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Abstract

Detecting out-of-distribution (OOD) samples is a
problem of practical importance for a reliable use
of deep neural networks (DNNs) in production set-
tings. The corollary to this problem is the detection
in-distribution (ID) samples, which is applicable
to domain adaptation scenarios for augmenting a
train set with ID samples from other data sets, or
to continual learning for replay from the past. For
both ID or OOD detection, we propose a princi-
pled yet simple approach of (empirically) estimat-
ing KL-Divergence, in its dual form, for a given
test set w.r.t. a known set of ID samples in order
to quantify the contribution of each test sample
individually towards the divergence measure and
accordingly detect it as OOD or ID. Our approach
is compute-efficient and enjoys strong theoretical
guarantees. For WideResnet101 and ViT-L-16, by
considering ImageNet- 1k dataset as the ID bench-
mark, we evaluate the proposed OOD detector on
51 test (OOD) datasets, and observe drastically and
consistently lower false positive rates w.r.t. all the
competitive methods. Moreover, the proposed ID
detector is evaluated, using ECG and stock price
datasets, for the task of data augmentation in do-
main adaptation and continual learning settings,
and we observe higher efficacy compared to rele-
vant baselines.

1 INTRODUCTION

Despite the great success of deep neural nets, there are
important challenges that remain to be addressed in con-
tinual lifelong learning settings [Lopez-Paz and Ranzato|
2017, [Riemer et al., 2018\ [Parisi et al., 2019, Rao et al.,
2019, Lesort et al., [2021]]. In continual learning settings,
due to the inherent nonstationarity of a domain, it is typi-
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Figure 1: The dark blue dots are ID samples and all the
other dots (with gray circles) are test samples. For detecting
OOD samples in a test set, we propose to first empirically
estimate KL-Divergence (KL-D), in its dual form, between
the underlying distribution of test samples and of the ID
samples. For estimating the KL-D in its dual form, ID and
test samples are mapped to 1-D space by a dual function,
f(.), and the dual space is optimized by minimizing log
sum exp smooth max) of dark blue dots (ID samples) while
maximizing mean of rest of the dots (test samples). In the
second sketch, where the dual space is nearly-optimized,
ID (light blue) and OOD (red and orange) samples within
the test set are well separated.

cal to observe samples in a test setting which are Out-Of-
Distribution (OOD) w.r.t. the training set. A DNN must be
capable to detect such OOD samples and acknowledge that
it is not knowledgeable to have high confidence outputs on
such inputs [Hendrycks and Gimpel|[2016], [Liu et al. [2020],
Hendrycks et al.|[2022]. In the extreme scenarios where a
majority of test samples are OOD w.r.t. the training set, it
is natural to retrain the network on observations from the
most recent past as representative of the (OOD) test setting.
In such case of continual learning or domain adaption, for
data augmentation, one can detect all the samples from the
history of the same domain or even other domains which are
ID w.r.t. the representative set. Both the problems of ID or
OOD detection are related in theory, two sides of the same
coin, yet differing in their utilities for lifelong learning. We
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approach this problem from the perspective of estimating
divergence between two distributions. In a continual learn-
ing setting, if one encounters a test set of samples which are
all known to be OOD w.r.t. the known set of ID samples,
we should expect high divergence between the underlying
distributions of the two sets. In contrast, if a test contains
only ID samples, divergence between the respective distri-
butions should be close to zero. Of course, in the real world
settings, a test set may contain a mixture of both ID and
OOD samples. In such case, we wish to split the test set
into two parts, OOD vs ID samples. The aforementioned
intuitions about pure ID vs pure OOD set should apply to
the two parts of the test set as well.

Specifically, we propose a novel approach for ID vs OOD
detection based upon the concept of dual divergence esti-
mation. As illustrated in Fig. [l we propose to empirically
estimate KL-Divergence of a given test set of samples w.r.t.
a set of known ID samples. The key idea is that by esti-
mating KL-Divergence in its dual form due to Donsker and
Varadhan|[1975]], we obtain the individual contribution of
each sample in the test set towards the divergence measure
so as to detect OOD and ID samples within the test set. Our
principled approach enables OOD detection algorithms that
enjoy linear time complexity and theoretical guaranties.

For the problem of OOD detection in pre-trained deep
neural nets, Imagenet has been the most challenging and
well known benchmarked ID dataset. We specifically con-
sider the task of OOD detection in a WideResnet and a
Vision Transformer (ViT) pretrained on Imagenet. For OOD
datasets, we consider 51 datasets from diverse domains in-
cluding all four previously benchmarked OOD datasets. Our
extensive empirical analysis shows that the proposed OOD
detector is consistently and drastically superior w.r.t. all the
competitive methods.

For the evaluation of ID detector, we consider the problem
of timeseries forecasting. We augment the training dataset
for a given timeseries with ID samples detected from the
past of the same timeseries as well as of other timeseries.
Our empirical analysis of data sets of US stock prices and
ECG demonstrates the competitiveness of our proposed ID
detector w.r.t. relevant baselines of contextual replay from
continual learning and of domain adaptation.

Contributions Our contributions are: (i) a novel prin-
cipled information theoretic approach for OOD detection
which enjoys theoretical guaranties; (ii) extensive empirical
evaluation demonstrating the superiority of our approach
while also establishing new benchmarks on 47 new OOD
datasets considering Imagenet-1k as the ID dataset; (iii) we
leverage the proposed approach for ID detection to augment
data sets in continual learning or domain adaptation settings
as demonstrated using multivariate timeseries datasets from
the diverse domains of finance and healthcare. (iv) Codebase
at github.com/morganstanley/MSML/tree/main/papers.

1.1 RELATED WORKS FOR OOD DETECTION

Detecting OOD samples in a pre-trained deep neural net-
work (DNN) is a problem of high practical importance. The
intuition behind this body of work is that the representations
from the top hidden layer of a DNN (referred to as logits) are
informative of all the hierarchical features relevant for dis-
tinguishing between ID classes as well as for differentiating
OOD vs ID samples. Various heuristics have been proposed
in regards to what kind of information in the logits may be
relevant for detecting OOD samples. Hendrycks and Gim+
pel [2016] propose maximum softmax probability (MSP)
as the criterion for OOD detection. However, in practice, it
is observed that DNNs tend to assign a high probability to
one of the ID classes even for OOD samples. [Liang et al.
[2018]] propose ODIN which attempts to fix this issue by
temperature scaling and adding small perturbations to the
inputs.

Liu et al.|[2020]] obtain energy score from the logits as the
criterion for OOD detection. Intuitively, since the energy
score (EBO) is log sum exp function of the logits which is a
well known approximation (upper bound) for max function,
it accounts for all the high values in the vector of logits
rather than relying upon the highest value only, effectively
a smooth version of max function. For the same reason, it
is known to be consistently superior to ODIN and its pre-
decessors, as we also observe in our extensive evaluation.
Hendrycks et al.| [2022] propose to simply use the maxi-
mum value of the logits as the criterion for OOD detection.
Their intuition about the superiority of raw logits over its
normalization as in MSP or ODIN is shown to be empir-
ically valid. Though their approach is not as effective as
energy scores ("smooth" max of the logits) for the reasons
mentioned above. Hendrycks et al.| [2022] also introduce
KL-Matching method which computes relative entropies
of per class of a softmax distribution w.r.t. the respective
distribution templates.

Huang et al.|[2021]] propose to use the gradient norm of KL-
Divergence of the softmax distribution w.r.t. its respective
uniform distribution, relying upon the intuition that the gra-
dients should be of higher norm for ID samples in contrast
to OOD samples. There isn’t solid evidence supporting this
intuition, it may be applicable only to certain OOD scenar-
ios.[Sun et al.|[2021]] propose a simple yet highly effective
technique of rectifying activations, i.e. truncating activa-
tions above a certain threshold, in the penultimate layer
of a DNN. The authors suggest that ReAct is particularly
suitable when OOD activations are chaotic and positively
skewed in comparison to ID activations.

Wang et al.| [2022b] propose to robustify existing OOD
detection methods by watermarking ID patterns through re-
programming of the neural nets. Specifically, a static pattern
is learned as a watermark to be added to any given input for
its detection as OOD. Another technique for robustifying


https://github.com/morganstanley/MSML/tree/main/papers/OOD_Detection_via_Dual_Divergence_Estimation

OOD methods is to sparsify weights at inference time [Sun
and L1l [2022]]. |Djurisic et al.| [2022] instead propose to spar-
sify representations in the top layers of a DNN which is
superior to sparsifying weights as per our analysis.

Another body of work is based on non-parametric modeling
of the logits, such as deep Gaussian Mixtures [Morteza and
Lil 2022], or deep k Nearest Neighbors [Sun et al.| [2022].
Gomes et al.|[2022] propose to employ Fisher-Rao distances
between normalized logits (softmax distribution) for obtain-
ing centroids as representative of ID classes. These nonpara-
metric methods, as also acknowledged by |Sun et al.| [2022],
are inefficient if the number of ID classes is large (1000) as
in Imagenet dataset.

Our approach is generic enough to be applicable to other
various flavors of OOD detection problem settings such as
retraining strategies or regularization techniques, advanced
techniques for generating OOD samples, mixing raw fea-
tures and representations from different layers, generative
modeling or autoencoding, out-of-model-scope detection,
etc. [Ren et al.| 2019| [Teney et al., 2020}, Bitterwolf et al.}
2020, Mahmood et al., 2020, Morningstar et al., 2021} [Fort
et al., 2021} Zhou et al.| 2021} Ming et al., [2022alblicl [Du
et al.| 2022} [Yang et al.,[2022| |Lin et al.| 2022, /Wang et al.,
20224, 'Wei et al., [2022] [Liu et al.| 2022} [Fan et al.| 2022,
Jiang et al., 2022}, |Guérin et al., 2022, Wu et al., 2022} |[Wang
et al., [2022c| |Huang et al., 2022} [Zhang et al., 2022, Wil{
son et al.| [2023| Wang et al., 2023]], though we restrict our
analysis in this paper to the above discussed settings of
OOD detection in pretrained DNNs for its high practical
importance and simplicity.

1.2 RELATED WORKS FOR ID DETECTION

In a general continual learning (CL) scenario, the goal is
to ensure that a neural net does not catastrophically for-
get what it has learned in the past when it learns from the
present episodes Riemer et al.|[2018]], McCloskey and Co+
hen|[[1989]]. One of the most simple, effective, brain-inspired,
and generic non-intrusive approach for continual learning
is replay of the past memory episodes [Rolnick et al.l 2019,
van de Ven et al.| 2020, |Deja et al.,|2021].

Shin et al.| [2017] introduced the idea of deep generative
replay, popularly known as DGR. To alleviate the problem
of catastrophic forgetting, [Van de Ven and Tolias} [2018]]
propose generative replay via distillation (i.e., employing
class probabilities as “soft targets”). [Aljundi et al., 2019]]
address the issue of forgetting by formulating a controlled
sampling criterion for both generative and experience replay
settings. Buzzega et al.|[2020] propose “dark experience re-
play" as a simple yet powerful baseline that mixes rehearsal
with knowledge distillation and regularization. The problem
of contextual replay also has connections to the classical
field of active learning, and it has been pursued in the recent

works of continual learning as well [Tang and Matteson)
2020, |Sun et al., | 2021]]. Sun et al.|[2021]] propose to quan-
tify informativeness of samples via criteria of surprise and
learnability.

The CL setting considered in this paper is related to the
above but different in the sense that we are interested in
leveraging all the knowledge (observations) from the past
of a given domain or of other domains for training a model
representative of the present only. While we are interested
only in detecting ID samples and not generating novel ones
or adapting existing ones, domain adaptation techniques
such as optimal transport or domain discrimination are also
tangentially related [Ganin et al., [2016, |Balaji et al.,[2020].

2 DDE FOR OOD OR ID DETECTION

We discuss our novel approach for OOD detection based
on dual divergence estimation, and its applicability for ID
detection in continual learning settings.

Problem Settings For the problem of OOD detection, we
assume the availability of an ID set of N samples, X" =
{xin}N | For OOD detection in pretrained networks, X"
is assumed to be a set of the representations of ID inputs
from the top hidden layer of a DNN, also referred as logits.
Given a test set of inputs or the respective representations,
X = {x;}L,, we detect if x; is out-of-distribution w.r.t.
the underlying (unknown) distribution X'*" of X",

In our approach for OOD detection, we make no assump-
tions about the underlying distribution, nor do we advo-
cate learning the corresponding density function. Moreover,
our approach is not to learn an OOD detector prior to en-
countering a test set, but rather to estimate empirical KL-
Divergence (KL-D) between a test set and the ID set on the
fly. The key idea is that estimating the divergence measure
in its dual form is naturally informative about the subset of
samples in the test set that are OOD.

Mathematically, KL-D between the (unknown) underlying
distribution of a test set X and the (unknown) representative
distribution X'*" is expressible as,

P(x)

D(X|X™) = B 08 s

)

Here, P(.) and P™(.) are density functions corresponding
to the distributions X’ and X'*". As such, even for the em-
pirical estimate of KL-D in Eq.[I] one has to rely upon the
knowledge of the density functions which are unknown. Es-
timating a density function is a hard problem on its own and
can be avoided if estimating the divergence in its dual form
by Donsker and Varadhan|[[1975]], as expressed below.

D(x|x™) = max Exo f(x) — 10g Eogin o poinel *™)
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Herein, f(.) can be any function such that the expectations
are finite, referred as the dual function. As we observe above,
for estimating KL-D in its dual form, we only need samples
from the distributions X and X’*", not the density functions.
This form is particularly suitable for an empirical estimate
of KL-D between X’ and X" using a test set X and the ID
set X" as below.
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Here, the maximization is performed over the fixed class of
functions H, e.g., the class of functions that can be learned
by DNNs [Belghazi et al.| 2018]]. As we also illustrate in
Fig.[T] all the samples from both sets are mapped into the 1-
D dual functional space that is optimized such that expected
value of the test samples is maximized whereas the log sum
exp i.e. smooth max of the ID samples is minimized.

In the optimal (1-D) dual space (f*) as shown in Fig.
test samples (light blue, orange, and red dots) and ID sam-
ples (dark blue dots) are separated as much as possible. The
red dots from the test set are located on the r.h.s. in the opti-
mal dual space contributing to the KL-D measure. On the
other hand, despite the objective of maximizing the value of
light blue dots (test samples) while minimizing smooth max
of the ID samples, we find the light blue dots interspersed
between the dark blue ones (ID samples), clearly separated
from red dots. This is simply because the optimized dual
function fails to distinguish such samples from the ID set.
Therefore, intuitively, these light blue test samples should
be detected as ID samples whereas the red dots can be de-
tected as OOD samples. Later, we support these intuitions
with theoretical analysis. The optimized dual space provides
us a nice geometric interpretation of ID vs OOD samples.
On this note, in Fig.[2] it is also interesting to observe that
orange dots (test samples) lie on the soft boundary between
the detected ID and OOD samples in the test set.

In essence, estimating KL-D of a test set w.r.t. the ID set
in its dual form naturally splits it into two subsets, detected
ID (light blue dots) vs detected OOD samples (red dots).
Our approach has the advantage of treating OOD detection
problem purely as an optimization problem (optionally solv-
able using deep learning as we propose) while enjoying
information theoretic guaranties.

Although, in practice, one can choose any point in the opti-
mized (1-D) dual space as a cut point (threshold) for OOD
detection, we approach this problem more formally. Intu-
itively, the smooth max of the dark blue dots could serve as
a cut point for OOD detection as we also illustrate in Fig. 2]
In the following, we present some theoretical insights which
confirm this intuition. First, we establish that for detecting
OQOD samples in a test set, there is no cut point required
on the left side of ID samples in the optimized (1-D) dual
space, i.e. no test samples exist beyond the left boundary of
ID samples (dark blue dots) in Fig.[2]

Log Sum Exp
1 1

f*eo o0 @ @ © -0— — —o-0-0-0-0-0

Tune  Max

Log SumlExp

—_——— e 80— — — == -

Tune:

Figure 2: Our three choices for cut points in the optimized
1-D dual functional space for OOD detection. The dark blue
dots refer to samples from the ID set whereas the rest of
the dots are points from a given test set. From a theoretical
standpoint, we propose to compute the cut point as smooth
max (Log Sum Exp) of the dark blue dots. One interpretable
choice of cut point for OOD detection is the maximum of the
dark blue dots (Max); this cut point detects test points on the
boundary of the ID set as OOD as well (orange dots). In a
scenario where the ID set is corrupted by OOD samples (for
example, see the dark blue dot with orange circle), it would
make sense to find a cut point by tuning within the range
of dark blue dots (Tune), thus deeming even some of the
known ID samples as OOD.

Theorem 1 Given an ID set X" and a test set X, from
estimating KL-D of X w.r.t. X" in its dual form as,

ef(xi™)
N Y

DX|X™) = max 3 109 oy 37

x;€X xineXin

we obtain the optimal dual function f *(.). The optimal dual
function f*(.) satisfies the following:
vx; € X, £ (xim) < fr(x;5). 2)

‘min
x:n GX’L’!L

Our next result establishes that OOD samples if any lie only
on the right side of the ID samples (dark blue dots) in the
optimized (1-D) dual space.

Theorem 2 Given an ID set X' and a test set X, the op-
timal dual function f*(.) which maximizes the estimate of
KL-D as defined in Theoreml[l] satisfies the following:

max  f*(x™) < max f*(x; 3
e 60" < ma ) G

These results provide critical intuition on the role of the
optimal dual function f*in distinguishing ID and OOD
samples. As discussed above, essentially, the function f *
attempts to find a representation where the ID and OOD
samples are maximally separated. So, points that lie in X"
are assigned a lower value, and points in X are assigned
values based on how similar they are to X" Thus, test ID
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Figure 3: ID sampling from the 1-D dual space. The dark
blue dots refer to samples from the ID set whereas the rest
of the dots are points from a given test set. All the data
points are binned using histograms of constant width d
in the optimal (1-D) dual space. We propose to take test
samples from bins By, Bs, Bs, By as ID samples, the ones
with light blue color.

samples are assigned somewhat lower values as well and
test OOD samples are assigned higher values. In Theorem 2]
a strict inequality holds when there exists a cut point such
that some points P C X that are possibly quite dissimilar to
X" can be separated from X" U (X\P) using f*. When
equality holds, it can be interpreted as: X and X' are
already quite similar. As per the intuition mentioned above,
we propose to use the smooth max of the ID samples (dark
blue dots) as a cut point for OOD detection, with theoretical
guarantees as presented below in Theorem 3]

Theorem 3 Given an ID set X" and a test set X, let f*(.)
be the optimal dual function which maximizes the estimate
of KL-D (as defined in Theorem|[I)). Then, for the subset of
the test set deemed as OOD,

X = {x; % € X, fr(x)) > log > exp fxi™),

xﬁn Exin
its KL-D w.r.t. the ID set is lower bounded as,

D(X°4||X™) > log(N).

The above result suggest that OOD detection in DNNs can
be improved by increasing the sample size in training (ID)
sets. Another way to interpret the lower bound is in its
relation to the entropy of the ID set. Since all the empirical
realizations in the ID set are equally probable, as such, we
obtain the maximum possible value of the entropy as the
lower bound. Furthermore, this result is applicable for any
subset of the detected OOD samples as well. One alternative,
as shown in Fig. [2] is to use max instead of the smooth max
for finding the cut point. Having a cut point any further left
of the above choices can be problematic, though relevant if
the ID set consists of OOD samples as noise.

See the supplement for details on how to employ DNNss as
the dual function approximators.

2.1 ID DETECTION

Intuitively, the problem of ID detection is similar to the
problem of detecting OOD samples though its potential
use cases are different. For this problem, X" denotes the
representative set of samples such as observations from
the present (recent past) of a domain of interest. On the
other hand, X refers to a large set of observations from the
historical past of the same domain or other related domains.

Similar to OOD detection, we estimate divergence of X
w.r.t. X' in its dual form. The key difference being that
we perform histogram binning of all the samples from both
the sets in the 1-D dual functional space [Freedman and
Diaconis, |1981]]. The bins which contain samples only from
X and not from X are discarded, and we select all the
samples of X from the rest of the bins as ID detections
w.r.t. X", We also introduce the following notation for
the evaluation of the divergence estimate at any function

f() eH:
ef (xi)
1Xp|

- Y e Y

x;€X, x;,€Xp

£ (Xl Xs) :

Theorem 4 Given a representative ID set X'™ and a set
of observations from the historical past X, from estimating
KL-D of X w.r.t. X" in its dual form as,

:maxzfxﬂ_ 3

f( )EHX eX 1n€Xin

(Fxim)

D(X|X™)
(Xl N

we obtain the optimal dual function, f*(.). Then, from his-
togram binning in the 1-D dual functional space of both the
sets, we select the samples of X with respect to the distribu-
tion of X" in the bins, denoted as X. For uniform width d
of histogram bins, we have:

D (X[IX™) < O(d). )

Here f * is the optimal dual function that maximizes the
divergence estimate between X and X*". We show that
the divergence estimate computed between the selected ID
samples X and X" (evaluated using the same f *) is quite
small and in fact bounded by the histogram width. We note
that while we show this result for D (X[ X™) (which

may in principle be different from D(X |/ X®) since the
maxima may be attained for a different function other than
f *), we are also able to show that under certain restrictions
on the model class H, D(X|X") ~ ﬁf* (X[ X (see
Theorem[3)).

The significance of Theoremd]is that the divergence of the

detected ID samples from X w.r.t. the given ID set X"
directly depends upon the expressiveness of the histogram



model itself. Note that it is not desirable to reduce the upper
bound to value zero by employing a very small bin width as
it would lead to selecting only those samples from X which
are highly similar to the samples in X", an obvious case of
overfitting in sampling. Whereas choosing too large a value
for bin width is not also advisable.

Compute cost for dual divergence estimation and binning is
linear in sample size whereas the compute complexity for
sampling from the bins is constant.

Lastly, for completeness, we include another result (Theo-
rem[5) which demonstrates that computing the KL-D esti-
mate using the dual optimal function f * suffices in a lot of
scenarios, particularly when using subsets of X separable
in the dual space.

Theorem 5 Let H be a class of functions such that each
f € H satisfies |f(x)| < oo V x € R*. Furthermore,
if f1(x), fa(x),g(x) € H, then functions of the form:
f(z) = fi(z)I(g(x) > 7)+ fa(x)I(g(x) < T) (Which are
essentially derived entirely from functions in H) also lie in
H for any constant T and indicator function 1(-). Consider
f1 € H such that D(X||X"™) = max ey Df(XHX”L) =
(X||X”L) Then, for a subset X C X such that f, () >

7:f0_rx € X\XAandfl( z) < 7 forx € X" U X, we have
DXIX™) = D, (XX,

Intuitively, what Theorem [5] demonstrates is that if there
is a better function fo € H such that D(X||Xi") =
i (X||Xm) > D .(X]|X?"), then one might be able to

leverage this fo to design an even better dual function for
tt}e original djvergence estimage, i.e., there wou}d exist an
£ such that Df;;k (X||IX“) > Df* (X[ X™) = D(X]|X"™)
which leads to a contradiction.

3 EMPIRICAL EVALUATION

In the following, we present our empirical analysis for both
the problem of OOD and ID detection.

3.1 OUT-OF-DISTRIBUTION DETECTION

Datasets & Evaluation Settings We perform extensive
empirical analysis for the problem of OOD detection in
deep neural networks, WideResnet101 and ViT-L-16, pre-
trained on Imagenet-1k. Since there are various possible
scenarios for observing OOD samples, we use an extensive
list of 51 image datasets which are OOD w.r.t. Imagenet,
including the previously benchmarked four datasets: SUN,
Places, iNaturallist (species), and Textures. All the images
are rescaled to size 224x224, following the standard proce-
dure for preprocessing as considered in the previous works.
Following the procedure of simple perturbations proposed
by Hendrycks et al.| [2019]], we generate a validation set

of OOD samples from ID samples in Imagenet. While a
validation OOD set is optional for many of methods for
OOD detection including ours, we find it useful for repro-
ducibility purposes (reporting the validation accuracy) and
for scenarios where multiple hyperparameter configurations
of a method are equivalent if one were to only consider the
standard criterion of 5% ID samples being falsely identified
as OOD (corresponding to the evaluation metric FPR95) for
hyperparameter tuning. See more details in the supplement.

Competitive Methods We compare our proposed ap-
proach of dual divergence estimation (DDE*) w.r.t. a
comprehensive list of methods for OOD detection in pre-
trained DNNs (see Sec. [I.1] for more details): (i) max-
imum softmax probability (MSP); (ii) maximum logit
score (MLS); (iii) ODIN (iv) energy scores (EBO); (v) gra-
dient norms (GN); (vi) Reactivation of representations (Re-
Act); (vil) Gaussian mixtures (GM); (viii) k-Nearest Neigh-
bors (kNN); (ix) sparsifying weights (DICE); (x) spar-
sifying representations (ASH); (xi) watermarking (WM);
(xii) KL-Matching (KL-M); (xiii) hyperspherical embed-
dings (CIDER); (xiv) information geometric approach of
computing Fisher Rao distances between softmax distribu-
tions (/GE). Note that DDE* by default employs max func-
tion based cut point in the dual functional space whereas
DDE-SM* refers to smooth max function for the cut point,
as detailed in Sec.

3.1.1 Empirical Results

In Table[T] we compare all the methods across 51 OOD test
datasets for OOD detection in WideResnet101, using the
standard and the most relevant evaluation metric, FPR95 ({).
We observe that OOD detection rate varies highly across
methods and the datasets. While our methods, DDE* and
DDE-SM*, manifests drastically lower FPR9S5 rates w.r.t. all
the other methods, simple baselines such as React and WM
perform competitively. See the supplement for our analysis
on OOD detection in ViT-L-16.

Furthermore, see Fig.[5] for the analysis on detecting OOD
samples at the cost of falsely detecting ID samples as OOD.
Note that in our approach DDE*, unlike the other meth-
ods, the cut point (threshold) for detecting OODs is fixed,
and it gives a very low false detection rate in the ID set as
such (as desired). For obtaining higher false detection rate
with our method as required solely for the purpose of the
analysis presented in Fig.[5] we have to overfit the neural
dual function by performing a very large number of batch
updates (which is not required for practical use of the de-
tector). For the same reason, the curve for DDE* hardly
changes beyond false rate of 0.06 on X-axis. In contrast, in
all the other methods, threshold for OOD detection score
is manually tuned for there is a trade off between detecting
OODs in ID vs OOD sets.



Dataset MSP MLS ODIN EBO GN ReAct GM kNN DICE ASH WM KL-M CIDER IGE DDE* DDE-SM*

ID Test 1 93 93 92 93 95 87 98 95 91 93 93 94 96 92 95 94
0OOD Val. 50 48 49 47 69 40 98 84 49 48 44 58 65 46 31 42
SUN 65 60 63 61 47 47 98 72 35 22 12 75 75 57 18 24
Places 68 63 66 63 61 34 97 72 47 34 57 77 77 60 10 21
iNaturalist 55 62 63 61 50 20 96 65 26 12 60 74 73 57 11 25
Textures 68 96 81 81 61 47 43 69 32 12 61 95 84 96 15 30
Agriculture Crop 1 0 1 2 82 2 100 81 9 0 2 16 72 0 0 0
Animation 42 33 40 30 94 21 100 66 38 30 29 59 69 27 6 19
Brain Tumors 36 26 34 21 99 16 100 69 31 20 14 54 74 20 3 4
Chest Xray 22 15 20 13 67 11 100 71 21 13 7 42 71 10 4 7
Faces in the Wild 39 29 37 26 97 19 100 68 36 26 24 57 72 23 9 16
Fastfood 70 64 68 62 91 47 97 70 64 60 59 79 77 60 10 18
Gemstone 66 59 65 54 97 39 97 63 54 52 50 77 71 52 4 18
LEGO 11 4 10 2 97 3 100 73 11 3 2 32 76 3 0 0
Plant Diseases 27 20 26 18 95 15 100 67 30 18 17 49 72 14 2 3
USPS 38 27 36 18 97 12 100 62 26 18 12 55 69 18 1 3
Alzeihmers 22 14 21 8 100 5 100 67 18 8 4 40 67 7 1 2
Blood Cells 16 11 14 13 79 13 100 72 22 10 6 37 70 9 1 2
Brand Logos 0 0 0 0 95 0 100 94 0 0 0 1 74 0 0 0
Captcha 0 0 0 0 100 0 100 100 0 0 0 0 100 0 0 0
Cards 77 74 76 73 88 59 86 67 71 70 67 83 78 71 11 14
Arabic Handwritten Char. 34 25 33 15 66 10 99 55 18 15 4 47 64 17 4 6
Chess Pieces 26 16 24 12 95 12 100 69 23 10 9 49 77 10 1 2
Chinese Fine Art 5 2 4 4 89 6 100 79 15 1 3 28 77 1 1 1
Coffee Beans 26 17 25 11 99 10 100 65 22 11 10 45 70 11 1 2
Colonoscopy 4 1 3 2 97 2 100 71 7 1 1 23 67 1 1 2
Covid CT Scans 26 18 24 14 95 11 100 69 25 15 11 48 70 12 3 3
Diamonds 47 40 45 39 97 31 100 76 46 39 36 62 78 35 3 5
Emotional Faces 34 25 32 21 87 15 100 68 30 21 16 52 71 18 5 16
Human Eyes 39 31 37 27 97 20 100 66 35 26 24 57 69 24 5 9
Fire & Smoke 0 0 0 0 81 0 100 91 0 0 0 0 72 0 0 0
English Handwritten Char. 26 18 25 10 69 8 99 55 16 9 9 39 60 11 2 3
Excavation 3 1 2 1 99 1 100 79 6 0 0 17 68 1 0 0
Eyes 33 25 32 24 88 19 100 71 31 22 11 52 72 20 3 4
Handwritten Math Symbols 34 24 33 15 74 10 99 53 19 13 11 48 62 15 1 2
Bart and Homer 0 0 0 0 100 0 100 78 1 0 0 11 72 0 0 0
Indian Food 67 62 65 61 93 49 98 68 64 56 56 79 76 58 13 27
LEGO Minifigures 8 4 8 2 97 3 100 74 12 2 2 26 72 1 0 0
Licence Plates 0 0 0 0 100 0 100 94 0 0 0 2 68 0
Meat Quality 1 0 1 0 98 0 100 78 4 1 0 10 57 0
Monkeypox 67 64 65 64 77 50 96 65 65 62 52 77 74 61 8 12
Movie Posters 57 51 55 49 94 37 100 69 55 47 48 71 76 45 14 24
Ornamental Plants 20 13 18 14 84 14 100 75 26 12 14 40 69 10 0 1
Paintings 6 3 6 5 71 5 100 69 9 3 3 28 66 2 1 4
Pollen Grain 25 17 23 16 94 16 100 68 30 13 12 50 73 13 1 1
QR Codes 22 13 20 9 98 7 100 71 20 10 5 41 71 8 1 2
Railway Tracks 2 1 2 1 82 2 100 74 6 0 1 20 68 1 1 1
Weed Crops 42 34 40 32 94 26 100 72 40 31 26 58 69 28 4 4
YouTube Thumbnails 54 47 52 47 91 40 100 76 54 46 44 70 80 43 5 19
Weather 75 72 73 73 91 58 95 78 72 73 66 80 80 70 14 36
Sign Language 30 20 29 13 100 10 100 62 23 12 11 48 65 13 1 2
Stairs 0 0 0 0 69 0 100 88 0 0 0 1 64 0 0 0
Shells or Pebbles 77 74 75 74 83 59 91 69 72 71 71 83 76 71 22 33
Summary Statistics 32425 27425 31425 25425 87413 18+18 9848 7249 28421 20421 20422 46425 7247 23425 445 8+10

Table 1: Evaluation results for OOD detection in WideResnet101 pretrained on Imagenet-1k using the metric FPR95 ({).
Best scores are shown in bold and the second best scores are underlined.
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Figure 4: Ablation study for WideResnet101. OOD detection rate w.r.t. the number of batch updates performed for estimating
KL-D is analyzed. Variation of OOD detection across all the test sets, and w.r.t. change in batch size, number of hidden units,
learning rate is presented. FPR95 shown in each of the plots are for the default configuration only (b=10k, h=512, Ir=5e-4).
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Figure 5: OOD detection rate is analyzed between ID set
vs OOD sets, for WideResnet101. ID set is the figure is
Imagenet test set and for OOD set, we take average across
all the 51 OOD test sets. Detection rate in OOD sets should
be high at the minimal cost of falsely detecting samples in
the ID set as OOD. This plot demonstrates the superiority of
DDE¥* (our approach) w.r.t. all the competitive methods,
it achieves OOD detection rate of 0.6 while not falsely
detecting any of the ID samples as OOD, and the detection
rates in OOD sets increases sharply for a very small increase
in the false detection of OODs within the ID set.

In Fig. ] we present the analysis from an extensive abla-
tion study for our approach. First, in Fig.[A(a)] we analyze
how OOD detection rate increases in the ID set vs OOD
test sets as we increase the number of batch updates of
the weights of a neural KL-D estimator. As we discussed
previously, a few hundred batch updates suffice in prac-
tice (considering a large batch size of 10k) for convergence
of the KL-D estimates whereas performing a large number
of batch updates (in thousands) can force a neural estimator
to start distinguishing even between similar samples leading
to divergence of the KL-D estimates. Correspondingly, in
Fig.[A(a)] we see that OOD detection rate within the ID set
remains close to zero for the first few hundred iterations of
batch updates. It is only if we keep on increasing the num-
ber of batch updates that the estimator starts detecting OOD
samples even within the ID set, with 5% OOD detection rate
in the ID set corresponding to the metric FPR95. In contrast,
OOD detection rate across all the test OOD sets increases at
a faster pace as it should be.

Methods Summary Statistics from All Test Sets
ReAct 18+18
ASH 20+21
WM 20+22
DDE* 445
DDE-Online 546
DDE-Mixed 10+12
DDEv 12+17
DDEvt10 9411
DDEvt20 748
DDE-N30k 949
DDE-N10k 14+11
DDE-N1k 15+ 10
DDE-N100 31+14

Table 2: Evaluation of the variants of DDE* for OOD detec-
tion in WideResnet101 pretrained on Imagenet-1k using the
metric FPR95 (]).

In [4(b)] we analyze mean OOD detection across the test
sets w.r.t. the number of batch updates, while varying the
batch size. We find that using small batch size requires
larger number of batch updates. The curves from batch
sizes, 3k, 5k, 10k, 30k, are all alike in contrast to lower
batch sizes. From theoretical standpoint, larger batch size is
advantageous for achieving lower variance in the estimation
of KL-D (note the zigzag in the curves for lower batch
sizes). Note, the number of batch updates corresponding
from FPR9S5 is different across the batch sizes and we only
show FPR95 for the default batch size of 10k. In[(c) we
vary the number of hidden units. For all the three hidden
sizes, 512, 1024, 2048, our approach performs similarly.
The results for varying the learning rate are not surprising.
Overall, it suggest that the effect of a hyperparameter on
detection performance is intuitive and smooth.

In Table 2] we demonstrate competitiveness of the variants
of DDE* w.r.t. best of the baselines (ReAct, ASH, WM).
"DDE-Online" refers to batch inference on a test set. "DDE-
Mixed" is for the evaluation setting of augmenting each
OOD test set with (3000) ID test samples. For analyzing
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Figure 6: On the x-axis in each plot, we index individual
timeseries within a dataset. For each timeseries, all the meth-
ods are compared in terms of Average Precision metric (7).

generalization of the estimator, we optimize the dual func-
tion for estimating KL-divergence between the ID training
set and the OOD validation set. Using this dual function, we
perform OOD detection across all the OOD test sets. This
highly compute efficient variant of our method is referred as
"DDEv". Optionally, we fine tune for a given test set using
10% or 20% of the original compute cost of our method
("DDEvt10" and "DDEvt20"). We perform a new ablation
study for our method (DDE*) by varying the sample size
(N) on the Imagenet (ID) dataset; see "DDE-N30k", - - -,
"DDE-N100". See the supplement for more details.

3.2 IN-DISTRIBUTION DETECTION

Datasets and Evaluation Settings For the problem of
ID detection, we consider the task of timeseries forecasting
using two datasets, ECG Activity and US Security Price
Activity. In the Security Price dataset of 1000 most liquid
securities, given each of the 1000 securities, we augment the
training set from the same security with (ID) samples from
the historical past of the same security and of the other 999
securities. (Results reported for only the first 100 least liquid

securities.) Same applies to ECG dataset of 50 timeseries.
We preprocess each timeseries to obtain % change in activ-
ity w.r.t. the previous timestep. The task is of forecasting if
the absolute value of % change is beyond a certain thresh-
old (mean absolute value) given the knowledge of % change
in the previous 100 timesteps. Evaluation metric is Average
Precision (AP). See the supplement for more details.

Competitive Methods Various (contextual) replay tech-
niques from the literature of continual learning are rele-
vant as baselines for our method DDE* (see Sec. [1.2] for
details): (i) no transfer of knowledge via data augmenta-
tion (NT) (ii) random selection (Random); (iii) Learning
without Forgetting (LwF and LwF-Distill); (iv) Dark Expe-
rience Replay (DER and DER++); (v) Deep Generative Re-
play (DGR); (vi) Maximally Interfered Retrieval (MIR); (vii)
Memorable Information Criterion (MIC). Besides, from the
literature of domain adaptation on invariant representation
learning, we compare to (viii) domain discrimination (DA-
DC(), and (ix) neural optimal transport (DA-OT).

Empirical Results In the plots in In Fig. [f] X-axis repre-
sent indices of the individual timeseries in a given dataset.
For each timeseries, we compare all the methods in terms of
AP (7). For ECG activity dataset, due to high interference be-
tween samples from different timeseries and high temporal
dynamics within a single timeseries, we observe a very sig-
nificant contrast between the methods. While DDE* (ours)
provides consistently highest AP across almost all the time-
series in the dataset, some of the other methods such as
DER++, MIR are also competitive. For the dataset of US
security price activity as well, DDE* obtains the highest
AP across all the timeseries, though the difference of AP
across the methods is not as drastic as observed for ECG
activity dataset. Another interesting aspect is that DA-DC is
efficient for price activity in contrast to the ECG dataset.

4 CONCLUSIONS

In this paper, we tackle the highly impactful problem of
OOD detection in pretrained DNNs. Our approach of OOD
detection via dual divergence estimation is novel, principled,
and highly efficient in practice. It enjoys theoretical guar-
anties owing to its foundations in information theory. While
the approach is generic, one can employ a lightweight deep
neural net as a dual function approximator for divergence
estimation. Our extensive exprimental evaluation shows that
our approach is drastically superior to all the competitive
methods. We also establish benchmarks for a large number
of new OOD test datasets. Moreover, we show that OOD
detection is theoretically similar to ID detection, an underex-
plored problem with applications to continual learning and
domain adaptation. For this problem as well, we provide the-
oretical guaranties and show its competitiveness w.r.t. many
baselines on datasets from healthcare and finance domain.
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