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Abstract

Embedding probability distributions into repro-
ducing kernel Hilbert spaces (RKHS) has enabled
powerful nonparametric methods such as the max-
imum mean discrepancy (MMD), a statistical dis-
tance with strong theoretical and computational
properties. At its core, the MMD relies on ker-
nel mean embeddings to represent distributions
as mean functions in RKHS. However, it remains
unclear if the mean function is the only meaning-
ful RKHS representation. Inspired by generalised
quantiles, we introduce the notion of kernel quan-
tile embeddings (KQEs). We then use KQEs to
construct a family of distances that: (i) are prob-
ability metrics under weaker kernel conditions
than MMD; (ii) recover a kernelised form of the
sliced Wasserstein distance; and (iii) can be effi-
ciently estimated with near-linear cost. Through
hypothesis testing, we show that these distances
offer a competitive alternative to MMD and its
fast approximations.

1. Introduction
Many machine learning and statistical methods rely on rep-
resenting, comparing, and measuring the distance between
probability distributions. Kernel mean embeddings (KMEs)
have been shown to be a mathematically and computation-
ally convenient approach for this task (Berlinet and Thomas-
Agnan, 2004; Smola et al., 2007; Muandet et al., 2016). At
its core, a KME represents a distribution as a mean function
in a reproducing kernel Hilbert space (RKHS). When the
kernel function is sufficiently regular and satisfies a condi-
tion called ‘characteristic’ (Sriperumbudur et al., 2010), the
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representation of a distribution as a KME is unique, captur-
ing all information about the distribution. The probability
metric constructed by comparing KMEs, called maximum
mean discrepancy (MMD) (Borgwardt et al., 2006; Gretton
et al., 2012), has received significant attention due to its com-
putational tractability. Its most common estimator has cost
O(n2) and can be estimated with errorO(n−1/2) in the num-
ber of data points n, but cheaper alternatives have also been
proposed (Gretton et al., 2012; Chwialkowski et al., 2015a;
Bodenham and Kawahara, 2023; Schrab et al., 2022). For
this reason, KMEs and the MMD have been used to tackle a
broad range of tasks from hypothesis testing (Gretton et al.,
2012) to parameter estimation (Briol et al., 2019; Chérief-
Abdellatif and Alquier, 2020), causal inference (Muandet
et al., 2021; Sejdinovic, 2024), feature attribution (Chau
et al., 2022; 2023), and learning on distributions (Muandet
et al., 2012; Szabó et al., 2016).

Nevertheless, the question of whether alternative kernel-
based embeddings, particularly nonlinear counterparts,
could exhibit desirable properties has long remained under-
explored, in part due to the associated computational chal-
lenges. Recently, this gap has begun to be addressed, with
works investigating kernelised medians (Nienkötter and
Jiang, 2023), cumulants (Bonnier et al., 2023), and vari-
ances (Makigusa, 2024a). In this paper, we consider an
alternative based on the concept of quantiles in an RKHS,
which we term kernel quantile embeddings (KQEs). Sim-
ilarly to the construction of KMEs, KQEs are obtained by
considering the directional quantiles of a feature map ob-
tained from a reproducing kernel. KQEs also lead naturally
to a family of distances which we call kernel quantile dis-
crepancies (KQDs). This approach is motivated from the
statistics and econometrics literature (Kosorok, 1999; Do-
minicy and Veredas, 2013; Ranger et al., 2020; Stolfi et al.,
2022), where matching quantiles has been shown effective
in constructing statistical estimators and hypothesis tests.

Our paper identifies several desirable properties of KQEs.
Firstly, from a theoretical point of view, we show in Theo-
rem 1 and Theorem 2 that KQEs can represent distributions
on any space for which we can define a kernel, and that the
conditions to make a kernel quantile-characteristic, that is
for KQEs to be a one-to-one representation of a probabil-
ity distribution, are weaker than for the classical notion of
characteristic, which we now call mean-characteristic. We
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then show in Theorem 3 that KQEs can be estimated at a
rate of O(n−1/2) in the number of samples n; the same rate
as that of the empirical estimator of KMEs (Tolstikhin et al.,
2017). As a result, KQDs are probability metrics under
much weaker conditions than the MMD (see Theorem 4),
while maintaining comparable computational guarantees, in-
cluding a finite-sample consistency with rate O(n−1/2) (up
to log terms) for their empirical estimators (see Theorem 5).

Secondly, we establish a number of connections between
KQDs, Wasserstein distances (Kantorovich, 1942; Villani
et al., 2009), and generalisations or approximations thereof.
In particular, special cases of our KQDs recover existing
sliced Wasserstein (SW) distances (Bonneel et al., 2015;
Wang et al., 2022; 2024a) and can interpolate between the
Wasserstein distance and MMD similarly to Sinkhorn diver-
gences (Cuturi, 2013; Genevay et al., 2019). These results
are presented in Connections 1, 2, and 3.

Finally, we consider a specific instance of KQDs based
on Gaussian averaging over kernelised quantile directions,
which we name the Gaussian expected kernel quantile dis-
crepancy (e-KQD). Beyond the desirable theoretical proper-
ties described above, we show that the Gaussian e-KQD also
has attractive computational properties. In particular, we
show that it has a natural estimator which only requires sam-
pling from a Gaussian measure on the RKHS, and which can
be computed with complexity O(n log2(n)). It is studied
empirically in Section 5 with experiments on two-sample
hypothesis testing, where we show that it is competitive
with the MMD: it often outperforms estimators of the MMD
of the same asymptotic complexity, and in some cases even
outperforms MMD at higher computational costs.

2. Background
Let PX denote the set of Borel probability measures on a
Borel space X . We begin by reviewing existing definitions
of quantiles, followed by a summary of relevant work on
probability metrics, including the MMD and SW distances.

2.1. Quantiles

Univariate quantiles. Let X ⊆ R. For α ∈ [0, 1], the
α-quantile of P ∈ PX is defined as ραP = inf{y ∈ X :
PrY∼P [Y ≤ y] ≥ α}. When P has a continuous and strictly
monotonic cumulative distribution function FP , quantiles
can also be defined through the inverse of that function
ραP := F−1

P (α). Notable special cases include α = 0.5, cor-
responding to the median, and α = 0.25, 0.75, correspond-
ing to lower- and upper-quartiles respectively. Importantly,
P is fully characterised by its quantiles {ραP }α∈[0,1].

From a computational viewpoint, univariate quantiles can be
straightforwardly estimated using order statistics. Suppose
y1:n = [y1 . . . yn]

⊤ ∼ P , and denote by [y1:n]j the jth

order statistic of y1:n (i.e. the jth largest value in the vector
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Figure 1: Illustration of bivariate quantiles. Left: Bivariate
distribution P . Center: Density of the projection of P onto
direction u on the unit circle, with ϕu(x) = ⟨u, x⟩. Right:
different quantiles for all possible directions u.

[y1 . . . yn]
⊤). The α-quantile of P , denoted ραP , can be

estimated using [y1:n]⌈αn⌉ where ⌈·⌉ denotes the ceiling
function. This estimator is known to converge at a rate of
O(n−1/2) (Serfling, 2009, Section 2.3.2).

Multivariate quantiles. Suppose now that X ⊆ Rd for
d > 1. The previous definition of quantiles depends on the
existence of an ordering in X , and its natural generalisation
to d > 1 is therefore not unique (Serfling, 2002). In this
paper, we will focus on the notion of α-directional quantile
of P along some direction u in the unit sphere Sd−1 (Kong
and Mizera, 2012),

ρα,uP := ραϕu#Pu, ϕu(y) = ⟨u, y⟩.

Here, ϕu : X → R is the projection map onto u, and ραϕu#P
is the standard one-dimensional α−quantile of ϕu#P—the
law of ϕu(X) for X ∼ P . We note that this quantile is
now a d-dimensional vector as opposed to a scalar. The
α-directional quantiles for d = 2 are illustrated in Figure 1,
in which the probability measure P is projected onto some
line; see the left and middle plots. Once again, we can use
quantiles to characterise P , although we must now consider
all α−quantiles over a sufficiently rich family of projections
{ρα,uP : α ∈ [0, 1], u ∈ Sd−1}; see Theorem 5 of (Kong and
Mizera, 2012) for sufficient regularity conditions.

Although these multivariate quantiles satisfy scale equivari-
ance and rotation equivariance, they do not satisfy location
equivariance. To remedy this issue, Fraiman and Pateiro-
López (2012) introduced a related notion, the centered α-
directional quantile:

ρ̃α,uP :=
(
ραϕu#P − ϕu(EX∼P [X])

)
u+ EX∼P [X], (1)

Further details are provided in Appendix B.

2.2. Probability Metrics

Kernel mean embeddings and MMD. Let X be some
Borel space, and (H, ⟨·, ·⟩H) be a reproducing kernel Hilbert
space (RKHS) induced by a real-valued kernel k : X×X →
R (Schölkopf and Smola, 2002; Berlinet and Thomas-
Agnan, 2004), the kernel mean embedding (KME) µP :
X → R of any P ∈ PX is defined as the Bochner integral
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µP (·) = EX∼P [k(X, ·)] ∈ H. The integral can be shown
to exist provided EX∼P [

√
k(X,X)] < ∞; this, in turn,

holds for all P ∈ PX if and only if k is bounded (Smola
et al., 2007). If the mapping P → µP is injective, the kernel
k is said to be mean-characteristic. Many standard kernels—
the Matérn family, Gaussian, Laplacian—have been shown
to be characteristic on sufficiently regular spaces (Sripe-
rumbudur et al., 2011; Ziegel et al., 2024). KMEs with
mean-characteristic kernels lead to the squared maximum
mean discrepancy (MMD) defined for any P,Q ∈ PX as

MMD2(P,Q) := ∥µP − µQ∥2H = EX,X′∼P [k(X,X
′)]

− 2EX∼P,X′∼Q[k(X,X
′)] + EX,X′∼Q[k(X,X

′)].

This can be computed in rare cases (Briol et al., 2025),
but typically needs to be estimated. Given n i.i.d. real-
isations from P and Q, MMD2 is most commonly esti-
mated with a U-statistic, which converges to MMD2(P,Q)
as O(n−1/2) and has computational complexity of O(n2)—
although linear-cost alternatives are also available (Gretton
et al., 2012, Lemma 14.). These are discussed in Section 5
and Appendix A.

Wasserstein distances. Let c : X × X → R be a met-
ric on X , and Γ(P,Q) ⊆ PX×X denote the space of joint
distributions on X × X with first and second marginals
P and Q, respectively. The p-Wasserstein distance (Kan-
torovich, 1942; Villani et al., 2009) quantifies the cost of
optimally transporting one distribution to another under
“cost” c : X ×X → R. It is a probability metric under mild
conditions (Villani et al., 2009, Section 6), and is defined as

Wp(P,Q) =

(
inf

π∈Γ(P,Q)
E(X,Y )∼π [c(X,Y )p]

)1/p

.

When X ⊆ Rd, the metric c is typically taken to be the
Euclidean distance c(x, y) = ∥x − y∥2. The Wasserstein
distance can then be estimated by solving an optimal trans-
port problem using empirical measures constructed through
samples of P and Q, an approach that suffers from a high
computational cost of O(n3) and, when P,Q have at least
2p moments, slow convergence of O(n−1/max(d,2p)) when
X ⊆ Rd for d > 1 (Fournier and Guillin, 2015).

However, when d = 1, Wp can be computed at lower cost
of O(n log n) with convergence of O(n−1/2p) when P,Q
have at least 2p moments. This motivated the introduction
of the sliced Wasserstein (SW) distance (Bonneel et al.,
2015). Recall that ϕu(x) = u⊤x. The SW distance projects
high-dimensional distributions P,Q onto elements on the
unit sphere u ∈ Sd−1 sampled uniformly, computes the
Wasserstein distance between the projected distributions,
now in R, and averages over the projections:

SWp(P,Q) =
(
Eu∼U(Sd−1)

[
W p
p (ϕu#P, ϕu#Q)

])1/p
.

A further refinement, the max-sliced Wasserstein (max-SW)
distance (Deshpande et al., 2018), aims to identify the opti-
mal projection that maximises the 1D Wasserstein distance:

max-SWp(P,Q) =

(
sup

u∈Sd−1

W p
p (ϕu#P, ϕu#Q)

)1/p

.

Both slicing distances reduce the computational complex-
ity to O(ln log n) and the convergence rate to O(l−1/2 +
n−1/2p), where l is either the number of projections, or the
number of iterations of the optimiser. A further extension
is the Generalised Sliced Wasserstein (GSW, Kolouri et al.
(2019)), which replaces the linear projection ϕu with a non-
linear mapping. While the conditions for GSW to be a
probability metric are highly non-trivial to verify, the au-
thors showed that they hold for polynomials of odd degree.

Another approximation of the Wasserstein distance involves
the introduction of an entropic regularisation term (Cuturi,
2013), which reduces the cost toO(n2) and can be estimated
with sample complexity O(n−1/2) (Genevay et al., 2019).
The solution to this regularised problem is referred to as the
Sinkhorn divergence. Interestingly, Ramdas et al. (2017);
Feydy et al. (2019) demonstrated that by varying the strength
of the regularisation, the Sinkhorn divergence interpolates
between the Wasserstein distance and the MMD with a
kernel corresponding to the energy distance.

3. Kernel Quantile Embeddings and
Discrepancies

We introduce directional quantiles in the RKHS and the
corresponding discrepancies. Unlike in Section 2.1, the
measures and their quantiles now live in different spaces:
the measures are on X , and the quantiles are in the RKHSH
induced by a kernel on X . This leads to greater flexibility:
the approach works for any space a kernel can be defined
on. Throughout, we assume the kernel k is measurable.

3.1. Kernel Quantile Embeddings

Let SH = {u ∈ H : ∥u∥H = 1} be the unit sphere of an
RKHSH induced by the kernel k. For P ∈ PX , we define
its α-quantile along RKHS direction u ∈ SH as a function
ρα,uP : X → R inH with

ρα,uP (x) := ραu#Pu(x) (2)

By the reproducing property, it holds that ραu#Pu(x) =
ραϕu#[ψ#P ]u(x), where ψ(x) = k(x, ·) is the canonical fea-
ture map X → H, and ϕu(h) = ⟨u, h⟩H is the H → H
equivalent of the projection operator onto u defined in Sec-
tion 2.1. Thus, when dim(H) <∞, the RKHS quantiles of
P on X are exactly the multivariate quantiles of the mea-
sure of k(X, ·), X ∼ P , on H. In other words, KQEs
can be thought of as two-step embeddings: we first embed
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X ∼ P ∈ PX as an RKHS element and then compute its
directional quantiles to obtain the KQEs.

Centered vs uncentered quantiles. Just as done for mul-
tivariate quantiles in Equation (1), a centered version of
RKHS quantiles can be defined as

ρ̃α,uP (x) :=
(
ραu#P − ⟨u, µP ⟩H

)
u(x) + µP (x),

where µP is the KME of P . This coincides with Equa-
tion (1) for the measure being the law of k(X, ·) with
X ∼ P . The impact of centering is examined in detail in Ap-
pendix B, but two key observations are relevant here: (1)
omitting centering eliminates the computational overhead
of calculating means; (2) the only equivariance violated for
the uncentered directional quantile is location equivariance:
shifting k(X, ·) by h shifts the quantile by ⟨h, u⟩Hu, rather
than by h itself. However, when KQEs are used to compare
two distributions, the additional term ⟨h, u⟩Hu cancels out
as it does not depend on the measure. For these reasons, we
primarily work with the uncentered RKHS quantiles.

Quantile-characteristic kernels. The kernel k is said to
be quantile-characteristic if the mapping P 7→ {ρα,uP :
α ∈ [0, 1], u ∈ SH} is injective for P ∈ PX . In Rd, the
Cramér-Wold theorem (Cramér and Wold, 1936) states that
the set of all one-dimensional projections (or, equivalently,
all quantiles of all one-dimensional projections) determines
the measure. One may therefore recognise our next theo-
rem as an RKHS-specific extension of the Cramér-Wold
theorem. Earlier Hilbert space extensions required higher-
dimensional projections and imposed restrictive moment as-
sumptions (Cuesta-Albertos et al., 2007). Being concerned
with the RKHS case specifically allows us to prove the result
under mild assumptions, as stated below.

Assumption A1.X is Hausdorff, separable, and σ-compact.

Being Hausdorff ensures points in X can be separated,
and separability says X has a countable dense subset. σ-
compactness means X is a union of countably many com-
pact sets. These are mild conditions, notably satisfied by
Polish spaces—including discrete topological spaces with at
most countably many elements and topological manifolds.

It is possible to drop the σ-compactness and separability.
When X is Hausdorff and completely regular, one can still
get quantile-characteristic properties on Radon probability
measures—the "non-pathological" Borel probability mea-
sures. We discuss this in Appendix C.1 and refer to Willard
(1970) for a review of general topological properties.

Assumption A2. The kernel k is continuous, and separating
on X : for any x ̸= y ∈ X , it holds that k(x, ·) ̸= k(y, ·).

This is a mild condition: most commonly used kernels such
as the Matérn, Gaussian, and Laplacian kernels are sepa-
rating. The constant kernel k(x, x′) = c is an example of
a non-separating kernel. Trivially, a non-separating kernel

u1

P Q

u1#P

u1#Q
u2

P Q

u2#P

u2#Q

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 2: Illustration of the impact of the slicing direction on
KQEs. Suppose X ∼ P , the KQEs ρα,uP (x) := ραu#Pu(x)

are obtained by considering the αth quantile of u(X).
Clearly, these quantiles might vary significantly depend-
ing on the slicing direction used.

for which k(x, ·) = k(y, ·) will not be able to distinguish
between Dirac measures δx and δy . The proof of the follow-
ing result uses characteristic functionals, an extension of
characteristic functions to measures on spaces beyond Rd.
Unlike moments, characteristic functionals are defined for
any probability measure—which is the key to generality of
KQEs. Further discussion and proof are in Appendix C.1.
Theorem 1 (Cramér-Wold Theorem in RKHS). Under A1
and A2, the kernel k is quantile-characteristic, meaning the
mapping P 7→ {ρα,uP : α ∈ [0, 1], u ∈ SH} is injective.

The mildness of the assumptions in Theorem 1 naturally
raises the question: is being quantile-characteristic a less
restrictive condition than being mean-characteristic? This
indeed holds, as shown in the result below.
Theorem 2. Every mean-characteristic kernel k is also
quantile-characteristic. The converse does not hold.

This result, proven in Appendix C.2, has a powerful impli-
cation. For any discrepancy D(P,Q) that aggregates the
KQEs injectively (i.e D(P,Q) = 0 ⇐⇒ ρα,uP = ρα,uQ for
all α, u), it holds that MMD(P,Q) > 0 ⇒ D(P,Q) > 0,
but D(P,Q) > 0 ̸⇒ MMD(P,Q) > 0. This means D
can tell apart every pair of measures MMD can, and some-
times more (see the proof for examples). This is intuitive:
MMD is an injective aggregation of means (MMD(P,Q) =
0 ⇐⇒ EP [u] = EQ[u] for all u), and the set of all quan-
tiles captures all the information in the mean, but not vice
versa. Before introducing a specific family of quantile dis-
crepancies, we discuss sample versions of KQEs.

Estimating KQEs. For fixed α ∈ [0, 1] and u ∈ SH, esti-
mating the directional quantile ρα,uP with samples x1:n ∼ X
boils down to estimating the R-quantile ραu#P using sam-
ples u(x1:n). We employ the classic, model-free approach
to estimate a quantile by using the order statistic estimator:

ρα,uPn (x) := ραu#Pnu(x) = [u(x1:n)]⌈αn⌉u(x), (3)

where Pn = 1/n
∑n
i=1 δxi . In other words, Equation (3)

uses the α-quantile of the set u(x1:n)—meaning, the ⌈αn⌉-
th largest element of u(x1:n). We now state an RKHS
version of a classic result on convergence of quantile esti-
mators; the proof is provided in Appendix C.3.
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Theorem 3 (Finite-Sample Consistency for Empirical
KQEs). Suppose the PDF of u#P is bounded away from
zero, fu#P (x) ≥ cu > 0, and x1:n ∼ P . Then, with
probability at least 1− δ, and C(δ, u) = O(

√
log(2/δ)),

∥ρα,uPn − ρ
α,u
P ∥H ≤ C(δ, u)n

−1/2.

We do not need to assume A1 and A2 to prove consis-
tency; this was only needed to establish that k is quantile-
characteristic, and we may still have a consistent estimator
when the kernel is not quantile-characteristic. The condition
fu#P (x) ≥ cu > 0 lets us avoid making any assumptions
on X , other than the existence of a kernel k on X .

3.2. Kernel Quantile Discrepancies

We propose to quantify the difference between P,Q ∈ PX
in unit-norm direction u through a ν-weighted expectation
of power-p distance (in the RKHS) between KQEs,

τp(P,Q; ν, u) =
(∫ 1

0

∥∥ρα,uP − ρα,uQ
∥∥p
Hν(dα)

)1/p

.

Figure 2 illustrates how u#P and u#Q vary depending on
direction u—and the impact it has on τp. The weighting
measure ν on [0, 1] assigns importance to each α-quantile.
For example, the Lebesgue measure ν ≡ µ treats all quan-
tiles as equally important, whereas a partial-supported mea-
sure would allow us to ignore certain quantiles.

Based on τp(P,Q; ν, u), we introduce a novel family of
Kernel Quantile Discrepancies (KQDs) that aggregate the
directional differences τp(P,Q; ν, u) over u ∈ SH: the Lp-
type distance expected KQD (e-KQD) that uses the average
as the aggregate function, and the L∞-type distance supre-
mum KQD (sup-KQD) that aggregates with the supremum:

e-KQDp(P,Q; ν, γ) =
(
Eu∼γ

[
τpp (P,Q; ν, u)

])1/p
,

sup-KQDp(P,Q; ν) =
(
sup
u∈SH

τpp (P,Q; ν, u)
)1/p

,
(4)

where γ is a measure on the unit sphere SH of the RKHS.

Next, we demonstrate that under mild conditions e-KQD
and sup-KQD are indeed distances, and establish connec-
tions with existing methods. The proof is in Appendix C.4.

Theorem 4 (KQDs as Probability Metrics). Under A1, A2,
and if ν has full support on [0, 1], sup-KQDp is a distance.
Further, if γ has full support on SH, e-KQDp is a distance.

As discussed in Section 3, A1 and A2 are minor. The
assumptions on the support of ν and γ ensure that no quan-
tile level in [0, 1] and no parts of SH are missed entirely.
This is satisfied, for example, for the uniform ν (that con-
siders all quantiles to be equally important), and when
H is separable, for any centered Gaussian γ = N (0, S)

with a non-degenerate S by (Kukush, 2020, Corollary
5.3). For example, an H 7→ H covariance operator
S[f ](x) =

∫
X k(x, y)f(y)β(dy) is non-degenerate and

well-defined provided (1) β on X has full support, and (2)∫
X

√
k(x, x)β(dx) <∞. This choice of γ also happens to

be computationally convenient, as discussed in Section 4.

In contrast, while conditions under which MMD is a dis-
tance are well-understood for bounded translation-invariant
kernels on Euclidean spaces (Sriperumbudur et al., 2011),
they are challenging to establish beyond this setting. For
instance, it is known that commonly used graph kernels are
not characteristic (Kriege et al., 2020).

When ν is chosen as the Lebesgue measure µ, an important
connection emerges between e-KQD, sup-KQD, and sliced
Wasserstein distances. This connection is formalised in the
next result, with a proof provided in Appendix C.6.

Connection 1 (SW). Suppose P,Q have p-finite moments.
Then, e-KQDp(P,Q; ν, γ) for ν ≡ µ corresponds to a ker-
nel expected sliced p-Wasserstein distance, which has not
been introduced in the literature. For X ⊆ Rd, linear
k(x, y) = x⊤y, and uniform γ, this recovers the expected
sliced p-Wasserstein distance (Bonneel et al., 2015).

Connection 2 (Max-SW). Suppose P,Q have p-finite mo-
ments. Then, sup-KQDp(P,Q; ν) for ν ≡ µ is the kernel
max-sliced p-Wasserstein distance (Wang et al., 2022). For
X ⊆ Rd, linear k(x, y) = x⊤y, and uniform γ, it recovers
the max-sliced p-Wasserstein (Deshpande et al., 2018).

For d = 1, we recover standard Wasserstein. When k is
non-linear but induces a finite-dimensional RKHS, e-KQD
is connected to the Generalised Sliced Wasserstein distances
of Kolouri et al. (2022)—we explore this in Appendix C.6.

Lastly, we establish a connection to Sinkhorn divergence.

Connection 3 (Sinkhorn). Sinkhorn divergence (Cuturi,
2013), like e-KQD and sup-KQD, combines the strengths of
kernel embeddings and Wasserstein distances. Furthermore,
for p = 2 and ν ≡ µ, the centered version of e-KQD
and sup-KQD developed in Appendix B can be represented
as a sum of MMD and kernelised expected or max-sliced
Wasserstein distances, thus positioning these measures as
mid-point interpolants between MMD and SW distances.

It is important to note that the MMD term within the
Sinkhorn divergence is restricted to a specific kernel tied
to the energy distance—in contrast, e-KQD and sup-KQD
offer much greater flexibility in the choice of kernel. More-
over, as will be shown empirically in Section 5, the com-
putational complexity of e-KQD for a particular choice of
γ can be made significantly lower than that of Sinkhorn
divergences, which have a cost of O(n2).

Estimating e-KQD. We propose a Monte-Carlo estima-
tor for e-KQD, and refer to Wang et al. (2022) for an
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optimisation-based, O(n3 log(n)) estimator for sup-KQD.
Let x1:n ∼ P , y1:n ∼ Q, the u1, . . . , ul ∈ SH to be l unit-
norm functions sampled from γ, and fν to be the density of
ν. Denote Pn = 1/n

∑n
i=1 δxi , Qn = 1/n

∑n
i=1 δyi . Then,

similarly to the order statistic estimator of the quantiles
in Equation (3), e-KQDpp(Pn, Qn; ν, γl) is the estimator of
e-KQDpp(P,Q; ν, γ), where

e-KQDpp(Pn, Qn; ν, γl) (5)

=
1

ln

l∑
i=1

n∑
j=1

([
ui(x1:n)

]
j
−
[
ui(y1:n)

]
j

)p
fν (⌈j/n⌉)

Here, [ui(x1:n)]j is the j-th order statistics, meaning the
j-th smallest element of ui(x1:n) = [ui(x1), . . . , ui(xn)]

⊤.
For p = 1, we get the following result, proven in Ap-
pendix C.5.

Theorem 5 (Finite-Sample Consistency for Empirical
KQDs). Let ν have a density, P,Q be measures on X s.t.
EX∼P

√
k(X,X) < ∞ and EX∼Q

√
k(X,X) < ∞, and

x1:n ∼ P, y1:n ∼ Q. Then, with probability at least 1− δ,
and C(δ) = O(

√
log(1/δ)) that depends only on δ, k, ν,

|e-KQD1(Pn, Qn; ν, γl)− e-KQD1(P,Q; ν, γ)|
≤ C(δ)(l−1/2 + n−

1/2).

The rate does not depend on dim(X )—this is a major
advantage of projection/slicing-based discrepancies (Nad-
jahi et al., 2020), which comes at the cost of depen-
dence on the number or projections l. Setting l =
n/ log n recovers the MMD rate (up to log-terms), at
matching complexity (see Section 4). Here, we do not
need e-KQD to be a distance—indeed, we did not as-
sume A1 and A2. The condition of square root inte-
grability of k(X,X) under P,Q is immediately satisfied
when k is bounded, and can in fact be further weakened
to EX∼PEY∼Q

√
k(X,X)− 2k(X,Y ) + k(Y, Y ) < ∞.

Requiring that ν has a density is mild and necessary to
reduce the problem to CDF convergence—which, by the
classic Dvoretzky-Kiefer-Wolfowitz inequality of Dvoret-
zky et al. (1956) has rate n−1/2 under no assumptions on
the underlying distributions. The strength of this inequality
allows us to assume nothing more of X than the fact that it
is possible to define a kernel on it.

Further, for any integer p > 1, the n−1/2 rate still
holds—if and only if it holds that for Jp(R) :=

(Fu#R(t)(1− Fu#R(t)))p/2 /fp−1
u#R(t), both Jp(P ) and

Jp(Q) are integrable over u ∼ γ and Lebesgue measure on
u(X ). In turn, this may be reduced to a problem of con-
trolling d − 1 volumes of level sets of u. We discuss this
extension further in Conjecture 1 in Appendix C.5.

4. Gaussian Kernel Quantile Discrepancy

Algorithm 1 Gaussian e-KQD

Input: Data x1:n ∼ P, y1:n ∼ Q, samples from the
reference measure z1:m ∼ ξ, kernel k, density fν , number
of projections l, power p.
Initialise e-KQDp ← 0 and τpp,i ← 0 for i = 1 . . . l.
for i = 1 to l do

Sample λ1:m ∼ N (0, Idm)
Compute fi(x1:n)← λ⊤1:mk(z1:m, x1:n)/

√
m,

fi(y1:n)← λ⊤1:mk(z1:m, y1:n)/
√
m

Compute ∥fi∥H ←
√
λ⊤1:mk(z1:m, z1:m)λ1:m/m

Compute ui(x1:n)← fi(x1:n)/∥fi∥H,
ui(y1:n)← fi(y1:n)/∥fi∥H

Sort ui(x1:n) and ui(y1:n)
for j = 1 to n do
τpp,i ← τpp,i+

(
[ui(x1:n)]j−[ui(y1:n)]j

)p
fν(⌈j/n⌉)

end for
e-KQDp ← e-KQDp + τpp,i/l

end for
Return e-KQDp

We now conduct further empirical study of the squared
kernel distance e-KQDp. Unlike its supremum-based coun-
terpart sup-KQD, e-KQD can be approximated simply by
drawing samples from γ on SH, avoiding the challenges
associated with optimising for the supremum. Although a
uniform γ is a natural choice, no such measure exists when
dim(H) is infinite (Kukush, 2020, Section 1.3). Instead, we
follow a well-established strategy from the inverse problems
literature (Stuart, 2010) and take γ to be the projection onto
SH of a Gaussian measure on H. Using established tech-
niques for sampling Gaussian measures, we then build an
efficient estimator for e-KQDp(P,Q; ν, γ). Gaussian mea-
sures on Hilbert spaces are a natural extension of the familiar
Gaussian measures on Rd: a measure N (0, C) onH is said
to be a centered Gaussian measure with covariance oper-
ator C : H → H if, for every f ∈ H, the pushforward of
N (0, C) under theH → R projection map ϕf (·) = ⟨f, ·⟩H
is the Gaussian measure N (0, ⟨C[f ], f⟩H) on R. For fur-
ther details on Gaussian measures in Hilbert spaces, we refer
to Kukush (2020).

Let γ′ be a centered Gaussian measure onH whose covari-
ance function C : H → H is an integral operator with some
reference measure ξ on X ,

γ′ = N (0, C), C[f ](x) =

∫
X
k(x, y)f(y)ξ(dy),

and let γ be the pushforward of γ′ by the projection H →
SH that maps any f ∈ H to f/∥f∥H ∈ SH. By the change
of variables formula for pushforward measures (Bogachev,
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2007, Theorem 3.6.1), it holds that

e-KQDpp(P,Q; ν, γ) = Eu∼γ
[
τpp (P,Q; ν, u)

]
= Ef∼γ′

[
τpp (P,Q; ν, f/∥f∥H)

]
.

This equality reduces sampling from γ to sampling from a
centered Gaussian measure with an integral operator covari-
ance function. The next proposition reduces sampling from
(a finite-sample approximation of) γ to sampling from the
standard Gaussian on the real line; proof is in Appendix C.7.

Proposition 1 (Sampling from a Gaussian measure). Let
z1:m ∼ ξ, and γ′m to be the estimate of γ′ based on the
Monte Carlo estimate Cm of the covariance operator C,

γ′m = N (0, Cm), Cm[g](x) =
1

m

m∑
j=1

k(x, zj)g(zj).

Suppose f(x) = m−1/2
∑m
j=1 λjk(x, zj) with λ1:m ∼

N (0, 1). Then, f ∼ γ′m.

Algorithm 1 brings together the e-KQD estimator in Equa-
tion (5), and the procedure for sampling from the Gaus-
sian measure in Proposition 1. The ν choice is left up to
the user; the uniform ν remains a default choice. We pro-
ceed to analyse the cost. This estimator has complexity
O(lmax(nm,m2, n log n)): O(l) for iterating over direc-
tions i ∈ {1, . . . , l}; O(nm) for computing fi(x1:n) and
fi(y1:n); O(m2) for computing ∥fi∥H; and O(n log n) for
sorting ui(x1:n) and ui(y1:n). For l := log n and m :=
log n, the complexity therefore reduces to O(n log2 n); i.e.
near-linear (up to log-terms).

5. Experiments
We empirically demonstrate the effectiveness of KQDs for
nonparametric two-sample hypothesis testing which aims
at determining whether two arbitrary probability distribu-
tions, P and Q, differ statistically based on their respective
i.i.d. samples. Two-sample testing is widely adopted in
scientific discovery fields, such as model verification (Gao
et al., 2024), out-of-domain detection (Magesh et al., 2023),
and comparing epistemic uncertainties (Chau et al., 2025).
Specifically, we test the null hypothesisH0 : P = Q against
the alternative H1 : P ̸= Q. In such tests, (estimators of)
probability metrics are commonly used as test statistics, in-
cluding the Kolmogorov-Smirnov distances (Kolmogorov,
1960), Wasserstein distance (Wang et al., 2022), energy-
distances (Székely and Rizzo, 2005; Sejdinovic et al., 2013),
and most relevant to our work, the MMD (Gretton et al.,
2006; 2009; 2012). For an excellent overview of kernel-
based two sample testing, we refer readers to Schrab (2025).

Experiments are repeated to calculate the rejection rate,
which is the proportion of tests where the null hypothesis is
rejected. A high rejection rate indicates better performance

at distinguishing between distributions. It is equally impor-
tant to ensure proper control of Type I error, defined as the
rejection rate when the null hypothesis H0 is true. Specifi-
cally, the Type I error rate should not exceed the specified
level. Without controlling for Type I error, an inflated rejec-
tion rate might not reflect the estimator’s ability to detect
genuine differences but instead indicate the test rejects more
often than it should. We consider a significance level α of
0.05 throughout and report on Type I control in Appendix D.

To determine the rejection threshold for each test statistic,
we employ a permutation-based approach: for each trial we
pool the two samples, randomly reassign labels 300 times to
simulate draws under H0, compute the test statistic on each
permuted split, and take the 95th percentile of this empirical
null distribution as our threshold. This fully nonparametric
thresholding ensures Type I error control without additional
distributional assumptions (Lehmann et al., 1986).

Our experiments aim to demonstrate that, within a com-
parable computational budget, statistics computed using
quantile-characteristic kernels can deliver results competi-
tive with those of MMD tests based on mean-characteristic
kernels. Additionally, we seek to explore the inherent trade-
offs of the proposed methods. We focus on the nonpara-
metric two-sample testing problem, as it represents one of
the most successful applications of the mean-embedding-
based MMD and its variants. The code is available at
https://github.com/MashaNaslidnyk/kqe.

5.1. Benchmarking

We consider the following distances as test statistics in our
experiments. Detail descriptions of these estimators are
provided in Appendix A. For KQDs, we take the reference
measure ξ (c.f. Proposition 1) to be 1/2Pn + 1/2Qn, where
Pn corresponds to the empirical distribution 1/n

∑n
i=1 δxi ,

analogously for Qn. Such ξ is a general choice that is ap-
propriate in the absence of additional information about the
spaceX . We take power p = 2 for all KQD-based discrepan-
cies in our experiments; identical experiments for p = 1 lead
to the same conclusions and are presented for completeness
in Appendix D.2. Other than in the second experiment, we
use the RBF kernel k(x, x′) = exp(−∥x− x′∥2/2σ2) with
σ the bandwidth chosen using the median heuristic method,
i.e. σ = Median({∥xi − xj∥22, ∀i, j ∈ 1, . . . , n}) (Gret-
ton et al., 2012). Due to space constraints, we present all
methods on the same plot, regardless of their computational
complexity. However, it is important to note that directly
comparing test power across methods with varying sampling
complexities may be unfair and misleading.

• e-KQD (ours). For e-KQD, we set the number of projec-
tions to l = log n and the number of samples drawn from
the Gaussian reference to m = log n. Consequently, the
overall computational complexity is O(n log2(n)).
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(b) Laplace v.s. Gaussian
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(c) Galaxy MNIST
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(d) CIFAR-10 v.s. CIFAR-10.1

Figure 3: Experimental results comparing our proposed methods with baseline approaches. Methods represented by dotted
lines exhibit quadratic complexity for a single computation of the test statistic, while the remaining methods achieve
near-linear or linear computational efficiency. A higher rejection rate indicates better performance in distinguishing between
distributions. Overall, quadratic-time quantile-based estimators perform comparably to quadratic-time MMD
estimators, while near-linear time quantile-based estimators often outperform their MMD-based counterparts.

• e-KQD-centered (ours). The centered version of e-KQD,
as discussed in Appendix B, can be expressed as the sum
of an e-KQD term and the classical MMD. While the
e-KQD component follows the same sampling configu-
ration as above, the MMD computation is the dominant
factor in complexity, leading to an overall cost of O(n2).

• sup-KQD (ours). sup-KQD adopts the same sampling
configuration as e-KQD (thus cost O(n log2(n))). In-
stead of averaging over projections, it selects the max-
imum across all projections. This approach serves as
a fast approximation of the kernel max-sliced Wasser-
stein distance of Wang et al. (2022), where a Riemannian
block coordinate descent method is used to optimise an
entropic regularised objective at a computational cost of
O(n3 log(n)). In contrast, our approach identifies the
largest directional quantile difference across the sampled
projections. While we do not claim that this provides
an accurate estimate of the true distance, this approach
allows for controlled complexity and facilitates compar-
isons between averaging or taking the supremum.

• MMD. The MMD is included as a benchmark to be com-
pared with e-KQD-centered and has complexity O(n2).
The MMD is estimated using the U-statistic formulation.

• MMD-Multi. A fast MMD approximation based on in-
complete U-statistic introduced in Schrab et al. (2022)
is included to benchmark against our e-KQD distance.
Configurations of MMD-Multi are chosen as to match the
complexity of e-KQD for a fair comparison.

• MMD-Lin. MMD-Linear from Gretton et al. (2012,
Lemma 14.) estimates the MMD with complexity O(n).

5.2. Experimental Setup and Results

We conduct four experiments: two using synthetic data, al-
lowing full control over the simulation environment, and
two based on high-dimensional image data to showcase the

practicality and competitiveness of our proposed methods.
Additional experiments are reported in Appendix D, specifi-
cally: studying the impact of changing the measures ν and
ξ, comparing with sliced Wasserstein distances, and com-
paring with MMD based on other KME approximations.

1. Power-decay experiment. This experiment investigates
the effect of the curse of dimensionality on our tests, follow-
ing the setup of Experiment A in Wang et al. (2022). Prior
work by Ramdas et al. (2015) has shown that MMD-based
methods are particularly vulnerable to the curse of dimen-
sionality. Here, we assess whether our quantile-based test
statistic exhibits similar limitations.

We fix n = 200 and take P to be an isotropic Gaussian
distribution of dimension d. Similarly, we take Q to be a
d-dimensional Gaussian distribution with a diagonal covari-
ance matrix Σ = diag({4, 4, 4, 1, . . . , 1}). As we increase
the dimension d ∈ [32, 64, 128, 256, 512], the testing prob-
lem becomes increasingly challenging. Figure 3a presents
the results. We observe that e-KQD exhibits the slowest de-
cline in test power among all methods, irrespective of their
computational complexity. Notably, it maintains its perfor-
mance significantly better than itsO(n log2(n)) benchmark,
MMD-Multi. These results suggest that quantile-based dis-
crepancies exhibit greater robustness to high-dim data.

2. Laplace v.s. Gaussian. This experiment aims to il-
lustrate Theorem 2 by demonstrating that while a kernel
may not be mean-characteristic—meaning it cannot distin-
guish between two distributions using standard KMEs and
MMDs—it can still be quantile-characteristic. In such cases,
the distributions can still be effectively distinguished using
our KQEs and KQDs. To demonstrate this, we take P to be
a standard Gaussian in d = 1, and Q to be a Laplace dis-
tribution with matching first and second moment. We vary
n ∈ {100, 500, 2000, 5000, 10000} and select a polynomial
kernel of degree 3, i.e. k(x, x′) = (⟨x, x′⟩+1)3, for all our

8



Kernel Quantile Embeddings and Associated Probability Metrics

methods. This ensures that k cannot distinguish between
the two distributions due to their matching first and second
moments, which leads to their KMEs being identical.

Figure 3b shows that our KQDs, irrespective of their com-
putational complexity, exhibit increasing test power as the
sample size grows. In contrast, MMD-based methods fail
entirely to detect any differences between P andQ. Notably,
although e-KQD-centered can be expressed as the sum of
an MMD term and an a e-KQD term, the underperformance
of the MMD component in this scenario is effectively com-
pensated by the e-KQD term, enabling successful testing.

3. Galaxy MNIST. We examine performance on real-world
data through galaxy images (Walmsley et al., 2022) in di-
mension d = 3 × 64 × 64 = 12288, following the setting
from Biggs et al. (2024). These images consist of four
classes. P corresponds to images sampled uniformly from
the first three classes, while Q consists of samples from
the same classes with probability 0.85 and from the fourth
class with probability 0.15. A Gaussian RBF kernel with
bandwidth chosen using the median heuristic method is
chosen for all estimators. Sample sizes are chosen from
n ∈ {100, 500, 1000, 1500, 2000, 2500}.
Figure 3c presents the results. e-KQD-centered and MMD
exhibit nearly identical performance, suggesting that the
MMD term is dominating in the e-KQD-centered estima-
tor. Among the near-linear time test statistics, e-KQD and
sup-KQD show a slight advantage over MMD-Multi in dis-
tinguishing between the distributions of Galaxy images.

4. CIFAR-10 v.s. CIFAR-10.1. We conclude with an ex-
periment on telling apart the CIFAR-10 (Krizhevsky et al.,
2012) and CIFAR-10.1 (Recht et al., 2019) test sets, fol-
lowing again Liu et al. (2020) and Biggs et al. (2024). The
dimension is d = 3×32×32 = 3072. This is a challenging
task, as CIFAR-10.1 was designed to provide new samples
from the CIFAR-10 distribution, making it an alternative
test set for models trained on CIFAR-10. We conduct the
test by drawing n samples from CIFAR-10, and n samples
from CIFAR-10.1, with n ∈ {100, 500, 1000, 1500, 2000}.
Figure 3d presents the results. Consistent with previous ob-
servations, test statistics with quadratic computational com-
plexity exhibit nearly identical performance. However, our
quantile discrepancy estimators with near-linear complexity
significantly outperform the fast MMD estimators (MMD-
Multi) of the same complexity, highlighting the practical
advantages of our methods in real-world testing scenarios
where computational efficiency is a critical consideration.

An empirical runtime comparison of all methods is pre-
sented in Figure 4, which shows the time (in seconds) re-
quired to complete this experiment. The empirical results
align with our complexity analysis: the near-linear estima-
tors exhibit comparable performance, while the quadratic
estimators are significantly slower. The proposed near-linear
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Figure 4: Comparing the time (in seconds) required to com-
plete the CIFAR-10 vs. CIFAR-10.1 experiment, plotted
on a logarithmic scale. A shorter time indicates a faster
algorithm. These results align with our complexity analysis.

KQD estimator makes it suitable for larger-scale datasets.

6. Discussion and Future Work
This work explores representations of distributions in a
RKHS beyond the mean, using functional quantiles to cap-
ture richer distributional characteristics. We introduce ker-
nel quantile embeddings (KQEs) and their associated kernel
quantile discrepancies (KQDs), and establish that the condi-
tions required for KQD to define a distance are strictly more
general than those needed for MMD to be a distance. Addi-
tionally, we propose an efficient estimator for the expected
KQD based on Gaussian measures, and demonstrate its ef-
fectiveness compared to MMD and its fast approximations
through extensive experiments in two-sample testing. Our
findings demonstrates the potential of KQEs as a powerful
alternative to traditional mean-based representations.

Several promising avenues remain. Firstly, future work
could explore more sophisticated methods for improv-
ing the empirical estimates of KQEs. The study of opti-
mal kernel selection to maximize test power when using
KQD for hypothesis testing, analogous to existing work on
MMDs (Jitkrittum et al., 2020; Liu et al., 2020; Schrab et al.,
2023) could also be explored. Secondly, considering the
demonstrated potential of functional quantiles for represent-
ing marginal distributions, it is natural to ask whether they
could provide a powerful alternative to conditional mean
embeddings (CMEs) (Song et al., 2009; Park and Muan-
det, 2020), the Hilbert space representation of conditional
distributions. These complementary developments will un-
lock new avenues for enhancing existing applications of
KMEs across a wide range of domains, including not only
nonparametric two-sample testing, but also (conditional)
independence testing, causal inference, reinforcement learn-
ing, learning on distributions, generative modeling, robust
parameter estimation, and Bayesian representations of dis-
tributions via kernel mean embeddings, as explored in Flax-
man et al. (2016); Chau et al. (2021a;b), among others.
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Generalized Sliced Probability Metrics. In ICASSP
2022 - 2022 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
4513–4517, May 2022. doi: 10.1109/ICASSP43922.
2022.9746016. URL https://ieeexplore.ieee.
org/document/9746016. ISSN: 2379-190X.

L. Kong and I. Mizera. Quantile tomography: Using quan-
tiles with multivariate data. Statistica Sinica, 22(4):1589–
1610, 2012.

M. R. Kosorok. Two-sample quantile tests under general
conditions. Biometrika, 86(4):909–921, 1999.

N. M. Kriege, F. D. Johansson, and C. Morris. A survey on
graph kernels. Applied Network Science, 5:1–42, 2020.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet
classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems,
volume 25, 2012.

A. Kukush. Gaussian measures in Hilbert space: construc-
tion and properties. John Wiley & Sons, 2020.

11

https://ieeexplore.ieee.org/document/9746016
https://ieeexplore.ieee.org/document/9746016


Kernel Quantile Embeddings and Associated Probability Metrics

E. L. Lehmann, J. P. Romano, and G. Casella. Testing
statistical hypotheses, volume 3. Springer, 1986.

M. Lerasle, Z. Szabó, T. Mathieu, and G. Lecué. Monk
outlier-robust mean embedding estimation by median-of-
means. In International conference on machine learning,
pages 3782–3793. PMLR, 2019.

Y. Li, Y. Liu, and J. Zhu. Quantile regression in reproducing
kernel Hilbert spaces. Journal of the American Statistical
Association, 102(477):255–268, 2007.

F. Liu, W. Xu, J. Lu, G. Zhang, A. Gretton, and D. J. Suther-
land. Learning deep kernels for non-parametric two-
sample tests. In International conference on machine
learning, pages 6316–6326. PMLR, 2020.

A. Magesh, V. V. Veeravalli, A. Roy, and S. Jha. Principled
out-of-distribution detection via multiple testing. Journal
of Machine Learning Research, 24(378):1–35, 2023.

N. Makigusa. Two-sample test based on maximum variance
discrepancy. Communications in Statistics - Theory and
Methods, 53(15):5421–5438, 2024a.

N. Makigusa. Two-sample test based on maximum variance
discrepancy. Communications in Statistics-Theory and
Methods, 53(15):5421–5438, 2024b.

S. Minsker. Geometric median and robust estimation in
Banach spaces. Bernoulli, 21(4), Nov. 2015. ISSN 1350-
7265. doi: 10.3150/14-BEJ645. URL http://arxiv.
org/abs/1308.1334. arXiv:1308.1334 [math, stat].

K. Muandet, K. Fukumizu, F. Dinuzzo, and B. Schölkopf.
Learning from distributions via support measure ma-
chines. In Advances in Neural Information Processing
Systems 25, pages 10–18. 2012.

K. Muandet, K. Fukumizu, B. K. Sriperumbudur, and
B. Schölkopf. Kernel mean embedding of distributions: A
review and beyonds. Foundations and Trends in Machine
Learning, 10(1-2):1–141, 2016.

K. Muandet, M. Kanagawa, S. Saengkyongam, and
S. Marukatat. Counterfactual mean embeddings. Journal
of Machine Learning Research, 22(162):1–71, 2021.

A. Müller. Integral probability metrics and their generating
classes of functions. Advances in applied probability, 29
(2):429–443, 1997.

K. Nadjahi, A. Durmus, L. Chizat, S. Kolouri, S. Shahram-
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Supplementary Material

This supplementary material is structured as follows. In Appendix A, we recall existing probability metrics, define alternative
KQDs, and then describe their respective finite-sample estimators. In Appendix C, we provide the proofs of all theoretical
results in the paper. In Appendix D, we provide additional numerical experiments to complement the main text.

A. Probability Metrics and Their Estimators
A.1. Maximum Mean Discrepancy

We first recall that the MMD is an integral probability metric (Müller, 1997) where the supremum can be obtained in
closed-form:

MMD(P,Q) := sup
∥f∥H≤1

|EX∼P [f(X)]− EY∼Q[f(X)]| = ∥µP − µQ∥H

Using the reproducing property, we can then expressed the squared-MMD as

MMD2(P,Q) := EX,X′∼P [k(X,X
′)]− 2EX∼P,Y∼Q[k(X,Y )] + EY,Y ′∼Q[k(Y, Y

′)] (6)

This section describes the most widely used estimators for this quantity based on i.i.d. samples x1:n ∼ P and y1:n ∼ Q.
The first is a biased V-statistic estimator with computational complexity O(n2) and convergence rate O(n−1/2):

MMD2
V (P,Q) :=

1

n2

n∑
i=1

n∑
j=1

k(xi, xj)−
2

n2

n∑
i=1

n∑
j=1

k(xi, yj) +
1

n2

n∑
i=1

n∑
j=1

k(yi, yj)

Alternatively, an unbiased estimator can be constructed through a U-statistic. Such an estimator also has computational
complexity O(n2) and convergence rate O(n−1/2) (Gretton et al., 2012, Lemma 6;Corollary 16), and is given by

MMD2
U (P,Q) :=

1

n(n− 1)

∑
i̸=j

k(xi, xj)−
2

n2

n∑
i=1

n∑
j=1

k(xi, yj) +
1

n(n− 1)

∑
i ̸=j

k(yi, yj)

A cheaper estimator was proposed in Lemma 14 of (Gretton et al., 2012). This estimator has computational complexity
O(n) and convergence rate O(n−1/2), and we will refer to it as MMD-Lin. The estimator is given by:

MMD2
lin(P,Q) :=

1

⌊n/2⌋

n/2∑
i=1

k(x2i−1, x2i) + k(y2i−1, y2i)− k(x2i−1, y2i)− k(x2i, y2i−1)

Finally, we also studied estimators whose computational complexity are between that of MMD-lin and the U- or V-statistics
estimators. These estimators are due to Schrab et al. (2022) and we refer to them as MMD-Multi, and takes the following
form

MMD2
Multi(P,Q) :=

2

r(2n− r − 1)

r∑
j=1

n−j∑
i=1

k(xi, xi+j) + k(yi, yi+j)− k(xi, yi+j)− k(xi+j , yi)

where r is the number of subdiagonal considered. In our experiments, to match the complexity with e-KQD, we set
r = log2(n). They have computational complexity O(rn).
Note that several estimators with faster convergence rates exist (Niu et al., 2023; Bharti et al., 2023), but these have
computational cost ranging from O(n2) to O(n3) and require more regularity conditions on k, P and Q, and we therefore
omit them from our benchmark. Bodenham and Kawahara (2023) also introduced an estimator with computational
complexity of O(n log(n)) (and convergence O(n−1/2)) using slices/projections to d = 1. However, their approach is
restrictive in that it can only be used for the Laplace kernel, and we therefore also do not compare to it.
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A.2. Wasserstein Distance

The p-Wasserstein distance (Kantorovich, 1942; Villani et al., 2009) is defined as

Wp(P,Q) :=

(
inf

π∈Π(P,Q)
E(X,Y )∼π [ρ(X,Y )p]

)1/p

.

Given samples x1:n ∼ P and y1:n ∼ Q, this distance can be approximated using a plug-in Wp(1/n
∑n
i=1 δxi ,

1/n
∑n
i=1 δyi),

which can be computed in closed-form at a cost of O(n3), but converges to Wp(P,Q) with a convergence rate O(n−1/d).

When X ⊆ Rd and p = 1, we obtain the 1-Wasserstein distance which, similarly to the MMD, can be written as an integral
probability metric (Müller, 1997):

W1(P,Q) := sup
∥f∥Lip≤1

|EX∼P [f(X)]− EX∼Q[f(X)]|

where ∥f∥Lip = supx,y∈X ,x ̸=y |f(x)− f(y)|/∥x− y∥ denotes the Lipschitz norm.

When P,Q are distributions on a one dimensional space X ⊆ R that have p-finite moments, the p-Wasserstein distance can
be expressed in terms of distance between quantiles of P and Q (see for instance Peyré et al. (2019, Remark 2.30))

Wp(P,Q) =

(∫ 1

0

|ραP − ραQ|pdα
)1/p

(7)

A natural estimator for the Wasserstein distance is therefore based on approximating these one-dimensional quantiles using
order statistics. Given x1:n ∼ P and y1:n ∼ Q, denote by Pn = 1/n

∑n
i=1 δxi and Qn = 1/n

∑n
i=1 δyi the corresponding

empirical approximations to P and Q. Then, the ⌈j/n⌉-th quantiles of Pn and Qn are exactly the j-th order statistics [x1:n]j
and [y1:n]j , meaning the j’th smallest elements of x1:n and y1:n respectively. Then Wp(Pn, Qn) takes the exact form

Wp(Pn, Qn) =

 n∑
j=1

|[x1:n]j − [y1:n]j |p
1/p

, (8)

and is an estimator of Wp(P,Q). This estimator costs O(n log(n)) to compute (due to the cost of sorting n data points),
and a convergence rate of O(n−1/2) for p = 1, and minimax convergence rate O(n−1/2p) for integer p > 1 when P,Q have
at least 2p finite moments. In some cases, the p > 1 rate can be improved upon to match the O(n−1/2) rate of p = 1: we
refer to Bobkov and Ledoux (2019) for a thorough overview.

A.3. Sliced Wasserstein

The sliced Wasserstein (SW) distances (Rabin et al., 2011; Bonneel et al., 2015) between two distributions P,Q on Rd use
one-dimensional projections to reduce computational cost.

Expected SW. For an integer p ≥ 1, expected SW is defined as

SWp(P,Q) :=
(
Eu∼U(Sd−1)[W

p
p (ϕu#P, ϕu#Q)]

)1/p
,

where U(Sd−1) is the uniform distribution on the unit sphere Sd−1, the measures ϕu#P , ϕu#Q are pushforwards under
the projection operator ϕu(x) = ⟨u, x⟩, and Wp is the one-dimensional p-Wasserstein distance as in Equation (7). Given
x1:n ∼ P and y1:n ∼ Q, the integral over the sphere is approximated by Monte Carlo sampling of l directions u1:l, which
together with the estimator in Equation (8) gives

ŜW
p

p(P,Q) =
1

l

l∑
i=1

W p
p (ϕuj#Pn, ϕuj#Qn) =

1

ln

l∑
i=1

n∑
j=1

([
⟨ui, x1:n⟩

]
j
−
[
⟨ui, y1:n⟩

]
j

)p
Here, [⟨ui, x1:n⟩]j is the j-th order statistics, meaning the j-th smallest element of ⟨ui, x1:n⟩ = [⟨ui, x1⟩, . . . , ⟨ui, xn⟩]⊤.
This estimator can be computed in O(ln log n) time (the cost on sorting n samples, for l directions) and was shown to
converge at rate O(l−1/2 + n−1/2) for p = 1 (Nadjahi et al., 2022).
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Max SW. The max-sliced Wasserstein (max-SW) distance (Deshpande et al., 2018) replaces the average over projections
in expected SW with a supremum over directions,

max-SWp(P,Q) :=

(
sup

u∈Sd−1

W p
p (ϕu#P, ϕu#Q)

)1/p

,

where, ϕu(x) = ⟨u, x⟩ is again the projection operator, andWp is the one-dimensional p-Wasserstein distance of Equation (7).
Max-SW emphasizes the direction of greatest dissimilarity between the two measures.

Given x1:n ∼ P and y1:n ∼ P , max-SW is estimated as Wp(ϕu∗#P, ϕu∗#Q), for u∗ the projection that maximises
W p
p (ϕu#Pn, ϕu#Qn) as given in Equation (8). In (Deshpande et al., 2018), u∗ was approximated by optimising a heuristic,

rather than the actual W p
p (ϕu#Pn, ϕu#Qn). Then, Kolouri et al. (2022) approached the actual problem of

u∗ = argmax
∥u∥=1

W p
p (ϕu#Pn, ϕu#Qn).

by running projected gradient descent on Sd−1, where each gradient step requires computing the derivative of the 1D
Wasserstein distance w.r.t. u. Concretely, they initialise u1 randomly and iterate

ut+1 = ProjSd−1

(
Optim

(
∇uW p

p (ϕut#P, ϕut#Q), u1:t
))
, (9)

where ProjSd−1(x) = x/∥x∥ is the operator projecting onto the unit sphere, and Optim is an optimiser of choice, such as
ADAM. Each evaluation of Wp and its gradient in one dimension costsO(n log n), so the overall complexity isO(Tn log n)
for T gradient steps. It is important to point out the optimisation may be noisy, with the value objective getting worse after
some iterations. Indeed, if zt+1 is the solution to Optim

(
∇uW p

p (ϕut#P, ϕut#Q), u1:t
)
, is it an improvement over ut,

meaning W p
p (ϕut#P, ϕut#Q) ≤W p

p (ϕzt+1#P, ϕzt+1#Q). Written out explicitly,

n∑
j=1

|[⟨ut, x1:n⟩]j − [⟨ut, y1:n⟩]j |p ≤
n∑
j=1

|[⟨zt+1, x1:n⟩]j − [⟨zt+1, y1:n⟩]j |p ,

Then, ut+1 = ProjSd−1(zt+1) = zt+1/∥zt+1∥, and it may happen thatW p
p (ϕut#P, ϕut#Q) > W p

p (ϕut+1#P, ϕut+1#Q).
The desired W p

p (ϕut#P, ϕut#Q) ≤W p
p (ϕut+1#P, ϕut+1#Q) is guaranteed when ∥zt+1∥p ≤ 1, which may not happen.

A.4. Generalised Sliced Wasserstein

The generalised (max-)sliced Wasserstein (GSW and max-GSW) distances (Kolouri et al., 2022) extend SW and max-SW
by using a family of nonlinear feature maps {fθ : Rd → R}θ∈Θ instead of linear projections. Formally,

GSWp(P,Q) :=
(
Eθ∼µW p

p (fθ#P, fθ#Q)
)1/p

, max-GSWp(P,Q) :=

(
sup
θ∈Θ

W p
p (fθ#P, fθ#Q)

)1/p

,

where fθ#P denotes the pushforward of P by fθ and µ is a probability measure over the parameter space Θ. For
fθ(x) = ⟨θ, x⟩ and Θ = Sd−1 with uniform µ, GSW reduce to the standard SW distances. For expected GSW, sampling
{θi}li=1 ∼ µ yields an estimator with the sameO(ln log n) computational complexity as expected SW (Kolouri et al., 2022).
For max-GSW, the projected gradient descent approach of Equation (9) applies, at the same complexity of O(Tn log n) as
for max-SW.

Statistical and topological properties of GSW depend completely on the choice of the family {fθ : θ ∈ Θ}. Kolouri et al.
(2022) consider the specific case of polynomial fθ, and show GSW is then a metric on probability distributions on Rd.

A.5. Kernel Sliced Wasserstein

A special case of the GSW arises when the feature maps fθ are drawn from a reproducing kernel Hilbert space (RKHS).
Let k : Rd × Rd → R be a positive definite kernel that induces the RKHSH with unit sphere SH. Then, the kernel sliced
Wasserstein (KSW) can be introduced as

e-KSWp(P,Q) :=
(
Eu∼γW p

p (u#P, u#Q)
)1/p

, max-KSWp(P,Q) :=

(
sup
u∈SH

W p
p (u#P, u#Q)

)1/p

,
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where γ is some probability measure on SH. The expected KSW is a new construct, while max-KSW was introduced
in Wang et al. (2022), and studied further in Wang et al. (2024b); in both papers k was assumed to be universal. Finding the
optimal u∗ for max-KSW was shown to be NP-hard in Wang et al. (2024b); they propose an estimator at cost O(T 3/2n2).
Though still more expensive than computing the V-statistic estimator of MMD, this is an improvement over O(Tn3) in the
original work of Wang et al. (2022).

As pointed out in the main text, the choice of a uniform γ in e-KSW, while seemingly natural, may not be feasible as there is
no uniform or Lebesgue measure in infinite dimensional spaces. In the main paper, we propose a practical choice of γ that
facilitates an efficient estimator, and study computational cost. Further, we establish statistical and topological properties
that apply to both expected and max-KSW—and do not assume a universal kernel.

A.6. Sinkhorn Divergence

The entropic regularisation of optimal transport leads to the Sinkhorn divergence (Cuturi, 2013; Genevay et al., 2019). For
distributions P,Q and regularisation parameter ε > 0, the entropic OT cost is defined as

Wp,ε(P,Q) :=

(
inf

π∈Π(P,Q)
E(X,Y )∼π[∥X − Y ∥p] + εKL(π∥P ⊗Q)

)1/p

.

The Sinkhorn divergence then corrects for the entropic bias:

Sp,ε(P,Q) :=Wp,ε(P,Q)−Wp,ε(P, P )/2−Wp,ε(Q,Q)/2. (10)

This quantity interpolates between MMD-like behavior for large ε and true Wasserstein for ε→ 0, and can be computed
efficiently via Sinkhorn iterations at cost O(n2) per iteration (Cuturi, 2013).

A.7. Kernel covariance embeddings

Kernel covariance (operator) embeddings (KCE, Makigusa (2024b)) represent the distribution P as the second-order moment
of the function k(X, ·), for X ∼ P , as an alternative to the first-order moment (the kernel mean embedding). Due to being
moments of the same distribution, the two share key positives and drawbacks: KCE for kernel k exists if and only if KME for
k2 exists, and the kernel k is covariance characteristic if and only if k2 is mean-characteristic (Bach, 2022). The divergence
proposed in Makigusa (2024b) is the distance between the KCE, and is estimated at O(n3) due to the need to compute full
eigendecomposition of the KCE in order to compute the norm. In contrast, our proposed kernel quantile embeddings (KQE)
embed quantiles, and therefore the relation to the KCE comes down to matching quantiles (which always exist, and come
with an efficient estimator), compared to matching the second moment in the infinite-dimensional RKHS (which may not
exist, and requires eigenvalue decomposition).

A.8. Kernel median embeddings

The median embedding (Nienkötter and Jiang, 2022) of P is the geometric median of k(X, ·),X ∼ P in the RKHS, meaning
the RKHS element which, on average, is L1-closest to the point k(X, ·). Explicitly put, it is the function medP ∈ H defined
through

medP = argmin
f∈H

∫
H
∥f(·)− k(x, ·)∥HP (dx).

The median exists for any separable Hilbert space (Minsker, 2015). However, even for an empirical Pn = 1/n
∑n
i=1 δxi ,

there is no closed-form solution to this L1-problem, and the median is typically approximated using iterative algorithms like
Weiszfeld’s algorithm. The estimator proposed in Nienkötter and Jiang (2022) has a computational complexity of O(n2).
The property of being median-characteristic, as far as the authors are aware, has not been explored, and no theoretical
guarantees are available.

The connection to 1D-projected quantiles as done in KQE, even specifically the 1D-projected median, is also unclear.
Expanding the understanding of geometric median embeddings is an area for future research.

A.9. Other Related Work

Kernel methods have also been studied in the context of quantile estimation and regression (Sheather and Marron, 1990; Li
et al., 2007). These methods, however, focus on using either kernel density estimation or kernel ridge regression to estimate
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univariate quantiles. In contrast, our focus lies in exploring directional quantiles in the RKHS, and using them to estimate
distances between distributions. We introduce this idea in the following section.

B. Connection between Centered and Uncentered Quantiles
Proposition 2 (Centered e-KQD2). The e-KQD2 and sup-KQD2 correspondence derived based on centered directional
quantiles, now expressed as ˜e-KQD2(P,Q;µ, γ)2 and ˜sup-KQD2(P,Q;µ, γ)2 can be expressed as follows,

˜e-KQD2(P,Q;µ, γ)2 = e-KQD2(P,Q;µ, γ) +MMD2(P,Q)− Eu∼γ [(EX∼P [u(X)]− EY∼Q[u(Y )])2],

≥ e-KQD2(P,Q;µ, γ) +MMD2(P,Q)

˜sup-KQD2(P,Q;µ, γ)2 = sup
u∈SH

(
τ22 (P,Q, µ, u)− (EX∼P [u(X)]− EY∼Q[u(Y )])2

)
+MMD2(P,Q)

≥ sup-KQD2(P,Q;µ, γ) +MMD2(P,Q)

Proof. Let P,Q ∈ PX be measures on some instance space X . Further, define ψ : x 7→ k(x, ·), and write Pψ = ψ#P and
Qψ = ψ#Q. Now Pψ and Qψ are measures on the RKHS Hk. Recall the definition of centered directional quantiles in
Section 2.1,

ρ̃α,uPψ =
(
ραϕu#Pψ − ϕu(EY∼Pψ [Y ])

)
u+ EY∼Pψ [Y ]

Now since we are working in the RKHSHk, the expectation term EY∼Pψ [Y ] corresponds to the kernel mean embedding
µP := EP [k(X, ·)], thus we can rewrite the above expression as,

ρ̃α,uPψ =
(
ρϕu#Pψ − ⟨u, µP ⟩

)
u+ µP

ρ̃α,uQψ can be defined analogously. Now consider integrating the difference between the two centered directional quantiles
along all quantile levels, leading to

τ̃2(P,Q, µ, u) =

(∫ 1

0

∥ρ̃α,uPψ − ρ̃
α,u
Qψ
∥2Hk

µ(dα)

) 1
2

(11)

We now proceed to show τ̃22 (P,Q, µ, u) ,where µ is the Lebesgue measure, can be expressed as a sum between an uncentered
e-KQD2 term with the MMD. Starting with expanding the RKHS norm inside the integrand,

∥ρ̃α,uPψ − ρ̃
α,u
Qψ
∥2Hk

= ∥ (ραϕu#Pψ − ρ
α
ϕu#Qψ

− ⟨u, µP − µQ⟩)︸ ︷︷ ︸
=:A∈R

u+ µP − µQ∥2Hk

= ∥Au+ (µP − µQ)∥2Hk

= 2⟨Au, µP − µQ⟩+ ∥Au∥2Hk
+ ∥µP − µQ∥2Hk

= 2A⟨u, µP − µQ⟩+A2 +MMD2(P,Q) (12)

Plugging the expression from Equation (12) into Equation (11), we get the following,

τ̃22 (P,Q, µ, u) =

∫ 1

0

(2A⟨u, µP − µQ⟩+A2)µ(dα) +MMD2(P,Q)

= 2⟨u, µP − µQ⟩
∫ 1

0

Aµ(dα) +

∫ 1

0

A2µ(dα) +MMD2(P,Q) (13)

For the first term on the right hand side, notice that,∫ 1

0

Aµ(dα) =

∫ 1

0

(ραϕu#Pψ − ρ
α
ϕu#Qψ

− ⟨u, µP − µQ⟩)µ(dα) (14)

18



Kernel Quantile Embeddings and Associated Probability Metrics

Recall standard results from probability theory that integrating the quantile function between 0 to 1 with the Lebesgue
measure returns you the expectation, specifically, that is,∫ 1

0

ραϕu#Pψµ(dα) = EX∼P [u(X)] = ⟨u, µP ⟩.

Using this fact, the terms in Equation (14) cancels out, leaving
∫ 1

0
Aµ(dα) = 0. Therefore, continuing from Equation (13),

we have,

τ̃22 (P,Q, µ, u) =

∫ 1

0

A2µ(dα) +MMD2(P,Q)

=

∫ 1

0

(ραϕu#Pψ − ρ
α
ϕu#Qψ

− ⟨u, µP − µQ⟩)2µ(dα) +MMD2(P,Q)

=

∫ 1

0

∥(ραsµP ,u#(ϕu#Pψ)
− ραsµQ,u#(ϕu#Qψ)

)u∥2µ(dα) +MMD2(P,Q)

where sµP ,u : R→ R is a shifting function defined as sµP ,u(r) = r − ⟨u, µp⟩ for r ∈ R. Alternatively, after expanding the
terms in A2, we can express τ̃22 (P,Q, µ, u) as,

τ̃22 (P,Q, µ, u) =

∫ 1

0

(ρϕu#Pψ − ρϕu#Qψ )2µ(dα)− (E[u(X)− u(Y )])2 +MMD2(P,Q)

= τ22 (P,Q, µ, u) +MMD2(P,Q)− (E[u(X)− u(Y )])2

As a result, for γ a measure on the unit sphere ofHk, the centered version of e-KQD2 and sup-KQD2, now expressed as
˜e-KQD2 and ˜sup-KQD2, are given by,

˜e-KQD2(P,Q;µ, γ)2 = Eu∼γ
[
τ̃22 (P,Q;µ, u)

]
= e-KQD2(P,Q;µ, γ)2 +MMD2(P,Q)− Eu∼γ [(EX∼P [u(X)]− EY∼Q[u(Y )])2],

≤ e-KQD2(P,Q;µ, γ)2 +MMD2(P,Q)

˜sup-KQD2(P,Q;µ, γ)2 = sup
u∈SH

τ̃22 (P,Q;µ, u)

= sup
u∈SH

(
τ22 (P,Q, µ, u)− (E[u(X)]− E[u(Y )])2

)
+MMD2(P,Q)

≤ sup
u∈SH

τ22 (P,Q;µ, u)− sup
u∈SH

(E[u(X)]− E[u(Y )])2 +MMD2(P,Q)

≤ sup-KQD2(P,Q;µ, γ)2 +MMD2(P,Q).

When ν ≡ µ and the connections to Sliced Wasserstein explored in Connection 1 and Connection 2 emerges, the mean-
shifting property of Wasserstein distances allows us to express centered KQD as a sum of uncentered KQD, and MMD—a
curious interpretation of centering.

C. Proof of Theoretical Results
This section now provides the proof of all theoretical results in the main text.

C.1. Proof of Theorem 1

The main result in this section, Proposition 3, shows that the set of R measures {u#P : u ∈ SH} fully determines the
distribution P . Since quantiles determine the distribution, Theorem 1 follows immediately.

Being concerned with the RKHS case specifically allows us to prove the result under mild conditions by using characteristic
functionals, an extension of characteristic functions to measures on spaces beyond Rd. Characteristic functionals describe
Borel probability measures as operators acting on some function space F : X → R.
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Definition 1 (Vakhania et al. (1987), Section IV.2.1). The characteristic functional φP : F → C of a Borel probability
measure P on X is defined as

φP (f) =

∫
X
eif(x)P (dx).

Theorem 2.2(a) in Vakhania et al. (1987, Chapter 4) establishes that a P -characteristic functional on F uniquely determines
the distribution P—on the smallest σ-algebra under which all function f ∈ F are measurable. Therefore, when F is such
that this σ-algebra coincides with the Borel σ-algebra, the distribution is fully determined by P -characteristic functional on
F . We show that, indeed, this holds in our setting, for F = H.

Lemma 1. Suppose A1 and A2 holds. Then, the Borel σ-algebra B(X ) is the smallest σ-algebra on X under which all
functions f ∈ H are measurable.

Proof. Denote by Ĉ(X ,H) the smallest σ-algebra on X under which all functions f ∈ H are measurable, and recall that
the Borel σ-algebra is the σ-algebra that contains all closed sets. Therefore, we need to show that Ĉ(X ,H) contains every
closed set in X . We split the proof into two parts: (1) show thatH contains a countable separating subspace, and (2) show
that this implies that every closed set lies in Ĉ(X ,H).

H contains a countable separating subspace. Recall that a function space F on X is said to be separating when for
any x1 ̸= x2 ∈ X , there is a function f ∈ F such that f(x1) ̸= f(x2). Since k is separating,H is separating. SinceH is
separable, it contains a countable dense subspaceH0 ⊆ H. ByH0 being dense inH, it must also be separating.

Every closed set lies in Ĉ(X ,H). By Vakhania et al. (1987, Section I.1, Exercise 9), all compact sets inX lie in Ĉ(X ,H0),
byH0 being countable, continuous, separating space of real-valued functions. By definition, Ĉ(X ,H0) ⊆ Ĉ(X ,H), and so
Ĉ(X ,H) contains all compact sets. We now show this means every closed set must also lie in Ĉ(X ,H).
By X being σ-compact, there is a family of compact sets {Xi}∞i=1 such that X = ∪∞i=1Xi. Take any closed K ⊆ X; then,
K = ∪∞i=1(Xi∩K). Since Xi∩K is compact as the intersection of a compact set and a closed set, and σ-algebras are closed
under countable unions, K must lie in Ĉ(X ,H). As this holds for every closed K, we conclude B(X ) = Ĉ(X ,H).

We now restate the RKHS-specific version of the Vakhania result here for completeness.

Theorem 6 (Theorem 2.2(a) in Vakhania et al. (1987) for RKHS). Suppose A1 and A2 holds, and for Borel probability
measures P,Q on X , it holds that φP (f) = φQ(f) for every f ∈ H. Then, P = Q.

We are now ready to prove the distribution of projections uniquely determines the distribution.

Proposition 3. Under A1 and A2, it holds that

u#P = u#Q for all u ∈ SH ⇐⇒ P = Q.

Proof. The main idea of the proof is to show that equality of u#P and u#Q implies equality of characteristic functionals,
φP (f) = φQ(f) for all f ∈ H such that f(x) = tu(x) for some t ∈ R and u in the unit sphere. Since such f form the
entireH, the result immediately follows.

First, recall that u#P = u#Q for all u if and only if their characteristic functions coincide, meaning∫
R
eitzu#P (dz) =

∫
R
eitzu#Q(dz) ∀u ∈ SH,∀t ∈ R. (15)

Notice that the measure u#P is a pushforward of P under the map x→ u(x). Then, for any measurable g it holds that∫
X
g(u(x))P (dx) =

∫
R
g(z)u#P (dz) ∀u ∈ SH. (16)

Take g(z) = eitz , for some t ∈ R. Then, for all u it holds that
∫
R e

itzu#P (dz) =
∫
R e

itzu#Q(dz), and consequently
by (15) we have that ∫

X
eitu(x)P (dx) =

∫
X
eitu(x)Q(dx) ∀u ∈ SH,∀t ∈ R. (17)
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Finally, let us pick an f ∈ H and show that φP (f) = φQ(f). Define u = f/∥f∥, and t = ∥f∥; then,

φP (f) =

∫
X
eif(x)P (dx) =

∫
X
eitu(x)P (dx),

and by (17), we arrive at the equality of characteristic functionals, φP (f) = φQ(f). By Theorem 6 characteristic functionals
uniquely determine the underlying distribution, meaning P = Q.

For the sake of clarity, we give the proof of the original result.

Proof of Theorem 1. Suppose {ρα,uP : α ∈ [0, 1], u ∈ SH} = {ρα,uQ : α ∈ [0, 1], u ∈ SH} for some Borel probability
measures P,Q. For any fixed u, since every quantile of of u#P and u#Q coincide, the measures coincide as well,
u#P = u#Q. As that holds for every u, by Proposition 3, P = Q.

Lastly, we point out A1 may be relaxed. Provided X is a Tychonoff space—meaning, a completely regular Hausdorff
space—part (b) of Theorem 2.2 in Vakhania et al. (1987) says the following.

Theorem 7 (Theorem 2.2(b) in Vakhania et al. (1987) for RKHS). Suppose X is Tychonoff, A2 holds, and for Radon
probability measures P,Q on X , it holds that φP (f) = φQ(f) for every f ∈ H. Then, P = Q.

Therefore, when A1 is replaced with X being Tychonoff, Theorem 1 continues to hold—but only for Radon P,Q, not any
Borel P,Q. Radon probability measures can be intuitively seen as the "non-pathological" Borel measures—a restriction
employed in order to drop the regularity assumptions of X being separable and σ-compact.

C.2. Proof of Theorem 2

We prove that every mean-characteristic kernel is quantile-characteristic, and give an example quantile-characteristic kernel
that is not mean-characteristic.

mean-characteristic⇒ quantile-characteristic. Suppose k on X is mean-characteristic, and P ̸= Q are any probability
measures on X . We will identify a unit-norm u for which the sets of quantiles of u#P and u#Q differ.

Since k is mean characteristic, µP ̸= µQ, and MMD2(P,Q) = ∥µP − µQ∥2H > 0. Recall that MMD can be expressed as

MMD2(P,Q) = sup
u∈H,∥u∥H≤1

|EX∼Pu(X)− EY∼Qu(Y )| ,

and the supremum is attained at u∗ = (µP − µQ)/∥µP − µQ∥H (Gretton et al., 2012). In other words, EX∼Pu
∗(X) ̸=

EY∼Qu
∗(Y )—the means of u∗#P and u∗#Q don’t coincide. Therefore, the measures u∗#P and u∗#Q don’t coincide,

or equivalently {ραu∗#P : α ∈ [0, 1]} ≠ {ραu∗#Q : α ∈ [0, 1]}. Then, {ρu,αP : α ∈ [0, 1], u ∈ SH} ≠ {ραQ : α ∈ [0, 1], u ∈
SH}. And since this holds for any arbitrary P ̸= Q, the kernel k is quantile-characteristic.

quantile-characteristic ̸⇒ mean-characteristic. To show the converse implication does not hold, we provide an example
when k is quantile-characteristic but not mean-characteristic. Take X = Rd, and let k be a degree T polynomial kernel,
k(x, x′) = (x⊤x′ + 1)T . Since A1 and A2 hold—Rd is Polish, and k is trivially continuous and separating—by Theorem 1
the kernel k is quantile-characteristic.

Now, we show k is not mean-characteristic. Suppose P and Q are such that EX∼PX
i = EY∼PY

i for i ∈ {1, . . . , T}—for
example, the Gaussian and Laplace distribution with matching expectation and variance and T = 2, as is done in Section 5.2.
Then, EX∼P (X

⊤x′)i = EY∼P (Y
⊤x′)i for any x′ ∈ Rd, and since

µP (x
′) := EX∼P k(X,x

′) = EX∼P [(X
⊤x′ + 1)T ] = EX∼P

[
T∑
i=0

(
T
i

)
(X⊤x′)i

]
=

T∑
i=0

(
T
i

)
EX∼P

[
(X⊤x′)i

]
,

it holds that µP = µQ. The kernel is not mean-characteristic.
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C.3. Proof of Theorem 3

By the Theorem in Serfling (2009, Section 2.3.2), for any ε > 0 it holds that

P (|ραu#Pn − ρ
α
u#P | > ε) ≤ 2e−2nδ2ε , for δε := min

{∫ ραu#P+ε

ραu#P

fu#P (t)dt,
∫ ραu#P

ραu#P−ε
fu#P (t)dt

}
.

Since it was assumed fu#P (x) ≥ cu > 0, it holds that δε ≥ cuε, and P (|ραu#Pn − ραu#P | > ε) ≤ 2e−2nc2uε
2

, or
equivalently,

P (|ραu#Pn − ρ
α
u#P | ≤ ε) ≥ 1− 2e−2nc2uε

2

.

Take δ := 2e−2nc2uε
2

. Then,

P (|ραu#Pn − ρ
α
u#P | ≤ C(δ, u)n−1/2) ≥ 1− δ, for C(δ, u) =

√
log(2/δ)

2c2u
.

Since ∥ρα,uPn − ρ
α,u
P ∥H = |ραu#Pn − ρ

α
u#P |, the proof is complete.

C.4. Proof of Theorem 4

We prove e-KQD and sup-KQD, defined in Equation (4) as

e-KQDp(P,Q; ν, γ) =
(
Eu∼γτpp (P,Q; ν, u)

)1/p
,

sup-KQDp(P,Q; ν) =
(
sup
u∈SH

τpp (P,Q; ν, u)
)1/p

,

are probability metrics on the set of Borel probability measures on X . Symmetry and non-negativity hold trivially.

Triangle inequality. By Minkowski inequality, for any P, P ′, Q,

∫ 1

0

∣∣ραP − ραP ′

∣∣pν(dα) ≤ ((∫ 1

0

∣∣ραP − ραQ∣∣pν(dα))1/p

+

(∫ 1

0

∣∣ραQ − ραP ′

∣∣pν(dα))1/p
)p
.

Plugging this in and using Minkowski inequality again on the outermost integral, we get

e-KQDp(P, P
′; ν, γ) =

(
Eu∼γ

∫ 1

0

∣∣ραP − ραP ′

∣∣pν(dα))1/p

≤

(
Eu∼γ

((∫ 1

0

∣∣ραP − ραQ∣∣pν(dα))1/p

+

(∫ 1

0

∣∣ραQ − ραP ′

∣∣pν(dα))1/p
)p)1/p

≤

(
Eu∼γ

∫ 1

0

∣∣ραP − ραQ∣∣pν(dα)
)1/p

+

(
Eu∼γ

∫ 1

0

∣∣ραQ − ραP ′

∣∣pν(dα))1/p

= e-KQDp(P,Q; ν, γ) + e-KQDp(Q,P
′; ν, γ).
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Similarly, since supx f
p(x) = (supx |f(x)|)p for any f ,

sup-KQDp(P, P
′; ν, γ) =

(
sup
u∈SH

∫ 1

0

∣∣ραP − ραP ′

∣∣pν(dα))1/p

≤

(
sup
u∈SH

((∫ 1

0

∣∣ραP − ραQ∣∣pν(dα))1/p

+

(∫ 1

0

∣∣ραQ − ραP ′

∣∣pν(dα))1/p
)p)1/p

=

(
sup
u∈SH

∫ 1

0

∣∣ραP − ραQ∣∣pν(dα))1/p

+

(
sup
u∈SH

∫ 1

0

∣∣ραQ − ραP ′

∣∣pν(dα))1/p

= sup-KQDp(P,Q; ν, γ) + sup-KQDp(Q,P
′; ν, γ).

Identity of indiscernibles. In the rest of this section, we show that

e-KQDp(P,Q; ν, γ) = 0 ⇐⇒ P = Q; and sup-KQDp(P,Q; ν, γ) = 0 ⇐⇒ P = Q.

Necessity (meaning the⇐ direction) holds trivially—quantiles of identical measure are identical. To prove sufficiency, we
only need to show that both discrepancies aggregate the directions in a way that preserves injectivity, meaning

e-KQDp(P,Q) = 0⇒ ρα,uP = ρα,uQ for all α, u; and sup-KQDp(P,Q) = 0⇒ ρα,uP = ρα,uQ for all α, u.

Together with Theorem 1, this will complete the proof of sufficiency.

First, we show that for any pair of probability measures, a ν-aggregation over the quantiles is injective.

Lemma 2. Let ν have full support, meaning ν(A) > 0 for any open A ⊂ [0, 1]. For any Borel probability measures P ′, Q′,∫ 1

0

|ραP ′ − ραQ′ |2ν(dα) = 0 ⇒ ραP ′ = ραQ′ for all α ∈ [0, 1].

Proof. Suppose
∫ 1

0
|ραP ′ − ραQ′ |2ν(dα) = 0, but there is an α0 such that ρα0

P ′ = ρα0

Q′ . We will show that this implies the
existence of an open set (containing α0) over which |ρα0

P ′ − ρα0

Q′ |2 > 0—which will contradict ν having full support.

Since |ρα0

P ′ − ρα0

Q′ |2 > 0 and the quantile function α 7→ qαP is left-continuous (by definition) for any probability measure P ,
there is a α1 < α0 such that |ραP ′ − ραQ′ |2 > 0 for all α ∈ (α1, α0]. Take some α2 ∈ (α1, α0). Then, for all α ∈ (α1, α2),
we have |ραP ′−ραQ′ |2 > 0. We arrive at a contradiction. Such α0 cannot exist, and therefore ραP ′ = ραQ′ for all α ∈ [0, 1].

This result applies directly to the directional differences τp. Provided ν has full support,

τp(P,Q; ν, u) = 0 ⇒ ραP ′ = ραQ′ for all α ∈ [0, 1].

Since supremum aggregation simply considers u that corresponds to the largest τpp (P,Q; ν, u), this concludes the proof for
sup-KQD. Expectation aggregation over the directions u needs an extra result, given below.

Lemma 3. Let γ have full support on SH, and ν have full support on [0, 1]. For any Borel probability measures P,Q on X ,

Eu∼γτpp (P,Q; ν, u) = 0 ⇒ P = Q.

Proof. Same as in the proof Theorem 1, we will use the technique of characteristic functionals φP , φQ, to carefully prove
equality almost everywhere with respect to a full support measure γ implies full equality. Consider the function

f 7→ φP (f)− φQ(f),
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which is continuous by continuity of characteristic functionals. Define f0 ≡ 0, the zero function inH. The set

H\0 := {f ∈ H \ {f0} : φP (f)− φQ(f) ∈ R \ {0}} = {f ∈ H \ {f0} : φP (f) ̸= φQ(f)}

is open, as a preimage of an open set R \ {0}, intersected with an open set {H \ {f0}}. Since the projection map
f 7→ f/∥f∥H is open onH \ {f0}, the projection ofH\0 onto SH is open. In other words, the set

S
\0
H := {u ∈ SH : φP (tuu) ̸= φQ(tuu) for some tu ∈ R}

is open in SH. Then, by definition of characteristic functionals, for u ∈ S\0
H it holds that

φu#P (tu) = φP (tuu) ̸= φQ(tuu) = φu#Q(tu),

meaning the characteristic functions of u#P and u#Q are not identical, and therefore u#P ̸= u#Q. Since ν has full
support on [0, 1], it follows that

τpp (P,Q; ν, u) =

∫ 1

0

|ραu#P − ραu#Q|pν(dα) > 0, for all u ∈ S\0
H

We arrive at a contradiction: since γ has full support on SH and S\0
H ⊆ SH was shown to be an open set, it holds that

Eu∼γτpp (P,Q; ν, u) ≥
∫
S

\0
H

τpp (P,Q; ν, u)γ(du) > 0.

Therefore, for Eu∼γτpp (P,Q; ν, u) to be zero, S\0
H must be empty—which, by construction, can only happen whenH\0 is

empty, i.e. φP (f) = φQ(f) for all f ∈ H \ f0, where f0 ≡ 0. Since φP (f0) = φQ(f0) holds trivially for any P,Q, the
characteristic functionals of P and Q are identical. By Theorem 6, P = Q. This concludes the proof.

C.5. Proof of Theorem 5

We start with two auxiliary lemmas that, when combined, bound e-KQD approximation error due to replacing P,Q with
Pn, Qn in n−1/2. This will be crucial in showing convergence of the approximate e-KQD to the true e-KQD.

Lemma 4. For any measure ν on [0, 1] and any measure γ on SH, it holds that

|e-KQD1(Pn, Qn; ν, γ)− e-KQD1(P,Q; ν, γ)| ≤ e-KQD1(Pn, P ; ν, γ) + e-KQD1(Qn, Q; ν, γ)).

Proof. By the definition of e-KQD1 and Jensen inequality for the absolute value,

|e-KQD1(Pn, Qn; ν, γ)− e-KQD1(P,Q; ν, γ)| =
∣∣∣∣Eu∼γ [∫ 1

0

(
|ραu#Pn − ρ

α
u#Qn | − |ρ

α
u#P − ραu#Q|

)
dα
]∣∣∣∣

≤ Eu∼γ
[∫ 1

0

∣∣|ραu#Pn − ραu#Qn | − |ραu#P − ραu#Q|∣∣ dα]
By the reverse triangle inequality followed by the triangle inequality,∣∣|ραu#Pn − ραu#Qn | − |ραu#P − ραu#Q|∣∣ ≤ |ραu#Pn − ραu#P + ραu#Q − ραu#Qn |

≤ |ραu#Pn − ρ
α
u#P |+ |ραu#Qn − ρ

α
u#Q|,

(18)

and the statement of the lemma follows.

Lemma 5. Let ν be a measure on [0, 1] with density fν bounded above by Cν > 0. With probability at least 1− δ/4, for
C ′(δ) = 2Cν

√
log(8/δ)/2, it holds that

e-KQD1(Pn, P ; ν, γ) ≤
C ′(δ)

2
n−1/2
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Proof. Recall that

e-KQD1(Pn, P ; ν, γ) = Eu∼γ [τ1(Pn, P ; ν, u)] , τ1(Pn, P ; ν, u) =

∫ 1

0

|ραu#Pn − ρ
α
u#P |ν(dα).

Let Fu#P and Fu#Pn be the CDFs of u#P and u#Pn respectively. Then,∫ 1

0

|ραu#Pn − ρ
α
u#P |ν(dα) ≤ Cν

∫ 1

0

|ραu#Pn − ρ
α
u#P |dα = Cν

∫
u(X )

|Fu#Pn(t)− Fu#P (t)|dt

≤ Cν sup
t∈u(X )

|Fu#Pn(t)− Fu#P (t)|,

where the last equality is the well known fact that integrated difference between quantiles is equal to integrated difference
between CDFs (see, for instance, Bobkov and Ledoux (2019, Theorem 2.9)). By the Dvoretzky-Kiefer-Wolfowitz inequality,
with probability at least 1− δ/4 it holds that,

sup |Fu#Pn(t)− Fu#P (t)| <
√
log(8/δ)/2n−1/2,

and therefore, with probability at least 1− δ/4 for C ′(δ) = 2Cν
√
log(8/δ)/2,

τ1(Pn, P ; ν, u) =

∫ 1

0

|ραu#Pn − ρ
α
u#P |ν(dα) ≤

C ′(δ)

2
n−1/2.

In other words, the random variable τ1(Pn, P ; ν, u) is sub-Gaussian with sub-Gaussian constant Cτ := C2
ν/(2n), meaning

Pr [τ1(Pn, P ; ν, u) ≥ ε] ≤ 2 exp{−ε2/C2
τ }

One of the equivalent definitions for a sub-Gaussian random variable is the moment condition: for any p ≥ 1,

Ex1:n [τ1(Pn, P ; ν, u)
p] ≤ 2CpτΓ(p/2 + 1).

An application of Jensen inequality and Fubini’s theorem shows that the moment condition holds for Eu∼γτ1(Pn, P ; ν, u),

Ex1:n
[(Eu∼γτ1(Pn, P ; ν, u))p] ≤ Ex1:n

Eu∼γ [τ1(Pn, P ; ν, u)p] = Eu∼γEx1:n
[τ1(Pn, P ; ν, u)

p] ≤ 2CpτΓ(p/2 + 1).

Therefore, Eu∼γτ1(Pn, P ; ν, u) is sub-Gaussian with constant Cτ = C2
ν/(2n), meaning it holds with probability at least

1− δ/4 that

e-KQD1(Pn, P ; ν, γ) = Eu∼γτ1(Pn, P ; ν, u) ≤
C ′(δ)

2
n−1/2.

We are now ready to prove the full result.

Proof of Theorem 5. Let Cν be an upper bound on the density of ν. By triangle inequality, the full error can be upper
bounded by Rl, the error due to approximation of γ with γl, plus Rn, the error due to approximation of P,Q with Pn, Qn,

|e-KQD1(Pn, Qn; ν, γl)− e-KQD1(P,Q; ν, γ)| ≤ |e-KQD1(Pn, Qn; ν, γl)− e-KQD1(Pn, Qn; ν, γ)|
+ |e-KQD1(Pn, Qn; ν, γ)− e-KQD1(P,Q; ν, γ)|

=:Rl +Rn.

We bound Rl in l−1/2, and Rn in n−1/2, with high probability.
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Bounding Rl. Recall that e-KQD1(Pn, Qn; ν, γ) = Eu∼γ
[∫ 1

0
|ραu#P − ραu#Q|ν(dα)

]
. Therefore, we may apply McDi-

armid’s inequality provided for any u, u′ ∈ SH we upper bound the difference∣∣∣∣∫ 1

0

∣∣ραu#P − ραu#Q∣∣− ∣∣ραu′#P − ραu′#Q

∣∣ ν(dα)∣∣∣∣ .
We have that∣∣∣∣∫ 1

0

∣∣ραu#P − ραu#Q∣∣− ∣∣ραu′#P − ραu′#Q

∣∣ ν(dα)∣∣∣∣ (A)

≤
∫ 1

0

∣∣ραu#P − ραu#Q∣∣ ν(dα) + ∫ 1

0

∣∣ραu′#P − ραu′#Q

∣∣ ν(dα)
(B)

≤ 2Cν sup
u∈SH

W1(u#P, u#Q)

(C)

≤ 2Cν sup
u∈SH

EX∼PEY∼Q|u(X)− u(Y )|

(D)

≤ 2CνEX∼PEY∼Q
√
k(X,X)− 2k(X,Y ) + k(Y, Y )

where (A) holds by Jensen’s and triangle inequalities; (B) uses boundedness of the density of ν by Cν and the property
of the Wasserstein distance in R from Equation (7); (C) uses the infimum definition of the Wasserstein distance; and (D)
holds by the reasoning we employed multiple times through the paper, via reproducing property, Cauchy-Schwarz, and
having u, u′ ∈ SH. So we arrive at a bound∣∣∣∣∫ 1

0

∣∣ραu#P − ραu#Q∣∣− ∣∣ραu′#P − ραu′#Q

∣∣ ν(dα)∣∣∣∣ ≤ 2CνEX∼PEY∼Q
√
k(X,X)− 2k(X,Y ) + k(Y, Y ) =: 2CνCk.

Now that boundedness of the difference has been established, by McDiarmid’s inequality, with probability at least 1− δ/2
and for C ′′(δ) =

√
2CνCk log(4/δ) it holds that

|e-KQD1(Pn, Qn; ν, γl)− e-KQD1(Pn, Qn; ν, γ)| ≤ C ′′(δ)l−1/2.

Bounding Rn. By Lemma 4,

|e-KQD1(Pn, Qn; ν, γ)− e-KQD1(P,Q; ν, γ)| ≤ e-KQD1(Pn, P ; ν, γ) + e-KQD1(Qn, Q; ν, γ))

By Lemma 5 and the union bound, with probability at least 1− δ/2 and for C ′(δ) = 2Cν
√
log(8/δ)/2, it holds that

Rn = |e-KQD1(Pn, Qn; ν, γ)− e-KQD1(P,Q; ν, γ)| ≤ C ′(δ)n−1/2.

Combining bounds. By applying the union bound again, to Rl +Rn, we get that, with probability at least 1− δ,

|e-KQD1(Pn, Qn; ν, γl)− e-KQD1(P,Q; ν, γ)| ≤ Rl +Rn ≤ C ′′(δ)l−1/2 + C ′(δ)n−1/2 ≤ C(δ)(l−1/2 + n−1/2),

for C(δ) = max{C ′(δ), C ′′(δ)} = O(
√

log(1/δ)). This completes the proof

As pointed out in the main text, EX∼PEY∼Q
√
k(X,X)− 2k(X,Y ) + k(Y, Y ) < ∞ holds immediately when

EX∼P
√
k(X,X) and EX∼Q

√
k(X,X) are finite, and even more specifically, when the kernel k is bounded. Unbounded

k and finite expectations, for example, happens when the tails of both P and Q decay fast enough to "compensate" for the
growth of k(x, x). For instance, when k is a polynomial kernel of any order (which is unbounded), and P and Q are laws of
sub-exponential random variables. For clarity, note that EX∼PEY∼Q

√
k(X,X)− 2k(X,Y ) + k(Y, Y ) does not compare

to MMD, which integrates k(X,X ′) rather than k(X,X) (see Equation (6)).

For integer p > 1, proving the n−1/2 convergence rate is feasible if more involved—primarily because we can no longer
reduce the problem to convergence of empirical CDFs to true CDFs. In general, for p > 1,∫ 1

0

|ραu#Pn − ρ
α
u#P |pdα ̸=

∫
u(X )

|Fu#Pn(t)− Fu#P (t)|pdt.

The following result, restated in our notation, makes the added complexity explicit.
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Lemma 6 (Theorem 5.3 in Bobkov and Ledoux (2019)). Suppose k : Rd × Rd → R is a bounded kernel, and ν has a
density 0 < cν ≤ fν ≤ Cν on [0, 1]. Then, for any u ∈ SH, and for any p ≥ 1 and n ≥ 1,

Ex1:n∼P
[
τpp (Pn, P ; ν, u)

]
≤
(

5pCν√
n+ 2

)p
Jp(u#P ), for Jp(u#P ) =

∫
u(X )

(Fu#P (t)(1− Fu#P (t)))p/2

fp−1
u#P (x)

dt.

Further, it holds that Ex1:n∼P
[
τpp (Pn, P ; ν, u) = O(n−p/2)

]
if and only if Jp(u#P ) <∞.

We now state a likely result for p > 1 as a conjecture, and outline the proof.

Conjecture 1 (Finite-Sample Consistency for Empirical KQDs for p > 1). Let X ⊆ Rd, ν have a density, P,Q
be measures on X with densities bounded away from zero, fP (x) ≥ cP > 0 and fP (x) ≥ cQ > 0. Suppose
EX∼P [k(X,X)p/2] <∞ and EX∼Q[k(X,X)p/2] <∞, and x1:n ∼ P, y1:n ∼ Q. Then,

Ex1:n∼P
y1:n∼Q

|e-KQDp(Pn, Qn; ν, γl)− e-KQDp(P,Q; ν, γ)| = O(l−1/2 + n−
1/2).

Sketch proof. Analogously to the proof of Theorem 5, we can decompose the term of interest as

Ex1:n∼P
y1:n∼Q

|e-KQDp(Pn, Qn; ν, γl)− e-KQDp(P,Q; ν, γ)|

≤ Ex1:n∼P
y1:n∼Q

|e-KQDp(Pn, Qn; ν, γl)− e-KQDp(Pn, Qn; ν, γ)|

+
(
Ex1:n∼P e-KQDpp(Pn, P ; ν, γ)

)1/p
+
(
Ey1:n∼Qe-KQDpp(Qn, Q; ν, γ))

)1/p
The first term can be, same as in the proof of Theorem 5, bounded by McDiarmid’s inequality. The second term (to the
power p) takes the form

Ex1:n∼P e-KQDpp(Pn, P ; ν, γ) = Ex1:n∼PEu∼γτpp (Pn, P ; ν, u).

Then, by Lemma 6 (possibly modified to account for an extra expectation), to get the result we will need to show that
Eu∼γJp(u#P ) <∞,

Eu∼γJp(u#P ) = Eu∼γ

[∫
u(X )

(Fu#P (t)(1− Fu#P (t)))p/2

fp−1
u#P (x)

dt

]
<∞

The nominator is upper bounded by 2−p. The denominator may get arbitrarily small without the nominator getting arbitrarily
small: when the PDF fp−1

u#P (x) is small, the CDF Fu#P (x) need not be close to zero or one. Therefore, it is necessary and
sufficient to show

Eu∼γ

[∫
u(X )

1

fp−1
u#P (x)

dt

]
<∞. (19)

We proceed to outline key elements of the proof of such result, and leave a rigorous proof for future work. By the coarea
formula, and since fP (x) ≥ cP > 0,

fu#P (t) =

∫
u−1(t)

fP (x)

|∇u(x)|
Hd−1(dx) ≥ c0

∫
u−1(t)

1

|∇u(x)|
Hd−1(dx), for |∇u(x)| =

√√√√ d∑
i=1

(
∂u(x)

∂xi

)2

where u−1(t) = {x ∈ X : u(x) = t}, and Hd−1 is the d − 1-dimensional Hausdorff measure, which within X ⊆ Rd is
equal to d− 1 dimensional Lebesgue measure, scaled by a constant that only depends on d− 1.

Therefore, the integral in Equation (19) may diverge if the integral∫
u−1(t)

1

|∇u(x)|
Hd−1(dx) (20)

gets very small over "large" parts of u(X )—on average over u ∼ γ. Trivially, if u is constant over some interval—or more
generally, u has infinitely many critical points—the integral diverges. Fortunately, the more general condition is easy to
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control: if u is a Morse function and X is compact, then u has only a finite number of critical points. It is a classic result (see,
for instance, Hirsch (1976, Theorem 1.2)) that Morse functions form a dense open subset of twice differentiable real-valued
functions on Rd, denoted C2(Rd). Therefore, if H ⊂ C2(X ) (which can be reduced to smoothness of the kernel k—it
holds for instance, for the Matérn-5/2 kernel), we get that u ∼ γ has a finite number of critical points almost surely under
mild regularity assumptions on γ.

The final ingredient is to use the Morse lemma to lower bound Equation (20) in the epsilon-ball of each critical point. Morse
lemma says u is quadratic around each critical point—which yields bounds on both the volume of u−1(t), and 1/|∇u(x)| in
terms of the eigenvalues of the Hessian. Careful analysis of the eigenvalues will be needed to ensure the expectation with
respect to u ∼ γ is finite.

C.6. Proof of Connections 1 and 2

The equality in Equation (7) immediately gives the connection of e-KQD and sup-KQD to the expected-SW and max-SW
respectively—previously only defined on X = Rd.

Further, for X = Rd, viewing x 7→ k(x, ·) as a transformation on X reveals a connection to Generalised Sliced Wasserstein
(GSW, Kolouri et al. (2022)). In particular, the polynomial kernel k(x, x′) = (x⊤x′ + 1)T of odd degree T recovers the
polynomial transformation for which GSW was proven to be a probability metric. Outside of the case of the polynomial case,
proving that GSW is a metric is highly challenging. This is easier under the kernel framework, as we showed in Theorem 4.
In Kolouri et al. (2022), the authors investigate learning transformations with neural networks (NNs). An interesting
direction for future work is the relationship between said NNs and the kernels they induce.

C.7. Proof of Proposition 1

Recall that by definition of Gaussian measures in Hilbert spaces (Kukush, 2020), a random element f ∈ H has the law of a
Gaussian measure N (0, Cm) onH when for any g ∈ H,

⟨f, g⟩H ∼ N (0, ⟨Cm[g], g⟩). (21)

Since Cm[g](x) = 1/m
∑m
j=1 g(zj)k(zj , x), by the reproducing property,

⟨Cm[g], g⟩ = 1

m

m∑
j=1

g(zi)
2. (22)

Take f(x) = 1/
√
m
∑m
j=1 λjk(zj , x), for λ1, . . . , λm ∼ N (0, Id). Then, for any g ∈ H, by the reproducing property it

holds that

⟨f, g⟩H =
1√
m

m∑
j=1

λjg(zj) ∼ N

(
0,

1

m

m∑
i=1

g(zi)
2

)
,

which is exactly the Gaussian measure with covariance operator Cm, as per Equations (21) and (22).

D. Additional Numerical Results
D.1. Type I control

We report the Type I control experiments for the CIFAR-10 v.s. CIFAR-10.1 experiment. Results are shown in Figure 5.

D.2. Figure 3 for e-KQD1

It is common in power p-parametrised methods to select p = 2, to balance out sensitivity to outliers (which is higher
for larger p, to the point of methods becoming brittle for p > 2), and robustness (which tends to be highest for p = 1);
this trade-off, for instance, inspired the introduction of the Huber loss (Huber, 1964). However, for completeness, we
now repeat experiments in the main paper for p = 1. The relationship to baseline approaches—MMD, MMD-Multi, and
MMD-Lin—remains the same as observed for p = 2. However, it is evident that e-KQD1 performed better than e-KQD2 at
the power decay and galaxy MNIST experiments, but the centered e-KQD1 performed worse than centered e-KQD2 at the
Laplace v.s. Gaussian experiment. The implications of choosing p warrants a deeper investigation, left to future work.
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Type I control on the CIFAR vs CIFAR10.1 experiment
e-KQD
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Figure 5: Type I control results for our experiment on CIFAR-10 v.s. CIFAR-10.1. We see all methods control their Type
I error around or below the specified Type I error rate 0.05, thus confirming our tests in the main text are valid testing
procedures.
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(a) Power Decay
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(b) Laplace v.s. Gaussian
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(c) Galaxy MNIST
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(d) CIFAR-10 v.s. CIFAR-10.1

Figure 6: The experiments in Figure 3 repeated for p = 1. Experimental results comparing our proposed methods with
baseline approaches. A higher rejection rate indicates better performance in distinguishing between distributions. Same as
for p = 2, quadratic-time quantile-based estimators perform comparably to quadratic-time MMD estimators, while
near-linear time quantile-based estimators often outperform their MMD-based counterparts.

D.3. Comparison of weighting measures

The Gaussian Kernel Quantile Discrepancy introduced in Section 4 has multiple weighting measures that determine
properties of the distance: the measure ν on the quantile levels, the measure ξ within the covariance operator, and the
measure γ on the unit sphere SH. We investigate the impact of varying these.

Varying ν. We conducted the following experiment using the Galaxy MNIST and CIFAR datasets. We varied ν, from
assigning more weight to the extreme quantiles to down-weighting them. The results are presented in Figure 7, where
the reverse triangle \/ stands for up-weighing extreme quantiles, and the triangle /\ stands for down-weighing them.
We observed some improvement over the uniform ν: for Galaxy MNIST, test power improved when ν assigned less
weight to extremes, whereas for CIFAR, the opposite was true, with higher test power when more weight was given to
extremes. Uniform weighting of the quantiles remained a good choice. This suggests that tuning ν beyond the uniform is
problem-dependent and can enhance performance. The difference likely arises from the nature of the problems: CIFAR
datasets, where samples are expected to be similar, benefit from emphasising extremes, while Galaxy MNIST, which
contains fundamentally different galaxy images, performs better when “robustified,” i.e., focusing on differences away from
the tails. Exploring this further presents an exciting avenue for future work.

Varying ξ. The reference measure ξ in the covariance operator C serves to "cover the input space" and is typically set to a
"default" measure on the space—for Rd, the standard Gaussian measure. The choice (Pn +Qn)/2 made in the main body
of the paper is aiming to adhere to the most general setting, when no default measure may be available—only Pn and Qn.
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CIFAR-10 v.s. CIFAR-10.1

Figure 7: Gaussian KQD test power under different weighting measures. Left, middle: Varying measure ν: down-weighing
(/\) extremes boosts power on Galaxy MNIST, while up-weighing (\/) them helps on CIFAR. Uniform weighting remains
a strong default, with optimal ν depending on the dataset. Right: Varying measure ξ: using an IQR-scaled Gaussian or
uniform default reference measure ξ both outperform MMD—indicating potential advantage of a "default" ξ over the
problem-based ξ = (Pn +Qn)/2.

We report a comparison on performance when the reference measure is: (1) (Pn +Qn)/2; (2) a standard Gaussian measure,
scaled by IQR/1.349 to match the spread of the data, where IQR is the interquantile range of Pn +Qn, and 1.349 is the
interquantile range of the standard Gaussian; and (3) a uniform measure on [−1, 1]d, scaled by IQR.

The results, presented in Figure 7, show performance superior to MMD for the standard/uniform ξ. This indicates value in
picking a "default" measure when one is available.

Varying γ Varying the measure on the sphere beyond a Gaussian is extremely challenging in infinite-dimensional spaces
due to the complexity of both its theoretical definition and practical sampling. Since no practically relevant alternative has
been proposed, we leave this direction unexplored.

D.4. Comparison to sliced Wasserstein distances

We extend the power decay experiment to include sliced Wasserstein and max-sliced Wasserstein distances, with directions
(1) sampled uniformly on the sphere, and (2) sampled from (Pn +Qn)/2 and projected onto the sphere. The results are
plotted in Figure 8, and show that sliced Wasserstein distances perform significantly worse than e-KQD. This outcome is
expected—as noted in Connections 1 and 2, sliced Wasserstein is equivalent to e-KQD with the linear kernel, which is less
expressive than the Gaussian kernel.

D.5. Comparison with MMD based on Other KME Approximations

There are several efficient kernel mean embedding methods available in the literature, and no single approach has emerged
as definitively superior. To complement experiments in the main body of the paper, we compare the e-KQD (at matching
cost) with (1) The Mean Embedding (ME) approximation of MMD of Chwialkowski et al. (2015b), which was identified as
the best-performing method in their numerical study; (2) the Nyström-MMD method of Chatalic et al. (2022), and (3) the
Median-of-Means (MOM) approximation of Lerasle et al. (2019), specifically, their faster method (MONK BCD-Fast) that
achieves matching cost to our e-KQD at the number of blocks Q = n/ log n.

The results are presented in Figure 8. ME performs at the level of MMD-multi, while Nyström has extremely high Type II
error, likely due to sensitivity to hyperparameters. Due to Median-of-Means still being considerably slower than e-KQD
(with the number of optimiser iterations set to T = 100), we apply it to a cheaper Power Decay problem (rather than
the larger and more complicated Galaxy MNIST), where it performs at the level of the linear approximation of MMD.
This may be due to MOM primarily being robustness-enforcing method, rather than a method aiming to build an efficient
approximation of MMD.
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Figure 8: All methods are cost O(n log2 n) unless specified otherwise. Left: Gaussian KQD compared with sliced
Wasserstein with uniform or data-driven directions, on the power decay problem. Sliced Wasserstein fall well below
KQD—consistent with their equivalence to KQD using a less expressive linear kernel. Middle: Comparison with alternative
approximate KME methods, at matching cost. ME matches MMD-multi power, while Nyström-MMD suffers high Type
II error. Right: Comparison with Median-of-Means (MOM) KME approximation, at matching cost. MOM is primarily a
robustness-enforcing method, not a cheap-approximation method, and doesn’t perform well at set cost of O(n log2 n).
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