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Abstract

Deep learning is expected to revolutionize many
sciences and particularly healthcare and medicine.
However, deep neural networks are generally
“black box,” which limits their applicability to
mission-critical applications in health. Explain-
ing such models would improve transparency and
trust in AI-powered decision making and is nec-
essary for understanding other practical needs
such as robustness and fairness. A popular means
of enhancing model transparency is to quantify
how individual inputs contribute to model out-
puts (called attributions) and the magnitude of
interactions between groups of inputs. A grow-
ing number of these methods import concepts and
results from game theory to produce attributions
and interactions. This work presents a unifying
framework for game-theory-inspired attribution
and kth-order interaction methods. We show that,
given modest assumptions, a unique full account
of interactions between features, called synergies,
is possible in the continuous input setting. We
identify how various methods are characterized
by their policy of distributing synergies. We es-
tablish that gradient-based methods are charac-
terized by their actions on monomials, a type of
synergy function, and introduce unique gradient-
based methods. We show that the combination
of various criteria uniquely defines the attribu-
tion/interaction methods. Thus, the community
needs to identify goals and contexts when devel-
oping and employing attribution and interaction
methods. Finally, experiments with Physicochem-
ical Properties of Protein Tertiary Structure data
indicate that the proposed method has favorable
performance against the state-of-the-art approach.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

1. Introduction
Explainability has become an ever increasing topic of inter-
est among the Machine Learning (ML) community. Various
ML methods, including deep neural networks, have un-
precedented accuracy and functionality, but their models are
generally considered “black box” and unexplained. Without
“explaining” a model’s workings, it can be difficult to trou-
bleshoot issues, improve performance, guarantee accuracy,
or ensure other performance criteria such as fairness.

A variety of approaches have been employed to address the
explainability issue of neural networks. Taking the taxon-
omy of (Linardatos et al., 2020), some methods are univer-
sal in application (called model agnostic) (Ribeiro et al.,
2016), while other are limited to specific types of models
(model specific) (Binder et al., 2016). Some model-specific
methods are limited to a certain data type, such as image
(Selvaraju et al., 2017) or tabular data (Ustun & Rudin,
2016). Some methods are global, i.e., they seek to explain a
model’s workings as a whole (Ibrahim et al., 2019), while
others are local, explaining how a model works for a specific
input (Zeiler & Fergus, 2014). Finally, some methods seek
to make models that are intrinsically explainable (Letham
et al., 2015), while others, called post hoc, are designed
to be applied to a black box model without explaining it
(Springenberg et al., 2014). These post hoc methods may
seek to ensure fairness, test model sensitivity, or indicate
which features are important to a model’s prediction.

This paper focuses on the concept of attributions and in-
teractions. Attributions are local, post hoc explainbility
methods that indicate which features of an input contributed
to a model’s output (Lundberg & Lee, 2017), (Sundararajan
et al., 2017), (Sundararajan & Najmi, 2020), (Binder et al.,
2016), (Shrikumar et al., 2017). Interactions, on the other
hand, are methods that indicate which groups of features
may have interacted, producing effects beyond the sum of
their parts (Masoomi et al., 2021), (Chen & Ye, 2022), (Sun-
dararajan et al., 2020), (Janizek et al., 2021), (Tsai et al.,
2022), (Blücher et al., 2022), (Zhang et al., 2021), (Liu et al.,
2020), (Tsang et al., 2020a), (Hamilton et al., 2021), (Tsang
et al., 2020b), (Hao et al., 2021), (Tsang et al., 2017), (Tsang
et al., 2018). A common and fruitful approach to attribu-
tions and interactions is to translate and apply results from
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A Unifying Framework to the Analysis of Interaction Methods using Synergy Functions 2

game theoretic cost sharing (Shapley & Shubik, 1971), (Au-
mann & Shapley, 1974). This has the advantages of already
having a well-developed theory and producing methods that
uniquely satisfy identified desirable qualities.

This work utilizes a game theoretic viewpoint to analyze,
unify, and extend existing attribution and interaction meth-
ods. The contributions of this paper are as follows:
• This paper offers a method of analysis for attribution

and kth order interaction methods of continuous-input
models through the concept of synergy functions. We
show that, given natural and modest assumptions, synergy
functions give a unique accounting of all interactions
between features. We also show any continuous input
function has a unique synergy decomposition.

• We highlight how various (existing) methods are governed
by rules of synergy distribution, and common axioms
constrain the distribution of synergies. With this in mind,
we highlight the particular strengths and weaknesses of
established methods.

• We show that under natural continuity criteria, gradient-
based attribution/interaction methods on analytic func-
tions are uniquely characterized by their actions on mono-
mials. This collapses the question “how should we define
interactions on analytic functions” to “how should we
define interactions of a monomial?” We then give two
methods that serve as potential answers to this question.

• We discuss the goal-dependent nature of attribution and in-
teraction methods. Based on this observation, we identify
a method for producing new attributions and interactions.

2. Background
2.1. Notation and Terminology
Let N = {1, ..., n} denote the set of feature indices in a
machine learning model (e.g. pixel indices in an image
classification model). For a, b ∈ Rn, let [a, b] = {x ∈ Rn :
ai ≤ xi ≤ bi for all i ∈ N} denote the hyper-rectangle
with opposite vertices a and b. Let F : [a, b] 7→ R denote a
machine learning model taking an input data point x ∈ [a, b]
and outputting a real number. For example, F (x) can be
viewed as the output of a softmax layer (for a specific class)
in a neural network classifier. We denote the class of such
functions by F(a, b), or F if a, b may be inferred. Define a
baseline attribution method as:

Definition 1 (Baseline Attribution Method). A baseline
attribution method is any function of the form A(x, x′, F ) :
D → Rn, where D ⊆ [a, b]× [a, b]×F . 1

Baseline attribution methods give the contribution of each
feature in an input feature vector, denoted x ∈ [a, b], to
a function’s output, F (x), with respect to some baseline
feature vector x′ ∈ [a, b].2We denote a general baseline
attribution by A, so that Ai(x, x

′, F ) is the attribution score

1Some attribution and interaction methods also incorporate the
internal structure of a model. We do not consider these here.

of feature xi to F (x), with respect to the baseline feature
values x′. The definition allows for attributions with more
restricted domains than [a, b]× [a, b]×F because baseline
attributions may require conditions on F or x in order to
be well defined. We will see a simple example of such
conditions when we define Integrated Gradient method in
section 2.3. For the purpose of this paper, all attribution
methods are baseline attribution methods.

While attribution methods give a score to the contribu-
tion of each input feature, Interactions give a score to
a group of features based on the group’s contribution to
F (x) beyond the contributions of each feature (Grabisch
& Roubens, 1999). For ease of reference, we may speak
of a nonempty set S ⊆ N as being a group of features, by
which we mean the group of features with indices in S. Let
Pk = {S ⊆ N : |S| ≤ k} contain all subsets of N of size
≤ k. Then we can define a kth-order baseline interaction
method by:

Definition 2 (kth-Order Baseline Interaction Method). A
kth-order baseline attribution method is any function of the
form Ik(x, x′, F ) : D → R|Pk|, where D ⊆ [a, b]× [a, b]×
F .

kth-order interaction methods are a sort of expansion of at-
tributions, giving a contribution for each group of features
in Pk. For some S ∈ Pk, the term IkS(x, x

′, F ) indicates the
component of Ik(x, x′, F ) that gives interactions among the
group of features S. When speaking of interactions among
a group of features, there are multiple possible meanings:
marginal interactions between members of a group, total
interactions among members of the group, and average in-
teractions among members of the group. Loosely speaking,
if we let GS be the interactions among the features of S
that are not accounted for by the interactions of sub-groups,
then GS represents marginal interactions of features in S,∑

T⊆S GT represents the total interactions of features in
S, and

∑
T⊆S µTGT represents average interactions of fea-

tures in S, where µT is some weight function. This paper
focuses on marginal interactions.

Using quadratic regression as an example, suppose
F (x1, x2, x3) = 2x1 − 3x2 + x1x3 − 15, x = (1, 1, 1),
x′ = (0, 0, 0). Then a 2nd-order baseline interac-
tion method may report something like: I∅(x, x′, F ) =
−15, I{1}(x, x′, F ) = 2, I{2}(x, x′, F ) = −3, and
I{1,3}(x, x′, F ) = 1, and the other interactions equal zero.

It should be noted that 1st-order interactions with I1∅ disre-
garded and baseline attributions have equivalent definitions.
As with attributions, interactions may not be defined for

2As an example, the first proposed baseline for image inputs
was a black image, which corresponds to the zero vector (Sun-
dararajan et al., 2017). The question of an appropriate baseline
generally depends on the data. See Pascal Sturmfels (2020) for a
survey of baselines for image tasks.
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A Unifying Framework to the Analysis of Interaction Methods using Synergy Functions 3

all (x, x′, F ). We denote the set of inputs where a given
Ik is defined by DIk , or DA with regard to attributions. As
with attributions, all interactions are baseline kth-order in-
teractions for the purpose of this paper. We may drop x′ if
the baseline is fixed, and also drop x, implying that some
appropriate value is considered.

2.2. Axioms
The definitions provided in the previous subsection are ex-
tremely general and may lead to attribution functions that
are not practical. To find practically-relevant attributions
or interaction methods, the standard strategy is to identify
certain axioms a method should satisfy. In this subsection,
we review the common axioms of attributions and interac-
tions used in prior work (Grabisch & Roubens, 1999) (Sun-
dararajan et al., 2020), (Sundararajan & Najmi, 2020), (Tsai
et al., 2022), (Janizek et al., 2021), (Marichal & Roubens,
1999), (Zhang et al., 2020). Axioms are only presented
for interactions; they can be easily reformulated for at-
tributions by setting k = 1 and disregarding I1∅, so that
I1(x, x′, F ) : D → Rn.

1. Completeness:
∑

S∈Pk,|S|>0 IkS(x, x
′, F ) = F (x)−

F (x′) for all (x, x′, F ) ∈ DIk .

Completeness is sometimes called efficiency in the game-
theoretic literature and derives from the concept of cost-
sharing (Shapley & Shubik, 1971),(Sundararajan et al.,
2017). In attributions and interactions, requiring complete-
ness grounds the meaning of the interaction values by requir-
ing the method account for the total function value change
F (x)− F (x′).

2. Linearity: If (x, x′, F ), (x, x′, G) ∈ DIk , a, b ∈ R,
then (x, x′, aF+bG) ∈ DIk , and Ik(x, x′, aF+bG) =
aIk(x, x′, F ) + bIk(x, x′, G).

Linearity ensures that when a model is a linear combination
of sub-models, the interactions or attributions of the model
is a weighted sum of the interactions or attributions of the
sub-models.

We say that a function F ∈ F does not vary in
some feature xi if for any vector x ∈ [a, b], f(t) =
F (x1, .., xi−1, t, xi+1, ..., xn) is constant. This indicates
that F is not a function of xi. On the contrary, if it is false
to say that F does not vary in xi, then we say F varies in
xi. If F does not vary in xi, we call xi a null feature of F .

3. Null Feature: If (x, x′, F ) ∈ DIk , F does not vary in
xi, and i ∈ S, then IkS(x, x

′, F ) = 0.

Null Feature asserts that there is no marginal interaction
among a group if one of the features has no effect. There
may be interactions between subsets of S so long as they do
not contain a null feature.3

3Null feature is similar to dummy as stated in Sundararajan
et al. (2017) and Sundararajan et al. (2020).

The three axioms above, completeness, linearity, and null
features, are generally assumed in the literature on game-
theoretic attributions and interactions. Besides these three,
there are many other axioms (guiding principles) offered
that generally serve one of two purposes: either they dis-
tinguish a method as unique, or they show that a method
satisfies desirable qualities. Among them are symmetry
(Sundararajan et al., 2020), symmetry-preservation (Sun-
dararajan et al., 2017), (Janizek et al., 2021), (Sundararajan
& Najmi, 2020), interaction symmetry (Janizek et al., 2021),
(Tsai et al., 2022), interaction distribution (Sundararajan
et al., 2020),(Sundararajan et al., 2020), sensitivity (some-
times called sensitivity (a))(Sundararajan et al., 2017), (Sik-
dar et al., 2021), implementation invariance (Sundararajan
et al., 2017), (Sundararajan et al., 2020), (Janizek et al.,
2021), (Sikdar et al., 2021), non-decreasing positivity (Lund-
strom et al., 2022), recursive axioms (Grabisch & Roubens,
1999), (Tsai et al., 2022), faithfulness (Tsai et al., 2022),
affine scale invariance (Friedman, 2004), (Sundararajan &
Najmi, 2020), (Xu et al., 2020), demand monotonicity (Sun-
dararajan & Najmi, 2020). Some of the above axioms, such
as linearity or implementation invariance, are satisfied by
many methods, but no one method satisfies all axioms. For
example, Faith-Shap (Tsai et al., 2022) is characterized by
a faithfulness criteria, while Shapley-Taylor (Sundararajan
et al., 2020) is characterized by interaction distribution.

2.3. Attribution and Interaction Methods
Here we review several well known attribution and interac-
tion methods based on cost sharing. Before we introduce
them, we first introduce a necessary notation. For given fea-
tures S ⊆ N and assumed baseline x′, we define xS ∈ [a, b]
by:

(xS)i =

{
xi if i ∈ S

x′
i if i /∈ S,

(1)

where xi is the ith element of x and x′
i is the ith element

of x′. One well known attribution method is the Shapley
Value (Shapley & Shubik, 1971), (Lundberg & Lee, 2017):

Shapi(x, F ) =
1

n

∑
S⊆N\{i}

(
n− 1

|S|

)−1

(F (xS∪{i})− F (xS)),

where
(
n−1
|S|

)
≜ (n−1)!

(n−1−|S|)!(|S|)! denotes the number of sub-
sets of size |S| of n − 1 features. The Shapley value is
an import of the famous Shapley value from game-theory
in ML attributions. It is an example of a binary features
method, meaning it only considers F evaluated at the points
{xS : S ⊆ N}; that is, points where each feature value
is the input or baseline value. Multiple kth-order interac-
tions that extend Shapley values have been proposed, all
of which are binary feature methods (Grabisch & Roubens,
1999),(Tsai et al., 2022), (Sundararajan et al., 2020).

Another well known attribution is the Integrated Gradients
(IG) (Sundararajan et al., 2017):

IGi(x, F ) = (xi − x′
i)

∫ 1

0

∂F

∂xi
(x′ + t(x− x′))dt. (2)

3
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A Unifying Framework to the Analysis of Interaction Methods using Synergy Functions 4

The IG is a direct translation of the well known cost-sharing
method of Aumann-Shapley (Aumann & Shapley, 1974)
to ML attributions. For the theoretical foundations of IG,
see Sundararajan et al. (2017), Aumann & Shapley (1974),
Lundstrom et al. (2022).

Currently, no kth-order interactions extension of the IG has
been proposed. However, a 2-order interaction, Integrated
Hessian (IH), has been proposed in Janizek et al. (2021).
This interaction method computes the pairwise interaction
between xi and xj as:

IH{i,j}(x, F ) = 2(xi − x′
i)(xj − x′

j)

×
∫ 1

0

∫ 1

0

st
∂2F

∂xi∂xj
(x′ + st(x− x′))dsdt

The “main effect” of xi, or lone interaction (a misnomer),
is defined as:

IH{i}(x, F ) = (xi − x′
i)×

∫ 1

0

∫ 1

0

∂F

∂xi
(x′ + st(x− x′))dsdt

+ (xi − x′
i)

2 ×
∫ 1

0

∫ 1

0

st
∂2F

∂x2
i

(x′ + st(x− x′))dsdt

IH is what we label a recursive method since it
uses an attribution method recursively. Specifically,
IH{i,j}(x, F ) = IGi(x, IGj(·, F )) + IGj(x, IGi(·, F )).
Similarly, IH{i}(x, F ) = IGi(x, IGi(·, F )) (Janizek et al.,
2021).

2.4. The Möbius Transform
Lastly, we review the Möbius transform, which will be
useful for our definition of the notion of “pure interactions”
in section 3. Let v be a real-valued function on |N | binary
variables, so that v : {0, 1}N → R. For S ⊆ N , we
write v(S) to denote v((11∈S , ...,1n∈S)), where 1 is the
indicator function. Recall that the Möbius transform of v is
a function a(v) : {0, 1}N → R given by Rota (1964):

a(v)(S) =
∑
T⊆S

(−1)|S|−|T | v(T ). (3)

The Möbius transform satisfies the following relation to v:

v(S) =
∑
T⊆N

a(v)(T )1T⊆S =
∑
T⊆S

a(v)(T ). (4)

The Möbius transform can be conceptualized as a decom-
position of v into the marginal effects on v for each subset
of N . Each subset of S has its own marginal effect on the
change in function value of v, so that v(S) is a sum of the
individual effects, represented by a(v)(T ) in Eq. (4). For
example, if N = {1, 2}, then for

v(S) =


α if S = ∅
β if S = {1}
γ if S = {2}
δ if S = {1, 2}

we have

a(v)(S) =


α if S = ∅
β − α if S = {1}
γ − α if S = {2}
δ − β − γ + α if S = {1, 2}

3. Möbius Transforms as a Complete Account
of Interactions

3.1. Motivation: Pure Interactions
In order to identify desirable qualities of an interaction
method, it would be fruitful to answer the question: what
sorts of function is a “pure interaction” of features in S?
Specifically, is F (x1, x2, x3) = x1x2 a function of pure
interaction between x1 and x2? This question is useful
because if F is a pure interaction of x1 and x2 (i.e. the
only effects in F is an interaction between x1 and x2), then
naturally it ought to be that I2S(x, F ) = 0 for S ̸= {1, 2}.
Indeed, to continue the example, suppose F is a general
function and we can decompose F as follows:
F (x) = f∅ +

∑
1≤i≤3

f{i}(xi) +
∑

1≤i<j≤3

f{i,j}(xi, xj) + f{1,2,3}(x),

where f∅ is some constant, f{i} is pure main effect of xi;
f{i,j} gives pure pairwise interactions; and f{1,2,3} is pure
interaction between x1, x2, and x3. Assuming I2 conforms
to linearity, we would gain:

I2S(x, F ) =
∑
|T |≤3

I2S(x, fT ) = I2S(x, fS) + I2S(x, f{1,2,3}),

by applying the above principle, namely I2S(x, fT ) = 0 if
S ̸= T , |T | ≤ 2. That is, the 2nd-order interaction of F
for S would be a sum of I2S acting on the pure interaction
function for group S, written fS , and I2S acting on a pure
interaction of size 3. This would generalize to higher order
interactions, so that:

IkS(x, F ) = IkS(x, fS) +
∑

T⊆N,|T |>k

IkS(x, fT ).

We would then have to determine what rules should govern
IkS(x, fS), and IkS(x, fT ), |T | > k.

3.2. Unique Full-Order Interactions
In the previous section we spoke intuitively regarding the
notion of pure interaction; we now present a formal treat-
ment. Let In be a nth-ordered interaction function, i.e., In

gives the interaction between all possible subsets of features.
In addition to the axioms of completeness and null features
above, we propose two modest axioms for such a function;
first, we propose a milder form of linearity, which requires
linearity only for functions that InS assign no interaction to.
We weaken linearity in the interest of establishing the notion
of pure interactions with minimal assumptions.

4. Linearity of Zero-Valued Functions: If (x, x′, G),
(x, x′, F ) ∈ DIn , S ⊆ N such that InS(x, x

′, G) = 0,
then InS(x, x

′, F +G) = InS(x, x
′, F ).

Before introducing the next axiom, we consider the mean-
ing of the baseline, x′. In cost sharing, the baseline is the
state where all agents make no demands (Shapley & Shubik,
1971). If an agent makes no demands, there are no attribu-
tions, nor are there interactions with other players. Likewise,
the original IG paper notes (Sundararajan et al., 2017):

“Let us briefly examine the need for the baseline in the
definition of the attribution problem. A common way for

4
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A Unifying Framework to the Analysis of Interaction Methods using Synergy Functions 5

humans to perform attribution relies on counterfactual
intuition. When we assign blame to a certain cause we
implicitly consider the absence of the cause as a baseline
for comparing outcomes. In a deep network, we model
the absence using a single baseline input.”

As with the cost sharing literature and Sundararajan et al.
(2017), we interpret the condition xi = x′

i to indicate that
the feature xi is not present. Now, for given features S ⊆ N
and assumed baseline x′, we define xS ∈ [a, b] by:

(xS)i =

{
xi if i ∈ S

x′
i if i /∈ S,

(5)

where xi is the ith element of x and x′
i is the ith element of

x′. With this in mind, we present the next axiom:

5. Baseline Test for Interactions (k = n): For baseline
x′, if F (xS) is constant ∀x, then InS(x, x

′, F ) = 0.

This axiom states that if every variable /∈ S is held at the
baseline value, and the other variables ∈ S are allowed to
vary, but the function is a constant, then there is no interac-
tion between the features of S. Why is this sensible? The
critical observation is that a feature being at its baseline
value indicates the feature is not present. If the features of
S have no effect when other features are absent, then the
features of F do not interact in and of themselves and their
interaction measurement should be zero.

Our setup allows F and x′ to be chosen separately. However,
it is generally the case that data and task will inform an
appropriate choice of baseline. We proceed assuming that
x′ is chosen as the fitting baseline to F .

We now present an key result in our analysis:

Theorem 1. There is a unique n-order interaction method
with domain [a, b]× [a, b]×F that satisfies completeness,
null feature, linearity of zero-valued functions, and baseline
test for interactions (n = k).

Proof of Theorem 1 is deferred to Appendix D.1. We turn to
explicitly defining the unique interaction function satisfying
the conditions in Theorem 1. For a fixed x and implicit x′,
F (xS) is a function of S. This implies it can be formulated
as a function of binary variables indicating whether each
input component of F takes value xi or x′

i. Thus we can
take the Möbius transform of F (x(·)), written as a(F (x(·))).
Now, if we evaluate the Möbius transform of F (x(·)) for
some S, given as a(F (x(·)))(S), and allow x to vary, then
this is a function of x. Recall that Pk = {S ⊂ N : |S| ≤ k}.
Given a baseline x′, define the synergy function:

Definition 3 (Synergy Function). For F ∈ F , S ∈ Pn,
and implicit baseline x′ ∈ [a, b], the synergy function ϕ :
PN × F → F is defined by the relation ϕS(F )(x) =
a(F (x(·)))(S).

We present the following example to help illustrate the syn-
ergy function: let F (x1, x2) = a+ bx2

1 + c sinx2 + dx1x
2
2,

and suppose x′ = (0, 0) are the baseline values for x1 and
x2 that indicate the features are not present. The synergy
for the empty set is the constant F (x′) = a, indicating the
baseline value of the function when no features are present.
To obtain ϕ{1}(F ), we allow x1 to vary but keep x2 at the
baseline, and subtract the value of F (x′). This gives us
ϕ{1}(F )(x) = a + bx2

1 − a = bx2
1. If instead we allow

only x2 to vary, we get ϕ{2}(F )(x) = a+ c sin(x2)− a =
c sin(x2). Finally, if we allow both to vary and subtract
of all the lower synergies, we get ϕ{1,2}(F )(x) = dx1x

2
2.

With the above definition, we turn to the following corollary:

Corollary 1. The synergy function is the unique n-order
interaction method that satisfies completeness, null feature,
linearity of zero-valued functions, and baseline test for in-
teractions (n = k).

Commentary on precursors to the synergy function and a
proof of Corollary 1 are relegated to Appendices D.2 and
D.3, respectively.

3.3. Properties of the Synergy Function
Given a function F , the synergy of a single feature xi is
given by ϕ{i}(F )(x) = F (x{i})− F (x′), and the pairwise
synergy for features xi and xj is
ϕ{i,j}(F )(x) =F (x{i,j})− ϕ{i}(F )(x)− ϕ{j}(F )(x)− F (x′)

=F (x{i,j})− F (x{i})− F (x{j}) + F (x′).

In general, the synergy function for a group of features S is

ϕS(F )(x) = F (xS)−
∑

T⊊S,T ̸=∅

ϕT (F )(x)− F (x′)

=
∑
T⊆S

(−1)|S|−|T | × F (xT )

With this we can define the notion of a pure interaction.
A pure interaction function of the features S is a func-
tion that 1) takes a value of 0 if any feature in S takes
its baseline value, and 2) varies and only varies in the fea-
tures in S.4 This is exactly what the synergy function ac-
complishes: either ϕS(F )(x) = 0, or ϕS(F )(x) varies
in exactly the features in S and is 0 whenever xi = x′

i

for any i ∈ S. More technically, define CS = {F ∈
F|F is a pure interaction function of S} to be the set of
pure interactions of features S. Then we have the following
corollary:

Corollary 2. Suppose an implicit baseline x′ ∈ [a, b] and
let F ∈ F , and S, T ∈ Pn. Then the following hold:
1. Pure interaction sets are disjoint, meaning CS ∩CT = ∅

whenever S ̸= T .
2. ϕS projects F onto CS∪{0}. That is, ϕS(F ) ∈ CS∪{0}

and ϕS(ϕS(F )) = ϕS(F ).
3. For ΦT ∈ CT , we have ϕS(ΦT ) = 0 whenever S ̸= T .
4. ϕ uniquely decomposes F ∈ F into a set of pure inter-

action functions on distinct groups of features. That is,

4For the degenerate case where S = ∅, a pure interaction of
the features of S would be a constant function.
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there exists P ⊂ Pn such that F =
∑

S∈P ΦS where
each ΦS ∈ CS , only one such representation exists, and
ΦS = ϕS(F ) for each S ∈ P while ϕS(F ) = 0 for each
S ∈ Pn \ P .

Proof of Corollary 2 is relegated to Appendix D.4. For
ease of notation, we move forward assuming that if x′ is
not stated, the implicit baseline value is x′ = 0 and is
appropriate to F . We also assume that the synergy functions
S is applied using the proper implicit baseline choice. Lastly,
we denote ΦS ∈ CS to be a pure interaction in S as defined
above, or what we may also call a “synergy function” in S.

4. Binary Feature Methods and Synergies
We now discuss the role of the synergy function in axiomatic
attributions/interactions. Harsanyi (1963)5noticed that for a
synergy function ΦS , the Shapley value is

Shapi(x,ΦS) =

{
ΦS(x)
|S| if i ∈ S

0 if i /∈ S
(6)

This means the Shapley value distributes the function gain
from ΦS equally among all i ∈ S. Using the synergy
representation of F and linearity of Shapley values, we get

Shapi(x, F ) =
∑

S⊆N s.t. i∈S

ΦS(x)

|S|
(7)

Thus, the Shapley value can be conceptualized as distribut-
ing each synergy Φ{i} to xi and distributing all higher syn-
ergies, ΦS with |S| ≥ 2, equally among all features in S,
e.g., Shap(Φ{1,2,3}) = (

Φ{1,2,3}
3 ,

Φ{1,2,3}
3 ,

Φ{1,2,3}
3 , 0, ..., 0).

Indeed the Shapley value is characterized by its rule of
distributing the synergy function.

Proposition 1. (Grabisch, 1997, Thm 1) The Shapley value
is the unique attribution that satisfies linearity and acts on
synergy functions as in (6).

Other binary-feature methods are similar. We present a
treatment of Shapley-Taylor in Appendix E.1. We also
present a binary-feature recursive method in appendix E.2.

5. Synergy Distribution in Gradient-Based
Methods

A critical aspect of binary feature methods like the Shapley
method is that they treat all features in a synergy function
as equal contributors to the function output. For exam-
ple, consider the synergy function of S = {1, 2} given
by F (x1, x2) = (x1 − x′

1)
100(x2 − x′

2). F evaluated at
x = (x′

1 + 2, x′
2 + 2) yields F (x) = 210021 = 2101. The

Shapley method applied to F treats both inputs as equal
contributors, and would indicate that x1 and x2 each con-
tributed 2101

2 to the function increase from the baseline. This

5Harsanyi (1963) observed Eq. (6) and (7) in the binary feature
setting with Möbius transforms. Here we state the continuous
input form with synergy functions.

assertion seems unsophisticated, not to mention intuitively
incorrect, given we know the mechanism of the interaction
function.

The IG exhibits the potential advantages of gradient-based
attribution methods by providing a more sophisticated at-
tribution. For m ∈ Nn, define (x− x′)m = (x1 − x′

1)
m1 ·

· · (xn − x′
n)

mn , taking the convention that if mi = 0 and
xi = x′

i, then (xi − x′
i)

mi = 1. Define m! = m1! · · ·mn!,
and define DmF = ∂∥m∥1F

∂x
m1
1 ···∂xmn

n
. We notate the non-

constant features of xm by Sm = {i|mi > 0}.

We call a function of the form F (y) = (y − x′)m a mono-
mial centered at x′, and note that any monomial centered
at an assumed baseline x′ is a synergy function of Sm. As-
suming mi > 0 and taking x′ = 0, the IG attribution to ym,
a synergy function of Sm, is:

IG{i}(x, y
m) = xi

∫ 1

0

mi(tx)
(m1,...,mi−1,...,mn)dt

= xi

∫ 1

0

mit
∑

mi−1x(m1,...,mi−1,...,mn)dt

= mix
m t

∑
mj∑
mj

∣∣∣1
0
=

mi

∥m∥1
xm

This means that IG distributes the function change of
F (y) = ym to xi in proportion to mi. For example, the IG’s
attribution to our previous problem is IG((2, 2), x100

1 x2) =
( 1001012

101, 1
1012

101), a solution that seems much more equi-
table than the Shapley value. Thus the IG can distinguish
between features based on the form of the synergy, unlike
the Shapley value, which treats all features in a synergy
functions as equal contributors.

5.1. Continuity Condition
We now move to more rigorously develop the connection be-
tween gradient-based methods and monomials. To connect
the action of attributions and interactions on monomials to
broader functions, we now move towards defining the no-
tion of an interaction being continuous in F . Let Cω denote
the set of functions that are real-analytic on [a, b]. It is well
known that any F ∈ Cω admits to a convergent multivariate
Taylor Expansion centered at x′:

F (x) =
∑

m∈Nn

DmF (x′)

m!
(x− x′)m (8)

Functions in Cw have continuous derivatives of all orders,
and those derivatives are bounded in [a, b]. Thus, Cω it is a
well-behaved class that gradient-based interactions ought to
be able to assess.

Recall that the Taylor approximation of order l centered at
x′, denoted Fl, is given by:

Tl(x) =
∑

m∈Nn,∥m∥1≤l

Dm(F )(x′)

m!
(x− x′)m (9)

The Taylor approximation for analytic functions has the
property that DmTl uniformly converges to DmF for any
m ∈ Nn and x ∈ [a, b]. Given this fact, it would be natural

6
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to require that for a given kth-ordered interaction Ik defined
for Cw functions, liml→∞ Ik(Tl) = Ik(F ). This notion
is further justified by the fact that many ML models can
be approximated to arbitrary precision by replacing ReLU
and max with the parameterized softplus and smoothmax
functions, respectively. With this, we propose a continu-
ity axiom requiring interactions for a sequence of Taylor
approximations of F to converge to the interactions at F .

6. Continuity of Taylor Approximation for Analytic
Functions: If Ik is defined for all (x, x′, F ) ∈
[a, b] × [a, b] × Cω, then for any F ∈ Cω,
liml→∞ Ik(x, x′, Tl) = Ik(x, x′, F ), where Tl is the
lth order Taylor approximation of F centered at x′.

From this we have the following result, who’s proof can be
found in Appendix E.3:

Theorem 2. Let Ik be an interaction method defined on
[a, b] × [a, b] × Cω which satisfies linearity and continu-
ity of Taylor approximation for analytic functions. Then
Ik(x, x′, F ) is uniquely determined by the the values Ik

takes for the inputs in the set {(x, x′, F ) : F (y) = (y −
x′)m,m ∈ Nn}.

In section 4 we saw that binary feature methods distribute
synergy functions according to a rule, and that rule char-
acterized the method as a whole. Gradient-based methods
satisfying linearity and the continuity condition are char-
acterized by their actions on specific sets of elementary
synergy functions, monomials. Thus, given our the continu-
ity condition and linearity, we have collapsed the question
of continuous interactions to the question of interactions
of monomials centered at x′. Specifically, if linearity and
continuity are deemed desirable, and a means of distribut-
ing polynomials can be chosen, then the entire method is
determined for analytic functions. This is illustrated by the
following corollary (proof located in Appendix E.4):

Corollary 3. IG is the unique attribution method on analytic
functions that satisfies linearity, the continuity condition,
and acts on the inputs (x, x′, (y − x′)m) as in Eq. (8).

5.2. Integrated Hessians
Next, we present two gradient-based interaction methods.
For m ∈ Nn, the Integrated Hessian of F (y) = ym at x is:

IH{i,j}(y
m) =

2mimj

∥m∥21
xm, IH{i}(y

m) =
m2

i

∥m∥21
xm

IH distributes a portion of any pure interaction monomial to
all nonempty subsets of features in Sm, breaking the base-
line test for interactions(k ≤ n). For example, although
F (x1, x2, x3) = x1x2 is a synergy function of S = {1, 2},
IH distributes some of F to main effects. This can be reme-
died by directly distributing single and pairwise synergies,
then using IH to distribute monomials involving 3 or more
variables. The augmented IH of order k acts on monomial
functions as follows:

IHk∗
T (ym) =


xm if T = Sm

Mk
T (m)

∥m∥k1
xm if T ⊊ Sm, |Sm| > k

0 else

(10)

To explain, IHk∗ distributes all monomial synergies of size
≤ k to their groups, and distributes monomial synergies of
size > k to subgroups of Sm in proportion to Mk

T (m). A
full treatment of both is given in appendix E.5.

Corollary 4. IHk∗ is the unique attribution method on ana-
lytic functions that satisfies linearity, the continuity condi-
tion, and distributes monomials as in Eq. (10).

5.3. Sum of Powers: A Top-Distributing Gradient-Based
Method

Previously we outlined a kth-order interaction that dis-
tributed synergies larger thatn k to all sub-groups. Now
we now present the distribution scheme for a gradient-based
kth-order interaction we call Sum of Powers.6 We present
only its action on monomials here, and detail the method in
Appendix E.6. Sum of Powers distributes a monomial as
such:

SPk
T (y

m) =


xm if T = Sm

1

(|Sm|−1
k−1 )

∑
i∈T mi

∥m∥1
xm if T ⊊ Sm, |T | = k

0 else
(11)

The highlight is that Sum of Powers satisfies completeness,
null feature, linearity, continuity condition, baseline test
for interactions, and is a top-distributing method. By top-
distributing we mean that it projects all synergies larger than
the largest available size, k, to the largest groups available.
This results in Sum of Powers emphasising interactions
between features of size k, which may be an advantage or
disadvantage, depending on the goal of the interaction. We
present a corollary below; for full details of the Sum of
Powers method, see Appendix E.6.

Corollary 5. Sum of Powers is the unique attribution
method on analytic functions that satisfies linearity, the con-
tinuity condition, and distributes monomials as in Eq. (11).

6. Empirical Evaluation
In this section, we compare the performance of the 2nd-
order Sum of Powers and the unaltered Integrated Hessian
methods on a protein tertiary structure dataset. Particularly,
we use the Physicochemical Properties of Protein Tertiary
Structure dataset from the UCI machine learning reposi-
tory (Rana, 2013). This dataset consists of 45,730 samples
with 9 input features describing the molecular structure of
proteins, and the target variable is the size of the residue. For
this regression task, we utilize a 2-layer neural network with
SoftPlus activation. We run each method on 200 samples.
More details about the experiments and additional results
are provided in Appendix F.

Figures 1 and 2 report average values for IH and SP, with
main effects on the diagonal. We see that both methods

7
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report a strong negative interaction between features 1 and 6,
with SP reporting a more negative interaction by 8 points. In
the main effects, we see that SP gives more largely positive
values for features 1 and 6, while IH is more diminished.

Why is this? Understanding the theory of distributing syner-
gies helps us understand these differences. Theoretically SP
reports pure main effects as they are, and all other interac-
tions are projected down to the pairwise interactions. Sum
of powers indicates that the pure main effects of features 1
and 6 are positive. IH intermixes main effects and higher
order interactions. Since IH’s main effects are lower, this
means that the pure positive main effects of 6.1 and 9.3 (as
seen in SP) are being lowered by generally negative higher-
order interactions when IH reports them. A consequence of
this is that IH also has a smaller report of the interactions
between features 1 and 6: the negative interactions involv-
ing features 1 and 6 are being broken up and some are being
distributed to main effects, diminishing the report. This
strengthening of pairwise interactions is further confirmed
by a box-and-whiskers plot (Fig. 3), which shows that SP
gives more largely negative values at Q1, 2 and 3.

Figure 1. Mean of the Integrated Hessian interaction values.

Figure 2. Mean of the Sum of Powers interaction values.

Interestingly, Figure 4 also indicates a more pure relation-
ship between features 1 and 6. It is theorized that IH can
have wide ranges of coefficients when distributing a mono-
mial (the Mk

T (m) term), while sum of powers is relatively
more stable.

Figure 3. Box plot of interaction values of feature 1 and feature 6.
Several values with extreme positive and negative interaction val-
ues are removed for a cleaner plot.

Figure 4. Interaction of feature 1 and feature 6. Left: driven by
Integrated Hessian. Right: driven by Sum of Powers. X-axis:
Feature 1. Y-axis: Interaction value. Colorbar: Feature 6.

7. Concluding Remarks
The paradigm of synergy distribution is a useful concept for
the analysis and development of attribution and interaction
methods, particularly in mission-critical applications such
as the ones that appear in health and medicine. First, it
can point out weaknesses in existing methods such as the
Integrated Hessian and indicate improvements, second, it
can lead to new methods such as the Sum of Powers method,
and last, it allows new characterization results based on syn-
ergy or monomial distribution. As seen in the comparison of
Shapley Value vs Integrated Gradient, synergy distribution
can play an important role implicitly even when not explic-
itly discussed in the literature. However, the application
of this analysis tool does not settle the question, “which
method is best?” There exists conflicting groups of axioms
and various combinations of them produce unique interac-
tions. The choice of whether to use a top-distributing or
recursively defined method, a binary features or gradient-
based method, or some other method may vary with the goal.
In the authors’ opinion, the possibility of the existence of
one “best” method is improbable as various combinations of
different axioms lead to the development of unique methods.
Thus, choosing methods based on the context of the applica-
tion seems a more logical approach. Indeed, the existence of
unique methods with individual strengths is already studied
in game-theoretic cost-sharing literature7.

7See the Shapley value vs Aumann-Shapley value vs serial cost
for cost-sharing (Friedman & Moulin, 1999), or the Shapley vs
Banzhaf interaction indices (Grabisch & Roubens, 1999).

8
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Appendix

A. Table of Methods
All listed methods satisfy completeness, linearity, null feature, and symmetry. All gradient-based methods satisfy the
continuity condition. All interaction methods also satisfy baseline test for interactions (k ≤ n) unless otherwise noted. We
do not list interaction distribution, which is a combination of baseline test for interactions (k ≤ n) and being top-distributing
in the binary features scheme.

B. Table of Methods
All listed methods satisfy completeness, linearity, null feature, and symmetry. All gradient-based methods satisfy the
continuity condition. All interaction methods also satisfy baseline test for interactions (k ≤ n) unless otherwise noted. We
do not list interaction distribution, which is a combination of baseline test for interactions (k ≤ n) and being top-distributing
in the binary features scheme.

Name Properties Distribution Rule

Synergy Function
unique nth-order

interaction ϕT (ΦS)(x) =

{
ΦS(x) if S = T

0 if S ̸= T

Shapley Value
attribution method

binary features Shapi(x,ΦS) =

{
ΦS(x)
|S| if i ∈ S

0 if i /∈ S

Integrated Gradients
attribution method

gradient-based IGi(x, y
m) =

{
mi

∥m∥1
xm if i ∈ Sm

0 if i /∈ Sm

Shapley-Taylor
binary features
top-distributing STk

T (x,ΦS) =


ΦS(x) if T = S
ΦS(x)

(|S|
k )

if T ⊊ S, |T | = k

0 else

Sum of Powers
gradient-based
top-distributing SPk

T (x, y
m) =


xm if T = Sm∑

i∈T mi

(|Sm|−1
k−1 )∥m∥1

xm if T ⊊ Sm, |T | = k

0 else

Recursive Shapley
binary features

iterative
breaks baseline test

RSk
T (x,ΦS) =

{
Nk

T

|S|kΦS(x) if T ⊆ S

0 else

Augmented
Recursive Shapley

binary features
iterative RSk∗

T (x,ΦS) =


ΦS(x) if T = S
Nk

T

|S|kΦS(x) if T ⊊ S, |S| > k

0 else

Integrated Hessian
gradient-based

iterative
breaks baseline test

IHk
T (x, y

m) =

{
Mk

T (m)

∥m∥k
1
xm if T ⊆ Sm

0 else

Augmented
Integrated Hessian

gradient-based
iterative IHk∗

T (x, ym) =


xm if T = Sm

Mk
T (m)

∥m∥k
1
xm if T ⊊ Sm, |Sm| > k

0 else

C. Axioms and the Distribution of Synergies
Here we comment on the interplay between axioms and synergy functions. First, we present a version of the baseline test for
interactions which applies for k ≤ n. The idea is a generalization of the (k = n) case; that if Ik is a kth-order interaction and
ΦS is some pure interaction function with |S| ≤ k, then Ik(ΦS) should not report interactions for any set but S. We give
this as an axiom:

11
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7. Baseline Test for Interactions (k ≤ n): For baseline x′ and any synergy function ΦS with |S| ≤ k, if T ⊊ S, then
IkT (ΦS) = 0.

This is a weaker version of the defining axiom of Shapley-Taylor (Sundararajan et al., 2020), which states:

8. Interaction Distribution: For baseline x′ and any synergy function ΦS , if T ⊊ S and |T | < k, then IkT (ΦS) = 0.

The baseline test of interactions asserts that if a synergy function is for a group of at least size k, Ik should not report
interactions for any other group. The interaction distribution asserts the same, and adds the caveat that if the synergy function
is for a group of size larger than k, it must be distributed only to groups of size k.

We now detail how some of these axioms can be formulated as constraints on the distribution of synergies.

1. Completeness: enforces that any method distributes a synergy among sets of inputs. Formally, for a synergy function ΦS ,
we may say that IkT (x,ΦS) = wT (x,ΦS)× ΦS(x), where wT is some function satisfying

∑
T⊆Pk

wT (x,ΦS) = 1.

2. Linearity: enforces that Ik(F ) is the sum of Ik applied to the synergies of F . Formally, Ik(F ) =
∑

T⊂Pk
Ik(ϕT (F )).

3. Null Feature: enforces that Ik only distributed ΦS to groups T ⊆ S.

4. Baseline Test for Interaction(k ≤ n): enforces that ΦS is not distributed to groups T ⊊ S when |S| ≤ k.

5. Interaction Distribution: enforces that ΦS is not distributed to groups T ⊊ S when |S| ≤ k, and is distributed only to
groups of size k when |S| > k.

6. Symmetry8: enforces that a synergy ΦS be distributed equally among groups in the binary features case.

C.1. Statement of Symmetry Axiom

Let π be an ordering of the features in N . We loosely quote the definition of symmetry from Sundararajan et al. (2020),
altering the binary feature setting to a continuous feature setting:

7. Symmetry Axiom: for all F ∈ F , for all permutations π on N :

IkS(x, x
′, F ) = IkπS(πx, πx

′, F ◦ π−1), (12)

where ◦ denotes function composition, πS := {π(i) : i ∈ S}, and (πx)π(i) = xi.

This axioms implies that if we relabel the features, then interactions for the relabeled features will concur with interactions
before relabeling. It requires that the domain, [a, b], is closed under permutations of inputs, meaning it is of the form
[a1, b1]

n.

D. Synergy Function
D.1. Proof of Theorem 1

Proof. Let I be any n-ordered interaction that satisfies the given axioms, and let x, x′ ∈ [a, b] × [a, b] be arbitrarily
chosen. We assume that all interactions are taken with respect to input x and baseline x′. For ease of notation, we define
FS(x) = F (xS) for F ∈ F(x, x′).

For any nonempty S ∈ Pn, note that IS(F ) = IS(F−FS+FS). Note that (F−FS)(xS) is constant. Thus, IS(F−FS) = 0
for any S ∈ Pk by the baseline test for interaction. Thus, by linearity of zero-valued functions, we have established that
IS(F ) = IS(FS) for any S ∈ Pk.

We now proceed by strong induction:

8See appendix C.1 for a statement of symmetry axiom.
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|S| = 1 case: Let i ∈ N and choose F ∈ F . Note that F{i} does not vary with any feature but xi. This implies that
for S ̸= {i}, IS(F{i}) = 0 by null feature. By completeness, I{i}(F{i}) = F{i}(x) − F{i}(x

′), and I{i}(F ) is uniquely
determined. Thus IS(F ) is uniquely determined for |S| = 1.

|S| ≤ k ⇒ |S| = k+1 case: Suppose that for any G ∈ F [a, b] and any S ⊆ {1, ..., n} such that |S| ≤ k, IS(G) is uniquely
determined. Let T ∈ Pn, |T | = k + 1, F ∈ F . It has been established that IT (F ) = IT (FT ). Note that for all S ⊊ T ,
we have |S| ≤ k, so IS(FT ) is uniquely determined by the induction hypotheses. Since FT does not vary in each xi such
that i /∈ T , we have IS(FT ) = 0 for S ⊈ T by null feature. By completeness, FT (x) − FT (x

′) =
∑

S⊆Pk
IS(FT ) =∑

S⊆T IS(FT ). Thus IT (FT ) = FT (x) − FT (x
′) −

∑
S⊊T IS(FT ). Since IT (F ) = IT (FT ) equals the sum of uniquely

determined terms, IT (F ) is uniquely determined.

D.2. Context of Synergy Function

The properties of the synergy function stem from properties of the Möbius transform. Specifically, because the synergy
function is defined by the Möbious Transform, it inherits many of its properties, including completeness, null feature,
linearity of zero-valued functions, and baseline test for interactions (n = k). The primary precursor to the synergy function
is the Harsanyi dividend (Harsanyi, 1963), which is like the Möbius transform and is formulated for discrete-input settings.
More recently, the Shapley-Taylor Interaction Index (Sundararajan et al., 2017) and Faith-Shap (Tsai et al., 2022) take the
form of the Möbius Transform when k = n. The novelty of the synergy function is that, while previous works assumed
F to be a set function (as in section 2.4), the synergy function is a linear functional between continuous input functions.
Consequently, Corollary 1 is novel, not only because of the inclusion of baseline test for interactions (k = n), but also
because all axioms do not assume F is a set function.

D.3. Proof of Corollary 1

We proceed to show the synergy function satisfies completeness, linearity, null feature, and baseline test for interactions
(k ≤ n).

Proof. Completeness: For any v : {0, 1}n → R, Sundararajan et al. (2020, Appendix 7.1) shows that the Möbius transform
has the property that,

v(T ) =
∑
S⊆T

a(v)(S). (13)

Using this, observe,

F (x′) +
∑
S∈Pn

ϕS(F )(x) =
∑
S⊆N

a(F (x(·)))(S)

= F (xN )

= F (x),

(14)

which established completeness.

Linearity of Zero-Valued Functions: We simply establish ϕ is linear.

ϕS(cF + dG)(x) = a(cF (x(·)) + dG(x(·)))(S)

=
∑
T⊆S

(−1)|S|−|T | [(cF (x(·)) + dG(x(·)))(T )
]

= c
∑
T⊆S

(−1)|S|−|T | F (x(·))(T ) + d
∑
T⊆S

(−1)|S|−|T | G(x(·))(T )

= cϕS(F )(x) + dϕS(G)(x)

(15)

Baseline Test for Interactions: Suppose F (xS) is constant.

13
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ϕS(F )(x) = a(F (x(·)))(S)

=
∑
T⊆S

(−1)|S|−|T | F (xT )

=
∑
T⊆S

(−1)|S|−|T | F (x′)

= F (x′)
∑

0≤i≤|S|

(
|S|
i

)
(−1)|S|−i

= 0

(16)

Null Feature: Suppose F does not vary in some xi and i ∈ S. Then,

ϕS(F )(x) = a(F (x(·)))(S)

=
∑
T⊆S

(−1)|S|−|T | F (xT )

=
∑

T⊆S,i∈T

(−1)|S|−|T | F (xT ) +
∑

T⊆S,i/∈T

(−1)|S|−|T | F (xT )

=
∑

T⊆S\{i}

(−1)|S|−(|T |+1) F (xT∪{i}) +
∑

T⊆S\{i}

(−1)|S|−|T | F (xT )

= −
∑

T⊆S\{i}

(−1)|S|−|T |) F (xT ) +
∑

T⊆S\{i}

(−1)|S|−|T | F (xT )

= 0

(17)

D.4. Proof of Corollary 2

Proof. We proceed in the order given in Corollary 2.

1. Pure interaction sets are disjoint, meaning CS ∩ CT = ∅ whenever S ̸= T .

Suppose S, T ∈ Pn with T ̸= S. We proceed by contradiction and suppose F ∈ CS ∪ CT . WLOG ∃i ∈ S \ T , implying
that F varies in feature i since F is a synergy function of S, and F does not vary in feature i, since F is a synergy function
of T . This is a contradiction. Thus CS ∩ CT = ∅.

2. ϕS projects F onto CS ∪ {0}. That is, ϕS(F ) ∈ CS ∪ {0} and ϕS(ϕS(F )) = ϕS(F )

Let F ∈ F . First, for the degenerate case, ϕ∅(F ) = F (x′), which is a constant function. For any constant c, ϕ∅(c) = c,
implying ϕ∅ is a projection and surjective for the range C∅ ∪ {0}. Thus ϕ∅ projects F onto C∅ ∪ {0}.

Now we will show that ϕS(F ) either is a pure interaction of S or is 0 in the non-degenerate case. Suppose xi = x′
i for some

i ∈ S. Then,

14



770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

A Unifying Framework to the Analysis of Interaction Methods using Synergy Functions 15

ϕS(F )(x) =
∑
T⊆S

(−1)|S|−|T | F (xT )

=
∑

T⊆S,i∈T

(−1)|S|−|T | F (xT ) +
∑

T⊆S,i/∈T

(−1)|S|−|T | F (xT )

=
∑

T⊆S\{i}

(−1)|S|−(|T |+1) F (xT∪{i}) +
∑

T⊆S\{i}

(−1)|S|−|T | F (xT )

= −
∑

T⊆S\{i}

(−1)|S|−|T |) F (xT ) +
∑

T⊆S\{i}

(−1)|S|−|T | F (xT )

= 0

Thus ϕS(F ) = 0 whenever xi = x′
i for some i ∈ S, and ϕS(F ) satisfies condition 1 for being a pure interaction of S.

Now, inspecting the definition, ϕS(F )(x) =
∑

T⊆S(−1)|S|−|T | F (xT ), so ϕS(F ) does not vary in xi, i /∈ S. Lastly,
suppose that F does not vary in some xi, i ∈ S. Since ϕ satisfies null feature, ϕS(F ) = 0. So either ϕS(F ) varies in all xi

such that i ∈ S, or ϕS(F ) = 0. If the former, ϕS(F ) satisfies condition 2 for being a pure interaction of S; if the latter,
ϕS(F ) = 0. Thus ϕS(F ) = 0 or ϕS(F ) is a pure interaction function of S, implying the range of ϕS is CS ∪ {0}.

Now let ΦS ∈ CS . Note

ϕS(ΦS)(x) =
∑
T⊆S

(−1)|S|−|T | ΦS(xT )

=
∑
T=S

(−1)|S|−|T | ΦS(xT )

= ΦS(xS)

= ΦS(x)

It is plain by the definition that ϕS(0) = 0. Thus ϕS is surjective for the range CS ∪ {0}. Since the range of ϕS is CS ∪ {0},
ϕ maps elements of CS to themselves, and maps 0 to 0, so ϕS is a projection.

3. For ΦT ∈ CT , we have ϕS(ΦT ) = 0 whenever S ̸= T .

Let ΦT ∈ CT and T ̸= S. If ∃i ∈ S \T , then ϕS(ΦT ) = 0 by null feature. Otherwise S ⊊ T , and ϕS(ΦT ) = 0 be baseline
test for interactions (k = n).

4. ϕ uniquely decomposes F ∈ F into a set of pure interaction functions on distinct groups of features.
That is, there exists P ⊂ Pn such that F =

∑
S∈P ΦS , where each ΦS ∈ CS . Further more, only one such

representation exists, ΦS = ϕS(F ) for each S ∈ P , and ϕS(F ) = 0 for each S ∈ Pn \ P .

F =
∑

S∈Pn
ϕS(F ), and each ϕS(F ) ∈ CS ∪ {0}. Since 0 + ϕ∅(F ) ∈ C∅ and we may gather all the ϕS(F ) terms that are

zero into the C∅ term, we have shown a decomposition exists.

Let it be that F (x) =
∑

S∈P ΦS(x) for some P ∈ Pn, where each ΦS is an interaction function in S. By the results already
established, we have for any T ∈ P

ϕS(F ) = ϕS(
∑
T∈P

ΦT )

=
∑
T∈P

ϕS(ΦT )

= ϕS(ΦS)

= ΦS

15
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If S /∈ P , then

ϕS(F ) = ϕS(
∑
T∈P

ΦT )

=
∑
T∈P

ϕS(ΦT )

= 0

Now suppose that there are two decompositions,
∑

S∈P1 Φ1
S = F =

∑
S∈P2 Φ2

S . WLOG suppose S ∈ P1 \ P2. Then
ϕS(F ) = 0 since S /∈ P2 and ϕS(F ) = Φ1

S since S ∈ P1. Thus Φ1
S = 0 and S = ∅. Thus P1△P2 equals either ∅ or

{∅}, and in the case that P1△P2 = {∅} the extra term corresponding to ∅ in one of the sums is 0, and does not effect the
decomposition. Now, if P1△P2 = ∅, then for any S ∈ P1,P2, we have Φ1

S = ϕS(F ) = Φ2
S . Thus, the decomposition is

unique.

E. kth-Order Interaction Methods
Here we give an in depth treatment of the Shapley Taylor, Recursive Shapley, Integrated Hessian, and Sum of Powers
methods, as well as the augmentations to the recursive methods. We define the methods and show that each method is the
unique method that satisfies linearity, their distribution policy, and in the case of gradient methods, the continuity condition.
We also prove that each method satisfies desirable properties such as completeness, null feature, symmetry, and, if applicable,
baseline test for interactions (k ≤ n).

E.1. The Shapley-Taylor Interaction Index

Several kth-order interactions that extend Shapley values have been proposed, all of which are binary feature methods
(Grabisch & Roubens, 1999),(Tsai et al., 2022). Here we focus our analysis on the Shapley-Taylor method (Sundararajan
et al., 2020). First, define δS|TF (x) =

∑
W⊆S

(−1)|S|−|W |F (xW∪T ), which measures the marginal impact of including the

features in S when the features in T are already present based on the inclusion-exclusion principle. The Shapley-Taylor
Interaction Index of order k (Sundararajan et al., 2020) is then given by:

STk
S(x, F ) =


k
n

∑
T⊆N\S

δS|TF (x)

(n−1
|T | )

if |S| = k

δS|∅(F ) if |S| < k.
(18)

Shapley-Taylor prioritizes interactions of order k and its unique contribution is to satisfy the interaction distribution axiom,
which is discussed in Appendix C.

E.1.1. ANALYSIS OF SHAPLEY-TAYLOR USING SYNERGIES

For a synergy function ΦS , the Shapley-Taylor interaction index of order k for a group of features T ∈ Pk is given by:

STk
T (ΦS) =


ΦS(x) if T = S
ΦS(x)

(|S|
k )

if T ⊊ S, |T | = k

0 else

(19)

The Shapley-Taylor distributes each synergy function of S to its group, unless is too large (|S| > k), in which case it
distributes the synergy equally among all subsets of S of size k. This type of method is top-distributing, as every synergy
function of a group T , |T | > k, is distributed only to groups of order k.

As with the Shapley value, the Shapley-Taylor is characterized by this action on synergy functions:

Proposition 2. (Sundararajan et al., 2020, Prop 4) The Shapley–Taylor Interaction Index of order k is the unique kth-order
interaction index that satisfies linearity and acts on synergy functions as in Eq. (19).
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E.2. Recursive Shapley and Augmented Recursive Shapley

There is another binary feature kth-order interaction method similar to Shapley-Taylor, briefly motioned in Sundararajan
et al. (2020), with the distinction that it is not top-distributing. Here we detail and augment the method. Similarly to the
Integrated Hessian, we may take the Shapley value recursively to gain pairwise interaction between xi and xj , given by
RS{i,j}(x, F ) = Shapi(x,Shapj(·, F )) + Shapj(x,Shapi(·, F )) = 2Shapi(x,Shapj(·, F )). Main effects for xi would be
Shapi(x,Shapi(·, F )).

More generally, consider expanding the expression ∥y∥k1 , and let Nk
T denote the sum of coefficients associated exactly with

the variables with indices in T . Then the Recursive Shapley of order k distributes synergy functions as such:

RSk
T (ΦS) =

{
Nk

T

|S|kΦS(x) if T ⊆ S

0 else
, (20)

where in the case T = S = ∅ we set Nk
T

|S|k := 1. This formulation, however, has the disadvantage of distributing a portion
of synergy functions for groups sized ≤ k to subgroups. For example, the recursively Shapley reports that a synergy
function Φ{1,2,3}(x) also has interactions for subgroup {1, 2}. This violates the baseline test for interactions (k ≤ n). We
can modify the method to avoid this issue, causing Recursive Shapley to satisfy the baseline test for interactions (k ≤ n)
axiom. We explicitly detail the Recursive Shapley and modification in E.2. We also give the following Theorem (Proof in
Appendix E.2.2):
Theorem 3. The Recursive Shapley of order k is the unique kth-order interaction index that satisfies linearity and acts on
synergy functions as in Eq. (20).

E.2.1. DEFINING RECURSIVE SHAPLEY

Here we detail the properties of Recursive Shapley and Augmented Recursive Shapley. Let σk
T be the set of se-

quences of length k such that the sequence is made of the elements of T ̸= ∅ and each element appears at least
once. For example, σ3

{1,2} = {(1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1)}. Calculating the size of σk
T ,

|σk
T | =

∑
|l|=k s.t. Sl=T

(
k
l

)
= Nk

T . For a given sequence s, define IGt(x, F ) be a recursive implementation of the
Shapley method according to the sequence s, i.e., Shap(1,2,3)(x, F ) = Shap3(x,Shap2(·,Shap1(·, F ))). We can then define
the kth-order Recursive Shapley for T ̸= ∅ as:

RSk
T (x, F ) =

∑
s∈σk

T

Shaps(x, F ) (21)

and define RSk
∅(x, x

′, F ) := F (x′).

We now move to inspect this equation and establish some properties. Eq. (6) states that for a synergy function ΦS , S ̸= ∅,

Shapi(x,ΦS) =

{
ΦS(x)
|S| if i ∈ S

0 if i /∈ S
(22)

Then for a given sequence s ∈ σk
T and synergy function ΦS , if T ⊆ S then,

Shaps(x,ΦS) = Shapsk(x,Shapsk−1
(...Shaps1(·,ΦS)....)

= Shapsk(x,Shapsk−1
(...Shaps2(·,

ΦS

|S|
)....)

= Shapsk(x,Shapsk−1
(...Shaps3(·,

ΦS

|S|2
)....)

= ...

= Shapsk(x,
ΦS

|S|k−1
))

=
ΦS(x)

|S|k

(23)
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However, if T ⊊ S then there exists an element of s that is not in S, and:

Shaps(x,ΦS) = 0, (24)

due to some sj /∈ S in the sequence.

E.2.2. RECURSIVE SHAPLEY’S DISTRIBUTION POLICY

Now, to show how Recursive Shapley distributes synergies, apply the definition of recursive Shapely for S ̸= ∅ to get:

RSk
T (x,ΦS) =

∑
s∈σk

T

Shaps(x,ΦS)

=

{∑
s∈σk

T

ΦS(x)
|S|k if T ⊆ S∑

s∈σk
T
0 if T ⊈ S

=

{
Nk

T

|S|kΦS(x) if T ⊆ S

0 if T ⊈ S

(25)

We also gain the above for S = ∅ by setting Nk
T

|S|k = 1 when T = ∅. This establishes the distribution scheme in Eq. (20).

Recursive Shapley is also linear because it it the sum of function compositions of composition of linear functions. This
establishes Theorem 3.

E.2.3. PROPERTIES OF RECURSIVE SHAPLEY

To show Recursive Shapley satisfies completeness, observe for S ̸= ∅:

∑
T∈Pk,|T |>0

RSk
T (x,ΦS) =

∑
T⊆S

Nk
T

ΦS(x)

|S|k

=
ΦS(x)

|S|k
∑
T⊆S

Nk
T

=
ΦS(x)

|S|k
|S|k

= ΦS(x)

(26)

The case when S = ∅ is easily verified by inspecting the synergy distribution policy of RS.

To show Recursive Shapley satisfies null feature, suppose that F does not vary in xi. Then for any S ∈ Pk such that i ∈ S,
ϕS(F ) = 0 since the synergy function is an interaction satisfying null feature. Then if i ∈ T ,

RSk
T (x, F ) =

∑
S∈Pk

RSk
T (x, ϕS(F ))

=
∑

S∈Pk s.t. i∈S

RSk
T (x, ϕS(F )) +

∑
S∈Pk s.t. i/∈S

RSk
T (x, ϕS(F ))

=
∑

S∈Pk s.t. i∈S

RSk
T (x, 0) +

∑
S∈Pk s.t. i/∈S

0

= 0

(27)

Where the terms in the second sum are zero by Eq. (20).

18



990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

A Unifying Framework to the Analysis of Interaction Methods using Synergy Functions 19

To show Recursive Shapley satisfies symmetry, let π be a permutation on N . Note that for ΦS ∈ CS , we have ΦS ◦ π−1 is a
pure interaction function in πS with baseline πx′. Then

RSk
πT (πx, πx

′,ΦS ◦ π−1) =

{
Nk

πT

|πS|kΦS ◦ π−1(πx) if πT ⊆ πS

0 if πT ⊈ πS

=

{
Nk

T

|S|kΦS(x) if T ⊆ S

0 if T ⊈ S

= RSk
T (x, x

′,ΦS)

So RS is symmetric on synergy functions. Now use the synergy decomposition of F ∈ F to show RS is generally symmetric.

E.2.4. AUGMENTED RECURSIVE SHAPLEY AND PROPERTIES

The synergy function ϕ is taken implicitly with respect to a baseline appropriate to F . To make the baseline choice explicit,
we write ϕ(F ) = ϕ(x′, F ). Augmented Recursive Shapley is then defined as:

RSk∗
T (x, x′, F ) = ϕT (x

′, F )(x) + RSk
T (x, x

′, F −
∑
S∈Pk

ϕS(x
′, F )) (28)

With the above augmentation, IHk∗ explicitly distributes synergies ϕT (F ) to group T whenever |T | ≤ k, and distributes
higher synergies as IHk.

The above is a linear function of F . Plugging in ΦS to the above gains the following distribution policy:

RSk∗
T (ΦS) =


ΦS(x) if T = S
Nk

T

|S|kΦS(x) if T ⊊ S, |S| > k

0 else

(29)

Because each F ha a unique synergy decomposition, we have
Corollary 6. Augmented Recursive Shapley of order k is the unique kth-order interaction index that satisfies linearity and
acts on synergy functions as in Eq. (29).

To show that Augmented Recursive Shapley satisfies null feature, let F not vary in some feature xi and let i ∈ T . Then

RSk∗
T (x, F ) =

∑
S∈Pn

RSk∗
T (x, ϕS(F ))

= RSk∗
T (x, ϕT (F )) +

∑
T⊊S,|S|>k

RSk∗
T (x, ϕS(F ))

= RSk∗
T (x, 0) +

∑
T⊊S,|S|>k

Nk
T

|S|k
ϕS(F )(x)

= 0 +
∑

T⊊S,|S|>k

0

= 0

Thus Augmented Recursive Shapley satisfies null feature.

To show Augmented Recursive Shapley satisfies baseline test for interactions (k ≤ n), let T ⊊ S, |S| ≤ k, and ΦS ∈ CS .
Then RSk∗

T (x,ΦS) = 0 by Eq.(29).

To show Augmented Recursive Shapley satisfies completeness, consider the synergy function ΦS . If |S| ≤ k, Eq. (29)
shows completeness. If |S| > k, then follow the proof of completeness for Recursive Shapley.
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To show Augmented Recursive Shapley satisfies symmetry, consider a synergy function ΦS ∈ CS and permutation π. Note
that for ΦS ∈ CS , we have ΦS ◦ π−1 is a pure interaction function in πS with baseline πx′. Then

RSk∗
πT (πx, πx

′,ΦS ◦ π−1) =


Nk

πT

|πS|kΦS ◦ π−1(πx) if πT = πS
Nk

πT

|πS|kΦS ◦ π−1(x) if πT ⊊ πS, |πS| > k

0 else

=


Nk

T

|S|kΦS(x) if T ⊆ S
Nk

T

|S|kΦS(x) if T ⊊ S, |S| > k

0 else

= RSk∗
T (x, x′,ΦS)

E.3. Proof of Theorem 2

Proof. Let Ik be a kth-order interaction method defined for all (x, x′, F ) ∈ [a, b]× [a, b]× Cω . Fix x′ and x. Let Tl be the
lth order Taylor approximation of F at x′. Then

Ik(x, x′, F ) = lim
l→∞

Ik(x, x′, Tl)

=
∑

m∈Nn,∥m∥1≤l

Dm(F )(x′)

m!
lim
l→∞

Ik(x, x′, (y − x′)m)

The last line is determined by the action of Ik on elements of the set {(x, x′, F ) : F (y) = (y − x′)m,m ∈ Nn}, concluding
the proof.

E.4. Proof of Corollary 3

Sundararajan et al. (2017) has shown that IG is linear and Eq. (8) shows the actions of IG on polynomials.

Let F ∈ Cω and let Tl be the Taylor approximation of F of order l centered at x′. It is known that ∂Tl

∂xi
→ ∂F

∂xi
uniformly on

a compact domain, such as [a, b]. Thus,

lim
l→∞

IGi(x, Tl) = lim
l→∞

(xi − x′
i)

∫ 1

0

∂Tl

∂xi
(x′ + t(x− x′))dt

= (xi − x′
i)

∫ 1

0

∂F

∂xi
(x′ + t(x− x′))dt

= IGi(x, F )

(30)

Thus IG satisfies the continuity criteria. Apply Theorem 2 for result.

E.5. Integrated Hessian and Augmented Integrated Hessian

E.5.1. DEFINITION OF INTEGRATED HESSIAN

Here we give a complete definition of IH and detail how IH distributes monomials. We also detail IH∗ and show it satisfies
Corollary 4. We then show both satisfy completeness, linearity, null feature, and symmetry, and augmented IH satisfies
baseline test for interactions (k ≤ n).

Let σk
T be the set of sequences of length k such that the sequence is made of the elements of T ̸= ∅ and each

element appears at least once. For example, σ3
{1,2} = {(1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1)}. For
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a given sequence s, define IGs(x, F ) to be a recursive implementation of IG according to the sequence s, i.e.,
IG(1,2,3)(x, F ) = IG3(x, IG2(·, IG1(·, F ))).

We can then define the k-order Integrated Hessian for T ̸= ∅ by:

IHk
T (x, F ) =

∑
s∈σk

T

IGs(x, F ), (31)

and for T = ∅, we define IHk
∅(x, x

′, F ) = F (x′).

E.5.2. IH POLICY DISTRIBUTING MONOMIALS AND CONTINUITY CONDITION

We now move to inspect this equation and establish some properties. First, IG is linear, establishing that IH is also linear by
its form.

Next, we establish its policy distributing monomials centred at x′. Eq. (8) states that for a monomial F (y) = (y − x′)m,
m ̸= 0,

IGi(x, x
′, (y − x′)m) =

{
mi

∥m∥1
(y − x′)m if i ∈ Sm

0 if i /∈ Sm

(32)

Then for a given sequence s ∈ σk
T and synergy function (y − x′)m, T ⊆ Sm,

IGs(x, (y − x′)m) = IGsk(x, IGsk−1
(...IGs1(·, (y − x′)m)....)

= IGsk(x, IGsk−1
(...IGs2(·,

ms1(y − x′)m

∥m∥1
)....)

= IGsk(x, IGsk−1
(...IGs3(·,

ms1ms2(y − x′)m

∥m∥21
)....)

= ...

= IGsk(x,
Π1≤i≤k−1msi(y − x′)m

∥m∥k−1
1

)

=
Π1≤i≤kmsi

∥m∥k1
(x− x′)m

(33)

However, if there exists any elements of s that is not in Sm, then:

IGs(x, x
′, (y − x′)m) = 0, (34)

due to some sj /∈ Sm in the sequence.

Now, applying the definition of IH when m ̸= 0, we get:

IHk
T (x, (y − x′)m) =

∑
s∈σk

T

IGs(x, (y − x′)m)

=

{∑
s∈σk

T

Π1≤i≤kmsi

∥m∥k
1

(x− x′)m if T ⊆ Sm∑
s∈σk

T
0 if T ⊈ Sm

=

{
Mk

T (m)

∥m∥k
1
(x− x′)m if T ⊆ Sm

0 if T ⊈ Sm,

(35)

where we define Mk
T (m) =

∑
|l|=k s.t. Sl=T

(
k
l

)
ml, with

(
k
l

)
= k!

Πi∈Sl
li!

the multinomial coefficient. In the case T = Sm =

∅, we set Mk
T (m)

∥m∥k
1

= 1.
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Now let us turn to the question of the continuity of Taylor approximation for analytic functions. Let Tl be the Taylor
approximation of some F ∈ Cω . Using Corollary 3, we have liml→∞ IGi(x, Tl) = IGi(x, F ). This implies:

IGi(x, F ) = lim
l→∞

IGi(x, Tl)

=
∑

m∈Nn

Dm(F )(x′)

m!
IGi(x, (y − x′)m)

=
∑

m∈Nn

Dm(F )(x′)

m!

mi

∥m∥1
(x− x′)m

(36)

That is, the above sum is convergent for all x ∈ [a, b], implying that IGi(·, F ) ∈ Cω . Also note:

IGi(x, Tl) =
∑

m∈Nn,|m|≤l

Dm(F )(x′)

m!

mi

∥m∥1
(x− x′)m (37)

This shows that IG(x, Tl) is a Taylor approximation of IGi(x, F ). Thus, for F ∈ Cω and a sequence s, we can pull the limit
out consecutively since we are simply dealing with a series of Taylor approximations.

IGs(x, F ) = IGsk(x, IGsk−1
(...IGs1(·, F )...))

= IGsk(x, IGsk−1
(... lim

l→∞
IGs1(·, Tl)...))

= IGsk(x, IGsk−1
(... lim

l→∞
IGs2(·, IGs1(·, Tl))...))

= lim
l→∞

IGsk(x, IGsk−1
(...IGs1(·, Tl)...))

= lim
l→∞

IGs(x, Tl),

(38)

which establishes that IHk satisfies the continuity property. This implies the following corollary:

Corollary 7. Integrated Hessian of order k is the unique kth-order method to satisfy linearity, the continuity condition, and
distributes monomials as in Eq. (35).

E.5.3. ESTABLISHING FURTHER PROPERTIES OF IH

To show IH is complete, observe for a monomial F (y) = (y − x′)m, m ̸= 0,

∑
S∈Pk,|S|>0

IHk
S(x, x

′, F ) =
∑

S⊆Sm,|S|>0

Mk
T (m)

∥m∥k1
(x− x′)m

=
∑

S⊆Sm,|S|>0

∑
|l|=k s.t. Sl=S

(
k
l

)
ml

∥m∥k1
(x− x′)m

=
∥m∥k1
∥m∥k1

(x− x′)m

= (x− x′)m

When m = 0, we get IHk
S(x, x

′, F ) = 0 except when S = ∅, in which case we get IHk
S(x, x

′, F ) = 1.

Applying the Taylor decomposition of F and continuity property to a general F ∈ Cω , we get:
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∑
S∈Pk,|S|>0

IHk
S(x, x

′, F ) =
∑

S∈Pk,|S|>0

lim
l→∞

IHk
S(x, x

′, Tl)

= lim
l→∞

∑
S∈Pk,|S|>0

∑
m∈Nn,0<∥m∥1≤l

Dm(F )(x′)

m!
IHk

S(x, x
′, (y − x′)m)

= lim
l→∞

∑
m∈Nn,0<∥m∥1≤l

Dm(F )(x′)

m!

∑
S∈Pk,|S|>0

IHk
S(x, x

′, (y − x′)m)

= lim
l→∞

∑
m∈Nn,0<∥m∥1≤l

Dm(F )(x′)

m!
(x− x′)m

= lim
l→∞

∑
m∈Nn,∥m∥1≤l

Dm(F )(x′)

m!
(x− x′)m − F (x′)

= F (x)− F (x′)

To show IH satisfies null feature, we proceed as in the proof for Recursive Shapley and suppose that F does not vary in xi.
Then for any S ∈ Pk such that i ∈ S, ϕS(F ) = 0 since the synergy function is an interaction satisfying null feature. Then
if i ∈ T ,

IHk
T (x, F ) =

∑
S∈Pk

IHk
T (x, ϕS(F ))

=
∑

S∈Pk s.t. i∈S

IHk
T (x, ϕS(F )) +

∑
S∈Pk s.t. i/∈S

IHk
T (x, ϕS(F ))

=
∑

S∈Pk s.t. i∈S

IHk
T (x, 0) +

∑
S∈Pk s.t. i/∈S

0

= 0

(39)

To show symmetry, let π be a permutation. Note that since (πy)π(i) = yi, we also have (π−1y)i = (π−1y)π−1(π(i)) = yπ(i).
Then, if F (y) = (y − x′)m, we get

F · π−1(y) = (yπ(1) − x′
1)

m1 · · · (yπ(n) − x′
n)

mn

= (y1 − x′
π−1(1))

mπ−1(1) · · · (yn − x′
π−1(n))

mπ−1(n)

= (y − πx′)πm

Also note that,

Sπm = {i : (πm)i > 0}
= {i : mπ−1(i) > 0}
= {π(i) : mπ−1(π(i)) > 0}
= {π(i) : mi > 0}
= {π(i) : i ∈ Sm}
= πSm

Then,
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IHk
πT (πx, πx

′, F ◦ π−1) =

{
Mk

πT (πm)

∥πm∥k
1

(πx− πx′)πm if πT ⊆ Sπm

0 if πT ⊈ Sπm

=

{
Mk

T (m)

∥m∥k
1
(x− x′)m if T ⊆ S

0 if T ⊈ S

= IHk
T (x, x

′, F )

Now, if we take π ∈ Cω and denote π−1
j to be the jth output of π−1, then

∂π−1
j

∂xi
= 1j=π−1(i). Then we have

∂(F ◦ π−1)

∂xi
(y) =

n∑
j=1

∂F

∂xj
(π−1(y))

∂π−1
j

∂xi
(y)

=
∂F

∂xπ−1(i)
(π−1(y)),

which yields

Dπm(F ◦ π−1)(πx′) =
∂∥πm∥1(F ◦ π−1)

∂x
(πm)1
1 · · · ∂x(πm)n

n

(πx′)

=
∂∥πm∥1F

∂x
mπ−1(1)

π−1(1) · · · ∂x
mπ−1(n)

π−1(n)

(π−1πx′)

=
∂∥m∥1F

∂xm1
1 · · · ∂xmn

n
(x′)

= DmF (x′)

From the above we have for general F ,

IHk
πS(πx, πx

′, F ◦ π−1) = lim
l→∞

IHk
πS(πx, πx

′,
∑

m∈Nn,0<∥m∥1≤l

Dm(F ◦ π−1)(πx′)

m!
(y − πx′)m)

= lim
l→∞

∑
m∈Nn,0<∥m∥1≤l

Dm(F ◦ π−1)(πx′)

m!
IHk

πS(πx, πx
′, (y − πx′)m)

= lim
l→∞

∑
m∈Nn,0<∥m∥1≤l

Dπm(F ◦ π−1)(πx′)

(πm)!
IHk

πS(πx, πx
′, (y − πx′)πm)

= lim
l→∞

∑
m∈Nn,0<∥m∥1≤l

Dm(F )(x′)

m!
IHk

S(x, x
′, (y − x′)m)

= lim
l→∞

IHS(x, x
′, Tl)

= IHS(x, x
′, F )

E.5.4. AUGMENTED INTEGRATED HESSIAN AND ITS PROPERTIES

The synergy function ϕ is taken implicitly with respect to a baseline appropriate to F . To make the baseline choice explicit,
we write ϕ(F ) = ϕ(x′, F ). Augmented Integrated Hessian is then defined as:

IHk∗
T (x, x′, F ) = ϕT (x

′, F )(x) + IHk
T (x, x

′, F −
∑
S∈Pk

ϕS(x
′, F )) (40)
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As in Augmented Recursive Shapley, Augmented Integrated Hessian explicitly distributes ϕT (F ) to group T when |T | ≤ k,
and distributes ϕT (F ) as IH when |T | > k.

To establish the monomial distribution policy we inspect the action of IHk∗
T in different cases. Plugging in (y − x′)m to the

above, if |Sm| ≤ k, the right term is zero and Eq. (10) holds, while if |Sm| > k, the left term is zero and the right term is
IHk

T (x, (y − x′)m). It is also easy to see that the above is linear.

Regarding the continuity condition, observe that:

ϕS(F ) =
∑

m∈Nn,Sm=S

Dm(F )(x′)

m!
(x− x′)m

= lim
l→∞

∑
m∈Nn,∥m∥1≤l,Sm=S

Dm(F )(x′)

m!
(x− x′)m

= lim
l→∞

ϕS(Tl),

which gains,

lim
l→∞

IHk∗
S (x, Tl) = lim

l→∞
ϕS(Tl)(x) + IHk

S(x, Tl −
∑

R∈Pk

ϕR(Tl))

= ϕS(F )(x) + IHk
S(x, lim

l→∞
Tl −

∑
S∈Pk

ϕR(Tl))

= IHk
S(x, F −

∑
R∈Pk

ϕR(F ))

= IHk∗
S (x, F ),

which establishes Corollary 4.

To show completeness, consider the decomposition F =
∑

S∈Pn
ϕS(F ). Now IHk∗ satisfies completeness for the subset of

functions ΦS ∈ CS , |S| ≤ k from the completeness of ϕ and Eq. (40). Also, IHk∗ satisfies completeness for the subset of
functions ΦS ∈ CS , |S| > k because IHk satisfies completeness. From this we have:

∑
T∈Pk,|T |≠0

IHk∗
T (x, x′, F ) =

∑
T∈Pk,|T |≠0

IHk∗
T (x, x′,

∑
S∈Pn

ϕS(F ))

=
∑
S∈Pn

∑
T∈Pk,|T |≠0

IHk∗
T (x, x′, ϕS(F ))

=
∑

S∈Pn,|S|≠0

[ϕS(F )(x)− ϕS(F )(x′)]

=
∑

S∈Pn,|S|≠0

[ϕS(F )(x)] + F (x′)− F (x′)

=
∑
S∈Pn

[ϕS(F )(x)]− F (x′)

= F (x)− F (x′)

Baseline test for interactions applies immediately from the definition of Augmented Integrated Hessian in Eq. (40).
Concerning null feature, suppose F does not vary in some xi and i ∈ T . First, we have ϕT (F ) = 0. Also, F−

∑
R∈Pk

ϕR(F )

does not vary in xi either, so, since IHk satisfies null feature. Thus we have IHk∗(x, F ) = 0 by Eq. (40).

Lastly, concerning symmetry, let π be a permutation. Note that ϕ is symmetric, as it is the k = n case for Shapley-Taylor,
which is symmetric. Then,
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IHk∗
πT (πx, πx

′, F ◦ π−1) = ϕπT (πx
′, F ◦ π−1)(πx) + IHk

πT (πx, πx
′, F ◦ π−1 −

∑
R∈Pk

ϕπR(πx
′, F ◦ π−1))

= ϕT (x
′, F )(x) + IHk

T (πx, πx
′, ϕπR(πx

′,
∑

R⊂N,|R|>k

F ◦ π−1))

= ϕT (x
′, F )(x) +

∑
R⊂N,|R|>k

IHk
T (πx, πx

′, ϕπR(πx
′, F ◦ π−1))

= ϕT (x
′, F )(x) +

∑
R⊂N,|R|>k

IHk
T (x, x

′, ϕR(x
′, F ))

= ϕT (x
′, F )(x) + IHk

T (x, x
′,

∑
R⊂N,|R|>k

ϕR(x
′, F ))

= IHk∗
T (x, x′, F )

E.6. Sum of Powers

E.6.1. DEFINING SUM OF POWERS

To define Sum of Powers, we first turn to defining a slight alteration of the Shapley-Taylor method. Suppose we performed
Shapley-Taylor on a function F , but we treated F as a function of every variable except for xi, which we held at the input
value. Specifically, for a given index i and coalition S with i ∈ S, we perform the (|S| − 1)-order Shapley-Taylor method
for the coalition S \ {i}. We perform this on an alteration of F , so that F is a function of n− 1 variables because the xi

value is fixed. We denote this function ST−i
S , which has formula:

ST−i
S (x, x′, F ) =

|S| − 1

n− 1

∑
T⊆N\S

δS\{i}|T∪{i}F (x)(
n−2
|T |

) (41)

With this, we define Sum of Powers for k ≥ 2 as:

SPk
S(x, x

′, F ) =

{∑
i∈S

[
ST−i

S (x, x′, IGi(·, x′, F ))
]

if |S| = k

ϕS(F ) if |S| < k
(42)

We define the Sum of Powers for k = 1 as the IG, with the addition that SP1
∅(x, x

′, F ) = F (x′).

Similar to the alteration of the Shapley-Taylor, we can alter the Shapley method, giving us:

Shap−i
j (x, x′, F ) =

∑
S⊂N\{i,j}

|S|!(n− |S| − 2)!

(n− 1)!

(
F (xS∪{i,j})− F (xS∪{i})

)
(43)

For the Sum of Powers k = 2 case, the altered Shapley-Taylor is a 1-order Shapley-Taylor method, and conforms to the
Shapley method:

SP2
i,j(x, x

′, F ) =

{
Shap−i

j (x, x′, IGi(·, x′, F )) + Shap−j
i (x, x′, IGj(·, x′, F )) if |S| = 2

ϕS(F ) if |S| ≤ 1
(44)

E.6.2. PROOF OF COROLLARY 5

For the k = 1 case, Sum of Powers is the IG, which satisfies linearity, distributes as in Eq. 11, and satisfies the continuity
condition.

We now assume k ≥ 2 for the rest of the section. First, SPk
S satisfies linearity because IG is linear in F and ST−i

S is linear in
F .
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We now proceed by cases to establish how SPk distributes monomials. We consider first the action of ST−i
S on F (y) =

(y − x′)m. ST−i
S acts as the (|S| − 1)-order Shapley-Taylor on an augmented function F−i(y1, ..., yi−1, yi+1, ..., yi) :=

(xi − x′
i)

miΠj ̸=i(yj − x′
j)

mj . Now, Πj ̸=i(yj − x′
j)

mj is a synergy function of Sm \ {i}. Thus we can use the distribution
rule of Shapley-Taylor, gaining

ST−i
S (x, x′, F ) = ST|S|−1

S\{i}(x−i, x
′
−i, F

−i)

=


(xi − x′

i)
m if S = Sm

(xi−x′
i)

m

(|S|−1
k−1 )

if S ⊊ Sm, |S| = k

0 else

,
(45)

where x−i denotes the vector x with the ith component removed.

With this established, we now show the action of the Sum of Powers method for an exhaustive set of cases:

1. (|S| < k, S = Sm): SPk
S(x, (y − x′)m) = ϕS((y − x′)m) = (y − x′)m.

2. (|S| < k, S ̸= Sm): SPk
S(x, (y − x′)m) = ϕS((y − x′)m) = 0.

3. (|S| = k, S ⊆ Sm):

SPk
S(x, x

′, (y − x′)m) =
∑
i∈S

[
ST−i

S (x, x′, IGi(·, x′, (y − x′)m)
]

=
∑
i∈S

[
ST−i

S (x, x′,
mi

∥m∥1
(y − x′)m)

]
=

∑
i∈S

1(|Sm|−1
|S|−1

) mi

∥m∥1
(x− x′)m

=
1(|Sm|−1

|S|−1

) ∑i∈S mi

∥m∥1
(x− x′)m

4. (|S| = k, S ⊈ Sm): Let i ∈ S. If i ∈ S \ Sm, then ST−i
S (x, x′, IGi(·, x′, (y − x′)m)) = ST−i

S (x, x′, 0)) = 0.

If, on the other hand, i ∈ Sm, then ST−i
S (x, x′, IGi(·, x′, (y−x′)m)) = ST−i

S (x, x′, mi

∥m∥1
(y−x′)m). Now, the altered

Shapley-Taylor takes the value of zero for synergy functions of sets that are not super-sets of the attributed group, S\{i}.
Also, (y−x′)m is a synergy function of Sm, and Sm is not a super-set of S\{i}. Thus ST−i

S (x, x′, mi

∥m∥1
(y−x′)m) = 0.

This established that each term in the sum
∑

i∈S

[
ST−i

S (x, x′, IGi(·, x′, (y − x′)m))
]

is zero, gaining SPk
S(x, x

′, (y −
x′)m = 0.

Thus Sum of Powers has a distribution scheme that agrees with Eq. (11). To restate:

SPk
T (x, (y − x)m) =


(x− x′)m if T = Sm

1

(|Sm|−1
k−1 )

∑
i∈T mi

∥m∥1
(x− x′)m if T ⊊ Sm, |T | = k

0 else

(46)

Finally, IG satisfies the continuity condition by Corollary 3, and it is easy to see that that ST−1
S satisfies the continuity

condition. Thus Sum of Powers obeys the continuity condition.
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E.6.3. ESTABLISHING FURTHER PROPERTIES FOR SUM OF POWERS

To establish null feature, let F not vary in xi and let i ∈ S. Sum of Powers satisfies the continuity condition, so

SPk
S(x, x

′, F ) = lim
l→∞

∑
m∈Nn,|m|≤l

DmF (x′)

m!
SPk

S(x, x
′, (y − x′)m)

= lim
l→∞

∑
m∈Nn,|m|≤l,mi=0

DmF (x′)

m!
SPk

S(x, x
′, (y − x′)m)

= 0,

where the second line is because DmF (x′) = 0 if mi > 0 because F does not vary in xi, and the third line is because
SPk

S(x, x
′, (y − x′)m) = 0 if mi = 0.

To establish baseline test for interaction (k ≤ n), let ΦS ∈ Cω be a synergy function of S and let T ⊊ S, |T | < k. Then
SPk

T (x,ΦS) = ϕT (ΦS)(x) = 0.

To establish completeness, consider F (y) = (y − x′)m, with |Sm| > k. Then,

∑
S∈Pk,|S|>0

SPk
S(x, x

′, F ) =
∑

S⊊Sm,|S|=k

SPk
S(x, x

′, (y − x′)m)

=
∑

S⊊Sm,|S|=k

1(|Sm|−1
k−1

) ∑i∈S mi

∥m∥1
(x− x′)m

=
(x− x′)m(|Sm|−1
k−1

)
∥m∥1

∑
S⊊Sm,|S|=k

∑
i∈S

mi

=
(x− x′)m(|Sm|−1
k−1

)
∥m∥1

(
|Sm| − 1

k − 1

)
∥m∥1

= F (x)− F (x′)

Now treating a general F ∈ Cω , the proof is identical to the proof for Integrated Hessian,

∑
S∈Pk,|S|>0

SPk
T (x, x

′, F ) =
∑

S∈Pk,|S|>0

lim
l→∞

SPk
T (x, x

′, Tl)

= lim
l→∞

∑
S∈Pk,|S|>0

∑
m∈Nn,0<∥m∥1≤l

Dm(F )(x′)

m!
SPk

T (x, x
′, (y − x′)m)

= lim
l→∞

∑
m∈Nn,0<∥m∥1≤l

Dm(F )(x′)

m!

∑
S∈Pk,|S|>0

SPk
T (x, x

′, (y − x′)m)

= lim
l→∞

∑
m∈Nn,0<∥m∥1≤l

Dm(F )(x′)

m!
(x− x′)m

= lim
l→∞

∑
m∈Nn,∥m∥1≤l

Dm(F )(x′)

m!
(x− x′)m − F (x′)

= F (x)− F (x′)

To show symmetry, the proof parallels the proof for Integrated Hessian in section E.5.3. Let π be a permutation. If we let
F (y) = (y − x′)m and follow what was previously established in section E.5.3, then
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SPk
πT (πx, πx

′, F ◦ π−1) =


(πx− πx′)πm if πT = Sπm

1

(|Sπm|−1
k−1 )

∑
i∈πT (πm)i
∥πm∥1

(πx− πx′)πm if πT ⊊ Sπm, |πT | = k

0 else

=


(x− x′)m if T = Sm

1

(|Sm|−1
k−1 )

∑
i∈T mi

∥m∥1
(x− x′)m if T ⊊ Sm, |T | = k

0 else

= SPk
T (x, x

′, F )

From the above we have for general F ,

SPk
πS(πx, πx

′, F ◦ π−1) = lim
l→∞

SPk
πS(πx, πx

′,
∑

m∈Nn,0<∥m∥1≤l

Dm(F ◦ π−1)(πx′)

m!
(y − πx′)m)

= lim
l→∞

∑
m∈Nn,0<∥m∥1≤l

Dm(F ◦ π−1)(πx′)

m!
SPk

πS(πx, πx
′, (y − πx′)m)

= lim
l→∞

∑
m∈Nn,0<∥m∥1≤l

Dπm(F ◦ π−1)(πx′)

(πm)!
SPk

πS(πx, πx
′, (y − πx′)πm)

= lim
l→∞

∑
m∈Nn,0<∥m∥1≤l

Dm(F )(x′)

m!
SPk

S(x, x
′, (y − x′)m)

= lim
l→∞

SP(x, x′, Tl)

= SP(x, x′, F )

F. Experimental Details and Additional Results
All experiments are conducted on a device with a 6-core Intel Core i7-8700.

F.1. Model Description and Experimental Details

F.1.1. 2-LAYER PERCEPTRON

We use a 2-layer perceptron with 64 neurons in the first layer and 32 neurons in the second layer. For activation, we use
SoftPlus

SoftPlus(x) =
1

β
log (1 + exp (βx))

with β = 5 after each layer. We optimize using the Adam algorithm with the default hyper-parameters (Kingma & Ba, 2014)
and the learning rate of 0.1054. We train the model for 1000 epochs with the whole training data, and the network achieves
a test Mean-Absolute-Error (MAE) of 3.10 and a test Root-Mean-Squared-Error (MRSE) of 4.14.

Hyperparameter tuning: The number of neurons in each layer includes values 8, 16, 32, 64, and 128 such that the size of
the first hidden layer should be larger than or equal to the size of the second layer. For each dimension of the neural network,
we swept through a range of stepsizes and values of β to find the (approximately) optimal stepsize and β. The stepsize grid
consists of 5 evenly spaced points between e−6 and e−1. The β parameter of the SoftPlus activation includes values of 1
and 5.

F.1.2. SECOND-DEGREE POLYNOMIAL REGRESSION

We use the LinearRegression function from scikit-learn (Pedregosa et al., 2011) with default values to train the polynomial
regression model.
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F.2. Description of the Dataset

The Physicochemical Properties of Protein Tertiary Structure data is available at https://archive.ics.uci.edu/
ml/datasets/Physicochemical+Properties+of+Protein+Tertiary+Structure. After preprocess-
ing, there were a total of 9 input features from this dataset and it contained around 45,730 entries in total. The regression
task is to predict the size of the residue. The list of features:

1. Total surface area (mean: 9871.60± standard deviation: 4058.14)

2. Non polar exposed area (3017.37± 1464.32)

3. Fractional area of exposed non polar residue (0.30± 0.06)

4. Fractional area of exposed non polar part of residue (103.49± 55.42)

5. Molecular mass weighted exposed area (1.37e+06± 5.64e+05)

6. Average deviation from standard exposed area of residue (145.64± 70.00)

7. Euclidian distance (3989.76± 1993.57)

8. Secondary structure penalty (69.98± 56.49)

9. Spacial Distribution constraints (N, K Value) (34.52± 5.98)

Preprocessing: We standardize the numerical data to have mean zero and unit variance. We utilize a 70/15/15
train/validation/test split for data.

F.3. More Details on Generating Attribution and Interaction Values

To generate the attributions using Integrated Gradient and compute the interactions utilizing Integrated Hessian and Sum of
Powers, we use 200 samples from the dataset. We use numerical integration with 500 samples to approximate the integral in
Integrated Gradient and Integrated Hession.

F.4. Standard Deviation of the Interaction Values

Figure 5 demonstrates the standard deviation of the interaction values from Integrated Hessian and Sum of Powers. We
notice that the standard deviation of feature 1 and feature 6 is much higher in Sum of Powers than in Integrated Hessian.
Furthermore, we see that small mean interaction values (see Figure 1 and Figure 2) do not imply low interaction between
features, as they can have large standard deviation values (e.g., feature 1 and feature 4).

Figure 5. Standard deviation of interaction values. Left: Integrated Hessian. Right: Sum of Powers.
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F.5. Attribution Values

The attribution values of each feature based on Integrated Gradient are displayed in Figure 6. The features are ordered
by their importance in predicting the target. The attribution values indicate the direction and magnitude of the feature’s
influence on the size of the residue (positive values imply an increase, negative values imply a decrease). The positive trend
observed for total surface area suggests that a larger total surface area is associated with a larger size of the residue, which is
consistent with intuition.

Figure 6. Attributions by Integrated Hessian.
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