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Abstract

Concept bottleneck models (CBMs) are inherently interpretable models that make
predictions based on human-understandable visual cues, referred to as concepts.
As obtaining dense concept annotations with human labeling is demanding and
costly, recent approaches utilize foundation models to determine the concepts
existing in the image. However, such label-free CBMs often fail to attend to
concepts that are important predictive but only exist in a small region of the image
(e.g., a beak of a bird), making their decision-making less aligned with human
reasoning. In this paper, we propose a novel framework, coined Locality-aware
CBM (LCBM), which divides an image into smaller patches. Specifically, we use
their similarity with concepts to ensure that the concept prediction of the model
adheres to the relevant region and effectively captures important local concepts
existing in the small region of the image. Experimental results demonstrate that
LCBM accurately identifies important concepts from images and exhibits improved
localization capability while maintaining high classification performance.

1 Introduction

The interpretability of deep neural networks has become an increasingly important issue as the rapid
advancements of AI make them closely integrated into our daily lives. This is especially critical in
fields where the reliability of models is paramount, e.g., healthcare. Since explaining the decision-
making process of a black-box model is often challenging, recent works focus on building inherently
interpretable models, i.e., whose decision-making is naturally easily understandable to humans.

Concept-bottleneck model (CBM) [4, 6, 7, 17, 20] is a representative inherently interpretable archi-
tecture where a concept refers to human-recognizable visual cues. CBMs first predict the concepts
existing in the image (e.g., "red color" and "round shape" in the image of an apple) and make a
final prediction on the class label through the linear combination of these concepts. However, their
reliance on dense annotations of which concepts are present in the image limits their scalability and
practicality. This has led to the emergence of label-free CBMs [8, 12, 16, 21, 22], which utilize
foundational models such as large language models (LLMs) and vision-language models (VLMs) to
determine and estimate the presence of concepts.

However, the interpretability of label-free CBMs is often compromised due to their neglect of locality
in two key ways. First, they often fail to focus on important local features since they analyze the entire
image with VLMs to infer concept presences. This prevents the model from explaining decisions
in terms of fine-grained, localized concepts, thereby limiting their interpretability. Second, it is
suggested that label-free CBMs fail to properly attend to the corresponding regions in the image
when predicting concepts [10, 11, 14]. This discrepancy raises concerns on their interpretability as
their concept prediction does not align with the spatial locality of each concepts.
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To this end, we propose a novel framework, coined Locality-aware CBM (LCBM). To ensure locality,
we begin by dividing the image into smaller patches. To make the prediction on each concept properly
attends to the corresponding region, we use the CLIP similarity between concepts and image patches
to guide the training of our model, as a higher CLIP score for a concept and a patch implies a higher
probability that the concept exists in the corresponding local region in the image. We experimentally
demonstrated that LCBM can effectively predict concepts from small regions while also focusing on
the corresponding region during the prediction process.

2 Related Works

Concept Bottleneck Models (CBMs) The concept bottleneck model (CBM) [7] is an inherently
interpretable framework that explains its predictions through the concepts, which represent canonical
visual cues composing the objects and scene. It first predicts which concepts exist in the image and
then makes the final prediction based solely on these predicted concepts, enabling model decisions to
be explainable in terms of concept presence. Building on this foundational idea, several works have
aimed to improve its reliability [6] or accuracy-interpretability trade-off [4, 17, 20].

Label-free CBMs A significant drawback of conventional CBMs is that they rely on dense annota-
tions indicating which concepts are present in the image. This demands extensive human labor, which
makes them impractical to be applied to large-scale datasets like ImageNet [3]. To address this, recent
label-free CBMs [8, 12, 16, 21–23] utilize foundation models to determine the concept presence
without human annotation. For example, PCBM [23] leverages CLIP [13] to estimate the presence of
concepts. Label-free CBM [12], LaBo [22], and LM4CV [21] additionally utilize LLMs to automate
the curation of a concept set. Several studies have tackled issues related to concept faithfulness [8]
and completeness [16] in such models. Yet, the problem of locality still remains unresolved.

3 Method

In this section, we present our novel framework whose prediction is inherently interpretable through
a composition of distinct local parts and their attributes, collectively referred to as concepts. We first
describe the curation of a concept set using LLM (Sec. 3.1). We then describe each component of our
method, including two novel losses alongside the classification loss. These losses encourage that the
appropriate region to be attended to when predicting a concept, while also promoting that the concept
prediction is based on its presence in a specific local region. (Sec. 3.2). The overall architecture of
our method is illustrated in Fig. 1.

3.1 Concept Set Generation

Here, we describe the automated process of concept generation. We employ the GPT-4-omni [2] to
curate a set of concepts similar to previous label-free CBMs [12, 22]. To provide a compositional
explanation, we prompt GPT to generate potential concepts for the object category (e.g., birds in the
CUB dataset [18]) rather than class-specific concepts as in prior approaches. Next, we prompt GPT
again to align these concepts with each class, yielding a set C = {c1, · · · , cK} of up to 20 relevant
concepts per class.

3.2 Architecture

We now describe the overall architecture of our model. For each sample (x, y) where x is the input
image and y is the corresponding label, we first extract features with an encoder f . This yields
a feature map F ∈ RH×W×D, where H and W are the spatial dimensions, and D is the feature
dimension. We apply average pooling over the spatial dimensions to obtain Fp, which is then mapped
to concept logits lc ∈ RK through the linear layer, representing the predicted presence of each
concept in the image. Through the final classification layer, the model outputs the class-label logits
ly = lcφ(Wy)

T where Wy is the weights and φ is the activation function which ensures that the
weights remain positive, as negative weights are difficult to interpret. We use the classification loss:

Lclass = LCE(ŷ, y), (1)

2



Figure 1: Overview of our method. Given an input image x, we first extract features F and obtain
concept logits lc and class label logits ly by applying linear layers to the average-pooled features
Fp. We employ standard cross-entropy for the classification loss Lclass. In parallel, we crop the
image into H ×W patches and extract their CLIP features (Fc). We extract CLIP text features of
the concept set, denoted as T . The similarity score matrix S is computed as the dot product between
Fc and T , where each element S(h,w,k) represents the alignment between a concept ck and a patch
(h,w). Llocal facilitates the concept prediction of the model adheres to the spatial locality of each
concept. Lconcept guides the model to better capture local concepts existing in the small region of the
image.

where LCE is the standard cross-entropy loss and ŷ is the prediction of the model, i.e., softmax over
the class-label logits ly .

Building on top of this concept bottleneck architecture, we aim to improve its localization capabilities,
i.e., to better capture the important local concepts and better align its concept prediction to the
corresponding local region of the image. First, we crop the image into H×W patches and extract the
CLIP features for each patch, resulting in a feature map Fc ∈ RH×W×Dc , where Dc is the feature
dimension. Similarly, we compute CLIP features for the concept set C, yielding T ∈ RK×Dc . We
then obtain the similarity score matrix S = F̄cT̄

T ∈ RH×W×K , where ·̄ indicates normalized tensors.
To ensure the proper localization of concepts within the image, we compute the influence value for
each concept ck as:

Vk,h,w =

D∑
d=1

Fh,w,d
1

HW

H∑
h′=1

W∑
w′=1

[
∂lc
∂F

]
k,h′,w′,d

. (2)

We aim to align Vk, i.e., the distribution of the influence value for the concept ck over the spatial
dimensions, and Sk, i.e., the CLIP scores between ck and all image patches, as follows:

Llocal =

K∑
k=1

DKL

(
σ(Vk) ∥ σ(Sk/τl)

)
, (3)

where DKL denotes the KL-divergence, and σ and τl represent the softmax function and its tempera-
ture, respectively.

Finally, we apply max-pool over the spatial dimensions of the similarity score matrix S to produce
Sp ∈ RK , representing how strongly each concept ck is activated in the image. Intuitively, this
allows us to effectively capture the concepts existing in the small local region of the image. We align
the calculated concept logits with the actual concepts present in the image by minimizing the KL
divergence between the distribution of lc and Sp/τc, as follows:

Lconcept = DKL

(
σ(lc) ∥ σ(Sp/τc)

)
. (4)

The final loss is Ltotal = αLclass + βLlocal + γLconcept, where α, β, γ are balancing coefficients.
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Table 1: Main results.

Model Accuracy Precision Recall F1 Localization

LfCBM [12] 0.727±0.001 0.146±0.001 0.251±0.002 0.173±0.002 0.194±0.006

LaBo [22] 0.734±0.000 0.580±0.001 0.730±0.000 0.626±0.001 -
LCBM (Ours) 0.741±0.004 0.702±0.003 0.678±0.013 0.672±0.006 0.515 ±0.007

4 Experiments

4.1 Setup

We used the CUB dataset [18] which contains 11,788 images across 200 bird species, with 5,994
images for training. Given many species pairs with small inter-class differences, accurately identifying
fine-grained concepts in the images is crucial for correct classification. For the baselines, we compare
our method with two representative label-free approaches, LfCBM [12] and LaBo [22]. For the
evaluation, we measure the classification accuracy of the models on the validation set. We selected
the concepts whose scores (i.e., lc × φ(Wy)) are higher than the defined threshold, and considered
them as the concepts predicted to be present in the image by the models.

4.2 Evaluation

Concept evaluation To evaluate whether the predicted concepts truly exist in the image, we
calculated the precision, recall, and F1-score of the predicted concepts. Ground-truth concepts for
these metrics were selected from the concepts associated with the label, defined by Sec. 3.1. Whether
a concept is considered ground-truth was determined by Qwen2-VL [19], a large VLM capable
of visual question answering. Specifically, we queried the VLM “Does {concept} appear in this
bird image?” and regarded the concept as ground-truth when the VLM output positive answer. We
then measured the text similarity between the predicted concepts and ground-truth concepts using
OpenAI’s text-embedding-3-large model [1]. Predicted concepts with a text similarity score higher
than 0.8 were considered to be present in the image.

Localization To evaluate the model’s localization ability, we generated a GradCAM [15] based
score map for each predicted concept. By applying a threshold to the score map, we extracted the
most highly activated area corresponding to each concept. We then used the CUB dataset’s ground
truth annotations which specify the location point for each part (e.g., head). For each annotated part,
if there exists corresponding predicted concept (e.g., ‘striped black head’ for head part), we calculated
whether the activated area of matched concept contains the ground truth location point.

4.3 Results

Classification accuracy The first column in Table 1 shows the classification accuracy. We used the
same concept set generated by the LLM at 3.1 for all baselines. LCBM achieved the highest accuracy
among the baselines, demonstrating that it maintains generalization ability while enhancing both
concept prediction capability and localization.

Concept evaluation As shown in Table 1 (precision, recall, F1), LfCBM performs poorly in these
metrics as it considers only the entire image, making it difficult to discover fine-grained concepts.
LaBo, which also uses only the entire image for reasoning, shows higher concept evaluation scores
due to its weight prior. The weights between a class and its corresponding concepts (class-concepts)
are larger than other weights, so the predicted concepts tend to heavily reflect the class-concepts,
even if some are not present in the image. This is evident from the gap between LaBo’s precision and
recall: while recall is high because a large portion of class-concepts are included in the predictions,
precision is much lower since many of these predicted concepts are not actually present in the image.
In contrast, LCBM achieves high precision and comparable recall, indicating that it more accurately
identifies the concepts that are genuinely present in the image.

Locality measure The fifth column of Table 1 presents the average ratio of part whose activated
area of corresponding concept contains its ground truth location point. This shows that LCBM has
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Figure 2: Qualitative result. The picture on the left shows the model input, while the concepts
under denote ground truth concepts determined by Qwen2-VL. The first and second rows on the
right display the localization results for the top-5 concepts predicted by LfCBM and our model,
respectively. Each result includes the predicted concept along with the corresponding GradCAM
based activation map, which is depicted on the image. Color closer to red means higher activation.

a significantly improved ability to correctly localize the corresponding area compared to LfCBM.
LaBo is excluded from this evaluation since it does not train a concept prediction layer.

4.4 Qualitative analysis

Fig. 2 presents the qualitative localization results, comparing our model (LCBM) and LfCBM. The
results demonstrate that our model accurately predicts concepts that are aligned with the image’s
class and the image content itself. More importantly, our model effectively localizes four out of the
five predicted concepts, with high activation in the relevant parts of the image. For instance, when
the concept contains ‘belly’, our model strongly activates the region where the belly is located. In
contrast, LfCBM struggles with localization, showing more random behavior and failing to focus on
the correct areas.

5 Conclusion

In this paper, we tackled the issue of neglecting locality in existing label-free CBMs by introducing
a novel framework, LCBM. Our approach utilizes cropped image patches and incorporates two
additional losses to ensure reliable prediction and localization of concepts. Experimental results
demonstrate that LCBM significantly improves concept prediction accuracy and localization within
the image.
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A Experimental Details

A.1 Baselines

Here, we provide the details of the baselines, LfCBM and LaBo.

• LfCBM [12]: LfCBM sequentially trains the concept prediction layer and classification layer,
using CLIP scores with cos-cubed similarity to guide concept prediction. However, since LfCBM
considers only the entire image when obtaining CLIP scores, it is affected by the previously
mentioned issues of label-free CBMs.

• LaBo [22]: LaBo treats the concept prediction layer as fixed, directly using the calculated CLIP
scores as input to the classification layer. Since it initializes the weights between a class and its
corresponding concepts to 1, it exhibits false-positive behavior—predicting concepts that are not
actually present in the image but are commonly associated with images of the same class.

B Implementation Details

For all models, we trained the model with a concept set defined in 3.1, which consists of a total of 211
concepts. All models utilize ViT-B/16 CLIP to extract CLIP features. Additionally, model selection
for all baselines was based on the highest validation accuracy observed at each check interval during
training.

B.1 Baselines

In LfCBM [12], we omitted the concept filtering procedure to ensure that all baselines are evaluated
on the same concept set. Since adding weight prior to LfCBM appeared to have no significant effect
on performance due to the sparsity regularization, we followed the model structure described in the
original paper without including any weight prior. We use the publicly available code provided by the
authors.3

For LaBo [22], we omitted the concept selection module that prunes concepts to ensure that every
model use the same concept set. We use the publicly available code provided by the authors.4

B.2 Ours

We utilized ResNet-50 [5], pretrained on ImageNet [3], as our feature extractor and fine-tuned it
during training. For the losses Lconcept and Llocal, we cropped the image into patches of size 64 with
some overlap between patches. The model was trained in an end-to-end manner with hyperparameters
τl = 0.1, τc = 0.1. Additionally, we thresholded the CLIP score S with the value set to 0.29. ReLU
was used as the activation function φ, and weight prior was applied to Wy similar to LaBo. We
optimized our model using AdamW [9] with a learning rate of 0.0001 and α = 2, β = 1, γ = 1. The
training was conducted on four NVIDIA A100 GPUs over 20 epochs.

3https://github.com/Trustworthy-ML-Lab/Label-free-CBM
4https://github.com/YueYANG1996/LaBo

8

https://github.com/Trustworthy-ML-Lab/Label-free-CBM
https://github.com/YueYANG1996/LaBo

	Introduction
	Related Works
	Method
	Concept Set Generation
	Architecture

	Experiments
	Setup
	Evaluation
	Results
	Qualitative analysis

	Conclusion
	Experimental Details
	Baselines

	Implementation Details
	Baselines
	Ours


