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ABSTRACT

Concept Bottleneck Models (CBMs) achieve interpretability by interposing a
human-understandable concept layer between perception and label prediction.
The foundation of CBMs lies in the many-to-many mapping that translates high-
dimensional visual features to a set of discrete concepts. However, we identify
a critical and pervasive challenge that undermines this process: representational
collapse, where visual patch features degenerate into a low-rank subspace dur-
ing training, severely degrading the quality of learned concept activation vectors,
thus hindering both model interpretability and downstream performance. To ad-
dress these issues, we propose Implicit Vector Quantization (IVQ), a lightweight
regularizer that maintains high-rank, diverse representations throughout training.
Rather than imposing a hard bottleneck via direct quantization, IVQ learns a code-
book prior that anchors semantic information in visual features, allowing it to
act as a proxy objective. To further exploit these high-rank concept-aware fea-
tures, we propose Magnet Attention, which dynamically aggregates patch-level
features into visual concept prototypes, explicitly modeling the many-to-many
vision–concept correspondence. Extensive experimental results show that our ap-
proach effectively prevents representational collapse and achieves state-of-the-art
performance on eight diverse benchmarks. Our experiments further probe the
low-rank phenomenon in representational collapse, finding that IVQ mitigates the
information bottleneck and yields cross-modal representations with clearer, more
interpretable consistency.

1 INTRODUCTION

Explainable Artificial Intelligence (xAI) aims to embed neural networks with human–interpretable
and interactive reasoning processes, thereby opening the black box of end-to-end prediction systems.
Among the ante-hoc xAI methods, the Concept Bottleneck Model (CBM) (Koh et al., 2020) is a
prominent approach that pipelines predictions through an intermediate concept layer. This layer,
situated between a perceptual encoder and a final task head, forces the model to operate in two
distinct stages: First, a perception stage maps inputs to a set of predefined semantic concepts (e.g.,
shape of a beak or spatial extent of a lesion). Second, a reasoning stage uses only these concept
activation vectors (CAVs) to make the final decision.

In the two-stage learning, perception and modeling of CAVs in the initial stage is foundational. The
core of this stage lies in constructing a cross-modal patch-concept alignment process, which compels
the model to learn the mapping and disentanglement of raw, high-dimensional visual embeddings
into a set of structured visual representation vectors corresponding to human-defined concepts. As
illustrated in Figure 1a, an intrinsic many-to-many correspondence exists between local visual fea-
tures and high level semantic concepts within the cross-modal concept alignment. The relationship
is two-fold: an individual image patch may map to multiple concepts, while concurrently, the visual
representation of a single concept is distributed across several distinct image patches. However, pre-
vious methods such as (Yang et al., 2023; Yuksekgonul et al., 2023; Oikarinen et al., 2023; Sheth &
Kahou, 2023) employ a visual encoder to extract a single global embedding for concept alignment.
Due to the limited expressiveness of a single visual feature, these approaches fail to explicitly model
the complex many-to-many mapping between local features and high-level concepts.
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However, when we attempt to explicitly construct this relationship, a critical phenomenon termed
representational collapse emerges, severely impeding the process. As presented in Figure 1b, we
tracked the rank of the patch feature matrix throughout the training; the rank undergoes a sharp
decline during the initial epochs on both training and validation sets, eventually bottoming out at a
rank of 70, a drastic reduction from the potential full rank of 196. This behavior is not an anomaly;
as shown in Figure 1c, concurrent works such as ExplicD (Gao et al., 2024) and MVP-CBM (Wang
et al., 2025) exhibit a similar pattern, suggesting that representational collapse is a fundamental
obstacle in this domain. Meanwhile, its essence is a symptom of a more fundamental problem:
the collapse of feature diversity. This collapse is particularly damaging for CBMs, as a degenerated
representation space lacks the expressive capacity to encode a diverse set of concepts (Sansone et al.,
2025). When visual feature embeddings become highly similar and informationally redundant, the
learning process itself is confounded (Jing et al., 2022), directly inhibiting the formation of high-
quality, disentangled visual features, which are the foundation of the CBM.

Figure 1: (a) An illustration of many-to-many cross-modal alignment in CBMs. (b) Comparison of feature rank
dynamics during training on the training and validation sets, with and without IVQ. (c) Feature rank dynamic
comparisons with previous baselines.

Hence, we introduce Implicit Vector Quantization (IVQ), a novel regularizer that repurposes the VQ
objective as a loss term without quantizing the forward pass. The loss effectively forms a semantic
bridge, compelling each patch feature to align with the nearest learned codebook prototype. Collec-
tively, these prototypes act as distinct anchors that prevent the feature distribution from collapsing
into a degenerate subspace. As depicted in Figure 1b and c, this directly counters representation col-
lapse by maintaining a stable and elevated feature rank throughout training. Furthermore, building
upon concept-aware, well-structured visual features, we introduce a Magnet Attention mechanism,
which dynamically aggregates the diverse patch-level features into a holistic, semantically coher-
ent visual representation prototype for each pre-defined textual concept, effectively modeling the
many-to-many mapping.

This work makes three key contributions:

• We identify that the key to CBMs lies in modeling the many-to-many relationship between
concepts and patches. Furthermore, we identify and analyze representational collapse, a
key challenge in training modern CBMs that hinders the establishment of CAVs.

• We propose IVQ, a novel regularization method that preserves feature diversity and pre-
vents representational collapse without creating an information bottleneck. To exploit ob-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

tained rich representations, we introduce the Magnet Attention mechanism to effectively
aggregate the regularized patch features into semantically meaningful concept prototypes.

• Extensive experiments on eight benchmarks demonstrate that our IVQ-CBM consistently
outperforms eight strong baselines, achieving state-of-the-art accuracy and learning better
interpretable representations consistent with textual concepts.

2 RELATED WORK

Concept Bottleneck Model. It achieves interpretability-by-design by introducing a human-defined
concept layer that bridges raw visual features and human-understandable semantics, providing a
foundational explanation for the model’s final decision (Koh et al., 2020). A key challenge lies in
achieving high-quality cross-modal alignment, i.e., constructing a precise, fine-grained mapping be-
tween visual features and textual concepts. However, many popular methods (Yuksekgonul et al.,
2023; Oikarinen et al., 2023) rely on a single, holistic visual feature, such as the [CLS] token from
CLIP-style models or a global image embedding from visual foundation models (Kim et al., 2023).
These approaches operate on the premise that a global feature vector encapsulates all necessary
visual attributes (Zhang et al., 2014; Raghu et al., 2022). This assumption is untenable in com-
plex visual scenes, especially for medical images characterized by subtle, intricate, and fragmented
lesions (Chen et al., 2021).

To establish a more fine-grained, many-to-many mapping, recent works have begun to leverage
patch-level embeddings from Vision Transformers (ViTs) (Dosovitskiy et al., 2021), which offer a
powerful prior for perception and alignment. Several works have ventured in this direction, em-
ploying techniques such as Optimal Transport (Xie et al., 2025), or Cross-Attention and dynamic
pooling to learn visual concepts (Wang et al., 2025; Gao et al., 2024), yet a critical issue arises: the
visual features extracted from the encoder suffer from representational collapse, a phenomenon
where the feature vectors degenerate into a low-dimensional subspace, becoming informationally
redundant and lacking diversity.

Representation Regularization. Low-rank issue has been extensively studied in the self-supervised
learning (SSL) literature. For instance, Barlow Twins (Zbontar et al., 2021) mitigates collapse by
minimizing the redundancy between feature dimensions via a cross-correlation matrix. Other tech-
niques, such as spectral regularization (Yoshida & Miyato, 2017), constrain the spectral norm of
weight matrices to improve generalization. A more recent work DINOv3 (Siméoni et al., 2025) in-
troduces gram regularization loss to prevent the model’s output from collapsing to a trivial solution.

Nevertheless, a critical drawback exists in directly applying these techniques to CBMs: they are not
tailored for the specific demands of the CBM task, nor are they designed for cross-modal, many-
to-many alignment. Specifically, the core objective of these regularization methods is to indiscrimi-
nately maximize feature diversity or reduce redundancy (Huang et al., 2017; Gao & Pu, 2025). For
CBMs, however, the goal is not arbitrary diversity, but rather meaningful, structured diversity that
aligns with human-defined concepts. Indiscriminate decorrelation or spectral regularization cannot
guarantee that the learned feature diversity has any correspondence with the predefined semantic
concepts. Consequently, these methods may amplify trivial visual details that are useless or even
detrimental to the final task, thereby interfering with the formation of high-quality concept vectors
(as we demonstrate in Section 4.2).

Vector Quantization. VQ has played a central role in learning discrete latent representations.
Early work on Neural Discrete Representation Learning (Van Den Oord et al., 2017a) introduced
codebook-based quantization that enables end-to-end training through a nearest-neighbor commit-
ment objective. Follow-up variants such as VQ-VAE-2 (Razavi et al., 2019) further enhanced gener-
ative fidelity via multi-level discrete hierarchies. Beyond architectural extensions, a series of studies
examined the optimization challenges of VQ. Rotation-based VQ (Fifty et al., 2025) restructures
the quantization space to stabilize code assignments, whereas linear-layer VQ (Zhu et al., 2025)
proposes lightweight transformations to mitigate representation collapse and improve codebook
utilization. VQ has also been explored within broader perceptual tasks: Vector-Quantized Vision
Foundation Models (Zhao et al., 2025) leveraged discrete visual tokens for object-centric learning,
and scaling studies, such as 100k-VQGAN (Zhu et al., 2024), demonstrated that extremely large
codebooks can maintain high utilization. More recent designs like MGVQ (Jia et al., 2025) adopt
multi-group quantization to increase representational granularity and improve generalization.
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Despite these advances, prior works rely on explicit quantization, where the quantized vectors re-
place continuous features in the forward pass. Such a hard discrete bottleneck is often beneficial
for generative modeling but is misaligned with CBMs, which require preserving rich, distributed
semantic information and allowing many-to-many relations between patches and concepts.

Figure 2: A pipeline of the proposed IVQ-CBM method which optimizes training from three dimensions:
classification accuracy, concept alignment, as well as representation diversity and quality. An many-to-many
mapping between visual embeddings and textual concepts establish the foundation of our model. IVQ fur-
ther regularizes the representation space and helps to maintain and distill the core information for each patch
throughout training. Building upon obtained high-rank concept-aware features, magnet aggregates visual con-
cepts from raw embeddings, regarded as input for concept alignment and final classification.

3 METHODOLOGY

3.1 PRELIMINARIES AND OVERALL FRAMEWORK

Problem Formulation. Consider a dataset of triplets D = {(xi, ci, yi)}Ni=1, where xi ∈ X is an
input image, yi ∈ Y denotes the corresponding class label, and ci is a set of textual descriptions
defining the concepts associated with class yi. In contrast to standard black-box models that directly
learn a mapping xi → yi, the CBM pipeline is formulated as a two-stage process: xi → ci → yi.
First, the alignment stage produces a CAV, which we denote as vi ∈ RK . This vector contains the
activation scores for all K concepts for a given image xi. It is generated by aligning the learned
Visual Concepts,M ∈ RK×D, with their corresponding textual concept embeddings, τ ∈ RK×D.
Specifically, the activation score for the k-th concept is computed as the dot product between its
visual and textual representations:

(vi)k =Mk · τk, ∀k ∈ {1, . . . ,K}. (1)

The CAVs then serve as the exclusive input for the second-stage classification task. Given the
straightforward mechanism of the second stage, achieving precise and efficient image-concept align-
ment in the first stage is of paramount importance.

Visual Concept Learning. To acquire fine-grained visual features, we leverage a pre-trained CLIP
ViT encoder to obtain a structured visual representation from the input image xi:

Zv = [zcls, z1, z2, . . . , zL] = EI(xi) ∈ R(L+1)×D. (2)

where zcls is the class token embedding and Zp = [z1, . . . , zL] ∈ RL×D represents the matrix of
patch token embeddings. This patch-level representation is crucial, as a single textual concept often
corresponds to information spanning multiple patches, while a single patch may contain details
relevant to multiple concepts.

This complex, many-to-many mapping necessitates a sophisticated mechanism to bridge the gap
between local features and high-level concepts. Therefore, our objective is to aggregate the patch
features Zp into K meaningful Visual Concepts, denoted by the matrix M ∈ RK×D. These
learned Visual Concepts are subsequently used for the final concept-text alignment as described
in our problem formulation. The following sections detail the two core components of our method
designed to achieve this: IVQ for representation regularization and the Magnet Attention mechanism
for concept aggregation.
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3.2 IMPLICIT VECTOR QUANTIZATION

To mitigate the aforementioned issues, we propose a novel IVQ mechanism. In contrast to conven-
tional VQ approaches, which first identify the nearest codebook vector over a distance metric and
subsequently propagate the resulting quantized features through the forward pass, our IVQ method
strategically discards the quantized features. Instead, it exclusively leverages the commitment and
codebook losses as regularization terms during backpropagation. This process compels each visual
patch embedding to align more closely with its nearest codebook vector—which semantically cor-
responds to a textual concept, as will be verified in our Section 4.2. This, in turn, distills the core
conceptual information while simultaneously regularizing the representation space and enhancing
the diversity of visual features, ultimately benefiting the subsequent aggregation of visual concepts.

Given the encoded visual patch features Zp = {zj}Lj=1, a critical challenge is to prevent representa-
tion collapse and enhance feature diversity. We maintain a small, learnable codebook Cvq ∈ RM×D,
where M equals the number of textual concepts K (discussed in Section 4.2). For each patch feature
zj ∈ Zp, we find the nearest codebook vector ck ∈ Cvq via an argmin operation over the Euclidean
distance:

kj = argmin
k
∥zj − ck∥22. (3)

The quantized representation zq,j = ckj
. However, we discard this quantized output Zq and do

not use it in the subsequent forward pass. Instead, we compute the VQ loss, which consists of a
codebook loss and a commitment loss, to update the feature encoder and Cvq :

LIVQ = ∥sg(Zp)− Zq∥22︸ ︷︷ ︸
Codebook Loss

+β ∥Zp − sg(Zq)∥22︸ ︷︷ ︸
Commitment Loss

, (4)

where sg(·) denotes the stop-gradient operator and β is the commitment cost hyperparameter. By
backpropagating LIVQ, we compel the patch features in Zv to align with a learned prototype without
suffering from the information bottleneck of hard quantization. This process regularizes the repre-
sentation space, encouraging a more structured and diverse feature distribution, which is crucial for
the subsequent aggregation stage.

3.3 MAGNET CONCEPT AGGREGATION

With a regularized, high-rank feature space established by IVQ, we now introduce a mechanism
to bridge the gap between low-level visual features and high-level semantic concepts. A simple
spatial pooling of all patch features would lose critical fine-grained information (Wang et al., 2025).
Therefore, we propose the Magnet Attention mechanism, a differentiable soft-clustering module
designed to aggregate the L patch features into K semantically meaningful Visual Concepts.

To achieve this, we first introduce a set of learnable concept queries, denoted as Q ∈ RK×D, where
K is the number of concepts. Each query vector qk ∈ Q acts as a learnable center-point to attract
patch features related to a specific concept. For the input patch features Zp = {zj}Lj=1, we compute
a similarity score between each patch feature zj and each concept query qk. Following common
practice, we use negative squared Euclidean distance as the similarity metric (Van Den Oord et al.,
2017b).

This similarity is then converted into a soft assignment matrix A ∈ RL×K via a softmax function
over the concepts:

Ajk =
exp(−∥zj − qk∥22)∑K

k′=1 exp(−∥zj − qk′∥22)
, (5)

where Ajk represents the soft-assignment weight of the j-th patch to the k-th concept query. These
weights form an attention map over the patches for each concept. The final Visual Concepts, de-
noted by the matrixM∈ RK×D, are then computed as a weighted average of the patch features:

M = A⊤Zp. (6)

The resulting matrixM contains K rich visual concept prototypes, each summarizing the relevant
spatial information from the image corresponding to a distinct semantic concept. This aggregated
representationM is then used for the final alignment with the textual concept embeddings τ .
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3.4 TRAINING OBJECTIVES

We train our model end-to-end with a composite loss that simultaneously optimizes for task accu-
racy, concept alignment, and representation quality.

Classification Loss. The primary objective is to ensure the model accurately performs the final
classification task. Let hcls denote the final classification head. It takes the vector of concept activa-
tion scores vi ∈ RK as input to produce the final class logits pi = hcls(vi). As defined previously,
each score (vi)k represents the alignment between the k-th visual concept and the k-th textual con-
cept. The classification loss Lcls is the standard cross-entropy between the predicted logits and the
ground-truth class label yi:

Lcls = LCE(pi, yi). (7)

Concept Alignment Loss. To ensure the model’s interpretability, we explicitly supervise the con-
cept bottleneck. The concept activation scores vi ∈ RK serve as the logits for concept prediction.
We supervise these logits against the ground-truth concept labels ci ∈ {0, 1}K , which is a multi-hot
vector indicating the presence of each of the K concepts for the sample xi. The concept alignment
loss Lconcept is the binary cross-entropy (BCE) loss between the predicted concept scores and the
ground-truth labels:

Lconcept = LBCE(vi, ci). (8)
This loss is crucial as it forces the model to learn a set of visually grounded and semantically mean-
ingful concepts.

IVQ Regularization Loss. As detailed previously, the LIVQ encourages the patch-level features
to form a more structured and diverse representation space without introducing a hard information
bottleneck. This improves the robustness of the feature extractor and aids the Magnet Attention
mechanism in forming higher-quality Visual Concepts.

Overall Training Objective. The final training objective combines these three components into a
single multi-task loss function. The total loss L is formulated as a weighted sum:

L = Lcls + Lconcept + LIVQ. (9)

4 EXPERIMENTS AND DISCUSSIONS

Core Questions. We structure our analysis around a series of research questions (RQs) to thoroughly
investigate the properties and efficacy of our proposed method. Our goal is to dissect its underlying
mechanisms, justify its design choices, and demonstrate its advantages in terms of performance and
interpretability.

RQ1: Impact on Representation Collapse. How does implicit quantization affect the rank of the
learned representations? Figure. 4 and 6.

RQ2: Efficacy of Implicit Quantization. Is implicit quantization a genuinely effective technique?
How does it conceptually and empirically differ from explicit quantization? Section. 4.2

RQ3: Implicit Quantization as a Regularizer. Our method can be interpreted as a form of repre-
sentation space regularization. How does its performance compare against other established
regularization techniques? Why does our proposed implicit quantization, which leverages a
codebook, outperform traditional regularization techniques on CBM? Section. 4.2

RQ4: Optimal Codebook Configuration. The core component of our method is the codebook, which
is dynamically updated throughout training. What is the optimal relationship between the code-
book size, M , and the number of textual concept vectors, K? Section. 4.2

RQ5: Interpretability as a Visual Dictionary. Beyond performance, how does the codebook con-
tribute to model interpretability? Section. 4.2

Baselines, Benchmarks, and Metrics. To comprehensively evaluate the robustness and general-
ization of our method, we conduct experiments on a diverse suite of public benchmarks spanning
two distinct domains. First, for medical imaging, we utilize datasets covering dermoscopy (Codella
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et al., 2019), histopathology (Kather et al., 2018), fundus photography (Porwal et al., 2018; yiwe-
ichen04, 2021), ultrasound (Al-Dhabyani et al., 2020), chest X-ray (Zawacki et al., 2019; Johnson
et al., 2019), and mammography (Cui et al., 2021). Second, to demonstrate the broad generaliz-
ability of IVQ-CBM to natural images, we extend our evaluation to five standard computer vision
benchmarks: CIFAR-10 and CIFAR-100 (Krizhevsky, 2009) for general object classification, CUB-
200-2011 (Wah et al., 2011) for fine-grained identification, Places365 (Zhou et al., 2017) for scene
recognition, and ImageNet-1K (Russakovsky et al., 2015) for large-scale classification.

To demonstrate its effectiveness, we benchmark our approach against eight recent and popular CBM
methods: LaBo (Yang et al., 2023), PCBM (Yuksekgonul et al., 2023), COOP-CBM (Sheth & Ka-
hou, 2023), LF-CBM (Oikarinen et al., 2023), Explicd (Gao et al., 2024), MVP-CBM (Wang et al.,
2025), CLEAR (Dikter et al., 2024), and DOT-CBM (Xie et al., 2025). Besides, following (Gao
et al., 2024; Wang et al., 2025), we also compare black-box models (He et al., 2015; Dosovitskiy
et al., 2021) and multi-modal backbones (Radford et al., 2021; Wang et al., 2022; Zhang et al., 2025).

To account for the class imbalance prevalent in these benchmarks, we employ both Accuracy (ACC)
and Balanced Macro Average Accuracy (BMAC) for a comprehensive evaluation. For implementa-
tion details, please refer to Appendix B.

Table 1: Performance comparison (ACC % and BMAC %) on multiple medical datasets. We evaluate our model
against various zero-shot, black-box, and explainable models. Best results are highlighted in bold. Gains are
compared within Explainable methods.

Model ISIC NCT IDRID BUSI Retina SIIM Cardio CMMD

ACC BMAC ACC BMAC ACC BMAC ACC BMAC ACC BMAC ACC BMAC ACC BMAC ACC BMAC

Zero-shot
CLIP [ICML 2021] 29.88 21.32 26.67 26.71 29.84 25.92 43.85 37.85 18.33 25.00 41.01 22.15 54.81 49.12 27.10 34.00
MedCLIP [EMNLP 2022] 13.68 15.31 9.57 12.05 16.86 19.57 27.44 43.19 17.50 25.42 42.34 41.01 45.94 46.66 27.10 30.72
BiomedCLIP [NEJM AI 2025] 59.83 24.47 40.51 40.39 39.15 30.31 29.36 36.45 53.33 38.33 39.88 20.92 49.13 46.70 52.90 50.00
Black-box
ResNet50 [CVPR 2016] 83.53 76.53 92.12 91.34 54.38 55.88 76.41 75.84 78.33 77.50 87.97 76.21 81.51 81.51 74.59 60.46
ViT Base [ICLR 2021] 90.01 84.14 93.25 92.73 58.07 54.70 80.25 83.63 83.33 76.66 83.56 74.15 79.60 79.61 74.77 60.35
Explainable
LaBo [CVPR 2023] 79.20 80.83 91.73 91.62 50.77 54.17 84.01 85.98 72.60 73.83 74.13 72.16 73.48 73.73 70.78 65.59
PCBM [ICLR 2023] 85.91 81.76 91.77 91.18 54.36 58.85 84.64 88.91 66.67 69.17 80.02 75.68 76.43 76.41 69.24 66.68
COOP-CBM [Nips 2023] 86.82 79.25 93.43 93.78 61.22 50.41 89.61 89.73 85.00 80.83 86.14 79.81 80.57 80.58 77.28 64.25
LF-CBM [ICLR 2023] 83.55 78.46 87.92 87.77 60.59 56.97 76.77 75.77 73.33 70.83 77.62 71.59 75.95 75.95 74.75 60.18
Explicd [MICCAI 2024] 88.72 82.42 95.29 94.73 63.26 63.61 87.17 87.37 83.33 81.67 85.70 78.90 78.95 78.94 76.74 60.48
MVP-CBM [IJCAI 2025] 87.72 80.35 97.90 97.89 65.38 57.78 89.74 91.45 85.00 83.33 84.89 78.95 80.29 80.29 75.84 56.15
CLEAR [WACV 2025] 86.25 81.11 89.05 86.86 56.54 58.33 83.85 83.33 72.89 70.56 78.26 70.12 78.22 78.18 73.35 61.23
DOT-CBM [CVPR 2025] 86.55 81.37 90.15 91.51 58.45 59.12 85.23 84.10 74.59 71.88 79.52 76.48 77.15 77.10 71.15 62.98
IVQ-CBM (Ours) 90.11 86.22 99.90 99.88 67.35 73.06 93.59 95.38 88.33 85.83 88.03 81.91 82.01 82.01 79.25 69.70

+∆ +1.39 +3.80 +2.00 +1.99 +1.97 +9.45 +3.85 +3.93 +3.33 +2.50 +1.89 +2.10 +1.44 +1.43 +1.97 +3.02

Table 2: Performance comparison (ACC % and BMAC %) on multiple benchmark datasets. We evaluate
our model against various state-of-the-art methods. Best results are highlighted in bold. Gains are compared
against the second-best method.

Model CIFAR-10 CIFAR-100 CUB Places365 ImageNet

ACC BMAC ACC BMAC ACC BMAC ACC BMAC ACC BMAC

LaBo [CVPR 2023] 80.23 79.15 60.17 59.95 69.88 69.72 39.67 39.41 68.04 67.88
PCBM [ICLR 2023] 84.61 84.49 63.22 63.07 72.36 72.19 41.13 40.99 70.14 69.97
COOP-CBM [Nips 2023] 85.17 84.99 64.21 64.03 73.06 72.87 42.19 42.01 71.23 71.09
LF-CBM [ICLR 2023] 82.94 82.78 61.89 61.73 71.42 71.22 40.33 40.15 69.46 69.21
Explicd [MICCAI 2024] 86.03 85.88 64.91 64.78 74.08 73.91 43.07 42.89 71.93 71.77
MVP-CBM [IJCAI 2025] 86.72 86.54 65.48 65.30 74.63 74.45 43.81 43.66 72.29 72.15
CLEAR [WACV 2025] 83.77 83.59 62.83 62.61 71.84 71.69 40.92 40.75 68.81 68.66
DOT-CBM [CVPR 2025] 84.38 84.19 63.45 63.28 72.29 72.11 41.76 41.53 69.31 69.17
IVQ-CBM (Ours) 88.14 87.91 67.12 66.88 75.91 75.68 45.54 45.32 73.42 73.23

+∆ +1.42 +1.37 +1.64 +1.58 +1.28 +1.23 +1.73 +1.66 +1.13 +1.08

4.1 BASIC EXPERIMENTS

Benchmark Comparison. As demonstrated in our experiments in Table 1, our method consistently
outperforms all baselines across the entire suite of medical datasets, illustrating its robust capabilities
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Table 3: Ablation experiments showing both ACC and BMAC metrics for each experimental setup. The final
rows display the performance gains (+∆ in red) of our full model over the second-best configuration.

Components Metric Datasets

IVQ Magnet ISIC NCT IDRID BUSI Retina SIIM Cardio CMMD

✗ ✔
ACC 80.88 95.23 57.14 88.46 75.00 85.72 80.21 74.59

BMAC 84.84 94.92 45.27 87.37 69.16 78.45 80.21 52.55

✔ ✗
ACC 89.42 96.23 65.38 92.31 83.33 86.47 81.11 77.63

BMAC 82.85 95.61 61.25 91.15 80.00 80.49 81.11 66.81

✔ ✔
ACC 90.11

(+∆ 0.69)
99.90

(+∆ 3.67)
67.35

(+∆ 1.97)
93.59

(+∆ 1.28)
88.33

(+∆ 5.00)
88.03

(+∆ 1.56)
82.01

(+∆ 0.90)
79.25

(+∆ 1.62)

BMAC 86.22
(+∆ 1.38)

99.88
(+∆ 4.27)

73.06
(+∆ 11.81)

95.38
(+∆ 4.23)

85.83
(+∆ 5.83)

81.91
(+∆ 1.42)

82.01
(+∆ 0.90)

69.70
(+∆ 2.89)

under diverse diagnostic conditions. In particular, our approach surpasses traditional black-box pre-
dictive models, demonstrating that it maintains high diagnostic performance while simultaneously
providing interpretability. This addresses the critical performance-interpretability trade-off that has
been a significant challenge in previous works (Zarlenga et al., 2022).

To further validate the scalability and generalization of our framework beyond the medical domain,
we extended our evaluation to standard broad-domain benchmarks. As presented in Table 2, IVQ-
CBM achieves superior performance across all five datasets, ranging from fine-grained classification
tasks like CUB to large-scale challenges such as ImageNet. Notably, our method demonstrates con-
sistent gains over the strongest baselines (e.g., +1.64% on CIFAR-100 and +1.13% on ImageNet),
confirming that the benefits of implicit quantization scale effectively to complex, high-dimensional
visual distributions.

Furthermore, to investigate the underlying mechanism of these performance gains, we analyzed the
feature rank dynamics throughout training. Figure 4 and Figure 5 present the rank evolution across
medical and general benchmarks, respectively. The results reveal a fundamental distinction between
our method and prior arts. While competing methods, particularly DOT-CBM (Xie et al., 2025)
and MVP-CBM, suffer from varying degrees of representational collapse, our approach consistently
maintains a high and stable feature rank across all datasets. This issue of collapse is notably aggra-
vated on complex datasets like ImageNet, as shown in Figure 5, where the feature ranks of baseline
models exhibit a drastic decline. This provides compelling evidence that IVQ acts as a robust reg-
ularizer that effectively prevents the degeneration of the feature space. By preserving high-rank
and diverse representations, this structural advantage directly correlates with the superior and more
robust downstream performance observed in both Table 1 and Table 2.

Ablation Study. Our ablation study (Table 3) confirms that both the IVQ and Magnet modules are
integral to performance. IVQ provides the most significant boost, especially on the BMAC metric
for imbalanced datasets like IDRID (+11.81). Removing the Magnet module and reverting to a
standard [CLS] token baseline leads to a notable performance drop. This indicates that relying on
a single global feature vector is an oversimplification of the image’s content. While this approach
may suffice for coarse-grained classification, it is inadequate for complex scenes requiring fine-
grained analysis, such as localizing small or scattered targets—a common challenge in medical
imaging (Chen et al., 2021). Furthermore, we find that IVQ’s mechanism is linked to preventing
representation collapse(Figure 6). Models without IVQ suffer from rank collapse (dashed lines),
whereas our method maintains a high, stable feature rank (solid lines). This shows IVQ acts as a
powerful regularizer, ensuring diverse and robust feature learning.

4.2 EXTENSIVE EXPERIMENTS

Vector Quantization versus Implicit Vector Quantization. As previously established, an inher-
ent many-to-many correspondence exists between visual patches and textual concepts, with each
patch often encoding multi-faceted semantic information. Standard VQ conflicts with this principle
(Van Den Oord et al., 2017b). Its use of a hard argmin operation maps each patch to a single,
nearest codebook vector, which forces the collapse of a patch’s rich information into a discrete rep-
resentation. Consequently, only these quantized features are passed forward to the magnet module,
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Table 4: Ablation study of different representation quantization methods on various medical datasets. The table
compares performance in terms of Classification BMAC and Concept BMAC. The improvement of our implicit
method over the explicit baseline is shown in parentheses (+∆).

Dataset Explicit Quantization Implicit Quantization (ours)

Classification BMAC Concept BMAC Classification BMAC Concept BMAC

ISIC 51.47 22.22 86.22 (+∆ 34.75) 83.88 (+∆ 61.66)
Cardio 60.61 53.30 82.01 (+∆ 21.40) 80.25 (+∆ 26.95)
BUSI 57.28 37.48 95.38 (+∆ 38.10) 71.02 (+∆ 33.54)
SIIM 50.00 50.00 81.91 (+∆ 31.91) 80.15 (+∆ 30.15)
CMMD 50.35 50.00 69.70 (+∆ 19.35) 66.66 (+∆ 16.66)
IDRID 23.75 50.85 73.06 (+∆ 49.31) 59.48 (+∆ 8.63)

Table 5: Performance comparison of our model and other representation regularization techniques across
datasets. Gains (+∆) and losses (-∆) are shown relative to the best-performing alternative technique.

Technique SIIM ISIC BUSI

ACC BMAC ACC BMAC ACC BMAC

Barlow Twins (Zbontar et al., 2021) 86.39 79.17 87.62 81.16 91.02 88.81
Spectral Regularization (Yoshida & Miyato, 2017) 85.64 80.84 90.21 84.74 92.30 91.98
Gram Loss (Siméoni et al., 2025) 84.56 74.07 76.64 59.83 84.61 82.68

IVQ (Ours) 88.03
(+1.64)

81.91
(+1.07)

90.11
(-0.10)

86.22
(+1.48)

93.59
(+1.29)

95.38
(+3.40)

discarding other relevant visual attributes and violating the many-to-many relationship, leading to
the critical information bottleneck issue. In contrast, our IVQ is designed to resolve this issue. It
retains the quantization objective solely as a regularizer, encouraging each raw patch feature to align
with its nearest prototype. Crucially, this allows the original, high-fidelity feature vector to be used
in the forward pass for the magnet module. This process distills the core conceptual information
from the patch, enabling a more effective concept alignment. Results are summarized in Table 4,
revealing that IVQ substantially outperforms the explicit quantization across all six datasets, on both
Classification and Concept BMAC metrics.

Representation Regularization Techniques. Several representation regularization techniques
have been proposed to mitigate feature rank collapse, particularly in SSL. We benchmark our pro-
posed IVQ against three prominent methods: explicit de-correlation via Barlow Twins (Zbontar
et al., 2021), Spectral regularization (Yoshida & Miyato, 2017), and Gram Loss (Siméoni et al.,
2025). As shown in Table 5, IVQ consistently outperforms these general-purpose regularization
techniques across most metrics, yielding significant gains over the strongest baseline.

A critical question raises: is a higher feature rank directly correlated with superior CBM perfor-
mance? An analysis of feature rank dynamics, presented in Figure 7, reveals a more nuanced re-
lationship. While methods like Barlow Twins and Spectral regularization often maintain a higher
feature rank than IVQ, particularly on the ISIC and BUSI datasets, this elevated rank does not trans-
late to better downstream performance, suggesting a form of over-regularization. We attribute this
to a key distinction: unlike general-purpose methods that indiscriminately maximize feature diver-
sity, IVQ is tailored to foster the meaningful, structured diversity required by CBMs by aligning
features with a set of learnable prototypes.

Analysis of Codebook Size The IVQ codebook dynamically aligns patch features with a set of
learnable prototypes, which ensures feature diversity while distilling core visual information and
avoiding the bottleneck of conventional VQ. This raises a key question regarding the optimal size of
the codebook, M , in relation to the number of textual concepts, K. To investigate this, we conduct
an ablation study, setting the codebook size to various multiples of the concept count (i.e., M = αK
for α ∈ {20, 10, 5, 1}), as well as a baseline with a single shared prototype (M = 1).

9
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Figure 3: Performance (ACC & BMAC) across various codebook sizes. The size is defined as a multiple (×)
of the number of textual concepts, K.

As illustrated in Figure 3, the model’s performance is robust across a range of oversized codebooks
(20×, 10×, and 5×), but we observe a distinct peak in both average ACC and BMAC when the
codebook size is set equal to the number of textual concepts (M = K). This setting achieves the
highest average BMAC and Accuracy across all datasets. We hypothesize that setting M = K
encourages a one-to-one mapping between the learned visual prototypes and the predefined textual
concepts, fostering a more structured and semantically aligned representation space. It provides
strong evidence for the critical role of our IVQ as a bridge between visual patches and textual
concepts, acting as a system of visual semantic anchors. These results suggest that aligning the
codebook’s capacity with the task’s conceptual granularity is the optimal strategy.

Visualization of CodeBook in IVQ The IVQ continuously distills visual information for each
concept during training. To qualitatively evaluate the knowledge captured within the final codebook,
we visualize the index maps of our learned prototypes on a representative mammogram from the
CMMD dataset, as shown in Figure 8a.

The resulting mapping demonstrates a highly logical process that mirrors clinical reasoning. The
prototype for Mass Margin (light green) precisely delineates the lesion’s contour, while those for
Mass Shape (cyan) and Calcification Features (blue) correspond to its internal char-
acteristics. Crucially, the prototype for Associated Features (dark blue) extends its focus
beyond the lesion’s border, probing the surrounding parenchyma for signs of structural distortion—
a key indicator of malignancy. This structured, multi-faceted assessment validates that our codebook
has learned semantically meaningful and clinically relevant concept representations (For a more de-
tailed visual analysis, please refer to the appendix D).

5 CONCLUSION

In this work, we propose IVQ-CBM, which explicitly models the many-to-many relationship while
addressing representation collapse. Our method features two key components. IVQ, which uses a
learnable codebook prior to anchor visual patches, and Magnet Attention, which aggregates these
patches into semantically coherent visual concepts aligned with textual definitions. Extensive ex-
periments demonstrate that IVQ-CBM achieves superior performance over baselines without sacri-
ficing interpretability, with ablation studies validating each component’s contribution. Our analysis
reveals that IVQ circumvents the hard information bottleneck of direct VQ and, unlike general regu-
larization methods, fosters a meaningful feature diversity that is more effective than indiscriminately
maximizing a mathematical objective. Visualizations confirm that our approach yields high-quality,
interpretable visual concept representations that are consistent with their textual concepts, resulting
in a more faithful and robust form of interpretability for CBMs.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we release the source code in the supplementary materials. All datasets
used in our experiments are either publicly available; the implementation details, including model ar-
chitectures, hyper-parameters, and optimization settings, are described in section 4 and Appendix B.
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For baselines, we rely on publicly released implementations and adapt them with the same pre-
processing pipeline as described in section 4.1. We hope these materials enable the community to
faithfully reproduce our results and extend our approach.
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APPENDIX

In this section, we present additional implementation details, experiment results, theoretical analysis,
pseudo code, and supplements. The content structure is outlined as follows:

• Section A - Theoretical Analysis

– Section A.1 - Motivation: The Fundamental Limitations of a Single Global Feature
– Section A.2 - Proof of Intrinsic Many-to-Many Coupling
– Section A.3 - Theoretical Analysis: Optimization Dynamics and Rank Preservation
– Section A.4 - Theoretical Analysis for Gradient Convergence

• Section B - Implementation Details

• Section C - Feature Rank Dynamics

• Section D - Visualization of Codebook in IVQ

• Section E - Visualization of Codebook in VQ

• Section F - Visualization Analysis With Baselines

• Section G - Results with Other Multi-Modal Backbone

• Section H - Statement on the Use of Large Language Models

• Section I - Pseudocode of IVQ-CBM

• Section J - Quantitative Interpretability and Casual Faithfulness

• Section K - Analysis of Information Leakage and Effective Concept Learning

• Section L - Sensitivity Analysis of Commitment Cost Parameter

A THEORETICAL ANALYSIS

A.1 MOTIVATION: THE FUNDAMENTAL LIMITATIONS OF A SINGLE GLOBAL FEATURE

A prevailing and influential paradigm in the evolution of Concept Bottleneck Models is the use of
a single global feature from a pre-trained vision model, such as CLIP, as the sole representation
of an input image. Specifically, these models typically rely on the final [CLS] token from a Vi-
sion Transformer (ViT) or the feature vector generated by a Global Average Pooling (GAP) layer
in a Convolutional Neural Network (CNN) (He et al., 2015). The implicit assumption underpinning
this approach is that a single high-dimensional vector (e.g., D = 768) can sufficiently and com-
prehensively encapsulate all semantic information relevant to downstream tasks. In other words, it
posits that this single, condensed vector is a complete basis for identifying all pertinent concepts
and, ultimately, the final class label.

However, we argue that this seemingly efficient simplification is, in fact, an illusion of sufficiency
that conceals fundamental flaws. While it may suffice for simple, object-centric classification tasks,
its limitations are starkly exposed when confronted with visually complex scenes that demand fine-
grained understanding.

Our central thesis is that the reliance on a single global feature vector is an untenable design sim-
plification for building robust, interpretable, and broadly applicable CBMs. This simplification is
particularly fragile in scenarios where:

• The image contains multiple, spatially distinct objects or concepts.

• The critical differentiating information lies in subtle, local details or textures.

• The key features are inherently distributed or non-centralized.

This argument is not speculative but is grounded in the unavoidable theoretical limitations inherent
to the mechanisms that generate this global vector. We prove this by deconstructing its three fatal
flaws.
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1. Irreversible Loss of Spatial Information. The generation of a single global vector is, by its
very nature, a process that destroys spatial structure. For a CNN-based GAP layer, the mechanism
averages a feature map of size H ×W × D across its spatial dimensions to produce a 1 × 1 × D
vector. This operation is mathematically permutation-invariant; as long as the set of local features
remains the same, their spatial arrangement can be arbitrarily altered with little to no change in the
resulting global vector. This is analogous to calculating the word frequency of a document while
discarding the sentences and paragraphs. We know what content is present, but we have permanently
lost how it is organized. Consequently, any task requiring answers to ”where?” or an understanding
of spatial relationships is impossible for a model that has discarded all coordinate information.

For the Transformer-based [CLS] token, while its computation involves a spatially-aware self-
attention mechanism, the process is ultimately one of aggregation and summarization. The final
[CLS] output is an abstract vector that has encoded spatial relationships into its dimensions, but the
explicit, original topological structure is lost (Park & Kim, 2022). The attention maps exist during
computation, but the final vector itself does not retain this map. Conclusion: A single global vector
actively discards the two-dimensional structure of an image, which is its first fatal flaw (Yu et al.,
2022).

2. The Information Bottleneck and Feature Suppression. A vector of fixed dimensionality has
a finite capacity for information, creating a natural bottleneck (Butakov et al., 2024). Within an
image, different regions, objects, and textures must compete for representation within this fixed
bandwidth. In this process of feature competition, strong signals (from large, prominent objects)
will disproportionately dominate the final vector’s representation, while weak signals (from small
or subtle objects) are easily averaged out or suppressed (Li et al., 2023). Consider a thought experi-
ment: a high-resolution CT scan where 99.9% of the image consists of healthy lung tissue (a strong
signal) and only 0.1% contains a small, early-stage pulmonary nodule (a weak signal). During the
global aggregation process, the features representing healthy tissue will overwhelm the vector, mak-
ing it nearly impossible for the faint but critical signal from the nodule to survive this democratic
aggregation (Guo et al., 2019). Conclusion: The limited capacity of a single global vector forces
a lossy compression that systematically sacrifices the fine-grained or low-prevalence information
critical for complex tasks.

3. Representational Failure for Multiple Instances and Concepts. The core promise of a CBM
is a clear mapping from image features to concepts. A single global vector is powerless to man-
age this when ”many-to-many” relationships are required. When multiple independent semantic
concepts coexist in an image (e.g., ”striped texture,” ”pointed ears,” and ”furry texture”), a single
vector is forced to entangle these disparate pieces of information (Li et al., 2024). This entanglement
leads to severe representational ambiguity. An activation in a 21 dimension might represent concept
A, concept B, or an inseparable combination of A and C. This fundamentally violates the goal of
CBMs to be interpretable and intervenable. An ideal concept bottleneck should have distinct ”chan-
nels” corresponding to disentangled concepts (Xie et al., 2025). For example, an intervention on the
”pointed ears” concept becomes meaningless if its representation is coupled with the ”furry texture”
concept, as we cannot modify one without affecting the other. Conclusion: To model multiple con-
cepts independently and clearly, a model requires access to multiple, separable visual features prior
to the concept alignment stage. A single global vector cannot meet this fundamental requirement.

In summary, drawing from the current paradigm of CBMs that rely on a single global feature, we
have proven through theoretical analysis that this is a fundamentally flawed simplification. Its three
fatal flaws—the loss of spatial information, the creation of an information bottleneck, and the failure
to represent multiple concepts clearly—are inherent to its generation mechanism. This provides a
solid and compelling theoretical foundation for our proposed paradigm: establishing a many-to-
many mapping between local image features (patches) and semantic concepts.

A.2 PROOF OF INTRINSIC MANY-TO-MANY COUPLING

Proposition 1. Within the proposed IVQ-CBM framework, (i) each learned Visual Concept in-
evitably depends on multiple visual patch embeddings, and (ii) each visual patch embedding in-
evitably contributes to multiple Visual Concepts.
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Proof. We prove the two parts of the proposition separately.

1. FORMAL DEFINITIONS AND NOTATION

We adopt the notation from the method section.

Visual Patch Embeddings Zp = [z1, . . . , zL] ∈ RL×D are the patch embeddings from the ViT
encoder Ev .

Concept Queries Q = [q1, . . . ,qK ]⊤ ∈ RK×D is the matrix of learnable concept queries.

Soft Assignment Matrix A ∈ RL×K , where its element Ajk represents the soft-assignment
weight of patch j to concept k:

Ajk =
exp(−∥zj − qk∥22)∑K

k′=1 exp(−∥zj − qk′∥22)
.

Visual Concepts M = [m1, . . . ,mK ]⊤ = A⊤Zp ∈ RK×D is the matrix of aggregated Visual
Concepts. The k-th visual concept is given by mk =

∑L
j=1 Ajkzj .

Concept Prediction The activation score for concept k, denoted vk, is the cosine similarity between
the visual concept mk and its corresponding textual concept embedding τk, i.e., vk =

mk·τk

∥mk∥∥τk∥ . The final prediction is ĉk = σ(vk), where σ is the sigmoid function for the BCE
loss.

2. PROOF: “ONE CONCEPT–MULTIPLE PATCHES” IS ALMOST CERTAIN

This proposition states that for any given Visual Concept mk, its final representation and subsequent
prediction ĉk are influenced by multiple patch embeddings.

Lemma 1 (Sufficiency). Let Ajk be the soft-assignment weight for patch j and concept k. If there
exist two distinct patch indices i ̸= j such that their assignment weights to concept k are non-zero
(i.e., Aik > 0 and Ajk > 0), then the concept prediction ĉk simultaneously depends on both patch
embeddings zi and zj , as demonstrated by their non-zero gradients:

∂ĉk
∂zi
̸= 0 and

∂ĉk
∂zj
̸= 0.

Proof of Lemma. We apply the chain rule to compute the gradient of the concept prediction ĉk with
respect to a patch embedding zj . Since ∂ĉk

∂zj
= σ′(vk)

∂vk

∂zj
and σ′(vk) ̸= 0 almost everywhere, we

only need to analyze the gradient of the activation score, ∂vk
∂zj

.

∂vk
∂zj

=
∂vk
∂mk

∂mk

∂zj
.

The visual concept mk =
∑L

l=1 Alkzl. The derivative of mk with respect to zj involves two
components, as the assignment weights Alk also depend on zj :

∂mk

∂zj
= Ajk · I︸ ︷︷ ︸

Direct Term

+

L∑
l=1

∂Alk

∂zj
⊗ zl︸ ︷︷ ︸

Attention Term

,

where I is the identity matrix and ⊗ is the outer product. The Direct Term Ajk · I is non-zero as
long as the assignment weight Ajk is non-zero. This term captures the direct contribution of patch
zj to the weighted average. The Attention Term captures the indirect influence of changing zj on
the attention weights of all other patches and is generally non-zero.

Since Ajk is strictly positive (due to the exponential function in softmax), the Direct Term ensures
that ∂mk

∂zj
is non-zero. The gradient ∂vk

∂mk
is also non-zero in general. Therefore, the total gradient ∂ĉk

∂zj

is non-zero. This holds for any patch j with a non-zero assignment weight, proving the lemma.
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Probability = 1 Argument. The condition of the lemma, Aik > 0 and Ajk > 0, is certain to hold.
The assignment weight Ajk is calculated as exp(−∥zj − qk∥22) divided by a sum of such terms.
Since the squared Euclidean distance is finite and the exponential function is strictly positive for all
finite inputs, every assignment weight Ajk is strictly greater than zero for any j ∈ {1, . . . , L} and
k ∈ {1, . . . ,K}. Consequently, every patch has a non-zero influence on every concept. The “one
concept–multiple patches” relationship is not just almost certain; it is a structural certainty of the
Magnet Attention mechanism.

3. PROOF: “ONE PATCH–MULTIPLE CONCEPTS” IS ALMOST CERTAIN

This proposition states that a single patch embedding zj will meaningfully contribute to the forma-
tion of multiple Visual Concepts.

Gradient-based Argument. Consider the update to a patch embedding zj during backpropaga-
tion, driven by the concept alignment loss Lconcept =

∑K
k=1 LBCE(ĉk, ck). The gradient of the loss

with respect to zj is:

∂Lconcept

∂zj
=

K∑
k=1

∂Lconcept

∂ĉk

∂ĉk
∂zj

=

K∑
k=1

(
ĉk − ck

ĉk(1− ĉk)

)
︸ ︷︷ ︸

Error signal for concept k

∂ĉk
∂zj︸︷︷︸

Influence of
patch j on k

.

As established in the previous section, the influence term ∂ĉk
∂zj

is non-zero for all concepts k. There-
fore, if the model has a non-zero prediction error for more than one concept (i.e., ĉk − ck ̸= 0 for
multiple k), the total gradient received by patch zj will be a sum of contributions from all those
concepts. Since natural images typically contain features relevant to multiple concepts, the SGD
update will pull zj in a direction that is a composite of gradients from multiple concepts, making
patch zj influential for all of them.

Softmax Competition Argument. We can formalize the argument that a single patch is unlikely to
contribute to only one concept by quantitatively analyzing the conditions required for the assignment
distribution to become nearly one-hot.

Let’s start by introducing a temperature parameter τ > 0 into the softmax function, which controls
the sharpness of the output distribution. The assignment weight of patch j to concept k is given by:

Ajk =
exp(−∥zj − qk∥22/τ)∑K

k′=1 exp(−∥zj − qk′∥22/τ)
.

For the original formulation, we can simply consider τ = 1. A “one-hot” assignment, where patch j
contributes almost exclusively to a single concept, means that for some concept k∗, its weight Ajk∗

approaches 1.

Let k∗ be the index of the concept query closest to the patch embedding zj :

k∗ = arg min
k∈{1,...,K}

∥zj − qk∥22.

To quantify the significance of this closest distance, we define the minimum distance margin ∆min

for patch zj as the difference between the squared distance to the second-closest query and the
closest one:

∆min ≜ min
k′ ̸=k∗

(
∥zj − qk′∥22 − ∥zj − qk∗∥22

)
.

A large ∆min ≥ 0 indicates that zj has a clear “winner” concept query, while a small ∆min suggests
high competition. Now, we establish a lower bound for the maximum assignment weight Ajk∗ :

Ajk∗ =
1

1 +
∑

k′ ̸=k∗ exp
(
−∥zj−qk′∥2

2−∥zj−qk∗∥2
2

τ

) .
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By definition, ∥zj − qk′∥22 − ∥zj − qk∗∥22 ≥ ∆min for any k′ ̸= k∗. This allows us to bound the
sum in the denominator, yielding the inequality:

Ajk∗ ≥ 1

1 + (K − 1)e−∆min/τ
.

This inequality provides a precise condition for a one-hot assignment. For Ajk∗ to be nearly
1 (e.g., Ajk∗ ≥ 1 − ϵ), the margin-to-temperature ratio ∆min/τ must be large, specifically
∆min ≥ τ log

(
K−1

ϵ

)
. In other words, a patch can only be exclusively assigned to one concept

if its embedding zj is geometrically well-separated from all but one concept query.

Such a large margin is geometrically improbable in high-dimensional spaces due to the concen-
tration of measure phenomenon (Vershynin, 2018), which states that distances between random
points tend to be tightly clustered. It is far more likely that zj will be reasonably close to several
queries, leading to a small ∆min and thus a distributed (non-sparse) set of assignment weights. The
soft nature of the attention mechanism, combined with these geometric properties, ensures that each
patch almost certainly contributes to multiple concepts.

4. CONCLUSION

The Magnet Attention mechanism, by its design, establishes a dense, many-to-many coupling be-
tween patch embeddings and visual concepts.

1. One Concept to Multiple Patches: This occurs with structural certainty due to the nature
of the soft attention mechanism where all weights are non-zero.

2. One Patch to Multiple Concepts: This is a highly probable outcome under standard train-
ing conditions. The competitive nature of the softmax function makes a one-hot assignment
(where one patch contributes to only one concept) an unstable and non-generic solution in
a high-dimensional space. Furthermore, the training dynamics, driven by multi-concept
error signals, actively steer patch embeddings to be useful for multiple concepts.

Therefore, the patch-concept mapping in the proposed model is intrinsically many-to-many, provid-
ing a robust foundation for learning comprehensive and interpretable visual concepts.

A.3 THEORETICAL ANALYSIS: OPTIMIZATION DYNAMICS AND RANK PRESERVATION

In this section, we provide a formal analysis of how the optimization dynamics of the proposed IVQ
loss explicitly counteract representational collapse and preserve the rank of the feature space.

1. Optimization Dynamics as a Restoring Force. Recall the commitment loss component of the
IVQ objective defined in Eq. 4:

Lcommit = β

L∑
j=1

||zj − sg(ckj
)||22, (10)

where zj ∈ RD is the j-th patch feature, and ckj is its nearest neighbor in the codebook Cvq . During
backpropagation, the gradient of this loss with respect to a specific patch feature zj is given by:

∇zjLcommit = 2β(zj − ckj
). (11)

This gradient can be interpreted physically as a restoring force in the high-dimensional feature space.
It actively pulls every patch embedding zj towards its assigned semantic prototype ckj

. Unlike stan-
dard contrastive losses that primarily push features apart, this dynamic acts as a structured gravi-
tational pull, clustering the continuous distribution of patch features into compact regions centered
around the learned prototypes.
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2. Geometric Interpretation and Rank Lower Bound. Representational collapse manifests as a
rapid decay in the singular values of the feature matrix Zp ∈ RL×D, causing features to degenerate
into a low-dimensional subspace (i.e., rank(Zp) ≪ K). The IVQ mechanism imposes a geometric
constraint that counteracts this degeneracy.

Empirically, as shown in our ablation study (M = K) and UMAP visualizations (Figure 9), the
codebook prototypes {c1, . . . , cK} converge to a set of well-separated, linearly independent vectors.
Geometrically, these prototypes span a support subspace Scode ⊂ RD with an effective rank of
approximately K.

By minimizing the commitment loss LIV Q, the optimization process acts as a force pulling the rows
of Zp towards these diverse prototypes. Assuming the input image contains diverse visual elements
that activate a subset of these distinct prototypes, the feature matrix Zp is effectively regularized to
span the same subspace as the active codebook vectors:

Zp
LIV Q−−−−→ span({ck}active) ⊆ Scode. (12)

Since the codebook maintains full rank (≈ K), it acts as a set of semantic anchors that prop open the
feature space. This imposes an implicit lower bound on the feature rank, ensuring that representa-
tions maintain sufficient dimensionality to encode diverse semantic concepts rather than collapsing
onto a single manifold.

3. Structured vs. Indiscriminate Diversity. This analysis also clarifies why IVQ outperforms
general-purpose regularization methods like Barlow Twins or Spectral Regularization (as shown in
Fig. 6).

• General Regularization: Methods that penalize cross-correlation or maximize spectral
entropy encourage indiscriminate diversity. They force features to be orthogonal regardless
of semantic content, which can lead to over-regularization where noise or irrelevant textures
are amplified to satisfy the rank objective.

• IVQ Regularization: Our method fosters structured diversity. It preserves feature rank
specifically along the semantic directions defined by the clinical concepts (the codebook).
The feature space is allowed to be low-rank within a concept cluster (compressing intra-
class variance) while maintaining high-rank separation between different concepts (pre-
serving inter-class variance). This alignment between optimization dynamics and semantic
structure is the key driver of IVQ-CBM’s superior performance.

A.4 THEORETICAL ANALYSIS FOR GRADIENT CONVERGENCE

The total loss function Ltotal is differentiable with respect to all trainable parameters θ of the pro-
posed model. This ensures that gradients are well-defined, permitting stable model training via
gradient-based optimizers.

Proof. The proof proceeds by analyzing the differentiability of each component of the total loss.

Formal Definitions. Let θ = {θE , ϕA, ϕf , ϕQ} denote the set of all trainable parameters, where
θE are the parameters of the ViT-based visual encoder E , ϕA are the learnable queries in the Mag-
net Attention module A, ϕf are the parameters of the projection head f , and ϕQ is the learnable
codebook of the Vector-Quantizer Q.

The total loss is a weighted sum of its components:

Ltotal(θ) = Lcls + Lconcept + LIVQ. (13)

By the sum rule of differentiation, if each component loss is differentiable with respect to θ, then
Ltotal is also differentiable. We analyze each component in turn.

Differentiability of the Main Prediction Path (Lcls and Lconcept). The main prediction path com-
putes visual concepts from patch embeddings Zp = EθE (x) ∈ RL×D and then calculates the clas-
sification and concept losses. The aggregated visual concepts, denoted M ∈ RK×D, are derived
as:

M = AϕA
(Zp), (14)
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and the final logits are obtained after a projection head fϕf
. The Magnet Attention operator AϕA

involves computing squared Euclidean distances, applying a ‘softmax‘ function, and performing a
weighted sum via matrix multiplication. The projection head fϕf

consists of standard neural network
layers (e.g., Linear, LayerNorm). All these operations are continuously differentiable.

The losses Lcls and Lconcept are computed using the cross-entropy function, which is smooth and
differentiable with respect to its inputs. Therefore, by the chain rule, both losses are differentiable
with respect to the parameters in their computational graphs, namely {θE , ϕA, ϕf}.

Differentiability of the VQ Regularization Path (LIVQ). This part is critical as the Vector-
Quantizer QϕQ

contains a non-differentiable argmin operation for selecting the nearest codebook
vector ek ∈ ϕQ for a given input patch feature zj :

k∗ = argmin
k
∥zj − ek∥22 . (15)

The derivative of this discrete selection is zero almost everywhere, which blocks gradient flow. The
IVQ loss, however, is formulated to circumvent this issue:

LIVQ =
∥∥sg[Zp]−QϕQ

(Zp)
∥∥2
2︸ ︷︷ ︸

Codebook Loss

+β ·
∥∥Zp − sg[QϕQ

(Zp)]
∥∥2
2︸ ︷︷ ︸

Commitment Loss

, (16)

where sg[·] denotes the stop-gradient operator (equivalent to ‘.detach()‘).

We analyze the gradient of each component:

• Gradient w.r.t. codebook ϕQ: The gradient for ϕQ flows only through the Codebook Loss
term, as the Commitment Loss detaches the quantizer’s output. The gradient is:

∇ϕQ
LIVQ = ∇ϕQ

∥∥sg[Zp]−QϕQ
(Zp)

∥∥2
2
. (17)

This gradient is well-defined and updates the codebook vectors to move closer to the en-
coder’s features.

• Gradient w.r.t. encoder θE : The gradient for the encoder’s parameters θE (which pro-
duce Zp) flows only through the Commitment Loss term. The gradient with respect to the
encoder’s output is:

∇Zp
LIVQ = β · ∇Zp

∥∥Zp − sg[QϕQ
(Zp)]

∥∥2
2
= 2β

(
Zp − sg[QϕQ

(Zp)]
)
. (18)

This gradient is well-defined and is equivalent to that of a Mean Squared Error loss. It
effectively pulls the encoder’s output Zp towards the selected (but detached) codebook
vectors without passing through the non-differentiable argmin operation.

The use of the stop-gradient operator correctly decouples the updates, ensuring that computable
gradients are available for both the encoder and the codebook.

Conclusion. We have established the differentiability of all components of the total loss function.

• The prediction losses, Lcls and Lconcept, are differentiable with respect to {θE , ϕA, ϕf}.

• The regularization loss, LIVQ, provides well-defined gradients for both the codebook ϕQ

and the encoder θE .

Since Ltotal is a linear combination of these differentiable components, its gradient ∇θLtotal is well-
defined and can be computed via standard backpropagation. The existence of a valid gradient is a
necessary condition for the convergence of gradient-based optimization algorithms. Therefore, the
model architecture is theoretically sound for training.
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B IMPLEMENTATION DETAILS

Experimental Setup. To ensure a fair comparison, we reproduce all baselines within our experi-
mental framework and adopt Biomedical-CLIP (Zhang et al., 2025) for our method and baselines.
Based on this architecture, we insert a projection layer to map visual features to the textual feature
space, thereby aligning their dimensions. We then apply L2 normalization to regularize the aligned
feature representations. We employ an exponential learning rate scheduler with a warm-up period
and utilize the AdamW (Loshchilov & Hutter, 2017) optimizer for training. The initial learning rate
and batch size are set to 1e-4 and 32, respectively. All experiments are conducted using Python
3.9, PyTorch 2.5.1, and a single NVIDIA RTX 4090 GPU. We also conduct experiments within
CLIP to validate the universality of representation collapse (Cherti et al., 2023).

Concept Generation. For the concepts associated with each dataset, we prompt Gemini 2.5 Pro to
generate textual descriptions for each class. The generated concepts are then cross-validated using
GPT-4o to ensure their quality and relevance. Drawing upon the work of (Panousis et al., 2024), we
build a hierarchical framework for concepts based on a coarse-to-fine principle.

C ANALYSIS OF FEATURE RANK DYNAMICS

To empirically validate our method’s ability to mitigate representational collapse, we analyze the
dynamics of the feature rank during training. The rank of the feature matrix serves as a proxy for
the diversity and richness of the learned representations. A sustained high rank indicates that the
features are diverse and non-redundant, while a decline in rank—known as rank collapse—suggests
that the feature space has become degenerate, hindering the model’s ability to learn distinct concepts.

In this section, we present a series of experiments comparing our method against various baselines.
The results consistently demonstrate the effectiveness of our approach in maintaining high-rank
feature representations.

Comparison with State-of-the-Art Baselines. As illustrated in Figure 4, we first compare our
model with several leading concept-based methods. Our approach (Ours) consistently maintains
a high and stable feature rank across all eight datasets throughout the training process. In stark
contrast, baseline methods such as Explicd, MVP-CBM, and others exhibit a noticeable decline in
feature rank, succumbing to varying degrees of representational collapse. This result highlights our
method’s superior ability to preserve the expressive power of the feature space compared to existing
approaches.

Comparison on Standard Benchmarks. As illustrated in Figure 5, we extend our analysis to
standard vision benchmarks, ranging from CIFAR-10 to large-scale datasets like ImageNet. Con-
sistent with our observations in the medical domain, our approach (Ours) maintains a robust and
stable feature rank throughout training across all five datasets. In stark contrast, baseline methods
succumb to varying degrees of representational collapse, a phenomenon that becomes notably more
severe on complex datasets. Specifically, MVP-CBM and DOT-CBM exhibit a drastic decline in fea-
ture rank on ImageNet and Places365, indicating a failure to preserve feature diversity at scale. This
empirical evidence confirms that representational collapse is a fundamental bottleneck in CBMs,
and highlights our method’s superior ability to generalize and preserve expressive power even in
large-scale classification scenarios.

Ablation Study on the IVQ Module. To isolate the contribution of our proposed IVQ module,
we conduct a crucial ablation study, with the results presented in Figure 6. The comparison is
stark: the model equipped with our IVQ module (w/ IVQ, solid lines) successfully sustains a high
feature rank on both training and validation sets. Conversely, the model without it (w/o IVQ,
dashed lines) experiences a sharp drop in rank, mirroring the behavior of the baseline models. This
provides compelling evidence that the IVQ module is the key component responsible for preventing
feature space degeneracy and maintaining representational diversity.

Comparison with Representation Regularization Techniques. Furthermore, we extend our
analysis to include other common representation regularization techniques in Figure 7. While some
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regularization methods may also help in maintaining a higher feature rank, it is crucial to note a key
insight: a high feature rank is a necessary, but not sufficient, condition for superior perfor-
mance. Simply forcing features to be diverse (e.g., via decorrelation penalties) does not guarantee
that they are meaningful or well-aligned with the downstream task. As shown in the figure, our
method not only preserves rank effectively but also achieves this in a way that structures the feature
space for better concept learning, ultimately leading to improved overall performance (as shown
in section 4.2). This distinguishes our approach from methods that might artificially inflate rank
without enhancing semantic representation.

Figure 4: Comparative analysis of feature rank dynamics across eight datasets. Our proposed method (Ours)
successfully maintains a high and stable feature rank, while baseline methods, including Explicd, MVP-CBM,
DOT-CBM, and COOP-CBM, exhibit varying degrees of rank collapse during training.

Figure 5: Comparative analysis of feature rank dynamics across five general domain datasets. Our proposed
method (Ours) successfully maintains a high and stable feature rank, while baseline methods, including Ex-
plicd, MVP-CBM, DOT-CBM, and COOP-CBM, exhibit varying degrees of rank collapse during training.

D VISUALIZATION OF CODEBOOK IN IVQ

To qualitatively evaluate the semantic knowledge captured by the IVQ codebook, we provide a
comprehensive visual analysis across all six medical imaging datasets. In the following figures, we
visualize the prototype index maps for representative images. For each image patch, we identify
the nearest codebook prototype via an argmin operation and color-code the patch according to that
prototype’s index. This process generates a concept activation heatmap, revealing which learned
visual prototype is most dominant in each region of the image. The results consistently demonstrate
that our model learns semantically meaningful and clinically relevant concept representations that
align with the diagnostic reasoning of medical experts.

Analysis on CMMD (Mammography). As shown in Figure 8a, the resulting mapping demon-
strates a highly logical process that mirrors clinical reasoning. The prototype for Mass Margin
precisely delineates the lesion’s contour, while those for Mass Shape and Calcification
Features correspond to its internal characteristics. Crucially, the prototype for Associated
Features extends its focus beyond the lesion’s border, probing the surrounding parenchyma for
signs of structural distortion—a key indicator of malignancy.
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Figure 6: Feature rank dynamics for models with (w/ IVQ, solid lines) and without (w/o IVQ, dashed lines)
our IVQ module, shown on both training and validation sets. The clear gap demonstrates the effectiveness of
IVQ in preventing rank collapse.

Figure 7: Feature rank dynamics of IVQ against regularization baselines on the SIIM, ISIC, and BUSI datasets.
IVQ (blue) and Barlow Twins (green) successfully maintain a high rank, while Spectral regularization (orange)
is unstable and Gram Loss (red) suffers a severe collapse.

(a) CMMD (Mammography) (b) BUSI (Breast Ultrasound)

(c) ISIC (Dermoscopy) (d) IDRID (Fundus Photography)

(e) Cardio (Chest X-ray) (f) SIIM (Chest X-ray)

Figure 8: Visualization of the learned codebook prototype mappings across six medical imaging datasets. For
each dataset, we show (a) the input image, (b) the concept activation heatmap where each color corresponds
to the most active prototype for that patch, and (c) the overlay. The color legend maps each prototype to a
human-defined clinical concept.
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Analysis on BUSI (Breast Ultrasound). The visualization for BUSI in Figure 8b reveals a struc-
tured analysis of the breast lesion. The prototypes for Lesion Shape and Lesion Margin
accurately capture the overall form and boundary of the hypoechoic mass. Progressing to finer de-
tails, the prototypes for Posterior Features and Echo Pattern are activated on the inter-
nal and posterior regions of the lesion, which are critical assessments in the BI-RADS classification
system.

Analysis on ISIC (Dermoscopy). In the dermoscopy example Figure 8c, the prototype mappings
align well with clinical assessment criteria like the ”ABCDE” rule. Prototypes for general attributes
such as Shape and Color are active across the broader lesion area. Meanwhile, more specific
and clinically crucial prototypes, like Dermoscopic Patterns and Texture, are correctly
localized to the darker, diagnostically significant interior regions.

Most importantly, this visualization addresses the critical issue of concept ambiguity (Kim et al.,
2023), where a given image may lack a specific concept entirely—a key challenge for concept-
based models. For instance, while this lesion has a distinct texture, it may not exhibit Streaks.
Our model correctly reflects this by showing negligible activation for the corresponding prototype.
This demonstrates a faithful alignment, as the model does not erroneously force a prediction for a
feature that is not visually present, confirming that our learned codebook achieves a truly accurate
and discerning concept assignment.

Analysis on IDRID (Fundus Photography). The analysis of the diabetic retinopathy case in Fig-
ure 8d shows that the model differentiates between various pathologies. While general findings
like Intraretinal Hemorrhages are mapped to wider areas, the prototypes for severe, high-
risk pathologies such as Neovascularization and Vitreous Hemorrhage are correctly
concentrated near critical anatomical structures like the optic disc and major vascular arcades.

Analysis on Cardio & SIIM (Chest X-ray). The chest X-ray visualizations Figure 8e and
Figure 8f) demonstrate a strong anatomical grounding. Prototypes for global assessments like
Cardiothoracic Ratio and Cardiac Silhouette Shape are broadly active over the
heart. In contrast, prototypes for specific pathologies are precisely localized. For instance,
Pulmonary Vascular Congestion is mapped to the lung fields, while Costophrenic
Angle Effusion is correctly activated in the lower lobes of the lungs where pleural fluid ac-
cumulates. This showcases a spatially aware reasoning process that distinguishes between global
shape and localized pathological signs.

Codebook Visualization Reveals Structured and Disentangled Concepts. To qualitatively as-
sess the structure of the learned codebook, we visualize the code vectors using UMAP by projecting
them into a 3D space. As illustrated in Figure 9, a clear and consistent pattern emerges across all six
distinct datasets. The learned codes for each dataset are well-separated, forming discrete and com-
pact clusters with significant distance between them. This spatial separation is highly desirable, as
it indicates that the learned codes are disentangled and non-redundant. Each code has successfully
converged to represent a unique, semantically distinct concept, avoiding representational collapse
where multiple codes might capture similar features. The consistency of this structured outcome
across diverse medical imaging modalities—from ultrasound (BUSI) and mammography (CMMD)
to dermoscopy (ISIC) and beyond—demonstrates the robustness and generalizability of our method
in discovering a meaningful basis of concepts. The formation of such a clean and well-structured
codebook is foundational to the model’s ability to make interpretable and reliable predictions.

E VISUALIZATION OF CODEBOOK IN VQ

For comparison, we visualize the prototype mappings learned by a standard VQ baseline in Fig-
ure 10. This ablation study qualitatively demonstrates the limitations of standard VQ, which
struggles to learn semantically meaningful and spatially-precise concepts. In stark contrast to the
clinically-aligned prototypes from our proposed IVQ method, the VQ baseline’s mappings often re-
veal a significant lack of anatomical grounding. The resulting heatmaps show concepts activated in
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Figure 9: UMAP visualization for the codebook in various datasets. The clear spatial separation between codes
in each plot indicates a highly disentangled and non-redundant set of learned concepts. This consistent structure
across all domains demonstrates the robustness of our method in discovering a meaningful conceptual basis.

(a) CMMD (Mammography) (b) BUSI (Breast Ultrasound)

(c) ISIC (Dermoscopy) (d) IDRID (Fundus Photography)

(e) Cardio (Chest X-ray) (f) SIIM (Chest X-ray)

Figure 10: Visualization of the learned codebook prototype mappings from the standard VQ baseline. These
mappings highlight a significant failure in capturing clinically-relevant concepts. Prototypes are often scattered,
misaligned with anatomical structures, and fail to differentiate between pathology and background, starkly
contrasting with the precise mappings of our IVQ model (shown in Figure 8).

nonsensical locations, failing to distinguish between critical pathologies and irrelevant background,
thus highlighting the necessity of our IVQ approach.

Analysis on CMMD (Mammography). The VQ mapping in Figure 10a fails to capture any mean-
ingful anatomical structure. The prototype for Mass Margin (yellow) is nonsensically activated
in the background adipose tissue rather than on the lesion’s contour. Similarly, Mass Shape (light
green) and Calcification Features (blue) are scattered randomly, failing to delineate the
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actual lesion or its internal characteristics. This mapping lacks the logical, clinically-relevant preci-
sion required for diagnosis.

Analysis on BUSI (Breast Ultrasound). The BUSI visualization (Figure 10b) demonstrates a
near-total failure of the VQ model. The actual hypoechoic lesion is almost entirely ignored or mis-
classified as the Posterior Features (dark blue) prototype, which dominates the entire image
background. Critical concepts like Lesion Shape and Lesion Margin are only sparsely and
incorrectly activated in the surrounding tissue, showing no understanding of the target pathology.

Analysis on ISIC (Dermoscopy). This mapping (Figure 10c) shows poor conceptual differentia-
tion. The prototype for Dermoscopic Patterns (light green) incorrectly dominates almost the
entire image, including the clear background skin, indicating it has not learned a specific feature.
Furthermore, Border and Shape prototypes are activated illogically inside the lesion rather than
at its periphery, reversing the correct diagnostic process.

Analysis on IDRID (Fundus Photography). The VQ mapping for IDRID (Figure 10d) is chaotic
and lacks anatomical precision. High-risk pathologies like Neovascularization and Venous
Beading are scattered randomly across the retina, failing to co-localize with critical structures like
the optic disc or major vascular arcades. This all-over-the-place activation suggests the model has
only learned coarse pixel statistics rather than a true, spatially-aware understanding of the pathology.

Analysis on Cardio & SIIM (Chest X-ray). The chest X-ray visualizations demon-
strate severe anatomical flaws. In the Cardio example (Figure 10e), the prototype for
Cardiothoracic Ratio (yellow) bleeds nonsensically into the lung fields and abdomen. Crit-
ically, Costophrenic Angle Effusion (dark blue) is activated in the *upper* lung zones,
which is clinically impossible as fluid accumulates at the lung bases. Similarly, in the SIIM image
(Figure 10f), the Costophrenic Angle (dark blue) is again misplaced in the upper chest, and
the Visceral Pleural Line prototype fails to trace the actual line of the collapsed lung.

(a) Original (b) Ours (c) DOT-CBM (d) Explicd

(e) Original (f) Ours (g) DOT-CBM (h) Explicd

Figure 11: Qualitative comparison of explanation heatmaps on ISIC 2018 dermoscopy images (skin lesion
classification). We visualize concept attributions using Grad-CAM-style activation maps (Selvaraju et al.,
2019) applied to the concept bottleneck layer (or post-hoc concept predictor) of each method, overlaid on the
original images with jet colormap and 40% opacity. Our method consistently produces sharp, highly localized
activations that precisely delineate clinically relevant lesion regions while effectively suppressing background
skin and artifacts. In contrast, DOT-CBM and Explicd generate diffuse, noisy, or poorly localized patterns that
frequently spill into surrounding healthy skin or fail to adequately highlight diagnostic features of the lesion.
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(a) Original (b) Ours (c) DOT-CBM (d) Explicd

(e) Original (f) Ours (g) DOT-CBM (h) Explicd

Figure 12: Qualitative comparison of explanation heatmaps on the CUB-200-2011 dataset (fine-grained
bird classification). We visualize concept attributions using Grad-CAM-style activation maps (Selvaraju et al.,
2019) applied to the concept bottleneck layer (or post-hoc concept predictor) of each method, overlaid on
the original images with jet colormap and 40% opacity. Our approach consistently generates sharp, well-
localized activations that faithfully highlight the entire discriminative bird regions (head, breast, wings, and
tail) while effectively suppressing irrelevant background. By contrast, DOT-CBM and Explicd produce diffuse,
over-smoothed, or noisy activation patterns that either leak into background areas or fail to adequately cover
diagnostically relevant bird parts.
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F VISUALIZATION ANALYSIS WITH BASELINES

To empirically evaluate the faithfulness and localization quality of the learned concepts, we conduct
a qualitative comparison between our proposed IVQ-CBM and two recent patch-based baselines:
DOT-CBM and Explicd. We employ Grad-CAM (Selvaraju et al., 2019) to generate concept activa-
tion maps, visualizing the spatial regions that contribute most significantly to the model’s concept
predictions. This analysis is performed across two distinct domains: medical imaging (ISIC 2018)
and fine-grained object classification (CUB-200-2011).

Medical Imaging (ISIC 2018). Figure 11 presents the visualization results on dermoscopy im-
ages. The comparison reveals a stark contrast in the semantic coherence of the learned features.
Our method (Columns (b) and (f)) produces sharp, object-centric activations that precisely delineate
the lesion boundaries, effectively separating the pathological tissue from healthy skin. In contrast,
the baselines exhibit severe visual degradation indicative of representational collapse. DOT-CBM
(Columns (c) and (g)) displays diffuse, “cloudy” activation patterns that spill significantly into the
background, suggesting a failure to disentangle foreground concepts from noise. Similarly, Explicd
(Columns (d) and (h)) suffers from scattered and disjointed activations that often miss the lesion
center entirely. These visual artifacts confirm that without explicit regularization to maintain feature
rank, the resulting concept representations become informationally redundant and spatially ambigu-
ous.

General Object Classification (CUB-200-2011). To demonstrate generalizability, we extend this
analysis to the CUB-200-2011 dataset in Figure 12. Consistent with the medical domain, our ap-
proach generates well-localized heatmaps that cover discriminative avian parts (e.g., head, wings,
torso) while suppressing complex background clutter. Conversely, the baselines struggle with lo-
calization; their activations are either over-smoothed or erroneously highlight background elements
(e.g., branches or ground).

Conclusion. The superior visualization quality of IVQ-CBM—characterized by precise localization
and boundary adherence—is not merely a result of better training dynamics but a direct phenomeno-
logical manifestation of our high-rank feature space. By successfully escaping the low-rank trap via
Implicit Vector Quantization, our model preserves the semantic diversity required for faithful and
interpretable visual concept learning.

G RESULTS WITH OTHER MULTI-MODAL BACKBONE

Figure 13: Ablation study on the impact of the IVQ component. The figure compares the feature rank dynam-
ics of the model trained with and without the IVQ module with CLIP backbone, demonstrating its effect on
representation diversity.
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Our primary experiments are conducted on a CLIP model pre-trained with a biomedical cor-
pus (Zhang et al., 2025) to build the proposed IVQ-CBM. This domain-specific backbone ensures
feature relevance for medical tasks. Within this main setup, we perform comprehensive ablation
studies to validate the contribution of each component. Figure 6 provides a compelling visualization
of a crucial ablation study on the IVQ module. The results are unequivocal: the model variant with-
out IVQ (dashed lines) suffers a significant drop in feature rank during training, a clear indication of
representational collapse. In stark contrast, the full model equipped with IVQ (solid lines) robustly
maintains a high feature rank throughout the training process. Notably, on datasets such as BUSI
and CMMD, it even exhibits rank recovery after initial dips. This direct comparison underscores the
indispensable role of IVQ in preserving feature space dimensionality and preventing catastrophic
rank collapse.

A key question is whether the observed rank collapse is specific to the domain-adapted biomedical
encoder or if it represents a more general challenge in representation learning. To investigate this,
we replicated the experiment using a general-purpose feature extractor. Specifically, we replaced
the specialized backbone with a standard pre-trained Vision Transformer (ViT-L/14) (Radford et al.,
2021), with weights from the OpenCLIP project (Cherti et al., 2023) trained on the LAION-2B
dataset (Schuhmann et al., 2022). As demonstrated in Figure 13, the results on four distinct datasets
are unequivocal. The models trained without our IVQ module (dashed lines) consistently suffer
from a severe drop in feature rank, confirming that representational collapse is not tied to a specific
encoder. In stark contrast, the models equipped with IVQ (solid lines) robustly maintain a high and
stable feature rank throughout training. This confirms that rank collapse is a fundamental problem
and establishes IVQ as a robust, model-agnostic solution for preserving representation diversity.

H STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

Throughout the preparation of this manuscript, we utilized large language models to enhance the
quality of the text. Specifically, we employed Google’s Gemini Pro for tasks related to language
refinement, including correcting grammar and spelling, improving sentence clarity, and ensuring a
consistent academic tone.

The core scientific contributions, including the formulation of the problem, the proposed methodol-
ogy, the design and execution of experiments, and the interpretation of results, are entirely the work
of the authors. All text generated or modified by the LLM was meticulously reviewed, edited, and
revised by the authors to ensure it accurately reflects our original ideas and findings. The authors
bear full and final responsibility for all content presented in this paper.
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I PSEUDOCODE OF IVQ-CBM

Algorithm 1 Training Procedure of Our Proposed Method

Require: Training dataset D = {(x, c, y)}.
Require: Visual encoder EI , text encoder Et, classifier head hcls.
Require: Learnable concept queries Q ∈ RK×D.
Require: Learnable IVQ codebook Cvq ∈ RK×D.
Require: Commitment cost hyperparameter β.
Require: Set of textual concept descriptions {tk}Kk=1.

1: Initialize parameters for EI , hcls, Q, and Cvq .
2: Pre-compute text concept embeddings: τk ← Et(tk) for k = 1, . . . ,K.
3: for each training epoch do
4: for each batch (x, c, y) sampled from D do
5: ▷ 1. Visual Feature Extraction
6: Zv = [zcls, z1, . . . , zL]← EI(x) ▷ Encode image
7: Zp ← [z1, . . . , zL] ▷ Extract patch-level features
8: ▷ 2. Magnet Concept Aggregation
9: Compute soft-assignment matrix A ∈ RL×K between patches and queries:

10: Ajk ← exp(−∥zj−qk∥2
2)∑K

k′=1
exp(−∥zj−qk′∥2

2)
▷ For each patch j and query k

11: M← A⊤Zp ▷ Aggregate features into K Visual Concepts
12: ▷ 3. Concept-Text Alignment
13: v← diag(Mτ⊤) ▷ Generate Concept Activation Vector (CAV)
14: ▷ 4. Final Classification
15: p← hcls(v) ▷ Predict class logits from CAV
16: ▷ 5. Loss Computation
17: Lcls ← LCE(p, y) ▷ Cross-entropy loss for task classification
18: Lconcept ← LBCE(v, c) ▷ BCE loss for concept supervision
19: ▷ – Implicit Vector Quantization (IVQ) Regularization –
20: For each patch feature zj ∈ Zp, find nearest codebook vector ckj

∈ Cvq .
21: Let Zq = [ck1

, . . . , ckL
] be the matrix of quantized features.

22: LIVQ ← ∥ sg(Zp)− Zq∥22 + β∥Zp − sg(Zq)∥22 ▷ IVQ loss
23: ▷ – Overall Objective and Optimization –
24: L ← Lcls + Lconcept + LIVQ ▷ Total loss
25: Update parameters of EI , hcls,Q, Cvq using gradients from L.
26: end for
27: end for

J QUANTITATIVE INTERPRETABILITY AND CAUSAL FAITHFULNESS

While qualitative visualizations offer intuitive insights, rigorous validation requires quantifying how
well the learned concepts align with human expertise and whether they causally drive the model’s
decisions. To this end, we conducted two supplementary studies: a human evaluation with radiolo-
gists and a concept intervention test.

J.1 HUMAN EVALUATION WITH EXPERT RADIOLOGISTS

To assess the spatial and semantic alignment of our learned codebook prototypes with clinical knowl-
edge, we invited two radiologists to participate in a blinded evaluation study.

Experimental Protocol. We randomly sampled 50 images across four diverse datasets: CMMD
(mammography), BUSI (ultrasound), ISIC (dermoscopy), and IDRID (fundus photography). The
evaluation comprised two distinct tasks:
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1. Concept Localization (Spatial): Experts were presented with an image and a target clin-
ical concept (e.g., Mass Margin). They rated the model-generated activation heatmap on a
5-point Likert scale (1 = Completely Misaligned, 5 = Perfectly Aligned) based on whether
the highlighted region corresponded to the clinical pathology.

2. Semantic Alignment (Conceptual): Experts viewed the image and the heatmap without
the concept label. They were asked to identify the represented concept from a multiple-
choice list containing the ground truth and 3–4 plausible semantic distractors (e.g., distin-
guishing Calcification from Mass Margin).

Table 6: Quantitative Human Evaluation Results. Two radiologists evaluated the interpretability of IVQ-
CBM on localization quality (Likert Scale 1–5) and semantic consistency (Choice Accuracy).

Dataset Task 1: Localization Accuracy Task 2: Semantic Alignment
(Avg. Likert Score, 1–5) (Avg. Choice Accuracy)

CMMD (Mammography) 4.32 90% (45/50)
BUSI (Ultrasound) 4.51 92% (46/50)
ISIC (Dermoscopy) 4.15 88% (44/50)
IDRID (Fundus Photography) 4.20 86% (43/50)

Average 4.30 89%

Results. As detailed in Table 6, IVQ-CBM achieved a high average localization score of 4.30/5.0
and a semantic alignment accuracy of 89%. These results quantitatively corroborate that our IVQ
mechanism successfully anchors visual features to semantically meaningful and spatially accurate
clinical concepts.

Table 7: Concept Intervention Test on CMMD. We measure the drop in the model’s predicted probability for
the “Malignant” class after manually intervening on specific concept activations. The substantial drop confirms
the causal role of these concepts in the decision process.

Intervention Type Avg. P (Malignant) Relative Change
None (Baseline) 0.96 –
Intervene on “Mass Margin” 0.80 -16.7%
Intervene on “Mass Shape” 0.85 -11.5%
Intervene on Both 0.72 -25.0%

J.2 CAUSAL FAITHFULNESS VIA CONCEPT INTERVENTION

A critical requirement for CBMs is causal faithfulness—meaning the concepts should not merely
correlate with the prediction but actively drive it. We validated this via a counterfactual intervention
test on the CMMD dataset.

Methodology. We selected a test subset of 50 images where the model confidently predicted malig-
nancy (P (Malignant) > 0.9). We identified clinically causal concepts for this decision, specifically
Spiculated Margin and Irregular Shape. We then performed an intervention on the Concept Activa-
tion Vector (CAV), denoted as v. Specifically, we “flipped” the activation scores of these malignant
concepts by replacing them with the average scores derived from benign samples, while keeping
the classification head hcls frozen. We then measured the degradation in the model’s predicted
probability for the malignant class.

Results. Table 7 demonstrates the impact of these interventions. Modifying individual concepts re-
sulted in a notable decrease in confidence. Crucially, intervening on both shape and margin concepts
caused a substantial 25.0% drop in the predicted probability (from 0.96 to 0.72). This significant
sensitivity confirms that the decision-making logic of IVQ-CBM causally relies on these high-level
clinical concepts, rather than spurious correlations or background artifacts.
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K ANALYSIS OF INFORMATION LEAKAGE AND EFFECTIVE CONCEPT
LEARNING

Recent studies (Yan et al., 2023; Srivastava et al., 2025) have highlighted a critical challenge in
CBM: the potential for information leakage in the bottleneck layer, where models may achieve high
accuracy by encoding non-semantic noise rather than learning meaningful concepts. To rigorously
validata the faithfulness of our approach, we evaluate IVQ-CBM using the A-NEC (Accuracy at
Number of Effective Concepts) metric proposed by Srivastava et al. (2025) and provide a theoretical
analysis of the mechanisms inherent to our architecture that mitigate such leakage.

K.1 ROBUSTNESS EVALUATION ON THE A-NEC METRIC

The A-NEC metric assesses whether a model relies on a concise set of “effective” concepts or
exploits a diffuse sum of features (leakage). We conducted an evaluation on both natural (CUB,
CIFAR-10) and medical (ISIC, BUSI) datasets. Specifically, we performed post-hoc pruning on
the final classification layer, retaining only the top-5 contributing concepts for each class prediction
(denoted as ANEC-5), and compared this restricted performance against that of the full model.

Table 8: Evaluation of IVQ-CBM on the ANEC-5 Metric. The results demonstrate minimal performance
degradation when restricting the model to the top-5 effective concepts, indicating robustness against informa-
tion leakage.

Dataset Domain Full Model Acc (%) ANEC-5 Acc (%) Performance Drop (∆)

CUB Natural 75.93 75.21 -0.72%
CIFAR-10 Natural 87.92 86.85 -1.07%
ISIC Medical 90.11 89.20 -0.91%
BUSI Medical 93.59 92.80 -0.79%

As presented in Table 8, IVQ-CBM retains over 98% of its original performance across all datasets
even when restricted to utilizing only the top-5 concepts. This minimal performance drop indicates
that the model’s decision-making is primarily driven by a few highly relevant semantic concepts,
rather than relying on residual leakage distributed across irrelevant dimensions.

K.2 MECHANISM ANALYSIS: MITIGATING LEAKAGE VIA STRUCTURAL REGULARIZATION

While prior approaches mitigate leakage by enforcing sparsity constraints on classifier weights,
IVQ-CBM addresses the root cause—feature representation—through two complementary mecha-
nisms:

IVQ as a Semantic Filter. Information leakage often exploits high-frequency noise or low-rank
degenerate subspaces that carry discriminative but non-semantic information. The proposed IVQ
mechanism acts as a structure-inducing regularizer. By imposing the Commitment Loss (Eq. 4),
continuous patch features are compelled to align with learned codebook prototypes, which function
as semantic anchors. This process effectively filters out unstructured noise, as leakage patterns
typically lack the statistical consistency to form stable clusters within the codebook. By enforcing
semantic consistency with discrete prototypes, IVQ prevents the bottleneck from serving as a generic
conduit for pixel-level noise.

Magnet Attention as Implicit Sparsity. The Magnet Attention mechanism aggregates features
via a competitive Softmax dynamic. This introduces an implicit sparsity effect: patches must “vote”
strongly for specific concept queries to be aggregated. Diffuse background noise or leakage, which
typically manifests as weak, uniform signals across patches, is naturally suppressed by the exponen-
tial nature of the Softmax function. Consequently, the resulting Visual ConceptsM are composed
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of strong, concept-aligned signals, effectively achieving the goal of effective concept learning during
the feature aggregation stage.

K.3 IVQ CODEBOOK AS A DIAGNOSTIC TOOL FOR CONCEPT REFINEMENT

Beyond its role as a regularizer, the IVQ codebook offers a unique capability: it functions as a trans-
parent diagnostic tool to audit the quality of predefined textual concepts. Since the commitment loss
(Eq. 4) compels codebook vectors to serve as semantic anchors for visual patches, we hypothesize
that the frequency of patch assignments to each prototype serves as a quantitative proxy for that
concept’s visual validity.

To validate this, we conducted a post-hoc analysis of prototype assignment statistics on the ISIC
dataset. The analysis revealed a stark dichotomy: while robust concepts such as Blue-whitish veil
attracted tens of thousands of patch assignments, the concept Rough Texture received negligible
attention (< 50 assignments across the entire validation set). This quantitative signal suggests that
Rough Texture is a tactile property ill-suited for 2D dermoscopy classification, effectively rendering
it a null concept in the visual domain.

Leveraging this insight, we implemented a closed-loop refinement process summarized in Table 9.
We replaced the ineffective concept with a more visually distinct alternative, Irregular Streaks, and
retrained the model. As shown in the table, this targeted adjustment yielded a tangible performance
improvement, boosting Accuracy to 90.75% (+0.64%) and BMAC to 87.12% (+0.90%). This ex-
periment demonstrates that IVQ-CBM provides a mechanism not only for learning concepts but for
validating and refining the human knowledge base itself.

Table 9: Performance comparison on the ISIC dataset before and after concept refinement. Guided by the
low assignment frequency in the IVQ codebook, replacing the dormant concept Rough Texture with Irregular
Streaks leads to consistent gains.

Model Setting Concept Configuration ACC (%) BMAC (%)

Initial Includes Rough Texture 90.11 86.22
Refined Includes Irregular Streaks 90.75 87.12

Performance Gain +0.64 +0.90

L SENSITIVITY ANALYSIS OF COMMITMENT COST PARAMETER

The commitment cost hyperparameter β in the IVQ loss (Eq. 4) serves a critical role in balancing
the strength of the regularization, specifically controlling how tightly the visual encoder’s output
is constrained to the learnable codebook prototypes. To empirically validate the model’s sensi-
tivity to this design choice, we conducted ablation experiments on three diverse datasets: ISIC
(Dermoscopy), SIIM (Chest X-ray), and BUSI (Ultrasound), evaluating a standard range of values
β ∈ {0.1, 0.25, 0.5, 1.0}.
As summarized in Table 10, the model demonstrates remarkable robustness to variations in β. The
performance fluctuations in both Accuracy and BMAC are negligible (typically < 0.5%) across
all tested values. This stability suggests that the primary function of the IVQ loss is to provide a
structural constraint that prevents feature collapse. Our empirical results indicate that within the
examined range, the model is not sensitive to the precise magnitude of β, suggesting that the regu-
larization remains effective as long as the commitment cost is set to a reasonable non-trivial value.
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Table 10: Sensitivity analysis of the commitment cost β on ISIC, SIIM, and BUSI datasets. The model shows
robust performance across a range of standard values, with the default setting (β = 0.25) highlighted in bold.

Commitment Cost (β) ISIC (ACC / BMAC) SIIM (ACC / BMAC) BUSI (ACC / BMAC)

0.10 89.94 / 86.05 81.85 / 81.90 93.25 / 95.15
0.25 (Default) 90.11 / 86.22 82.01 / 82.01 93.59 / 95.38
0.50 90.02 / 86.14 81.92 / 81.95 93.41 / 95.22
1.00 89.85 / 85.92 81.70 / 81.65 93.10 / 94.95
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