have the same amount of training data, 15, 000 datasets. In mixed training, we split these
evenly, so a "lin, nl" model is trained on 7, 500 datasets from linear SCMs, and 7, 500 from nonlinear SCMs.
Our results in this framework are promising, and show that for many combinations of SCM types, we can
train one model instead of two, and achieve good progress, while making a 50% savings on training costs.
However, if our training budget is high/unlimited, we should also ask whether we can we achieve the same
performance as a model trained on a single SCM type. Fig. 12 shows good results in this direction - the
models trained with the same number of datasets per SCM type as an unmixed model had similar (or even
better, for PNL data) performance as the un-mixed model trained on the same SCM type as the test data.
These mixed models are also significantly more useful than having 2 or 3 separate models per SCM type, as
they have good across-the-board performance. However, if we used the same computational resources to train
3 separate networks (one for each mechanism type) and wanted to use them for causal discovery on a dataset
with unknown assumptions, we would be left with the rather difficult task of deciding which model to trust.

D.7 Experiments with Gaussian process nonlinear mechanisms

In this section we present results obtained training and testing CSIvA on synthetic data with nonlinear
mechanisms sampled from a Gaussian process with a unit bandwidth RBF kernel (we call data generated
according to this approach as GP-data). In particular, for each variable Xi node of the graph G generated
according to model equation 1 we define the nonlinear mechanism fi(XPAG

i
) = N (0, K(XPAG

i
, XPAG

i
)),

a multivariate normal distribution centered at zero and with covariance matrix as the Gaussian kernel
K(XPAG

i
, XPAG

i
), where XPAG

i
are the observations of the parents of the node Xi. Together with our strategy

adopted in the experiments in the main text of parametrizing nonlinearities with random neural networks
(NN-data), this is one of the most common approaches in the literature.

GP-data generation: literature review. We present an extensive list of works adopting Gaussian
processes for the sampling of nonlinear mechanisms: Rolland et al. (2022); Montagna et al. (2023a;b;c);
Bühlmann et al. (2014); Mooij et al. (2016); Lachapelle et al. (2020); Wang et al. (2021); Chen et al. (2023);
Mooij et al. (2011); Monti et al. (2019). This suggests that our data generation strategy is established in the
causality literature.
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(a) Linear test data
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(b) Nonlinear test data
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(c) PNL test data

Figure 12: Mixtures of causal mechanisms, with varying amounts of training data. We train eight models on samples
from structural casual models with different mechanisms. Four (in purple), were trained on 15, 000 samples for each
SCM type (so the "lin,nl" model saw 30, 000 samples in total, and the "all" model saw 45, 000), and the other four
(blue) are the same as in Fig. 4, and were trained on 15, 000 samples in total, evenly split between the SCM types they
were trained on. We compare their test SHD (the lower, the better) against networks trained on datasets generated
according to a single type of mechanism. The dashed line indicates the test SHD of a model trained on samples with
the same mechanisms as the test SCM. Training on multiple causal models with different mechanisms (mixed bars)
always improves performance compared to training on single SCMs.
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(c) PNL1

Figure 13: In-distribution generalization (GP-data) of CSIvA trained and tested on data generated according to the
same structural causal models, fixing mechanisms, and noise distributions between training and testing. Nonlinear
mechanisms for nonlinear and pnl data are sampled from a Gaussian process. As baselines for comparison, we
use DirectLiNGAM on linear SCMs and NoGAM on nonlinear ANM (we use their causal-learn and dodiscover
implementations). CSIvA performance is clearly non-trivial and generalizing well.

Summary of the GP-data experiments. Figures from 13 to 16 replicate the main text experiments
involving nonlinear mechanisms either in the training or testing data. The results on GP-data agree with
our findings on NN-data: CSIvA still shows poor OOD generalization under different training and test
mechanisms, and generally for different training and testing noise distribution (except for PNL data). Similar
to the case with NN-data, test generalization improves under mixed training.

E Theoretical results and proofs

In this section, we state and prove the identifiability of the post-ANM discussed in Section 4.3, as a corollary
of Theorem 1 of Hoyer et al. (2008). The forward and backward models of equations equation 5 and equation 6
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Figure 14: Out-of-distribution generalisation (GP-data). We train three CSIvA models on data sampled from
SCMs with linear, nonlinear additive, and post-nonlinear mechanisms; and fixed mlp noise distribution. Nonlinear
mechanisms for nonlinear and pnl data are sampled from a Gaussian process. In Figure 14a we test across different
mechanism types, with mlp-distributed noise terms both in test and training. In Figure 14b we test across different
noise distributions, with test mechanism types fixed from training. CSIvA struggles to generalize to unseen causal
mechanisms and often displays degraded performance over new noise distributions.
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(c) PNL test data

Figure 15: Mixture of causal mechanisms (GP-data). We train four models on samples from structural casual models
with different mechanism types. Nonlinear mechanisms for nonlinear and pnl data are sampled from a Gaussian
process. We compare their test SHD (the lower, the better) against networks trained on datasets generated according
to a single type of mechanism. The dashed line indicates the test SHD of a model trained on samples with the same
mechanisms as test SCM. Training on multiple causal models with different mechanisms (mixed bars) always improves
performance compared to training on single SCMs.
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0.00 0.25 0.50 0.75
SHD

beta

gamma

gumbel

exp

mlp

uniform

Te
st

 n
oi

se

0.00 0.25 0.50 0.75
SHD

0.00 0.25 0.50 0.75
SHD

all distributions only mlp

(b) Nonlinear test data
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Figure 16: Mixture of noise distributions (GP-data). We train three networks on samples from SCMs with different
noise terms distributions and fixed mechanism types: linear, nonlinear, and post-nonlinear. Nonlinear mechanisms
for nonlinear and pnl data are sampled from a Gaussian process. We present their test SHD (the lower, the better)
on data from SCMs with the mechanisms fixed with respect to training, and noise terms changing between each
dataset. Training on multiple causal models with different noises (all distributions bars) always improves performance
compared to training on single SCMs with fixed mlp noise (only mlp bars).

for the pair of random variables X, Y is given by:

Y = f2(f1(X) + NY ) = f2(Ỹ ), Ỹ := f1(X) + NY ,

X = g2(g1(Y ) + NX) = g2(X̃), X̃ := g1(Y ) + NX ,

with f2, g2 invertible functions, NY , X independent random variables, and NX , Y independent random
variables. Equivalently, we can frame forward and backward causal models for X̃, Ỹ , as in equations
equation 7 and equation 8:

Ỹ = hY (X̃) + NY , hY := f1 ◦ g2,

X̃ = hX(Ỹ ) + NX , hX := g1 ◦ f2.

We are now ready to provide our identifiability statement for post-ANMs.
Proposition 1 (Corollary of Theorem 1 of Hoyer et al. (2008)). Let pNY

, hX , hY be fixed, and define
νY := log pNY

, ξ := log pX̃ . Suppose that pNY
and pX̃ are strictly positive densities, and that νY , ξ, f1, f2, g1,

and g2 are three times differentiable. Further, assume that for a fixed pair hY , νY exists ỹ ∈ R s.t.
ν′′Y (ỹ − hY (x̃))h′Y (x̃) ̸= 0 is satisfied for all but a countable set of points x̃ ∈ R. Then, the set of all densities
pX̃ of X̃ such that both equations equation 5 and equation 6 are satisfied is contained in a 2-dimensional space.

Before stating the proof of Proposition 1, we show under which condition the pair of random variables
X, Y satisfies the forward and backward models of equations equation 5, equation 6: this is relevant for
our discussion, as the proof of Proposition 1 consists of showing that this condition is almost never satisfied.

Notation. We adopt the following notation: νX := log pNX
, νY := log pNY

, ξ := log pX̃ , η := log pỸ , and
π := log pX̃,Ỹ .
Theorem 2 (Theorem 1 of Zhang & Hyvärinen (2009)). Assume that X, Y satisfies both causal relations of
equations equation 5 and equation 6. Further, suppose that pNY

and pX̃ are positive densities on the support
of NY and X̃ respectively, and that νY , ξ, f1, f2, g1, and g2 are third order differentiable. Then, for each pair
(x̃, ỹ) satisfying ν′′Y (ỹ − hY (x̃))hY (x̃) ̸= 0, the following differential equation holds:

ξ′′′ = ξ′′
(

h′′Y
h′Y

− ν′′′Y h′Y
ν′′Y

)
+ ν′′′Y ν′Y h′′Y h′Y

ν′′Y
− ν′Y (h′′Y )2

h′Y
− 2ν′′Y h′′Y h′Y + ν′Y h′′′Y ,
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and hX is constrained in the following way:

1
h′X

= ξ′′ + ν′′Y (h′Y )2 − ν′Y h′′Y
ν′′Y h′Y

, (10)

where the arguments of the functions have been left out for clarity.

Proof of Theorem 2. We demonstrate separately the two statements of the theorem.

Part 1. Given that equations equation 5 and equation 6 hold, this implies that the forward and backward
models on X̃, Ỹ of equations equation 7 and equation 8 are also valid, namely that:

Ỹ = hY (X̃) + NY ,

X̃ = hX(Ỹ ) + NX .

These are the structural equations of two causal models, associated with the forward X̃ → Ỹ and backward
Ỹ → X̃ graphs, respectively. Applying the Markov factorization of the distribution according to the forward
direction, we get:

pX̃,Ỹ (x̃, ỹ) = pỸ |X̃(ỹ|x̃)pX̃(x̃) = pNY
(ỹ − hY (x̃))pX̃(x̃),

which implies
π(x̃, ỹ) = νY (ỹ − hY (x̃)) + ξ(x̃), (11)

for any x̃, ỹ. Similarly, the Markov factorization on the backward model implies:

π(x̃, ỹ) = νX(x̃ − hX(ỹ)) + η(ỹ). (12)

From equation 12, we have that:

∂2

∂x̃2 π(x̃, ỹ) = ν′′X(x̃ − hX(ỹ))

∂2

∂x̃∂ỹ
π(x̃, ỹ) = −ν′′X(x̃ − hX(ỹ))h′X(ỹ),

which implies
∂

∂x̃

(
∂2

∂x̃2 π(x̃, ỹ)
∂2

∂x̃∂ỹ π(x̃, ỹ)

)
= 0. (13)

Computing the same set of partial derivatives from equation 11, we find:

∂2

∂x̃2 π(x̃, ỹ) = ν′′Y (ỹ − hY (x̃))(h′Y (x̃))2 − ν′Y (ỹ − hY (x̃))h′′Y (x̃) + ξ′′(x̃)

∂2

∂x̃∂ỹ
π(x̃, ỹ) = −ν′′Y (ỹ − hY (x̃))h′Y (x̃).

from which follows:

∂

∂x̃

(
∂2

∂x̃2 π(x̃, ỹ)
∂2

∂x̃∂ỹ π(x̃, ỹ)

)
= −2h′′Y + ν′Y h′′′Y

ν′′Y h′Y
− ξ′′′

ν′′Y h′Y
+ ν′′′Y ν′Y h′′Y

(ν′′Y )2 − ν′Y (h′′Y )2

ν′′Y (h′Y )2 + ξ′′ν′′′Y h′′Y
(ν′′Y )2ν′′Y (h′Y )2

= 0.

where we drop the input arguments for conciseness. The equality with 0 is given by the equality with
equation 13. Manipulating the above expression, the first claim follows.
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Part 2. Next, we prove the constraint derived on hX . To do this, we exploit the fact that Ỹ is independent
of NX , which implies the following condition (Lin, 1997):

∂2

∂ỹ∂nx
log p(ỹ, nx) = 0, (14)

for any (ỹ, nx). According to equations equation 7, equation 8, we have that:

Ỹ = hY (X̃) + NY ,

NX = X̃ − hX(Ỹ ),

such that we can define an invertible map Φ : (ỹ, nx) 7→ (x̃, nY ). It is easy to show that the Jacobian of the
transformation has determinant |JΦ| = 1, such that

p(ỹ, nY ) = p(x̃, nY ),

where (x̃, nY ) = Φ−1(ỹ, nX). Thus, being X̃, NY independent random variables, we have that:

log p(ỹ, nX) = log p(x̃) + log p(nY ) = ξ(x̃) + νY (nY ).

Given that X̃ = hX(Ỹ ) + NX , we have that

∂2

∂ỹ∂ñX
log p(x̃) = ξ′′h′X ,

while NY = Ỹ − hY (X̃) implies

∂2

∂ỹ∂ñX
log p(nY ) = −ν′′Y h′Y + ν′′Y h′X(h′Y )2 − ν′Y h′Xh′′Y ,

such that
log p(x̃, nY ) = ξ′′h′X + −ν′′Y h′Y + ν′′Y h′X(h′Y )2 − ν′Y h′Xh′′Y ,

which must be equal to zero, being equal to the LHS of equation 14. Thus, we conclude that

1
h′X

= ξ′′ + ν′′Y (h′Y )2 − ν′Y h′′Y
ν′′Y h′Y

,

proving the claim.

E.1 Proof of Proposition 1

Proof. Under the hypothesis that equations equation 5, equation 6 hold, i.e. when the data generating process
satisfy both a forward and a backward model, by Theorem 2 we have that:

ξ′′′(x̃) = ξ′′(x̃)G(x̃, ỹ) + H(x̃, ỹ), (15)

where

G(x̃, ỹ) =
(

h′′Y
h′Y

− ν′′′Y h′Y
ν′′Y

)
,

H(x̃, ỹ) = ν′′′Y ν′Y h′′Y h′Y
ν′′Y

− ν′Y (h′′Y )2

h′Y
− 2ν′′Y h′′Y h′Y + ν′Y h′′′Y .

Define z := ξ′′′, such that the above equation can be written as z′(x̃) = z(x̃)G(x̃, ỹ) + H(x̃, ỹ). given that
such function z exists, it is given by:

z(x̃) = z(x̃0)e
∫ x̃

x̃0
G(t,y)dt +

∫ x̃

x̃0

e

∫ x̃

t̂
G(t,y)dt

H(t̂, y)dt̂. (16)
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Let ỹ such that ν′′Y (ỹ − hY (x̃))h′Y (x̃) ̸= 0 holds for all but countable values of x̃. Then, z is determined
by z(x̃0), as we can extend equation equation 16 to all the remaining points. The set of all functions ξ
satisfying the differential equation equation 15 is a 3-dimensional affine space, as fixing ξ(x̃0), ξ′′(x̃0), ξ′′(x̃0)
for some point x̃0 completely determines the solution ξ. Moreover, given νY , hX , hY fixed, ξ′′ is specified by
equation 10 of theorem 2, which implies:

ξ′′ = ν′′Y h′Y
h′X

+ ν′Y h′′Y − ν′′Y (h′Y )2,

which confines ξ solutions of equation 15 to a 2-dimensional affine space.
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