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Abstract

Deep learning is expected to revolutionize many
sciences and particularly healthcare and medicine.
However, deep neural networks are generally
“black box,” which limits their applicability to
mission-critical applications in health. Explain-
ing such models would improve transparency and
trust in Al-powered decision making and is nec-
essary for understanding other practical needs
such as robustness and fairness. A popular means
of enhancing model transparency is to quantify
how individual inputs contribute to model out-
puts (called attributions) and the magnitude of
interactions between groups of inputs. A grow-
ing number of these methods import concepts and
results from game theory to produce attributions
and interactions. This work presents a unifying
framework for game-theory-inspired attribution
and k"M-order interaction methods. We show that,
given modest assumptions, a unique full account
of interactions between features, called synergies,
is possible in the continuous input setting. We
identify how various methods are characterized
by their policy of distributing synergies. We es-
tablish that gradient-based methods are charac-
terized by their actions on monomials, a type of
synergy function, and introduce unique gradient-
based methods. We show that the combination
of various criteria uniquely defines the attribu-
tion/interaction methods. Thus, the community
needs to identify goals and contexts when devel-
oping and employing attribution and interaction
methods. Finally, experiments with Physicochem-
ical Properties of Protein Tertiary Structure data
indicate that the proposed method has favorable
performance against the state-of-the-art approach.
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1. Introduction

Explainability has become an ever increasing topic of inter-
est among the Machine Learning (ML) community. Various
ML methods, including deep neural networks, have un-
precedented accuracy and functionality, but their models are
generally considered “black box” and unexplained. Without
“explaining” a model’s workings, it can be difficult to trou-
bleshoot issues, improve performance, guarantee accuracy,
or ensure other performance criteria such as fairness.

A variety of approaches have been employed to address the
explainability issue of neural networks. Taking the taxon-
omy of (Linardatos et al., 2020)), some methods are univer-
sal in application (called model agnostic) (Ribeiro et al.,
2016)), while other are limited to specific types of models
(model specific) (Binder et al.|[2016). Some model-specific
methods are limited to a certain data type, such as image
(Selvaraju et al., |2017) or tabular data (Ustun & Rudin,
2016). Some methods are global, i.e., they seek to explain a
model’s workings as a whole (Ibrahim et al.,[2019), while
others are local, explaining how a model works for a specific
input (Zeiler & Fergus| [2014). Finally, some methods seek
to make models that are intrinsically explainable (Letham
et al., 2015), while others, called post hoc, are designed
to be applied to a black box model without explaining it
(Springenberg et al., |2014)). These post hoc methods may
seek to ensure fairness, test model sensitivity, or indicate
which features are important to a model’s prediction.

This paper focuses on the concept of attributions and in-
teractions. Attributions are local, post hoc explainbility
methods that indicate which features of an input contributed
to a model’s output (Lundberg & Leel 2017), (Sundararajan
et al.| 2017)), (Sundararajan & Najmi, |2020), (Binder et al.|
2016)), (Shrikumar et al., 2017). Interactions, on the other
hand, are methods that indicate which groups of features
may have interacted, producing effects beyond the sum of
their parts (Masoomi et al.,2021), (Chen & Yel [2022), (Sun{
dararajan et al., 2020), (Janizek et al., [2021), (Tsai et al.|
2022), (Bliicher et al.,[2022)), (Zhang et al., 2021)), (Liu et al.}
2020), (Tsang et al.,|2020a), (Hamilton et al.,[2021), (Tsang
et al.,2020b), (Hao et al.|[2021)), (Tsang et al.,[2017)), (Tsang
et al.| 2018). A common and fruitful approach to attribu-
tions and interactions is to translate and apply results from
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game theoretic cost sharing (Shapley & Shubikl [1971), (Au{
mann & Shapleyl |1974). This has the advantages of already
having a well-developed theory and producing methods that
uniquely satisfy identified desirable qualities.

This work utilizes a game theoretic viewpoint to analyze,
unify, and extend existing attribution and interaction meth-

ods. The contributions of this paper are as follows:
» This paper offers a method of analysis for attribution

and k™ order interaction methods of continuous-input
models through the concept of synergy functions. We
show that, given natural and modest assumptions, synergy
functions give a unique accounting of all interactions
between features. We also show any continuous input
function has a unique synergy decomposition.

* We highlight how various (existing) methods are governed
by rules of synergy distribution, and common axioms
constrain the distribution of synergies. With this in mind,
we highlight the particular strengths and weaknesses of
established methods.

* We show that under natural continuity criteria, gradient-
based attribution/interaction methods on analytic func-
tions are uniquely characterized by their actions on mono-
mials. This collapses the question “how should we define
interactions on analytic functions” to “how should we
define interactions of a monomial?” We then give two
methods that serve as potential answers to this question.

* We discuss the goal-dependent nature of attribution and in-
teraction methods. Based on this observation, we identify
a method for producing new attributions and interactions.

2. Background

2.1. Notation and Terminology

Let N = {1,...,n} denote the set of feature indices in a
machine learning model (e.g. pixel indices in an image
classification model). For a, b € R™, let [a,b] = {z € R" :
a; < x; < b;foralli € N} denote the hyper-rectangle
with opposite vertices a and b. Let F' : [a, b] — R denote a
machine learning model taking an input data point z € [a, b]
and outputting a real number. For example, F'(z) can be
viewed as the output of a softmax layer (for a specific class)
in a neural network classifier. We denote the class of such
functions by F(a,b), or F if a, b may be inferred. Define a
baseline attribution method as:

Definition 1 (Baseline Attribution Method). A baseline
attribution method is any function of the form A(x, 2, F) :
D — R", where D C [a,b] x [a,b] x F.[]

Baseline attribution methods give the contribution of each
feature in an input feature vector, denoted = € [a, ], to
a function’s output, F'(z), with respect to some baseline
feature vector 2’ € [a,b]PWe denote a general baseline
attribution by A, so that A;(z, 2’, F') is the attribution score

!Some attribution and interaction methods also incorporate the
internal structure of a model. We do not consider these here.

of feature x; to F'(x), with respect to the baseline feature
values z’. The definition allows for attributions with more
restricted domains than [a, b] X [a, b] X F because baseline
attributions may require conditions on F' or z in order to
be well defined. We will see a simple example of such
conditions when we define Integrated Gradient method in
section [2.3] For the purpose of this paper, all attribution
methods are baseline attribution methods.

While attribution methods give a score to the contribu-
tion of each input feature, Interactions give a score to
a group of features based on the group’s contribution to
F(z) beyond the contributions of each feature (Grabisch
& Roubens, [1999). For ease of reference, we may speak
of a nonempty set S C NV as being a group of features, by
which we mean the group of features with indices in S. Let
Pr = {S C N :|S| < k} contain all subsets of IV of size
< k. Then we can define a kM-order baseline interaction
method by:

Definition 2 (k™-Order Baseline Interaction Method). A
k™-order baseline attribution method is any function of the
form I* (z, ', F) : D — RIP*l where D C [a, b] x [a, D] x
F.

k™-order interaction methods are a sort of expansion of at-
tributions, giving a contribution for each group of features
in Py. For some S € Py, the term 1% (z, 2/, F) indicates the
component of I¥(x, ', F') that gives interactions among the
group of features S. When speaking of interactions among
a group of features, there are multiple possible meanings:
marginal interactions between members of a group, total
interactions among members of the group, and average in-
teractions among members of the group. Loosely speaking,
if we let Gg be the interactions among the features of S
that are not accounted for by the interactions of sub-groups,
then G represents marginal interactions of features in .S,
> rcs Gr represents the total interactions of features in
S, and ZTQ s TG represents average interactions of fea-
tures in S, where p7 is some weight function. This paper
focuses on marginal interactions.

Using quadratic regression as an example, suppose
F(l‘l,xg,l‘g) = 2x1 — 329 + 2123 — 15, xz = (1,1,1),
2’ = (0,0,0). Then a 2"%-order baseline interac-
tion method may report something like: Iy(x,2’, F) =
=15, Iy (z, 2", F) = 2, Igy(z,2',F) = -3, and
I;1,3y (2, 2', F') = 1, and the other interactions equal zero.

It should be noted that 1%-order interactions with Ié disre-
garded and baseline attributions have equivalent definitions.
As with attributions, interactions may not be defined for

2As an example, the first proposed baseline for image inputs
was a black image, which corresponds to the zero vector (Sun-
dararajan et al., 2017). The question of an appropriate baseline
generally depends on the data. See|[Pascal Sturmfels|(2020) for a
survey of baselines for image tasks.
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all (z,2’, F'). We denote the set of inputs where a given
1* is defined by Dyi, or D with regard to attributions. As
with attributions, all interactions are baseline k™-order in-
teractions for the purpose of this paper. We may drop z’ if
the baseline is fixed, and also drop x, implying that some
appropriate value is considered.

2.2. Axioms

The definitions provided in the previous subsection are ex-
tremely general and may lead to attribution functions that
are not practical. To find practically-relevant attributions
or interaction methods, the standard strategy is to identify
certain axioms a method should satisfy. In this subsection,
we review the common axioms of attributions and interac-
tions used in prior work (Grabisch & Roubens}, [1999) (Sun-
dararajan et al.,|2020), (Sundararajan & Najmi, [2020), (T'sa1
et al.} |2022), (Janizek et al.| 2021)), (Marichal & Roubens,
1999), (Zhang et al.l 2020). Axioms are only presented
for interactions; they can be easily reformulated for at-
tributions by setting £k = 1 and disregarding Ié, so that
1'(z,2',F): D — R™,

1. Completeness: > scp, |51~0 15 (z, 2/, F) = F(z) —
F(z') forall (x,2', F) € Dyx.

Completeness is sometimes called efficiency in the game-
theoretic literature and derives from the concept of cost-
sharing (Shapley & Shubik, [1971),(Sundararajan et al.,
2017). In attributions and interactions, requiring complete-
ness grounds the meaning of the interaction values by requir-
ing the method account for the total function value change
F(z)— F(a').

2. Linearity: If (z,2', F), (z,2',G) € Dp, a,b € R,
then (z,2’, aF +bG) € Dy, and I (z, 2/, a F +-bG) =
al®(z,2', F) + b1% (2,2, Q).

Linearity ensures that when a model is a linear combination
of sub-models, the interactions or attributions of the model
is a weighted sum of the interactions or attributions of the
sub-models.

We say that a function ' € JF does not vary in
some feature z; if for any vector x € [a,b], f(t) =
F(z1,..,2;-1,t,2i41,...,Z,) is constant. This indicates
that F' is not a function of x;. On the contrary, if it is false
to say that F' does not vary in x;, then we say F' varies in
z;. If F' does not vary in x;, we call z; a null feature of F'.

3. Null Feature: If (z,2’, F') € Dy, F does not vary in
xz;,and 7 € S, then Ig(x, 2, F)=0.

Null Feature asserts that there is no marginal interaction
among a group if one of the features has no effect. There
may be interactions between subsets of .S so long as they do
not contain a null feature ]

3Null feature is similar to dummy as stated in [Sundararajan
et al.|(2017) and Sundararajan et al.| (2020).

The three axioms above, completeness, linearity, and null
features, are generally assumed in the literature on game-
theoretic attributions and interactions. Besides these three,
there are many other axioms (guiding principles) offered
that generally serve one of two purposes: either they dis-
tinguish a method as unique, or they show that a method
satisfies desirable qualities. Among them are symmetry
(Sundararajan et al} 2020), symmetry-preservation (Sun{
dararajan et al.,[2017)), (Janizek et al., 2021}, (Sundararajan
& Najmi, [2020), interaction symmetry (Janizek et al., 2021},
(Tsa1 et al., [2022), interaction distribution (Sundararajan
et al.,|2020),(Sundararajan et al., 2020), sensitivity (some-
times called sensitivity (a))(Sundararajan et al.,[2017), (Sik{
dar et al.|[2021)), implementation invariance (Sundararajan
et al.l 2017), (Sundararajan et al., |2020), (Janizek et al.,
2021), (Sikdar et al.,|2021)), non-decreasing positivity (Lund{
strom et al.,|2022), recursive axioms (Grabisch & Roubens),
1999), (Tsai et al.| [2022)), faithfulness (Tsai et al., [2022),
affine scale invariance (Friedman), |2004), (Sundararajan &
Najmil [2020), (Xu et al., 2020), demand monotonicity (Sun-
dararajan & Najmi, |[2020). Some of the above axioms, such
as linearity or implementation invariance, are satisfied by
many methods, but no one method satisfies all axioms. For
example, Faith-Shap (Tsai et al.2022) is characterized by
a faithfulness criteria, while Shapley-Taylor (Sundararajan
et al.,[2020) is characterized by interaction distribution.

2.3. Attribution and Interaction Methods

Here we review several well known attribution and interac-
tion methods based on cost sharing. Before we introduce
them, we first introduce a necessary notation. For given fea-
tures S C N and assumed baseline 2/, we define zg € [a, b]

by:
z; ifi€s
(@s): = {x; ifi ¢ S, M

where z; is the i element of = and z/ is the i element

of z’. One well known attribution method is the Shapley
Value (Shapley & Shubik, [1971), (Lundberg & Leel [2017):
I

Shap, (z, F) = 1 Z <n|;| 1) (F(zsugiy) — F(xs)),

SCN\{i}

”_1) S (n—1)! denotes the number of sub-

where ('j5)') = G=r=rspisn:
sets of size |S| of n — 1 features. The Shapley value is
an import of the famous Shapley value from game-theory
in ML attributions. It is an example of a binary features
method, meaning it only considers F' evaluated at the points
{zs : S C N}; that is, points where each feature value
is the input or baseline value. Multiple k"-order interac-
tions that extend Shapley values have been proposed, all
of which are binary feature methods (Grabisch & Roubens,
1999),(Tsai et al., [2022)), (Sundararajan et al., [2020).

Another well known attribution is the Integrated Gradients
(IG) (Sundararajan et al., 2017):

1
IGi(x,F):(a:ifx;)/ oF (' +t(x—2"))dt. ()
0 &r,



A Unifying Framework to the Analysis of Interaction Methods using Synergy Functions 4

The IG is a direct translation of the well known cost-sharing
method of Aumann-Shapley (Aumann & Shapleyl, [1974)
to ML attributions. For the theoretical foundations of IG,
see Sundararajan et al.|(2017), Aumann & Shapley|(1974),
Lundstrom et al.|(2022).

Currently, no kM-order interactions extension of the IG has
been proposed. However, a 2-order interaction, Integrated
Hessian (IH), has been proposed in Janizek et al.| (2021).
This interaction method computes the pairwise interaction
between x; and x; as:

IH{i’j}(x, F) = 2(1’1' — ZE;)(LE] — CB;)

1 1 aQF , ,
t t(x — dsdt
></0 /0 s@xiamj(x + st(z — x'))ds

The “main effect” of x;, or lone interaction (a misnomer),
is defined as:

/ ! ! aF / /
Hyy (x, F) = (x; — ;) % (z' + st(x — z"))dsdt
0 0 E)acl

N2 ! ! 82F ’ ’
+ (@i —a5)° % sto (" + st(x — z'))dsdt
o Jo i

IH is what we label a recursive method since it
uses an attribution method recursively.  Specifically,
Similarly, IHy;y (2, F') = 1G;(2,1G;(-, F)) (Janizek et al.,
2021).

2.4. The Mobius Transform

Lastly, we review the Mobius transform, which will be
useful for our definition of the notion of “pure interactions”
in section 3] Let v be a real-valued function on | N | binary
variables, so that v : {0,1}¥ — R. For S C N, we
write v(.S) to denote v((11¢gs, ..., Lnes)), where 1 is the
indicator function. Recall that the M6bius transform of v is
a function a(v) : {0,1}"V — R given by Rota| (1964):

a(v)(8) = Y (=1)'* (7). 3)

TCS

The Mobius transform satisfies the following relation to v:

v(S) =Y a(v)(T)Lrcs = Y a(v)(T). “)

TCN TCS

The Mobius transform can be conceptualized as a decom-
position of v into the marginal effects on v for each subset
of N. Each subset of S has its own marginal effect on the
change in function value of v, so that v(.S) is a sum of the
individual effects, represented by a(v)(T') in Eq. {@). For
example, if N = {1, 2}, then for

a ifS=10
_ B iftsS={1}
v =1, if S = {2}
§ ifS=1{1,2}
we have
« ifS=10
)B-a if § = {1}
a(v)(S) = y—a if S = {2}
d—B—v+a ifS={1,2}

3. Mobius Transforms as a Complete Account
of Interactions

3.1. Motivation: Pure Interactions

In order to identify desirable qualities of an interaction
method, it would be fruitful to answer the question: what
sorts of function is a “pure interaction” of features in S?
Specifically, is F'(x1,x2,23) = x122 a function of pure
interaction between z; and x5? This question is useful
because if F' is a pure interaction of x; and x5 (i.e. the
only effects in F' is an interaction between z; and z2), then
naturally it ought to be that 1% (z, F) = 0 for S # {1,2}.
Indeed, to continue the example, suppose F' is a general
function and we can decompose F' as follows:

F(z)=fo+ Y _fuy@) + > fugy@onz) + fuzs @),
1<i<3 1<i<j<3
where fj is some constant, f{q;} is pure main effect of x;;
fyi,j) gives pure pairwise interactions; and fy; 2 3 is pure
interaction between x1, x9, and x3. Assuming I? conforms
to linearity, we would gain:

Bz, F) = Y T3z, fr) = 1&(x, fs) + 15(x, fr1.2.5)),
|TI<3
by applying the above principle, namely 1% (z, fr) = 0 if
S # T, |T| < 2. That is, the 2md_order interaction of F'
for S would be a sum of Ii« acting on the pure interaction
function for group S, written fg, and 1% acting on a pure
interaction of size 3. This would generalize to higher order
interactions, so that:
Ba, F) = (e, fs) + >
TCN,|T|>k
We would then have to determine what rules should govern
1% (x, fs), and 1% (2, fr), |T| > k.

15(, fr).

3.2. Unique Full-Order Interactions

In the previous section we spoke intuitively regarding the
notion of pure interaction; we now present a formal treat-
ment. Let I" be a n™-ordered interaction function, i.e., I"
gives the interaction between all possible subsets of features.
In addition to the axioms of completeness and null features
above, we propose two modest axioms for such a function;
first, we propose a milder form of linearity, which requires
linearity only for functions that I' assign no interaction to.
We weaken linearity in the interest of establishing the notion
of pure interactions with minimal assumptions.

4. Linearity of Zero-Valued Functions: If (z,2', G),
(x,2',F) € Din, S C N such that Ig(z,2’',G) = 0,
then I3(x, o', F + G) = 1§(z, 2/, F).

Before introducing the next axiom, we consider the mean-
ing of the baseline, 2. In cost sharing, the baseline is the
state where all agents make no demands (Shapley & Shubik]
1971)). If an agent makes no demands, there are no attribu-
tions, nor are there interactions with other players. Likewise,
the original IG paper notes (Sundararajan et al.,[2017):

“Let us briefly examine the need for the baseline in the
definition of the attribution problem. A common way for
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humans to perform attribution relies on counterfactual
intuition. When we assign blame to a certain cause we
implicitly consider the absence of the cause as a baseline
for comparing outcomes. In a deep network, we model
the absence using a single baseline input.”

As with the cost sharing literature and Sundararajan et al.
(2017), we interpret the condition ; = x; to indicate that
the feature z; is not present. Now, for given features S C NV
and assumed baseline z’, we define x5 € [a, b] by:

z; ifie S
i = iy 5

(@s) {x; ifi ¢S, ®)
where 7; is the i element of z and 2, is the i element of
2. With this in mind, we present the next axiom:

5. Baseline Test for Interactions (¥ = n): For baseline
a',if F(zg) is constant Va, then I5(x, 2, F') = 0.

This axiom states that if every variable ¢ S is held at the
baseline value, and the other variables € S are allowed to
vary, but the function is a constant, then there is no interac-
tion between the features of S. Why is this sensible? The
critical observation is that a feature being at its baseline
value indicates the feature is not present. If the features of
S have no effect when other features are absent, then the
features of F' do not interact in and of themselves and their
interaction measurement should be zero.

Our setup allows F' and z’ to be chosen separately. However,
it is generally the case that data and task will inform an
appropriate choice of baseline. We proceed assuming that
2’ is chosen as the fitting baseline to F'.

We now present an key result in our analysis:

Theorem 1. There is a unique n-order interaction method
with domain [a,b] x [a,b] x F that satisfies completeness,
null feature, linearity of zero-valued functions, and baseline
test for interactions (n = k).

Proof of Theorem|[T]is deferred to Appendix[D.1] We turn to
explicitly defining the unique interaction function satisfying
the conditions in Theorem For a fixed z and implicit x’,
F(zg) is a function of S. This implies it can be formulated
as a function of binary variables indicating whether each
input component of F' takes value x; or ;. Thus we can
take the Mobius transform of F'(x.)), written as a(F'(x.))).
Now, if we evaluate the Mobius transform of F'(z(.)) for
some S, given as a(F (z(.y))(S), and allow x to vary, then
this is a function of z. Recall that P, = {S C N : |S| < k}.
Given a baseline z’, define the synergy function:
Definition 3 (Synergy Function). For F' € F, S € P,,
and implicit baseline 2’ € [a, b, the synergy function ¢ :
Pn x F — F is defined by the relation ¢g(F)(z) =
a(F(x()))(S)

We present the following example to help illustrate the syn-
ergy function: let F'(z1,x2) = a + bx? + csinxg + dzy 23,

and suppose ' = (0, 0) are the baseline values for z; and
x9 that indicate the features are not present. The synergy
for the empty set is the constant F'(z’) = a, indicating the
baseline value of the function when no features are present.
To obtain ¢ 13 (F), we allow z; to vary but keep x> at the
baseline, and subtract the value of F'(z’). This gives us
dqy(F)(z) = a+ ba? —a = bai. If instead we allow
only z3 to vary, we get ¢ (01 (F)(x) = a + csin(z2) —a =
csin(xq). Finally, if we allow both to vary and subtract
of all the lower synergies, we get ¢y oy (F)(x) = daq23.
With the above definition, we turn to the following corollary:

Corollary 1. The synergy function is the unique n-order
interaction method that satisfies completeness, null feature,
linearity of zero-valued functions, and baseline test for in-
teractions (n = k).

Commentary on precursors to the synergy function and a
proof of Corollary [T] are relegated to Appendices [D.2]and

respectively.

3.3. Properties of the Synergy Function

Given a function F', the synergy of a single feature x; is

given by ¢y (F)(x) = F(xg;y) — F(2'), and the pairwise

synergy for features z; and x; is

1.5y (F) (@) =F(2i,53) — ¢y (F) (@) — 153 (F)(z) - F(2")
=F(2(,)) = Flagy) = Fzgy) + F@).

In general, the synergy function for a group of features S is

¢s(F)(x) = F(zs) — Y _ ¢r(F)(z) - F(2)
TCS,T#0

= > (-1 F(ar)

TCS

With this we can define the notion of a pure interaction.
A pure interaction function of the features S is a func-
tion that 1) takes a value of O if any feature in .S takes
its baseline value, and 2) varies and only varies in the fea-
tures in S{'| This is exactly what the synergy function ac-
complishes: either ¢g(F)(xz) = 0, or ¢s(F)(z) varies
in exactly the features in .S and is 0 whenever z; = z}
for any ¢ € S. More technically, define Cg = {F €
F|F is a pure interaction function of S} to be the set of
pure interactions of features S. Then we have the following
corollary:

Corollary 2. Suppose an implicit baseline =’ € [a, b] and

let F € F,and S, T € P,,. Then the following hold:
1. Pure interaction sets are disjoint, meaning Cs N Cr = ()

whenever S # T
2. ¢g projects F onto CsU{0}. Thatis, ¢s(F) € CsU{0}

and F)) = F).
3. For L;((és T,))we hﬁ‘@é gb)s((I)T) = 0 whenever S # T.

4. ¢ uniquely decomposes F' € F into a set of pure inter-
action functions on distinct groups of features. That is,

*For the degenerate case where S = (), a pure interaction of
the features of .S would be a constant function.
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there exists P C P, such that I' = } 5, ®5 where
each &g € Cg, only one such representation exists, and
&g = ¢g(F) foreach S € P while ¢g(F') = 0 for each
SeP,\P.

Proof of Corollary [2] is relegated to Appendix [D.4] For
ease of notation, we move forward assuming that if z’ is
not stated, the implicit baseline value is 2’ = 0 and is
appropriate to F'. We also assume that the synergy functions
S is applied using the proper implicit baseline choice. Lastly,
we denote @5 € Cg to be a pure interaction in .S as defined
above, or what we may also call a “synergy function” in S.

4. Binary Feature Methods and Synergies

We now discuss the role of the synergy function in axiomatic
attributions/interactions. [Harsanyi (1963 ﬂloticed that for a
synergy function ®g, the Shapley value is

2s5(2) ifie §
Shap, (z, ®s) = IS] [
ap; (z, ®s) {O ifigs ©)
This means the Shapley value distributes the function gain
from ®g equally among all ¢ € S. Using the synergy

representation of F' and linearity of Shapley values, we get

Ps(z)
S|

Shap, (, F) =
SCN s.t.i€S

@)

Thus, the Shapley value can be conceptualized as distribut-
ing each synergy ® ;) to z; and distributing all higher syn-
ergies, ®g with |\S| > 2, equally among all features in S,
¢.g., Shap(®(y 2.3)) = (‘PU;,S} ’ ‘1’{1;,3} : ‘b{l;-ﬂ} ,0,...,0).
Indeed the Shapley value is characterized by its rule of
distributing the synergy function.

Proposition 1. (Grabisch) 1997, Thm 1) The Shapley value
is the unique attribution that satisfies linearity and acts on
synergy functions as in ().

Other binary-feature methods are similar. We present a
treatment of Shapley-Taylor in Appendix [E.Il We also
present a binary-feature recursive method in appendix

5. Synergy Distribution in Gradient-Based
Methods

A critical aspect of binary feature methods like the Shapley
method is that they treat all features in a synergy function
as equal contributors to the function output. For exam-
ple, consider the synergy function of S = {1,2} given
by F(xy,22) = (v1 — 7)1 (29 — 24). F evaluated at
x = (2} + 2,75 + 2) yields F(z) = 219021 = 2101 The
Shapley method applied to F' treats both inputs as equal
contributors, and would indicate that x; and x5 each con-
tributed % to the function increase from the baseline. This

’Harsanyi|(1963) observed Eq. (@) and (7) in the binary feature
setting with Mobius transforms. Here we state the continuous
input form with synergy functions.

assertion seems unsophisticated, not to mention intuitively
incorrect, given we know the mechanism of the interaction
function.

The IG exhibits the potential advantages of gradient-based
attribution methods by providing a more sophisticated at-
tribution. For m € N”, define (v — 2")™ = (x1 — z})™* -
-+ (@y, — x},)™n, taking the convention that if m; = 0 and
x; = x}, then (z; — ;)™ = 1. Define m! = my!- - - m,),
and define D™F = olmhp

Oxy b0z ™

constant features of ™ by S, = {i|m; > 0}.

We notate the non-

We call a function of the form F(y) = (y — 2')™ a mono-
mial centered at 2/, and note that any monomial centered
at an assumed baseline =’ is a synergy function of S;,,. As-
suming m; > 0 and taking 2’ = 0, the IG attribution to 3™,
a synergy function of S,,, is:

1
:xl/ mitzm”i_la:(ml1-~<ami_1a“-amrn>dt
0

m $2

I

1 mi m

o [lmlh

This means that IG distributes the function change of
F(y) = y™ to x; in proportion to m,. For example, the IG’s
attribution to our previous problem is IG((2,2), 21%2,) =
(1522101, 4-2191) a solution that seems much more equi-
table than the Shapley value. Thus the IG can distinguish
between features based on the form of the synergy, unlike
the Shapley value, which treats all features in a synergy

functions as equal contributors.

5.1. Continuity Condition

‘We now move to more rigorously develop the connection be-
tween gradient-based methods and monomials. To connect
the action of attributions and interactions on monomials to
broader functions, we now move towards defining the no-
tion of an interaction being continuous in F. Let C¥ denote
the set of functions that are real-analytic on [a, b]. It is well
known that any F' € C* admits to a convergent multivariate
Taylor Expansion centered at 2’

D™F(z") m
F(zx) = — L (r—x 8
(2) m;ﬂ (e —a) ®)
Functions in C'* have continuous derivatives of all orders,
and those derivatives are bounded in [a, b]. Thus, C¥ itis a
well-behaved class that gradient-based interactions ought to
be able to assess.

Recall that the Taylor approximation of order [ centered at
2', denoted F}, is given by:

Ti(z) = (z —a")" ©))
meN”, ||m| <l

The Taylor approximation for analytic functions has the

property that D™T; uniformly converges to D™ F' for any

m € N™ and « € [a, b]. Given this fact, it would be natural
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to require that for a given k"™-ordered interaction 1* defined
for C* functions, lim;_,, I¥(7}) = I*(F). This notion
is further justified by the fact that many ML models can
be approximated to arbitrary precision by replacing ReLU
and max with the parameterized softplus and smoothmax
functions, respectively. With this, we propose a continu-
ity axiom requiring interactions for a sequence of Taylor
approximations of F' to converge to the interactions at F'.

6. Continuity of Taylor Approximation for Analytic
Functions: If 1" is defined for all (z,2/,F) €
[a,b] x [a,b] x C¥, then for any F € (¥,
limy_ o I¥ (2, 2/, T)) = 1¥(x,2', F), where T} is the
I™ order Taylor approximation of F' centered at '

From this we have the following result, who’s proof can be
found in Appendix

Theorem 2. Let I¥ be an interaction method defined on
[a,b] x [a,b] x C* which satisfies linearity and continu-
ity of Taylor approximation for analytic functions. Then
1*(z,2', F) is uniquely determined by the the values I
takes for the inputs in the set {(z,z’, F) : F(y) = (y —
)™, m e N"}.

In section |4 we saw that binary feature methods distribute
synergy functions according to a rule, and that rule char-
acterized the method as a whole. Gradient-based methods
satisfying linearity and the continuity condition are char-
acterized by their actions on specific sets of elementary
synergy functions, monomials. Thus, given our the continu-
ity condition and linearity, we have collapsed the question
of continuous interactions to the question of interactions
of monomials centered at 2’. Specifically, if linearity and
continuity are deemed desirable, and a means of distribut-
ing polynomials can be chosen, then the entire method is
determined for analytic functions. This is illustrated by the
following corollary (proof located in Appendix [E.4):

Corollary 3. 1G is the unique attribution method on analytic
functions that satisfies linearity, the continuity condition,
and acts on the inputs (z, ', (y — 2’)™) as in Eq. (§).

5.2. Integrated Hessians
Next, we present two gradient-based interaction methods.
For m € N™, the Integrated Hessian of F'(y) = y™ at z is:

2
2m; mj m m; m

Hg 5y (y™) = =—5-a™, Hy ™) =5
e = P HeWh = g pe

IH distributes a portion of any pure interaction monomial to
all nonempty subsets of features in S,,, breaking the base-
line test for interactions(k < n). For example, although
F(x1, o, x3) = x122 is a synergy function of S = {1, 2},
IH distributes some of F' to main effects. This can be reme-
died by directly distributing single and pairwise synergies,
then using IH to distribute monomials involving 3 or more
variables. The augmented IH of order k£ acts on monomial
functions as follows:

™ if T = Sy
k
HY (y™) = § FEGa™ T C S, |Sul >k (10)
0 else

To explain, IH** distributes all monomial synergies of size
< k to their groups, and distributes monomial synergies of
size > k to subgroups of S, in proportion to MZ%(m). A
full treatment of both is given in appendix

Corollary 4. TH** is the unique attribution method on ana-
Iytic functions that satisfies linearity, the continuity condi-
tion, and distributes monomials as in Eq. (TI0).

5.3. Sum of Powers: A Top-Distributing Gradient-Based
Method

Previously we outlined a k"-order interaction that dis-
tributed synergies larger thatn k to all sub-groups. Now
we now present the distribution scheme for a gradient-based
k™-order interaction we call Sum of PowersE] We present
only its action on monomials here, and detail the method in
Appendix [E.6] Sum of Powers distributes a monomial as
such:

z™ iftT =5,
>4 mi om
Ty SR T C S |T] = k
—1

0 else

SPh(y™) =

an
The highlight is that Sum of Powers satisfies completeness,

null feature, linearity, continuity condition, baseline test
for interactions, and is a fop-distributing method. By top-
distributing we mean that it projects all synergies larger than
the largest available size, k, to the largest groups available.
This results in Sum of Powers emphasising interactions
between features of size k, which may be an advantage or
disadvantage, depending on the goal of the interaction. We
present a corollary below; for full details of the Sum of
Powers method, see Appendix [E.6]

Corollary 5. Sum of Powers is the unique attribution
method on analytic functions that satisfies linearity, the con-
tinuity condition, and distributes monomials as in Eq. (11).

6. Empirical Evaluation

In this section, we compare the performance of the 2"-
order Sum of Powers and the unaltered Integrated Hessian
methods on a protein tertiary structure dataset. Particularly,
we use the Physicochemical Properties of Protein Tertiary
Structure dataset from the UCI machine learning reposi-
tory (Ranal 2013). This dataset consists of 45,730 samples
with 9 input features describing the molecular structure of
proteins, and the target variable is the size of the residue. For
this regression task, we utilize a 2-layer neural network with
SoftPlus activation. We run each method on 200 samples.
More details about the experiments and additional results
are provided in Appendix [F}

Figures [T] and 2] report average values for IH and SP, with
main effects on the diagonal. We see that both methods



A Unifying Framework to the Analysis of Interaction Methods using Synergy Functions 8

report a strong negative interaction between features 1 and 6,
with SP reporting a more negative interaction by 8 points. In
the main effects, we see that SP gives more largely positive
values for features 1 and 6, while IH is more diminished.

Why is this? Understanding the theory of distributing syner-
gies helps us understand these differences. Theoretically SP
reports pure main effects as they are, and all other interac-
tions are projected down to the pairwise interactions. Sum
of powers indicates that the pure main effects of features 1
and 6 are positive. IH intermixes main effects and higher
order interactions. Since IH’s main effects are lower, this
means that the pure positive main effects of 6.1 and 9.3 (as
seen in SP) are being lowered by generally negative higher-
order interactions when IH reports them. A consequence of
this is that IH also has a smaller report of the interactions
between features 1 and 6: the negative interactions involv-
ing features 1 and 6 are being broken up and some are being
distributed to main effects, diminishing the report. This
strengthening of pairwise interactions is further confirmed
by a box-and-whiskers plot (Fig. [3), which shows that SP
gives more largely negative values at Q1, 2 and 3.
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Figure 1. Mean of the Integrated Hessian interaction values.
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Interestingly, Figure [ also indicates a more pure relation-
ship between features 1 and 6. It is theorized that IH can
have wide ranges of coefficients when distributing a mono-
mial (the MX(m) term), while sum of powers is relatively
more stable.

|
N
o

Interaction Value
|
S
o

|
(=2}
o

IH sp
) . _ Method
Figure 3. Box plot of interaction values of feature 1 and feature 6.

Several values with extreme positive and negative interaction val-
ues are removed for a cleaner plot.
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Figure 4. Interaction of feature 1 and feature 6. Left: driven by
Integrated Hessian. Right: driven by Sum of Powers. X-axis:
Feature 1. Y-axis: Interaction value. Colorbar: Feature 6.

7. Concluding Remarks

The paradigm of synergy distribution is a useful concept for
the analysis and development of attribution and interaction
methods, particularly in mission-critical applications such
as the ones that appear in health and medicine. First, it
can point out weaknesses in existing methods such as the
Integrated Hessian and indicate improvements, second, it
can lead to new methods such as the Sum of Powers method,
and last, it allows new characterization results based on syn-
ergy or monomial distribution. As seen in the comparison of
Shapley Value vs Integrated Gradient, synergy distribution
can play an important role implicitly even when not explic-
itly discussed in the literature. However, the application
of this analysis tool does not settle the question, “which
method is best?”” There exists conflicting groups of axioms
and various combinations of them produce unique interac-
tions. The choice of whether to use a top-distributing or
recursively defined method, a binary features or gradient-
based method, or some other method may vary with the goal.
In the authors’ opinion, the possibility of the existence of
one “best” method is improbable as various combinations of
different axioms lead to the development of unique methods.
Thus, choosing methods based on the context of the applica-
tion seems a more logical approach. Indeed, the existence of
unique methods with individual strengths is already studied
in game-theoretic cost-sharing literatureﬂ

"See the Shapley value vs Aumann-Shapley value vs serial cost
for cost-sharing (Friedman & Moulin| [1999), or the Shapley vs
Banzhaf interaction indices (Grabisch & Roubens| |1999).
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Appendix
A. Table of Methods

All listed methods satisfy completeness, linearity, null feature, and symmetry. All gradient-based methods satisfy the
continuity condition. All interaction methods also satisfy baseline test for interactions (k < n) unless otherwise noted. We
do not list interaction distribution, which is a combination of baseline test for interactions (k < n) and being top-distributing

in the binary features scheme.

B. Table of Methods

All listed methods satisfy completeness, linearity, null feature, and symmetry. All gradient-based methods satisfy the
continuity condition. All interaction methods also satisfy baseline test for interactions (k < n) unless otherwise noted. We
do not list interaction distribution, which is a combination of baseline test for interactions (k < n) and being top-distributing

in the binary features scheme.

’ Name

Properties

Distribution Rule

Synergy Function

unique n"-order

o1 (®s)(7)

fos(a) ifS=T

interaction 0 it S #T
Shapley Value attr'lbutlon method Shap, (z, Bs) — Kl if ¢
binary features 0 ifi¢g s
. Mi_gm ifq e S,
Integrated Gradients attrlbu.tlon method IG;(z,y™) = Tl * e
gradient-based 0 ifi ¢ Sy,
Sg(x) fT =S
binary features k _ ) 2@ T Cc ST =k
Shapley-Taylor top-distributing ST (z, Pg) = = C ST
0 else
™ itT =5,
gradient-based k my Xier™i o m T C S T| = k
Sum of Powers top-distributing | SPT@Y™) = 4 [ty 27 T S S [T
0 else

Recursive Shapley

binary features
iterative

RS (2, ®g) = {o

N T
s Ps(@) T C

breaks baseline test else
Dg(z) ifT =9
Augmented binary features . _ ) Nk .
Recursive Shapley iterative RSy (w, @) = W(DS(:E) if T G 518>k
0 else
gradient-based Mp(m) .m T C S
Integrated Hessian iterative HE (2, y™) = { I B =om
breaks baseline test 0 else
x™ if T =5,
Augmented gradient-based Ex my _ ) ME(m) _m .
Integrated Hessian iterative My (2, y™) = fmip @ TG S |Sm| >
0 else

C. Axioms and the Distribution of Synergies

Here we comment on the interplay between axioms and synergy functions. First, we present a version of the baseline test for
interactions which applies for & < n. The idea is a generalization of the (k = n) case; that if I* is a k™-order interaction and
® 5 is some pure interaction function with | S| < k, then I*(®g) should not report interactions for any set but S. We give

this as an axiom:

11




A Unifying Framework to the Analysis of Interaction Methods using Synergy Functions 12

7. Baseline Test for Interactions (& < n): For baseline 2’ and any synergy function &g with |S| < k, if T C S, then
5 (@g) = 0.

This is a weaker version of the defining axiom of Shapley-Taylor (Sundararajan et al.,[2020), which states:
8. Interaction Distribution: For baseline z’ and any synergy function ®g, if ' C S and |T| < k, then I%.(®g) = 0.

The baseline test of interactions asserts that if a synergy function is for a group of at least size k, I¥ should not report
interactions for any other group. The interaction distribution asserts the same, and adds the caveat that if the synergy function
is for a group of size larger than k, it must be distributed only to groups of size k.

We now detail how some of these axioms can be formulated as constraints on the distribution of synergies.

1. Completeness: enforces that any method distributes a synergy among sets of inputs. Formally, for a synergy function ®g,
we may say that I%(z, ®g) = wr(x, ®g) x ®g(x), where wr is some function satisfying > rcp, wr(z, @s) = 1.

2. Linearity: enforces that I¥(F') is the sum of I* applied to the synergies of F. Formally, I* (F) = Y TPy ¥ (¢pp(F)).

3. Null Feature: enforces that I* only distributed ® 5 to groups 7' C S.
4. Baseline Test for Interaction(k < n): enforces that ® ¢ is not distributed to groups T C S when |S| < k.

5. Interaction Distribution: enforces that ® g is not distributed to groups 7' C .S when |S| < k, and is distributed only to
groups of size k when |S| > k.

6. Symmetryﬂ enforces that a synergy ®g be distributed equally among groups in the binary features case.

C.1. Statement of Symmetry Axiom
Let 7 be an ordering of the features in N. We loosely quote the definition of symmetry from Sundararajan et al.| (2020),

altering the binary feature setting to a continuous feature setting:

7. Symmetry Axiom: for all F' € F, for all permutations m on N:
Ii(x,2' F) = IFg(mx,na’,For™ 1), (12)
where o denotes function composition, 1S := {m(i) : i € S}, and (7x) ;) = 4.

This axioms implies that if we relabel the features, then interactions for the relabeled features will concur with interactions
before relabeling. It requires that the domain, [a, b], is closed under permutations of inputs, meaning it is of the form
[a1 y bl]n

D. Synergy Function

D.1. Proof of Theorem 1]

Proof. Let I be any n-ordered interaction that satisfies the given axioms, and let 2,2’ € [a,b] X [a, b] be arbitrarily
chosen. We assume that all interactions are taken with respect to input = and baseline x’. For ease of notation, we define
Fs(x) = F(xg) for F € F(x,x").

For any nonempty S € P,,, note that [s(F') = Is(F — Fs+ Fg). Note that (F'— Fis)(zg) is constant. Thus, Is(F —Fs) =0
for any S € Py, by the baseline test for interaction. Thus, by linearity of zero-valued functions, we have established that
Is(F) = Is(Fs) for any S € Pg.

We now proceed by strong induction:

8See appendixfor a statement of symmetry axiom.

12
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|S| = 1 case: Leti € N and choose F' € F. Note that F'f;) does not vary with any feature but ;. This implies that
for S # {i}, Is(Fy;3) = 0 by null feature. By completeness, I,y (Fy;3) = Fiiy(x) — Frp(2'), and Iy (F) is uniquely
determined. Thus Ig(F') is uniquely determined for |S| = 1.

|S| < k = |S| = k+ 1 case: Suppose that for any G € Fla,b] and any S C {1, ...,n} such that | S| < k, Ig(G) is uniquely
determined. Let T € P,,|T| = k+ 1, F € F. It has been established that I;(F') = Ir(Fr). Note that for all S C T,
we have |S| < k, so Ig(Fr) is uniquely determined by the induction hypotheses. Since Fr does not vary in each x; such
that i ¢ T, we have Is(Fr) = 0 for S ¢ T by null feature. By completeness, Fr(z) — Fr(z') = Y gcp, Is(Fr) =
Y scrls(Fr). Thus Ip(Fr) = Fr(z) — Fr(z') — > gcp 1s(Fr). Since Ir(F) = Ip(Fr) equals the sum of uniquely
determined terms, I (F') is uniquely determined. . O

D.2. Context of Synergy Function

The properties of the synergy function stem from properties of the Mobius transform. Specifically, because the synergy
function is defined by the Mobious Transform, it inherits many of its properties, including completeness, null feature,
linearity of zero-valued functions, and baseline test for interactions (n = k). The primary precursor to the synergy function
is the Harsanyi dividend (Harsanyi, [1963)), which is like the Mobius transform and is formulated for discrete-input settings.
More recently, the Shapley-Taylor Interaction Index (Sundararajan et al.,|2017) and Faith-Shap (Tsai et al., [2022) take the
form of the Mobius Transform when & = n. The novelty of the synergy function is that, while previous works assumed
F to be a set function (as in section [2.4), the synergy function is a linear functional between continuous input functions.
Consequently, Corollary |1|is novel, not only because of the inclusion of baseline test for interactions (k = n), but also
because all axioms do not assume F’ is a set function.

D.3. Proof of Corollary 1]

We proceed to show the synergy function satisfies completeness, linearity, null feature, and baseline test for interactions
(k <n).

Proof. Completeness: For any v : {0,1}"™ — R,[Sundararajan et al.| (2020, Appendix 7.1) shows that the Mobius transform
has the property that,

o(T) = Z a(v)(S). (13)

Using this, observe,

SeP SCN (14)
= F(SCN)
= F(JZ),
which established completeness.
Linearity of Zero-Valued Functions: We simply establish ¢ is linear.
¢s(cF + dG)(z) = a(cF(z()) + dG(z()))(5)
= > (=) [(eF (2() + dG(z))(T)]
2 (15)

Z VIS Bz )T +dz DISEITI Gz o)(T)

TCS

= c¢s( )(@) + dés () (w)

Baseline Test for Interactions: Suppose F'(xg) is constant.

13
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TCS
- [SI=IT] !
(1171 () 6
TCS
S —i
) 3 (W)
0<i<|S|
=0
Null Feature: Suppose F does not vary in some x; and i € S. Then,
0s(F)(x) = a(F(x(,))(S)
= Z(_l)\SHTI F(zr)
TCS
= Z (=)ISI=1T1 P(zp) + Z (=1)!SI=1T1 F(24)
TCS,ieT TCS,i¢T (17
= 3 DT P+ S (1T Ry
TCS\{i} TCS\{i}
= Z (=D)ISI=1TD Pap) + Z (=1)ISI=IT1 P(20)
TCS\{i} TCS\{i}
=0
O

D.4. Proof of Corollary 2|

Proof. We proceed in the order given in Corollary 2]

1. Pure interaction sets are disjoint, meaning C's N Cr = () whenever S # T.

Suppose S, T' € P,, with T £ S. We proceed by contradiction and suppose F' € Cs U Cp. WLOG 3i € S\ T, implying
that F' varies in feature 4 since F' is a synergy function of .S, and F does not vary in feature 4, since F’ is a synergy function
of T. This is a contradiction. Thus C's N Cr = (.

2. ¢ projects F onto Cs U {0}. Thatis, ¢s(F) € Cs U {0} and ¢5(ds(F)) = ¢s(F)

Let F' € F. First, for the degenerate case, ¢y(F) = F(z'), which is a constant function. For any constant ¢, ¢g(c) = ¢,
implying ¢y is a projection and surjective for the range Cy U {0}. Thus ¢y projects F onto Cy U {0}.

Now we will show that ¢ s (F') either is a pure interaction of .S or is 0 in the non-degenerate case. Suppose x; = x; for some
i € S. Then,

14
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¢s(F)(@) = Y (=117 F(ar)

TCS

= Z (=)ISI=1T1 P(zg) + Z (=1)!SI=1T1 F(20)
TCS,ieT TCS,igT

= 3 DI P+ 3 ()T Ry
TCS\{i} TCS\{i}

= Z (=)ISI=1TD F(zp) + Z (=1)ISI=IT1 P(20)
TCS\{i} TCS\{i}

=0

Thus ¢s(F) = 0 whenever z; = x, for some i € S, and ¢g(F) satisfies condition 1 for being a pure interaction of S.

Now, inspecting the definition, ¢s(F)(z) = S pcg(—D)ISI7ITI F(27), so ¢s(F) does not vary in z;, i ¢ S. Lastly,
suppose that F' does not vary in some x;, i € S. Since ¢ satisfies null feature, ¢s(F’) = 0. So either ¢s(F’) varies in all z;
such that ¢ € S, or ¢s(F') = 0. If the former, ¢5(F) satisfies condition 2 for being a pure interaction of S; if the latter,
¢s(F) = 0. Thus ¢ps(F) = 0 or ¢s(F) is a pure interaction function of S, implying the range of ¢g is C's U {0}.

Now let g € Cg. Note

¢s(0s)(z) = > _ (1)1 dg(ar)
TCS
= Z(—l)‘SHT' dg(2r)
T=S
= dg(xs)
= ®g(z)

It is plain by the definition that ¢5(0) = 0. Thus ¢g is surjective for the range C's U {0}. Since the range of ¢ 5 is C's U {0},
¢ maps elements of C's to themselves, and maps 0 to 0, so ¢ is a projection.

3. For &1 € Cr, we have ¢g(®r) = 0 whenever S # T.

Let o € Crand T # S. If 3i € S\ T, then ¢pg(P7) = 0 by null feature. Otherwise S C T, and ¢g(P7) = 0 be baseline
test for interactions (k = n).

4. ¢ uniquely decomposes F' € F into a set of pure interaction functions on distinct groups of features.
That is, there exists P C P,, such that FF = ) sep ©s, where each &5 € Cs. Further more, only one such
representation exists, 5 = ¢g(F) for each S € P, and ¢5(F) = 0 for each S € P, \ P.

F =3 scp, ¢s(F), and each ¢5(F) € Cs U {0}. Since 0+ ¢y (F) € Cp and we may gather all the (') terms that are
zero into the Cp term, we have shown a decomposition exists.

Let it be that F'(z) = > g.p ®s5(x) for some P € P,, where each P is an interaction function in S. By the results already
established, we have for any T' € P

¢s(F) = ¢s(D_ 1)

TeP

= 6s(®r)

Tep
= ¢s(Ps)
— By

15
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If S ¢ P, then

¢s(F) = ¢s(D_ 1)

TeP

= Z ¢s(Pr)

TeP
=0

Now suppose that there are two decompositions, Y. gcp1 P& = F = > g p2 4. WLOG suppose S € P!\ P2. Then
#s(F) = 0since S ¢ P? and ¢p5(F) = @} since S € P'. Thus &L = 0 and S = 0. Thus P*AP? equals either () or
{0}, and in the case that P*AP? = {(}} the extra term corresponding to () in one of the sums is 0, and does not effect the
decomposition. Now, if P*AP? = (), then for any S € P, P2, we have 4, = ¢5(F) = ®%. Thus, the decomposition is
unique. O

E. k™-Order Interaction Methods

Here we give an in depth treatment of the Shapley Taylor, Recursive Shapley, Integrated Hessian, and Sum of Powers
methods, as well as the augmentations to the recursive methods. We define the methods and show that each method is the
unique method that satisfies linearity, their distribution policy, and in the case of gradient methods, the continuity condition.
We also prove that each method satisfies desirable properties such as completeness, null feature, symmetry, and, if applicable,
baseline test for interactions (k < n).

E.1. The Shapley-Taylor Interaction Index

Several k™-order interactions that extend Shapley values have been proposed, all of which are binary feature methods

(Grabisch & Roubens, |1999),(Tsai et al., [2022). Here we focus our analysis on the Shapley-Taylor method (Sundararajan

et al., 2020). First, define dg|p F'(v) = Z (=1)!SI=WI P (2y,r), which measures the marginal impact of including the
wcs

features in S when the features in 7" are already present based on the inclusion-exclusion principle. The Shapley-Taylor

Interaction Index of order k£ (Sundararajan et al.,|2020) is then given by:

. 1 F(x .
%ZTQN\S S(‘:—l() L if S| =k

|7

(53‘@(}7‘) if‘S| < k.

ST(z, F) = (18)

Shapley-Taylor prioritizes interactions of order k£ and its unique contribution is to satisfy the interaction distribution axiom,
which is discussed in Appendix [C|

E.1.1. ANALYSIS OF SHAPLEY-TAYLOR USING SYNERGIES

For a synergy function ®g, the Shapley-Taylor interaction index of order % for a group of features T" € Py, is given by:

Dg(z) ifT =S
STH(Ds) = (55 T CSITI=k (19)

0 else

The Shapley-Taylor distributes each synergy function of S to its group, unless is too large (|.S| > k), in which case it
distributes the synergy equally among all subsets of .S of size k. This type of method is top-distributing, as every synergy
function of a group T, |T'| > k, is distributed only to groups of order k.

As with the Shapley value, the Shapley-Taylor is characterized by this action on synergy functions:

Proposition 2. (Sundararajan et al.l 2020, Prop 4) The Shapley—Taylor Interaction Index of order k is the unique k"-order
interaction index that satisfies linearity and acts on synergy functions as in Eq. (T9).

16
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E.2. Recursive Shapley and Augmented Recursive Shapley

There is another binary feature k"-order interaction method similar to Shapley-Taylor, briefly motioned in [Sundararajan
et al.| (2020), with the distinction that it is not top-distributing. Here we detail and augment the method. Similarly to the
Integrated Hessian, we may take the Shapley value recursively to gain pairwise interaction between z; and x;, given by
RS¢; jy (w, F) = Shap, (z, Shap, (-, F)) + Shap; (, Shap, (-, F")) = 2Shap, (x, Shap, (-, F")). Main effects for ; would be
Shapi(xa Shapi('v F))

More generally, consider expanding the expression ||y||¥, and let N denote the sum of coefficients associated exactly with
the variables with indices in 7. Then the Recursive Shapley of order k distributes synergy functions as such:

N g itTC S
i Ps(@) AT C

RSH(Dg) = { : e (20)

where in the case T' = S = () we set % := 1. This formulation, however, has the disadvantage of distributing a portion
of synergy functions for groups sized < k to subgroups. For example, the recursively Shapley reports that a synergy
function ®; 5 51(7) also has interactions for subgroup {1,2}. This violates the baseline test for interactions (k < n). We
can modify the method to avoid this issue, causing Recursive Shapley to satisfy the baseline test for interactions (k < n)
axiom. We explicitly detail the Recursive Shapley and modification in We also give the following Theorem (Proof in
Appendix [E.2.2):

Theorem 3. The Recursive Shapley of order k is the unique k"-order interaction index that satisfies linearity and acts on
synergy functions as in Eq. (20).

E.2.1. DEFINING RECURSIVE SHAPLEY

Here we detail the properties of Recursive Shapley and Augmented Recursive Shapley. Let a% be the set of se-
quences of length k such that the sequence is made of the elements of 7' # () and each element appears at least
once. For example, O':{Sl ) = {(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2), (2,2,1)}. Calculating the size of o%,
05| = Yyjmker si=r (5) = Nf. For a given sequence s, define IG;(z, F') be a recursive implementation of the
Shapley method according to the sequence s, i.e., Shap(; » 5)(z, F") = Shapg(x, Shap, (-, Shap, (-, F))). We can then define

the k"-order Recursive Shapley for T # () as:

RS (z,F) = Y Shap,(z, F) 21)

sEU%
and define RSf(z, 2', F) := F(a').

We now move to inspect this equation and establish some properties. Eq. (@) states that for a synergy function ®g, S # 0,

Ps(n) ifie s
Shap, (z, dg) = ¢ 1] 22
p;(z, ®s) {0 ifigs (22)
Then for a given sequence s € U% and synergy function ®g, if T C S then,
Shap,(x, ®s) = Shap, (z,Shap, _ (...Shap, (-, ®s)....)
Qg
= Shap,, (x, ShapSkil(...ShapSQ(-, E) )
= Shap,, (z,Shap, (...Shap,_ (- &) )
o (T sy (oo s Tg) o
Og
= Shapsk (x7 ‘S|k_1 ))
_ Dg(z)
|S[*

17
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However, if T C S then there exists an element of s that is not in .S, and:

Shap,(z, ®g) = 0, (24)
due to some s; ¢ S in the sequence.

E.2.2. RECURSIVE SHAPLEY’S DISTRIBUTION POLICY

Now, to show how Recursive Shapley distributes synergies, apply the definition of recursive Shapely for S # () to get:

RS (z,®5) = ) Shap,(z, Bs)

sEo%
_ ZSEU’,} ﬁg‘i?f) it T g S
ESE(I’% 0 it T SZ S (25)
k
_ g—‘Tk@g(x) ifTCS
0 T ¢S

k
We also gain the above for S = ) by setting IJ;TT’“ =1 when T = (). This establishes the distribution scheme in Eq. (20).

Recursive Shapley is also linear because it it the sum of function compositions of composition of linear functions. This
establishes Theorem

E.2.3. PROPERTIES OF RECURSIVE SHAPLEY

To show Recursive Shapley satisfies completeness, observe for S # (J:

®
> RSi(z,®5) =) %Iglk

TEP,|T|>0 TCS

Z Ny (26)

- @s(:t)
R

= dg(x)

The case when S = () is easily verified by inspecting the synergy distribution policy of RS.

Kl

To show Recursive Shapley satisfies null feature, suppose that F' does not vary in x;. Then for any S € Py such that i € S,
¢s(F') = 0 since the synergy function is an interaction satisfying null feature. Then if ¢ € T,

RS§ (2, F) = Y RSf(x,¢s(F))
SEPy
= Y RSi(x4s(F)+ > RSi(x,¢s(F))
SEPy st i€S SEPy st i¢S 27
= Y RSk@Oo+ > 0
SEPy, s.t. i€S SEPy st igS
=0

Where the terms in the second sum are zero by Eq. 20).

18
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To show Recursive Shapley satisfies symmetry, let 7 be a permutation on N. Note that for @5 € C's, we have g o lisa

pure interaction function in 7.5 with baseline a’. Then

N::T -1 :
RSE (nz,mal, @gon!) = { mE s o (nz) if 7T C w8

0 ifﬂTQWS
B %Q)s(m) ifTCS
0 ifT ¢ S

= RS}(z,2', s)

So RS is symmetric on synergy functions. Now use the synergy decomposition of F' € F to show RS is generally symmetric.

E.2.4. AUGMENTED RECURSIVE SHAPLEY AND PROPERTIES

The synergy function ¢ is taken implicitly with respect to a baseline appropriate to F'. To make the baseline choice explicit,
we write ¢(F') = ¢(2’, F'). Augmented Recursive Shapley is then defined as:

RS§ (2,2, F) = ¢r(2, F)(z) + RS} (2, 2/, F = ¢s(a’, F)) (28)
SEPy,

With the above augmentation, IH"* explicitly distributes synergies ¢-(F) to group T whenever |T| < k, and distributes
higher synergies as TH.

The above is a linear function of F'. Plugging in ®¢ to the above gains the following distribution policy:

bs(x)  ifT=5
RS (@) = { Mids(x) T CS.[S| >k (29)

0 else

Because each F' ha a unique synergy decomposition, we have

Corollary 6. Augmented Recursive Shapley of order k is the unique k'"-order interaction index that satisfies linearity and
acts on synergy functions as in Eq. (29).

To show that Augmented Recursive Shapley satisfies null feature, let ' not vary in some feature x; and let ¢« € T". Then

RSK (2, F) = > RSK (z,¢5(F))

SEP,
=RSY (z,0r(F))+ Y RS (x,65(F))
TCS,|S|>k
=RS7'(z,0) + Z W¢S(F)(33)
TCS,|S|>k
=0+ > 0
TCS,|S|>k
—0

Thus Augmented Recursive Shapley satisfies null feature.

To show Augmented Recursive Shapley satisfies baseline test for interactions (k < n),letT C S, |S| < k, and &g € Cg.
Then RS5* (z, ®5) = 0 by Eq.(29).

To show Augmented Recursive Shapley satisfies completeness, consider the synergy function ®g. If |S| < k, Eq. 29)
shows completeness. If |S| > k, then follow the proof of completeness for Recursive Shapley.

19
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To show Augmented Recursive Shapley satisfies symmetry, consider a synergy function @5 € C's and permutation 7. Note
that for &g € Cg, we have &5 o 7! is a pure interaction function in S with baseline 7z’. Then

Mot §goml if 77 = 7.9
nifr®som (rx) fnT =7
k

RSV (ma, wa!, B o) = ‘JX%Q)S or~Yz) ifnT CwS,|wS|>k
0 else
NE P .
k
= B0s(a) T CS|S| >k
0 else

= RS} (z,2', ®s)

E.3. Proof of Theorem

Proof. Let I* be a k™-order interaction method defined for all (z, 2, F) € [a,b] x [a,b] x C¥. Fix 2’ and z. Let T} be the
I"™ order Taylor approximation of F at /. Then

¥(z,2', F) = lim I¥(z,2', T})

l—o0

Dm(F)(ZL‘/) . k / nm
= > T jimIe -
meN™, [|m][1 <!

The last line is determined by the action of I* on elements of the set {(x, ', F) : F(y) = (y — 2')™, m € N"}, concluding
the proof.

O
E.4. Proof of Corollary[3]
Sundararajan et al.| (2017) has shown that IG is linear and Eq. (8) shows the actions of IG on polynomials.
Let F' € C¥ and let T} be the Taylor approximation of F' of order [ centered at z’. It is known that % — % uniformly on
a compact domain, such as [a, b]. Thus,
. : N /
lim IG;(z,T;) = lim (x; — ;) (@' +t(z—2"))dt
l—o0 l—o00 o Ox;
(30)

!/ ! aF / !
= (x; — xz)/o oz, (' +t(x —2"))dt

= IG,L' (JC 5 F )
Thus IG satisfies the continuity criteria. Apply Theorem [2 for result.

E.5. Integrated Hessian and Augmented Integrated Hessian
E.5.1. DEFINITION OF INTEGRATED HESSIAN

Here we give a complete definition of TH and detail how IH distributes monomials. We also detail IH* and show it satisfies
Corollary 4] We then show both satisfy completeness, linearity, null feature, and symmetry, and augmented IH satisfies
baseline test for interactions (k < n).

Let ok be the set of sequences of length k such that the sequence is made of the elements of 7 # () and each
element appears at least once. For example, 0%1.2} = {(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2), (2,2,1)}. For
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a given sequence s, define IG4(z, F) to be a recursive implementation of IG according to the sequence s, i.e.,
IG(1,2,3)(x7F) = IG3(£E7IG2('7IG1('7F)))'

We can then define the k-order Integrated Hessian for T' # () by:

Hj (2, F) = ) 1G,(, F), (31)

Kk
seoq

and for T’ = (), we define IHj (z, 2/, F) = F(z').

E.5.2. IH PoLICY DISTRIBUTING MONOMIALS AND CONTINUITY CONDITION

We now move to inspect this equation and establish some properties. First, IG is linear, establishing that IH is also linear by
its form.

Next, we establish its policy distributing monomials centred at «’. Eq. (§) states that for a monomial F'(y) = (y — 2')™,
m # 0,

(g — Y™ ifi e S
IG,(z, 2, (y — 2')™) = P (0~ )™ " 32
(a0’ (g = )™) {0 e @)

Then for a given sequence s € o and synergy function (y — z')™, T C S,,,

IG4(, (y — 2')™) = 1Gs, (2,1Gs, _, (...IG, (-, (y — 2')™)....)

_ \m
16y, (2,1G,, (G, (-, My =)™

[[mlfx
Mgy M. (y - zl)m
= IG,, (z,1G,,_, (.1G, (- e R0
1
(33)
Mi<i<k—1ms, (y — )™
B T
1
I <i<kms, (z — )™
[l
However, if there exists any elements of s that is not in .S,,, then:
IGy(z, 2, (y —2")™) = 0, (34)
due to some s; ¢ Sy, in the sequence.
Now, applying the definition of IH when m # 0, we get:
Hf (2, (y —2)™) = ) 1G,(x, (y —2')™)
sEU?
S Msiskme o anym g T C S,
— s€orp [l I} (35)
Zsea% 0 ifT ¢ S,
NI (5 — !y T C S,
= mily
0 if T & Sy,
where we define Mf.(m) = 3= _x .. 1 (1)m', with (7) = %s',l' the multinomial coefficient. In the case T' = S,,, =
k
0, we set Mr(m) _

(B
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Now let us turn to the question of the continuity of Taylor approximation for analytic functions. Let 7} be the Taylor
approximation of some F' € C*. Using Corollary we have lim;_, o IG;(x, T;) = IG;(x, F). This implies:

IG;(z, F) = llim 1G;(z, T7)
— 00

= 3 PG, (g -ty

menn (36)
2wl
That is, the above sum is convergent for all = € [a, b], implying that IG;(-, F') € C“. Also note:
D™(F)(a') _mq /
1Gi(z,T}) = _ym
(z,T1) > ot @) (37)

meN” |m|<I

This shows that IG(x, T;) is a Taylor approximation of IG;(x, F'). Thus, for F' € C* and a sequence s, we can pull the limit
out consecutively since we are simply dealing with a series of Taylor approximations.

IGs(z, F) = 1Gq, (z,1Gs,_, (...1Gg, (-, F)...))
(2,1Gs, _, (... lim IGg, (-, T7)...))
=00
= IGSk(x’IGSk—l("'ll_ifIOloIGSZ("IGSl("I}))"')) (38)
= lim IG,, (7,1Gy, _, (- 1Gy, (- T})...))

= lim IG4(z,T;),
l—o00

which establishes that ITH* satisfies the continuity property. This implies the following corollary:

Corollary 7. Integrated Hessian of order k is the unique k™-order method to satisfy linearity, the continuity condition, and
distributes monomials as in Eq. (33).

E.5.3. ESTABLISHING FURTHER PROPERTIES OF IH

To show IH is complete, observe for a monomial F'(y) = (y — z')™, m # 0,

km
> wiesn= 3 e

SEPR|S|>0 SCSmi|S|>0 el

_ Z Zm:k s.t. §1=S (’;)ml (l‘ _ CL‘/)m

k
S§S7n,|5|>0 ||m||1

When m = 0, we get IH% (z, 2/, F') = 0 except when S = (), in which case we get IH% (z, 2/, F) = 1.

Applying the Taylor decomposition of F' and continuity property to a general F' € C*, we get:

22



A Unifying Framework to the Analysis of Interaction Methods using Synergy Functions 23

Z HE (z, 2, F) = Z lim IHE (z,2', T7)

l—o00
SEP,|S|>0 SEP,|S|>0
. Dm(F)(J)/) k / nm
:ll_l)m Z Z TIHS(x,x,(y—x) )

SEPy,|S|>0 meN™,0<||m|1 <1

= lim Z m Z HE (2,2, (y — 2')™)

l—o0 m:
meN”,0<||m||1 <l SEP,|S|>0
D™ (F) ('
— lim E ’ M(x — )™
l—o00 |

meN,0<]|m| <l

o D™ (F)(2') nm /
=lm > — (- - F(@)
meN™, |lm|1 <1

= F(z) — F(2')

To show IH satisfies null feature, we proceed as in the proof for Recursive Shapley and suppose that F' does not vary in z;.
Then for any S € Py, such thati € S, ¢s(F) = 0 since the synergy function is an interaction satisfying null feature. Then
ifieT,

H (e, F) = ) Hy(x, ¢s5(F))
SePr

= > WHh@es(F)+ Y. Hi(zes(F)

SEPy, st i€S SEPy, st i¢S 39

= ) W@+ > 0

SePy st i€S SEPy st igS
=0

To show symmetry, let 7 be a permutation. Note that since (7y) (;) = ¥i, we also have (7 1y); = (77 Y) =1 (x(s)) = Yr(i)-
Then, if F(y) = (y — 2')™, we get

/

E ﬂ-_l(y) = (yﬁ(l) - x/l)ml T (yw(n) — )"
= (W1 = )" e (Yn = )
= (y — mz')™
Also note that,
Srm = {l : (ﬂ'm)l > O}

= {’L : mrrfl(i) > O}
={m(i) : Mp-1(x()) > 0}
= {m(i) : m; > 0}
={m(i) i € Sp}

=78,
Then,
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llwmll§

Mk m ™m :
H: (rz,ma’, For™ ) = M) (i — ) if 7T C Samm
ﬂ 0 7T ¢ S

[ T C S

0 T ¢ S
= IHY (2,2, F)

-1
Now, if we take m € C* and denote 77{1 to be the j™ output of 71, then 86,7;7"1_ = 1j_r-1(;)- Then we have
A(For1) “9F, ., Ot
T(y) —;%(W (v)) o, (y)
oF
T ()

which yields

a\lwm\ll(p omr~1)
axgrrm)l . ax%‘nm)n
gllmml
= — —— (!
G 0T
gllmlh g
o oz - - Oxp™ v

= D™F(z')

D™ (Fon ) (nz') = (mz”)

ma')

From the above we have for general F’,

m(Fon V) (ma!

H: g (mz, ma’, F o™ ') = lim IHY g(mz, ma’,
l—o0 m'

meN",0<||m|1 <1l

DM (For)(na!)
— 1 / _ nm
Jim Z - H, ¢ (mx, w2’ (y — waz’)™)
meN",0<||m||1 <
: D™ (F o m 1) (ma’) o / rrm
= zlir& Z o)l IH] o (mx, w2’ (y — wz’)™™)
meN” 0<||m|1 <
. D™(E) @) ok nm
—im Y PP

meNm 0<||m| <t

= lim Hg(z,2',T})
=00

=IHg(z,2', F)

E.5.4. AUGMENTED INTEGRATED HESSIAN AND ITS PROPERTIES

The synergy function ¢ is taken implicitly with respect to a baseline appropriate to F'. To make the baseline choice explicit,
we write ¢(F') = ¢(z, F'). Augmented Integrated Hessian is then defined as:

IHY (2,2, F) = ¢r (2, F)(2) + Hy (2,2, F — Y ¢g(2/, F)) (40)
SEPy
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As in Augmented Recursive Shapley, Augmented Integrated Hessian explicitly distributes ¢ (F') to group T when |T'| < k,
and distributes ¢ (F') as IH when |T'| > k.

To establish the monomial distribution policy we inspect the action of TH4" in different cases. Plugging in (y — 2)™ to the
above, if |S,,| < k, the right term is zero and Eq. holds, while if |.S,,,| > k, the left term is zero and the right term is
IHS (, (y — 2/)™). It is also easy to see that the above is linear.

Regarding the continuity condition, observe that:

ps(F') =

—00

meN” ||m||1<I,5,=S
lim ¢s(7}),
=00

which gains,
lim THY (2,77) = lim 6s(T))(2) + (2, T — > 6r(Th))
l—00 l—o0
RePy,
= 6s(F)(x) + H§ (2, im Ty — Y~ ¢r(T))

SEPk
e Y ol
RePy,

= IH"(, F),
which establishes Corollary [4]

To show completeness, consider the decomposition ' = 35 ¢s(F'). Now IH"* satisfies completeness for the subset of

functions ®g € Cg, |S| < k from the completeness of ¢ and Eq. [@0). Also, IH"* satisfies completeness for the subset of
functions @5 € Cg, |S| > k because IH" satisfies completeness. From this we have:

Z HY (z, 2/, F) Z HY (z, 2, Z os(F

TEPy,|T|#0 T€Py,|T|#0 SEP,

Yo Y. HY(@@ és(F)

SEPn TEPy,|T|#0

Yo bs(B)(@) — ds(F)(a)]

SEPn,|S|F£0

Y bs(B) @)+ Fa') - F(a')

SEP,,|S|#0

S [6s(F)(@)] - F(a')
SeP,

= F(z) ~ F(a')

Baseline test for interactions applies immediately from the definition of Augmented Integrated Hessian in Eq. (0).
Concerning null feature, suppose F' does not vary in some z; and ¢ € T. First, we have ¢ (F') = 0. Also, F—) Rep, @ r(F)

does not vary in x; either, so, since IH" satisfies null feature. Thus we have IH** (z, F) = 0 by Eq. (@0).

Lastly, concerning symmetry, let = be a permutation. Note that ¢ is symmetric, as it is the £ = n case for Shapley-Taylor,
which is symmetric. Then,
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HY (mz, ma’,F on™Y) = ¢pp(ma!, F oY (nx) + HE L (na, 72!, F o™t — Z brr(ma’,Fon™1))

RePy,
= ¢r(2', F)(z) + IHY (2, 72| pr (72, Z For™1)
RCN,|R|>k

= ¢ (2, F)(z) + Z HY (n2, 72, prp(na’, F on™1))

RCN,|R|>k
— o P+ S (e, (!, F)

RCN,|R|>k
= ¢r(2’,F)(z) + Hy(z, 2/, > ¢g(a’,F))

RCN,|R|>k

— IHE (2,/, F)

E.6. Sum of Powers
E.6.1. DEFINING SUM OF POWERS

To define Sum of Powers, we first turn to defining a slight alteration of the Shapley-Taylor method. Suppose we performed
Shapley-Taylor on a function F, but we treated I as a function of every variable except for x;, which we held at the input
value. Specifically, for a given index 7 and coalition S with ¢ € S, we perform the (|.S| — 1)-order Shapley-Taylor method
for the coalition S \ {i}. We perform this on an alteration of F’, so that F' is a function of n — 1 variables because the x;
value is fixed. We denote this function STgi, which has formula:

STs' (@ @', F) = |n‘— T S\{H(Tg{z)}() @1)
TCN\S 17|

With this, we define Sum of Powers for & > 2 as:

o [STS (z, 2/ 1G, (-, 2, F if |S| = k
ds(F) if |S] < k
We define the Sum of Powers for k = 1 as the IG, with the addition that SPj(x,2’, F) = F(2').
Similar to the alteration of the Shapley-Taylor, we can alter the Shapley method, giving us:
—i S|l(n —|S| —2)!
shap; ‘(.o )= 3 BB (p ) Plasu) @)

_ |
scintey (0T

For the Sum of Powers k& = 2 case, the altered Shapley-Taylor is a 1-order Shapley-Taylor method, and conforms to the
Shapley method:

Shap; *(z,a’,1G;(+, @', F)) + Shap; ’ (z,2",1G;(,2’, F)) if |S] =2

o5(F) if]s] <1 @9

2 / _
SP; ;(z,2', F) = {
E.6.2. PROOF OF COROLLARY [3]

For the k = 1 case, Sum of Powers is the IG, which satisfies linearity, distributes as in Eq. and satisfies the continuity
condition.

We now assume k > 2 for the rest of the section. First, SP@ satisfies linearity because IG is linear in F' and STgi is linear in
F.
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We now proceed by cases to establish how SP* distributes monomials. We consider first the action of STgi on F(y) =
(y — 2')™. STg" acts as the (|S| — 1)-order Shapley-Taylor on an augmented function F~*(y1, ..., Yi—1, Yit1, s Yi) i=
(zi — )™ 12 (y; — a5)™ . Now, ILj2;(y; — )™ is a synergy function of Sy, \ {i}. Thus we can use the distribution
rule of Shapley-Taylor, gaining

—i Sl—1 —iq
ST (2,2, F) = STe i (i, 2, F )

(x; — )™ ifS =8,

—1

0 else

(45)

where x_; denotes the vector x with the i component removed.

With this established, we now show the action of the Sum of Powers method for an exhaustive set of cases:
L (IS <k, S = Sp): SPG(x, (y — 2)™) = ¢s((y — 2/)™) = (y — /)™

2. (|S] < k, S # Sp): SPg(x, (y —2)™) = ¢s((y —2')™) = 0.

3. (IS| =k, S C Sw):

SP@(:C’ xlv (y - x/)m) = [STEZ(% xlv IGi('a l‘/, (Z/ - xl)m)]

i€S

=3 [sste et - )
2 s

1 m;
I
ST

i€S (||S||—1 ) Il

_ 1 ZiESmi (l‘—l’/)m

Sm|—1

(||S|L1 ) lml

4. (S| =k, S & Sp): Leti € S. Ifi € S\ Sy, then ST (2, 2/, 1G; (-, 2/, (y — 2')™)) = STg" (=, 2',0)) = 0.
If, on the other hand, i € S,,, then ST (z, 2, 1G; (-, ', (y — ')™)) = STg" (=, 2’, 7 (y — a')"™). Now, the altered

(B
Shapley-Taylor takes the value of zero for synergy functions of sets that are not super-sets of the attributed group, S\ {i}.

Also, (y—a')™ is a synergy function of S,,,, and S,,, is not a super-set of S\ {i}. Thus STg" (=, 2’ H:n”—"?ll(y—x’)m) =0.

This established that each term in the sum [STgi(x, @' 1G; (-, 2, (y — a')™))] is zero, gaining SPE (2, (y —

)™ = 0.

i€S

Thus Sum of Powers has a distribution scheme that agrees with Eq. (TI). To restate:

(x —a')™ if T =5,
SPYi (x, (y — 2)™) = W%fiﬂf(ﬂs — &)™ T C S, |T| = k (46)
0 else

Finally, IG satisfies the continuity condition by Corollary [3| and it is easy to see that that ST§1 satisfies the continuity
condition. Thus Sum of Powers obeys the continuity condition.
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E.6.3. ESTABLISHING FURTHER PROPERTIES FOR SUM OF POWERS

To establish null feature, let ' not vary in x; and let i € S. Sum of Powers satisfies the continuity condition, so

D™F(a')

Spg(xvxlv F) = lgr& Z Tspg(mv‘rlv (y - m/)m)
meN™ |m|<l] ’
. D™F(x' m
—im Y P e -y
meN™, |m|<l,m;=0 ’

where the second line is because D™ F'(z') = 0 if m; > 0 because F' does not vary in z;, and the third line is because
SPE(xz, 2, (y — 2')™) = 0if m; = 0.

To establish baseline test for interaction (k < n), let g € C* be a synergy function of S and let T' C S, |T| < k. Then
SP (2, ®s) = ¢r(®s)(z) = 0.
To establish completeness, consider F'(y) = (y — «')™, with |S,,| > k. Then,

> SPi(w,a,F)= Y SPi(z,a,(y—a)")

S€Py,|S|>0 SCS,,|8|=k

= Z 1 ZiES my (LL' _ x/)m

SCSom,|S|=k (15171 llmlly

k—1
s e

k—1 )||m||1 SCSm,|S|=k i€S

_ (.I—x’)m <|Sm| —1>||m
(‘S,;”_‘l_l)HmHl k—1 !

= F(x) — F(2')

Now treating a general F' € C“, the proof is identical to the proof for Integrated Hessian,

> SPh(z,2, F) = ) lim SP%(x,z',T))
l—o0
SEPy,|S|>0 S€Py,|S[>0
: Dm(F)(:L'/) k / nm
= lim ) > TSPl (y —a)™)

SEPy,|S|>0 meN™,0<||m|1 <l

—am S ZHBE s et g o)

l—o00 m!
meN™,0<||ml|1 <! S€EP,|S|>0

l— m!

o0
meN” 0<||m||1 <1

. DE)), o
im Y S )" - B
meN™ [[m||1 <1

= F(z) — F(2)

To show symmetry, the proof parallels the proof for Integrated Hessian in section Let 7 be a permutation. If we let
F(y) = (y — 2')™ and follow what was previously established in section|E.5.3| then
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(rx — wa’)™™ if 7T = Spm,
SP* (mx,mx', For™ ) = (‘Sﬂm‘ o) Eiﬁ;ﬁflﬁm)i (rx — w2 )™™ i 7T C Sy, 7T =k
0 else
(z —2/)m T = S,
- (‘Sm‘ 5 Lt (g gy T C S, |T] = K
0 else

= SP(z,2/, F)
From the above we have for general F’,

D™(F o= b (ma')

SP¥ o (mz, w2’ F o™ ') = lim SP¥ ¢ (mx, na’ Z (y — ma’)™)
T ) ) 5 B |
Free meN™,0< |[m|1 <1 m
: D™(Fort)(ma')
= lim Z SPF o (ma, w2, (y — wa')™)
oo ! T
% et 0<l|mlla <t "
| D (F o 7Y (ma!) .
= lli>Igo Z (e SPF o (ma, wa!, (y — wa’)™™)
meN™,0<||m|[1<I
L DR o s
S TR DI PP

oo
meN™ 0<||m|1 <1

= lim SP(z,’,T})
l—o00

= SP(z,2', F)

F. Experimental Details and Additional Results

All experiments are conducted on a device with a 6-core Intel Core 17-8700.

F.1. Model Description and Experimental Details
F.1.1. 2-LAYER PERCEPTRON

We use a 2-layer perceptron with 64 neurons in the first layer and 32 neurons in the second layer. For activation, we use
SoftPlus

SoftPlus(x) = % log (1 4 exp (Sz))

with 5 = 5 after each layer. We optimize using the Adam algorithm with the default hyper-parameters (Kingma & Ba,[2014)
and the learning rate of 0.1054. We train the model for 1000 epochs with the whole training data, and the network achieves
a test Mean-Absolute-Error (MAE) of 3.10 and a test Root-Mean-Squared-Error (MRSE) of 4.14.

Hyperparameter tuning: The number of neurons in each layer includes values 8, 16, 32, 64, and 128 such that the size of
the first hidden layer should be larger than or equal to the size of the second layer. For each dimension of the neural network,
we swept through a range of stepsizes and values of (5 to find the (approximately) optimal stepsize and (5. The stepsize grid
consists of 5 evenly spaced points between e and e~!. The 3 parameter of the SoftPlus activation includes values of 1
and 5.

F.1.2. SECOND-DEGREE POLYNOMIAL REGRESSION

We use the LinearRegression function from scikit-learn (Pedregosa et al.l|2011) with default values to train the polynomial
regression model.
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F.2. Description of the Dataset

The Physicochemical Properties of Protein Tertiary Structure data is available athttps://archive.ics.uci.edu/
ml/datasets/Physicochemical+Properties+of+Protein+Tertiary+Structurel After preprocess-
ing, there were a total of 9 input features from this dataset and it contained around 45,730 entries in total. The regression
task is to predict the size of the residue. The list of features:

1. Total surface area (mean: 9871.604 standard deviation: 4058.14)

2. Non polar exposed area (3017.37 & 1464.32)

3. Fractional area of exposed non polar residue (0.30 £ 0.06)

4. Fractional area of exposed non polar part of residue (103.49 + 55.42)

5. Molecular mass weighted exposed area (1.37e+-06 £ 5.64e+05)

6. Average deviation from standard exposed area of residue (145.64 4 70.00)
7. Euclidian distance (3989.76 £+ 1993.57)

8. Secondary structure penalty (69.98 £ 56.49)

9. Spacial Distribution constraints (N, K Value) (34.52 4 5.98)

Preprocessing: We standardize the numerical data to have mean zero and unit variance. We utilize a 70/15/15
train/validation/test split for data.

F.3. More Details on Generating Attribution and Interaction Values

To generate the attributions using Integrated Gradient and compute the interactions utilizing Integrated Hessian and Sum of
Powers, we use 200 samples from the dataset. We use numerical integration with 500 samples to approximate the integral in
Integrated Gradient and Integrated Hession.

F.4. Standard Deviation of the Interaction Values

Figure [5]demonstrates the standard deviation of the interaction values from Integrated Hessian and Sum of Powers. We
notice that the standard deviation of feature 1 and feature 6 is much higher in Sum of Powers than in Integrated Hessian.
Furthermore, we see that small mean interaction values (see Figure[T]and Figure [2)) do not imply low interaction between
features, as they can have large standard deviation values (e.g., feature 1 and feature 4).
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Figure 5. Standard deviation of interaction values. Left: Integrated Hessian. Right: Sum of Powers.

30


https://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+of+Protein+Tertiary+Structure
https://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+of+Protein+Tertiary+Structure

A Unifying Framework to the Analysis of Interaction Methods using Synergy Functions

31

F.5. Attribution Values

The attribution values of each feature based on Integrated Gradient are displayed in Figure[6] The features are ordered
by their importance in predicting the target. The attribution values indicate the direction and magnitude of the feature’s
influence on the size of the residue (positive values imply an increase, negative values imply a decrease). The positive trend
observed for total surface area suggests that a larger total surface area is associated with a larger size of the residue, which is

consistent with intuition.

Fractional area of exposed non polar part of residue

Total surface area

Molecular mass weighted exposed area

Average deviation from standard exposed area of residue
Non polar exposed area

Secondary structure penalty

Euclidian distance

Spacial Distribution constraints (N,K Value)
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Figure 6. Attributions by Integrated Hessian.
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