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Abstract

This paper seeks to reproduce and extend the results of the paper “Explaining Temporal
Graph Models Through an Explorer-Navigator Framework” by Xia et al. (2023). The main
contribution of the original authors is a novel explainer for temporal graph networks, the
Temporal GNN Explainer (T-GNNExplainer), which finds a subset of preceding events that
“explain” a prediction made by a temporal graph model. The explorer is tested on two
temporal graph models that are trained on two real-world and two synthetic datasets. The
explorer is evaluated using a newly proposed metric for explanatory graph models. The
authors compare the performance of their explorer to three baseline explainer methods,
either adapted from a GNN explainer or developed by the authors. The authors claim that
T-GNNExplainer achieves superior performance compared to the baselines when evaluated
with their proposed metric. This work reproduces the original experiments by using the
code (with minor adjustments), model specifications, and hyperparameters provided by the
original authors. To evaluate the robustness of these claims, the method was extended to
one new dataset (MOOC). Results show that the T-GNNExplainer performs best on most,
but not all metrics reported in the original findings. We conclude that the main lines of this
paper hold up even though all results are less pronounced than claimed. Results show that
the T-GNNExplainer does not perform similarly across different T-GNN models, precise
dataset specifications are needed to obtain high performance, and there are simpler, less
computationally costly explainer methods that could offer competitive results.

1 Introduction

Dynamic graph-structured data can be seen as sequences of events between nodes that happen over time,
and exist in many applications such as social networks (Pereira et al., 2018)(Gelardi et al., 2021). Temporal
Graph Neural Networks (T-GNNs) learn representations of these structures and make predictions on future
events (Xia et al., 2023). The rationale for how graph models arrive at these predictions is difficult to
interpret (Luo et al., 2020), and this lack of human-intelligible explanations means these powerful tools lack
the transparency crucial in establishing fairness, safety, and trust in their output (Doshi-Velez & Kim, 2017).
The opacity of graph models could hinder the possibility to ensuring ethical outcomes if potential biases or
discrimination arise from their predictions, especially in high-stakes domains like healthcare (Burrell, 2016).

Graph explainers identify important subgraphs of nodes and events that were instrumental in a model’s
prediction for a target event (Luo et al., 2020). Most methods for explaining these predictions exist for Graph
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Neural Networks (GNNs), which focus on static graphs (GNNExplainer (Ying et al., 2019), PGExplainer (Luo
et al., 2020) and Sub- graphX (Yuan et al., 2020)). These methods cannot be directly applied to explaining
T-GNNs, since the time-varying structures of dynamic graphs are not captured by these explainers (He et al.,
2022).

The authors of this paper propose the T-GNNExplainer, which provides an instance-level search-based
model-agnostic post-hoc explanation for predictions made by temporal graph models. "Instance-level"
means an explanation is provided only for one prediction instead of at a global level, "search-based" means
the method explores subsets of possible solutions, "model-agnostic" means the explainer should be able to
explain any temporal graph model, and "post-hoc" means the explanation is based on the output of the
model without direct access to the actual steps that occurred during model training.

This paper is structured as follows: In Section 2, we explain the scope of reproducibility, summarizing the
authors’ main claims and the experiments we ran to verify their claims. In Section 3, we provide the reader
with a summary of the model proposed in the original paper and the experimental methodology used to run
the experiments. In Section 4 we describe all the datasets and in Section 5 we explained our use of the
hyperparameters. In Section 6 we described the experimental setup and code, where we explain the novel
dataset and the computational requirements. Section 7 provides the replicated results, comparison to the
original results, and results that extend beyond the original paper. We end with a discussion in Section
8. Beyond the references we have also have an appendix, A to B, that provides further information on the
specifics of the experimental setup for those looking to implement this reproducibility study, further metrics,
results, and suggestions for further research.

2 Scope of Reproducibility

The main contribution of the authors is a novel explainer for T-GNNs. They claim superior performance
of their explainer by evaluating performance in comparison to other baselines explainers, evaluating the
efficiency of their method, and the conciseness of the output compared to the other explainers.

The first metric they use to evaluate performance is called the Area under the Fidelity-Sparsity Curve
(AUFSC). It is composed of two metrics (fidelity and sparsity), each of which is used to evaluate graph
explainer models (Amara et al., 2022)(Agarwal et al., 2023)(Liu et al., 2021). The curve expresses the re-
lationship between the fidelity (i.e. how accurately the T-GNN makes a similar prediction when it takes as
input only the nodes it selects as explanatory) and sparsity (i.e. how few nodes are used to give the expla-
nation). The area under the curve is a measure of the commutative fidelity over a set of sparsity threshold
intervals. High fidelity and high sparsity result in a higher AUFSC which indicates better performance.
The second metric, Best Fidelity, simply measures the highest fidelity achieved by an explainer without the
sparsity limitation, averaged over all test data. The metrics are explained in further detail in Section 3.10.

The main claims that are investigated in the current paper are:

1. Compared to the other baselines, T-GNNExplainer surpasses performance in the AUFSC and Best
Fid metrics by up to ~50%.

2. The T-GNNExplainer is model agnostic in regards to the underlying predictor model.

The aim of this paper is to verify the original authors’ main claim by reproducing their main findings, and
testing the robustness of this claim by extending their results to a new and different kind of dataset. We
perform further analysis on the explanatory graphs and the interaction between the T-GNNExplainer and
the underlying model. Further goals of the paper are to increase accessibility and reproducibility of this work
by providing supplementary instructions for running the code and in-depth explanations for understanding
the methodology.

There are other claims made in the paper in regards to the conciseness of the generated graph and the
navigators efficiency. We do not investigate these claims due to computation and time cost.
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3 Methodology

The code is publicly available in a zip file of supplementary materials on the OpenReview page for this
paper. The data is not included in the zip file, but the top-level ReadMe in the code provides instructions
for downloading the data. There is some inconsistency between the nomenclature used in the paper and the
corresponding terminology in the code. For the purpose of this work, we follow the terminology used in the
paper.

3.1 Notation

The notation used in the paper is as follows: G = (N , S) is a temporal graph. N is a list of the nodes, and
S = {e1, e2, . . . } sequence of timestamped events. Each event ei = {nui

, nvi
, ti, atti} has a timestamp ti and

occurs from node nui
to node nvi

with the attribute atti, which is a list of indefinite even length filled with
feature values. Gk is the graph at timestamp k and Rk is the subset of events in graph Gk found by the
explainer. Nr is a hyperparameter controlling the amount of nodes that the explanatory subgraph is allowed
to have.

The function f(·) represents a trained temporal graph model. f(Gk)[ek] is the probability prediction of the
event ek that occurs when the graph Gk is input into the network. The output is a logit value. Yk is a value
of either 0 or 1 that classifies the prediction of the network for whether or not an event occurs at the time
step k.

3.2 T-GNNExplainer

We explain the Explorer-Navigator framework in detail to give a more intuitive understanding of the model
intended functioning.

A temporal graph network predicts whether a target event ek will occur or not (Rossi et al., 2020)(Xu et al.,
2020). The purpose of the T-GNNExplainer is to find a set of preceding events that explain why the model
made this prediction.

This subset of events Rk henceforth referred to as the “explanatory subgraph” is found from a set of candidate
events. These candidate events are selected through three hyperparameters. The first hyperparameter
( n_hops in the code) limits them spatially to be within a k-hop neighborhood of the target event (i.e., 2
hops). The second ( num_neighbors in the code) restricts them temporally to the target event (i.e., within
the 10 most recent events). Rk finally, is further limited by the hyperparameter Nr, which constrains the
maximum number of nodes that the explanatory subgraph can have. In the code, this number is hard coded
to 20. The reasoning is that if the subgraph is too large e.g. if |Rk| = |Gk|, then the explanatory power of
Rk becomes tautological, losing usefulness in its lack of specificity.

The explainer module is made up of two parts, the navigator and the explorer, that work together to “prune”
a graph of unimportant events related to the target event ek, resulting in a graph of only the most relevant
events that lead to the prediction of the target event.

3.3 Navigator

The navigator is inspired by the “explanation network for node classification” from the parameterized ex-
plainer proposed by Luo et al. (2020). The navigator hθ(ej , ek) proposed in this paper is a two-layer
multi-layer perceptron (MLP) that learns a correlation between two events ej (the candidate) and ek (the
target).

To infer the relationship between two specific events, the features of both events are concatenated into a
vector and input into the network:

Zej ,ek
= [Xnuk

∥Xnvk
∥Time(tk)∥attk∥Xnuj

∥Xnvj
∥Time(tk)∥attk]T
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X represents the node feature matrix, Time(·) is a harmonic function that encodes the real-valued timestamp
into a learnable vector adapted from (Xu et al., 2020), and || represents concatenation.

Given that the navigator is an MLP that takes as input the concatenated features of two events to learn a
relationship between them, this indicates that the network learns similarities between events. So when the
explorer (explained in section 3.4 below) uses the navigator to remove “unimportant” events from the search
space, the navigator selects dissimilar events to the target event.

3.4 Explorer

The explorer uses a modification of Monte Carlo Tree Search (MCTS). The explorer searches a tree of nodes,
where each child node is a subgraph of its parent node, which has one fewer event than the parent before it.

The root node is initialized as a subset of Gk that satisfies the constraints imposed by temporal and spatial
hyperparameters.

Starting from the root node, the explorer selects and expands child nodes. It is important to note that these
child nodes are not stored in memory. Rather, the explorer keeps track of a list of previously expanded
events at each node C(N i). This entire process is conducted through multiple rounds (i.e. rollouts), a
hyperparameter that is set to 500 in this paper.

Each rollout starts with the root node and we prune events until we reach a leaf node, which is a child that
satisfies the hyperparameter criteria that it has fewer than 5 events. In the code itself, a leaf node is defined
as a subgraph with 1 event in the code, and less than 5 events in the paper.

Child nodes are selected and expanded until a leaf is reached. The search tree of all nodes is not not stored
in memory across rollouts, rather each rollout starts with the root and a list of events that were expected
and expanded in previous rollouts.

3.5 Node Selection

The search path is selected using the following formula:

e∗ = arg max
ej∈C(N i)

 c(N i, ej)
n(N i, ej) + λ

√∑
el∈C(N i) n(N i, el)

1 + n(N i, ej)

 (1)

Since the nodes themselves are not stored in memory, a child node is “selected” by removing an optimal
event e* from the current node N i. This equation says that from events that have already been expanded,
select an event that has a high average reward value from previous rounds (exploitation term) but has not
been explored as much (exploration term). The λ is a hyperparameter set by the paper authors that controls
how much exploration is encouraged.

3.6 Node Expansion

Instead of generating and searching a tree of all possible subgraphs, the explorer uses the navigator to create
subgraphs that are relevant to its search. The navigator finds the least important event in relation to the
target/predicted event ek:

e∗ = arg min
ej∈N i/C(N i)

hθ(ej , ek) (2)

The explorer then creates a new child node by removing e∗ from the current node Ni. It is important to
note that the navigator only searches events that were not already removed in previous rollouts, so that we
do not end up removing the same event in every rollout.
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3.7 Reward & Backpropagation

Child nodes are selected and expanded until we reach a leaf node. Once we have reached this leaf node, a
reward is calculated through the negative cross-entropy loss based on the work of Farnia & Tse (2017):

min
Rk

−
∑

c=0,1
1(Yk = c) log P (Ynew = c|Rk) (3)

The loss looks at how much the probability of a prediction (Yk) of the original graph (Gk) changes when
the input is limited to a specific subgraph (Rk). If the probability changes a lot, then that subgraph is
not a good explanation for the prediction made on event ek by the original graph. The outcome of the loss
function is seen as the reward for the back-propagation. The back-propagation step itself, consists of adding
the cumulative reward value for each subgraph/node c(N i, ej), and how many times it’s received a reward
c(N i, ej).

3.8 Selecting the explanatory subgraph

The explorer-navigator process is repeated through several rollouts to explore different possible subgraphs.
The best explanation for the prediction ek is the subgraph that has the highest cumulative reward and has
the simplest explanation according to the sparsity threshold (|Rk| ≤ Nr in equation 4).

3.9 Optimal explainer

The optimal explainer g∗ is the minimum cross-entropy averaged over all predictions for k target events

g∗ = arg min
g

− 1
K

K∑
k=1

[1(Yk = 1) log σ(f(Rk)[ek]) + 1(Yk = 0) log(1 − σ(f(Rk)[ek]))] (4)

Subject to Rk = g(ek, Gk, f(·)) and Rk ⊆ Gk and |Rk| ≤ Nr

where Nr is the hyperparameter that controls the size of Rk.

3.10 Evaluation

The two metrics used to evaluate the performance of the explainers are the Area Under the Fidelity-Sparsity
Curve (AUFSC), and Best Fid (best fidelity). The formula for sparsity is given by: Sp = |Rk|/|Gk|
Sparsity is a ratio between the size of the explanatory subgraph and the input graph Gk.

The formula for Fidelity is given by:

Fid(f(Gk)[ek], f(Rk)[ek]) = 1(Yk = 1)(f(Rk)[ek] − f(Gk)[ek]) + 1(Yk = 0)(f(Gk)[ek] − f(Rk)[ek]) (5)

Fidelity measures the difference between the logit probability output by the temporal network f(·) when
the input is the original graph Gk and when the input is the explanatory subgraph Rk. a logit score of +1
implies that the explanatory subgraph is a better prediction than the original graph. The model aims to
maximize the fidelity.

The AUFSC is a numerical score that measures the area under the graph for the fidelity values at sparsity
intervals between 0 and 1 (|Rk| = |Gk|). A higher value for AUFSC implies the explorer achieves high
fidelity, even at a low sparsity threshold.

The goal is to have high fidelity, which means that f(Rk)[ek] produces a logit probability that ideally
surpasses the original prediction f(Gk)[ek], while keeping the explanatory subgraph Rk as simple as possible.
The purpose is not to achieve the same probability output on f(Rk)[ek] as f(Gk)[ek] (fidelity = 0) but rather
to obtain a subset that increases the logit number for this prediction as much as possible (positive fidelity).
In a way, we are picking the best events to generate this prediction which we call the "explanatory subgraph".

The metric Best Fid simply measures highest fidelity achieved by an explainer, ignoring sparsity altogether.
The only limitation is the hyperparameter Nr controlling the maximum amount of nodes allowed.
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3.11 Baselines - Other Explainers

The authors compare the performance of the T-GNNExplainer with three baseline explainer methods: PG-
Explainer (Luo et al., 2020), ATTN and PBONE (Xia et al., 2023). In contrast to T-GNNExplainer, the
baselines are not search-based methods. The original PGExplainer is a parametrized explainer for GNNs
that provides a model-level explanation over multiple event predictions. The authors adapt PGExplainer
to output explanations for temporal graph structures at an instance-level. The two other explainers were
modelled by the authors themselves. Firstly, there is ATTN which is an attention-based explainer that aver-
ages the weight values over all attention layers of either TGAT or TGN. PBONE generates an explanation
by removing or "perturbing" one candidate event at a time to compute its importance in a prediction (Xia
et al., 2023).

3.12 Target models

The authors test the explainer on two target models, namely TGN and TGAT. TGAT is a temporal graph
attention layer that is used in neural networks. This technique uses self-attention and stacks TGAT layers
to recognize the node embeddings as functions of time (Xu et al., 2020). Temporal Graph Networks (TGN)
is a deep learning framework where dynamic graphs are represented as sequences of timed events (Rossi
et al., 2020). TGN consists of a combination of memory modules and graph-based operators. In contrast to
TGAT, TGN uses Multi-head Attention in their network.

4 Datasets

The dataset collection consists of bipartite graphs and unipartite graphs, all of which are directed. Bipartite
graphs consist of two types of nodes (e.g. users and pages). Events in the datasets describe one type of
node interacting with the other type (Chang & Tang, 2014). Unipartite graphs consist of one type of node,
among which events occur (Chang & Tang, 2014).

The original paper experiments with two classes of datasets with very distinct characteristics. One is a
bipartite graph network describing an online collaboration process with extensive feature information, and
the other is a dataset generated by a statistical process in a small-scale graph with predefined, static event
relationships.

4.1 Data format

The original paper makes some claims about the data structures that conflict with the implementation of
the code. This section highlights implicit assumptions and discrepancies relevant to our discussion in Section
8 about the precise data specifications needed to run the models.

It is first important to note that every dataset used is a directed graph, the format consists of events that
occur from node nui to node nvi . There can be multiple events from node nui to node nvi (i.e. a user
updates a page multiple times). The original paper states that there could be deletion or internal update
events ei = {nui

, null, ti, atti}, however, the implementation for the T-GNNExplainer does not allow for null
events, therefore there are no self-updates or self-deletions of nodes.

Even though the original paper claims that the T-GNNExplainer takes into account the continuous-time
dynamic properties of the data (Xia et al., 2023), only the underlying predictor models do this. Analysis
of the methodology and code reveals that T-GNNExplainer only looks at events ordinally, and ignores the
amount of time that passes between events.

4.2 Synthetic datasets

The synthetic datasets are based on a unipartite temporal graph that contains 4 nodes, and 4 possible
edge-events. The possible events within this graph adhere to predefined excitatory and inhibitory relations.
These predefined relations are used in a multivariate Hawkes process to generate a dataset of timestamped
events. (Hawkes, 1971) implemented in the Tick Python library (Bacry et al., 2018). A random process is
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used to generate noise in the form of false events. In summary, the synthetic datasets are relatively small
datasets that describe the occurrence of four unique events over time.

4.3 Real-World datasets

The two real-world datasets used in the original paper, Wikipedia and Reddit (Kumar et al., 2019), are
bipartite graphs that describe editing processes between users and web pages. In both datasets, this process
follows a roughly 1:9 ratio between web pages and users. Each event is accompanied by a 172 numeric
features vector that describes the editing event.

It should be noted that although it is claimed these datasets are bipartite, about 10% of the connections
involve nodes that are contained in both sets, this would disprove the bipartite characteristic. We have not
found a reason for this phenomenon in the original paper or from the authors who compiled the datasets
(Kumar et al., 2019).

4.4 New dataset

To validate the robustness of the claims made by the original authors regarding AUFSC performance, a
new dataset is included in the experimentation. MOOC is a network representing student interaction from
online course content units (Kumar et al., 2019).

MOOC exists in a desirable interposition of dataset characteristics to the original datasets. It is equal in size
but has fewer features and can serve to test the generalizability of the proposed methodology on real-world
temporal graph processes with limited event information.

Table 1: Dataset attributes. Where # represents "Number", so "Number of Events" and "Number of Fea-
tures".

Name # of Events # of Features Type Time period Time granularity
Wikipedia 157,474 172 bipartite 1 month seconds
Reddit 672,447 172 bipartite 1 month seconds
MOOC 411,749 4 bipartite ~298 days seconds
V1 10,000 0 unipartite ~5000 seconds <seconds
V2 10,000 0 unipartite ~5000 seconds <seconds

All data sets have a 70% / 15% / 15% train / validation / testing scheme based on timestamps for both
TGAT and TGN. The most recent 30% is used for the validation and test sets (Kumar et al., 2018)(Kumar
et al., 2019).

5 Hyperparameters

The experimental setup is copied from Section 5.2 and the Appendix of the original paper (see Appendix B
below for further details).

For the novel dataset, minor changes have been made. Firstly, before training the graph prediction models
(TGAT and TGN) the embedding dimensionalities are adjusted to match the dimensionality of the feature
information in the novel dataset.

The experiments were run on two seeds; the original seed 2020, and a new seed 2. See the discussion section
for further comments about the incomplete seed set-up in the original code.

Due to the limitation of computational resources, we chose to focus our hyperparameter tuning efforts on
recreating the hyperparameter analysis performed by the original authors in their Appendix Section A.7.
Our experiment is performed on the TGN model trained on the Wikipedia dataset, where λ, the navigator’s
exploration parameter, is set to 1, 5, 10, and 100.
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Table 2: Other hyperparameters from the paper and justifications regarding why they were excluded from
further studies.

Hyperparameters omitted from tuning

Hyperparameters Value Explanation for omission

Explanation level Event Graph-level explanations are not implemented by the authors
but there is evidence in the code of their intention to implement this option.

Rollouts 500 The authors performed rollout analysis in the Appendix,
but we faced compute limitations

Nr (See Section 3.9) 20 This hyperparameter was hardcoded by the original authors,
code refactoring was out of scope for this paper.

Learning rate 1e−4 Limitation of computational resources.
Time dim 172 or 4 Values are very specific to the dataset.
Node Feature Dimension 172 or 4 Values are very specific to the dataset.
Edge Feature Dimension 172 or 4 Values are very specific to the dataset.
Training epoch 10 or 100 Limitation of computational resources.

6 Experimental setup & Code

The following experiments were performed: 1) Reproduction on the original performance claims across three
seeds, 2) Extension of performance evaluation to one new datasets, 3) hyperparameter tuning of λ, the value
responsible for the "exploration" of the navigator.

The repository can be found here https://github.com/cisaic/tgnnexplainer.

6.1 Reproduction

To reproduce the original results, we train the models (TGAT, TGN) on the original datasets (Wikipedia,
Reddit, Synthetic V1, Synthetic V2). We then train the explainers (T-GNNExplainer, PGExplainer, ATTN,
PBONE) on the trained temporal graph networks from the previous step. Finally, the performance is
evaluated using the evaluation methods in the authors’ original code to measure AUFSC and Best Fid scores
(evaluation detailed in section 3.10.

6.2 Extension with novel datasets

New datasets need to adhere to a number of constraints to train explainer models, which include data format
constraints and content constraints. Before the new dataset can be used in training, it needs to be processed
to match the navigator feature vector as described in Section 4.4 The full experimental setup of the new
datasets is described in Appendix B.

6.3 Computational requirements

For this project, we ran an initial set of experiments (not included in the paper due to lack of seeding) on a
cluster with each node having 24 CPU cores (AMD EPYC 7F72) and one A100 GPU with 40GB RAM.

The updated experiments, which were run over 2 seeds and include hyperparameter tuning, were run on
nodes with 4x T4 GPUs with 16GB RAM each and 64 CPUs. We ran each experiment with 8-64 CPU cores
and one GPU, since the T-GNNExplainer can benefit from CPU parallelism.

Training times were also tracked:
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In our initial set of experiments, the average training time was 4 hours for each model, and 26 hours for each
explainer. The total number of computational hours spent were 88 hours for the training of the models and
345 hours for the running the explainers (including re-runs for failed runs).

For the updated experiments, the average training time was 7 hours for each model per seed, 53 hours for
the T-GNNExplainer on a single CPU, and 12 hours for all other explainers combined on a single CPU (per
model). The computational hours required for the results presented in this research can be split up into 180
hours for training of the models, and 165 hours for running the explainers across 8 CPUs (including re-runs
for failed runs). The cost of the updated experiments totaled over €900.

We discovered that GPU resources were not optimally allocated in sections of the authors’ original code,
which resulted in slower computation that was performed on CPUs. We made minor adjustments to improve
efficiency but did not perform a thorough analysis and refactoring of the code.

7 Results

7.1 Results on original paper

In this section, we report our reproduced results in Table 3, Table 4, Table 5 and Table 6 for the real-world
and synthetic datasets for all target models. New results are compared to the old results from the original
paper, and Delta refers to the difference between the two. Bold values highlight the explainer with the
highest value for a given metric. As far as we know, the original papers results were not run over multiple
seeds.

Table 3: Best fidelity and AUFSC achieved by each explainer on Wikipedia dataset, averaged over two seeds.

Wikipedia
TGAT TGN

BestFid AUFSC BestFid AUFSC
Old New Delta Old New Delta Old New Delta Old New Delta

ATTN 0.891 0.461 -0.430 0.564 0.510 -0.054 0.479 0.034 -0.445 0.073 0.047 -0.026
PBONE 0.027 0.998 0.971 -2.227 1.035 3.262 0.296 0.111 -0.185 -0.601 0.127 0.728

PG 1.354 -0.475 -1.829 0.692 -0.420 -1.112 0.464 -0.532 -0.996 -0.231 -0.504 -0.273
T-GNN 1.836 1.236 -0.600 1.477 1.390 -0.087 0.866 0.413 -0.453 0.590 0.496 -0.094

Table 4: Best fidelity and AUFSC achieved by each explainer on Reddit dataset, averaged over two seeds.

Reddit
TGAT TGN

BestFid AUFSC BestFid AUFSC
Old New Delta Old New Delta Old New Delta Old New Delta

ATTN 0.658 -0.980 -1.638 -0.654 -0.889 -0.235 0.575 -2.223 -2.798 0.289 -2.186 -2.475
PBONE 0.167 0.725 0.558 -2.492 0.798 3.290 0.340 -0.876 -1.216 -0.256 -0.807 -0.551

PG 0.804 -0.877 -1.681 -0.369 -0.796 -0.427 0.679 -2.438 -3.117 0.020 -2.418 -2.438
T-GNN 1.518 0.561 -0.957 1.076 0.753 -0.323 1.362 -1.570 -2.932 1.113 -1.496 -2.609

Performance on the Reddit dataset is an outlier compared to other datasets. The PBONE method performs
comparable to the T-GNNExplainer on both models trained on this dataset. All explainers have lower
performance on this dataset for both models (i.e. the delta values are mostly negative), except for PBONE
on TGAT.
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Table 5: Best fidelity and AUFSC achieved by each explainer on Synthetic v1 dataset, averaged over two
seeds.

Synthetic v1
TGAT TGN

BestFid AUFSC BestFid AUFSC
Old New Delta Old New Delta Old New Delta Old New Delta

ATTN 0.555 1.136 0.581 0.390 1.166 0.776 2.178 0.452 -1.726 1.624 0.477 -1.147
PBONE 0.044 1.431 1.387 -2.882 1.447 4.329 0.000 0.693 0.693 -3.311 0.721 4.032

PG 0.476 0.634 0.158 -0.081 0.676 0.757 2.006 -0.404 -2.410 0.626 -0.337 -0.963
T-GNN 0.780 1.472 0.692 0.666 1.596 0.930 2.708 0.828 -1.880 2.281 0.945 -1.336

Table 6: Best fidelity and AUFSC achieved by each explainer on Synthetic v2 dataset, averaged over two
seeds.

Synthetic v2
TGAT TGN

BestFid AUFSC BestFid AUFSC
Old New Delta Old New Delta Old New Delta Old New Delta

ATTN 0.605 0.859 0.254 0.291 0.874 0.583 0.988 0.217 -0.771 -0.634 0.237 0.871
PBONE 0.096 1.856 1.760 -4.771 1.901 6.672 0.320 0.811 0.491 -5.413 0.860 6.273

PG 1.329 -0.664 -1.993 -0.926 -0.641 0.285 1.012 -0.323 -1.335 -1.338 -0.328 1.010
T-GNN 1.630 2.286 0.656 1.331 2.438 1.107 4.356 1.001 -3.355 3.224 1.136 -2.088

In our reproduction of the experimentation, T-GNNExplainer largely does not achieve the same performance
as in the original experimentation in terms of AUFSC and best fidelity scores. On the real-world datasets,
there is a general trend of scoring worse in comparison to the original experimentation. PBONE is an
exception to this trend, getting in close contention with T-GNNExplainer for the best performance on the
Wikipedia dataset. On the Reddit dataset, which is the most ’difficult’ dataset for the explainers, PBONE
outperforms T-GNNExplainer across the board.

The new results broadly reflect better performance for most explainers on both metrics for TGAT trained
on both synthetic datasets (v1 and v2). The performance for most explainers on TGN is lower however,
except for the baseline explainers on the AUFSC metric.

Observing the results, the salient trend is that T-GNNExplainer scores lower on all metrics in our reproduc-
tion of the experimentation compared to the original, except for TGAT trained on the synthetic datasets.
Performing T-tests on all new values shows all new values are significantly different, meaning the result from
our reproduction is unlikely to be due to chance.

The figures below offer a visual representation of the AUFSC metric. T-GNNExplainer indeed achieves higher
fidelity at lower sparsity values (except for TGN trained on Reddit), with PBONE performing second-best.
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Figure 1: Eight graphs for AUFSC curves and corresponding legend for all four explainers averaged across
2 seeds. The legend indicates the lines for each explainer: blue, orange, green, and red, for ATTN, PBONE,
PG Explainer, and T-GNNExplainer respectively.

7.1.1 Hyperparameter Tuning

Figure 2: Best fidelity across sparsity intervals on 4 unique lambda values.

We performed tuning on the hyperparameter λ to investigate its effect on the explorer in the T-
GNNExplainer. A higher value for λ encourages more exploration in the node selection step of the explorer
(see 3.5). The authors performed this analysis on both models trained on the Wikipedia dataset with λ set
to 1, 5, 10, and 100. They found that lower values for λ, which preference exploitation in node selection
(particularly λ = 1), marginally improve performance on the fidelity-sparsity curve. However, they observed
that the difference in performance is insignificant.

In our reproduction, values for λ set to 5, 10, and 100 all output the exact same results, while λ set to 1
output marginally different results that are not noticeable in Figure 2.
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Figure 3: AUFSC curves for both models trained on the Mooc dataset, and corresponding legend for all
four explainers. The legend indicates the lines for each explainer: blue, orange, green and red for ATTN,
PBONE, PG Explainer, and T-GNNExplainer respectively.

7.2 Results beyond original paper

In this section we report our results in Table 7 for the new real-world dataset MOOC. In Figure 3, we
illustrate the fidelity-sparsity curve on the new real-world dataset.

Table 7: Best fidelity and AUFSC achieved by each explainer on MOOC, averaged over two seeds.

MOOC
TGAT TGN

MeanBestFid AUFSC MeanBestFid AUFSC
ATTN 0.077 0.091 -0.099 -0.085

PBONE 0.294 0.299 -0.097 -0.085
PG 0.047 0.057 -0.280 -0.273

T-GNN 0.339 0.369 0.172 0.201

For both models trained on MOOC, T-GNNExplainer outperforms all baseline explainers in both metrics.
(See Table 7). PBONE performs competitively with TGAT as the prediction model, however it’s inconsistent
with TGN as underlying model.

The variability plot in Figure 4 shows a variability in performance of the T-GNNExplainer between the
underlying T-GNN models. Using TGAT as an underlying model yields less variance in the outcomes over
all models in comparison to TGN.
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Figure 4: Variability comparison of TGAT and TGN. The mean is taken over all the datasets for the AUFSC
metric for each target model, with its standard deviation.

Table 8: The percentage differences between T-GNNExplainer and the best baseline explainer. For example,
the first number in the first column indicates that in the original results, T-GNNExplainer outperformed
the second-best baseline on the Best Fid metric by 35.6%. This table shows that the difference between
T-GNNExplainer and the second best explainer (PBONE) is not as pronounced in our reproduced results as
in the original results. For the new results, the negative values indicate where T-GNNExplainer performed
second best to PBONE.

Percentage % difference between T-GNN and best baseline
explainer on real-world datasets

Wikipedia Reddit MOOC
Model Metric Old New Old New New

TGAT Best Fid 26.64 13.91 52.85 9.63 15.68
AUFSC 21.19 19.61 40.50 2.68 22.23

TGN Best Fid 67.89 32.02 66.83 44.43 59.44
AUFSC 43.41 36.95 60.19 42.78 60.28

8 Discussion

Temporal graph neural networks have the unique ability to infer and predict the developments of evolving
network structures (i.e. temporal graphs), in which processes from different scientific disciplines such as
ecology and social science (Fortin et al., 2012) (Yu et al., 2018) can be expressed.

In our opinion, an explainer for T-GNNs becomes truly useful when it can successfully leverage the complex
and dynamic inhibitory and excitatory influences among events present in real-world processes to provide
end-users with computationally feasible and accurate explanations for novel events.
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8.1 Main claim

Almost all of the values for the AUFSC and Best Fid metrics differ in our reproduction of the original
experiment. Despite lower performance in nearly all the output values on both key metrics compared to
the original results (See Tables 7, 3, 4, 5, 6), the reproduced experiments still largely support the claim
that the T-GNNExplainer outperforms the PGExplainer and ATTN explainers. However, it does not always
outperform PBONE. In the instances where T-GNNExplainer does not outperform the baselines, PBONE
performs best (Reddit for both TGAT and TGN on both metrics). T-GNNExplainer performs second best
in these cases.

In our analysis of the main claim that T-GNNExplainer outperforms the leading baseline by up to ∼ 50% on
the AUFSC metric, it is unclear how the original authors calculated this value. We calculated the percentage
difference using

(
(T −GNN)−best baseline

|best baseline| ∗ 100
)

, and applied it to the original results (See Tables 3, 4, 5, 6).
These new calculations differ from the reported percentage difference in the original paper. For example, the
original paper states that the T-GNNExplainer outperforms the leading baseline (PGExplainer) for TGN
trained on Wikipedia on AUFSC by 86% whereas we found it outperforms by ∼ 700% (See Table 8). Table 8
show that the percentage difference is consistently lower on most comparisons for the new results compared
to the old results. This confirms that the the T-GNNExplainer does not perform as well in the reproduced
experiments as in the original results, on both the Best Fid and AUFSC metrics.

8.2 MOOC dataset

Experiments on the MOOC dataset reveal very similar trends to all explainer models (See Table 7), but the
variance of the results is much smaller and closer to 0. The underlying T-GNN models did not score a high
accuracy on MOOC compared to the other datasets ( 96% compared to 66% respectively).

Since the prediction of these T-GNN models are used as the "ground truth" for the explainers, the explainer
is dependent on the performance of the underlying predictor model. Since the explainer doesn’t look "under
the hood" at the steps that the T-GNN model takes to make a prediction, and rather uses the T-GNN model
to find post-hoc explanations, it follows that when the estimates are noisy, the performance of the explainer
suffers.

Considering the low accuracy of both TGN and TGAT on MOOC, this could explain why the variance of
the results on MOOC is far smaller than on other datasets.

8.3 Model agnostic claim

Although the authors claim that T-GNNExplainer is model agnostic, it doesn’t seem to stay true for these
two SOTA models. Our results show that the explanatory power of T-GNNExplainer differs between the
TGAT and TGN models. Figure 1 shows that the T-GNNExplainer performs worse overall on the TGN
model than TGAT, and and Figure 4 shows performance on the TGN model has higher variance, so it also
offers less certainty.

8.4 Reddit dataset

All explainers underperform on the Reddit dataset. One possible explanation points to the size of the dataset
and the method for splitting the data. Reddit is by far the biggest dataset (∼ 260000 bigger than MOOC).
When training the T-GNN models, the data is split temporally where the first 85% events are used for
training and validation and the last 15% events are used as test data. The problem with this method is
that graph data is not independent, so events earlier in time could influence events later in time. Separating
the data in this way can lead long-distance predictions that are inherently more uncertain. In line with this
is MOOC, which is the second biggest dataset, also resulting in low scores comparatively. More advanced
temporal splitting methods could be used to obtain more valid outcomes (de Bruin et al., 2021).
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Another reason could be that the Reddit dataset seems to have mistakes in it. It is said to be a bipar-
tite dataset representing users editing pages. However there are nodes that appear in both sets, which is
impossible in a bipartite dataset. This could result in worse performance as the data is not clean.

8.5 Hyperparameter Tuning

The negligible difference in performance that is measured in all intervals of the hyperparameter λ suggests
that including the exploration term in the node selection process of the explorer is largely insignificant in
comparison to the exploitation term, because the pre-trained navigator is very dominant in finding optimal
subgraphs, in comparison to exploring novel options.

Given that the Monte Carlo Tree Search in the T-GNNExplorer is one of the most computationally slow and
costly procedures of the model, the insigificance of the exploration term raise questions whether the explorer
could benefit from other, more efficient methods of subgraph-search.

8.6 Computational efficiency

The authors discuss the computational efficiency of the T-GNNExplainer in comparison to the baseline
models in their Appendix. They found that the T-GNNExplainer is significantly slower than the baseline
models, none of which are search-based methods. For example, T-GNNExplainer takes 28.2s to explain one
instance in the Reddit datset trained on TGAT compared to 0.39s for PBONE (Appendix by (Xia et al.,
2023)). They state that the complexity of the MCTS algorithm is O(NDC) (Appendix by (Xia et al., 2023)),
where N is the number of rollouts, D is how far each rollout expands a node, and a constant for inference
time. Given that in the code, the hard coded leaf nodes meant that each rollout expanded nodes all the way
down to a subgraph containing 1 event, the complexity was very high. Efficiency would likely be improved
if this rollout search wasn’t continued to the final node.

Given the extreme computational demand detailed in Section 6.3 for merely marginal improvements over
simpler explainers such as PBONE, it is unclear whether the use of T-GNNExplainer can be justified de-
spite its superior performance. Beyond performance, accessibility is an important factor in measuring the
"usefulness" of tools such as T-GNNExplainer, especially for teams with limited funds, time, or resources.

8.7 Discrepancy between results

Given that seeding was not properly implemented in the original study, it makes sense that none of the
values in the reproduced experiments match the original results, however it is unclear why the values differ
so drastically. One interesting discrepancy is that in our results, PBONE either performs second best, or
in some cases, outperforms T-GNNExplainer. In the original results, the leading baselines are either ATTN
or PGExplainer. PBONE performs best on AUFSC for both models trained on the Reddit dataset. In
instances where PBONE performs second best, its evaluation metrics are often close in value to those of
T-GNNExplainer.

8.8 Conclusion

Since T-GNNExplainer is computationally intensive given the task (i.e. it only provides instance level ex-
planations), it is not clear whether it is model-agnostic, and it requires very precise dataset configurations,
it would be valuable to explore other methods to provide explanations for T-GNNs. In comparison to T-
GNNExplainer, PBONE is a very simple model that is computationally much faster than T-GNNExplainer.
Considering its simplicity, computational efficiency, and its ability to "compete" with T-GNNExplainer
according to our findings, refining perturbation-based methods could be a valid avenue for exploration.
Justification could be found in similar methods explored by Lucic et al. (2022) where the authors use a
perturbation-based explained method on GNNs to achieve strong results.
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9 What was easy and what was difficult?

What was easy: The authors made their code accessible online, without which the T-GNNExplainer would
not have been reproducible based on the paper alone. Reading the responses on OpenReviews was helpful
in providing insight into the difficulties others also had with the paper. The Appendix provided by the
authors in response to the OpenReview comments helped clarify questions we had about hyperparameters
and implementation.

What was difficult: Discrepancies between the code and the paper, and inconsistencies in the code (missing
directories, dependencies, hard-coded hyperparameters, inconsistent nomenclature, improper seeding and
GPU allocation, etc.) meant the code required a lot of trial-and-error to produce valid results. For example,
the λ variable named "c_puct" was reported to be 5 in the paper, but was set to 100 in the config files.
This discrepancy was not identified until after the T-GNNExplainer had already been trained. Similarly, the
original code was not seeded properly so all experiments had to be re-trained again. This trial-and-error,
combined with the massive compute requirements demanded by the code, meant we had to forego many
crucial experiments due to lack of computational resources and high associated costs. Using the Machine
Learning Emissions Calculator (Lacoste et al., 2019), we estimate that the GPU resources on this project
alone emitted at least 103 kg CO2 eq., or equivalent to driving more than 400km by an average ICE car (See
Table 9 in Appendix A).

While validating reproducibility is essential in machine learning, there is a serious conversation to be had
about the trade-off between these efforts and the societal and environmental costs incurred when the ground-
work to enable reproduction is not "baked" into the research process from the start.

Communication with original authors: The authors were contacted, but we did not receive a response.
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A Machine Learning Emissions Calculator

In Table 9, we provide the specifications for the calculator used to calculate the CO2 impact.

Table 9: Specifications for the calculator (Lacoste et al., 2019)

Hardware Hours used Provider Carbon Efficiency Offset Bought
AMD EPYC 7763 400 Private Infrastructure 0.459 0
T4 2760 Google Cloud Platform - 0

B Experimental setup: Novel datasets

Table 10: Hyperparameters used for all models on all datasets.

Hyperparameter TGAT TGN
Real-world Synthetic MooC Real-world Synthetic MooC

Hidden Dimension 172 4 4 172 4 4
Attention heads 2 2 2 2 2 2
N degree 10 10 10 10 10 10
Memory dimension - - - 172 4 4
Time dimension 172 4 4 172 4 4
Node feature dimension 172 4 4 172 4 4
Edge feature dimension 172 4 4 172 4 4
Training epoch 10 100 100 10 100 100
Learning rate 1e−4 1e−4 1e−4 1e−4 1e−4 1e−4

Batch size 512 256 512 256 512 256
Dropout probability 0.1 0.1 0.1 0.1 0.1 0.1

The format of the MooC dataset matches the required format of real world datasets. Similar to Reddit
and Wikipedia, feature normalization is applied to the dataset. For the Reddit hyperlinks dataset, the
concrete preprocessing steps that are taken can be found in the Reddit_hyperlinks_preprocess.ipynb file.
In summary, min-max normalization is applied to each feature column individually and the datatypes and
column names are changed to match the requirements set by the author’s code. Once these two steps are
completed the instructions in the Read.me file provided can be used to train to T-GNNExplainer on a novel
dataset.

The process.py file ensures the non-feature columns exclusively contain two node indexes, a timestamp and
a label. After processing the file is saved in a subdirectory called ‘processed’. Secondly, indexes ought to
be generated for a real-world dataset. This is done by calling ‘python tg_dataset.py -d dataset_name -c
index’. The read.me file gives the wrong instruction here. This step randomly samples 500 events from the
test split on which the performance of the T-GNNExplainer will be evaluated. Before T-GNNExplainer
can be trained, the GNN’s (TGAT and TGN) need to be trained on the new dataset. Make sure that the
hyperparameters are correctly specified in the run.sh files. For the inductive event prediction performed by
the two GNNs, average precision after each epoch is outputted in the terminal. In our experimentation, the
best achieved average precision is recorded (Table 11).

Once TGAT and TGN are trained on all datasets. T-GNNExplainer is ready to be trained. The final
step of the Read.me provides adequate instructions. The Fidelity results are outputted in files called
model_name_lownumber_to_highnumber.csv.
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Table 11: Models’ average precision (AP) for the inductive event prediction on all datasets.

Wikipedia Reddit Synthetic v1 Synthetic v2 MooC

TGAT New 0.971 0.982 0.945 0.953 0.626
Old 0.979 0.975 0.963 0.964 0.706

TGN New 0.947 0.980 0.945 0.960 0.659
Old 0.985 0.966 0.954 0.969 0.712
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