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Abstract

The attention score matrix SoftMax(XY T ) encodes relational similarity patterns between
objects and is extremely popular in machine learning. However, the complexity required to
calculate it runs quadratically with the problem size, making it a computationally heavy
solution. In this article, we propose a linear-time approximation of the attention score
normalization constants for embedding vectors with bounded norms. We show on several
pre-trained embeddings that the accuracy of our estimation formula surpasses competing
kernel methods by even orders of magnitude. From this result, we design a linear-time and
task-agnostic embedding algorithm based on the optimization of the attention scores. The
proposed algorithm is highly interpretable and easily adapted to an arbitrary embedding
problem. We consider a few use-cases and observe similar or higher performances and a
lower computational time with respect to comparable embedding algorithms.

1 Introduction

A foundational role of machine learning is to provide expressive representations of complex objects with
vectors that preserve some properties of the represented data. These vectors, also known as distributed
representations or embeddings, enable otherwise ill-defined operations on the data, such as assessing their
similarity Bengio et al. (2013); Bellet et al. (2015). Relational patterns among the represented objects are
a relevant example of a property that embedding vectors can encode. For instance, in language processing,
distributed representations capture the semantic similarity between words, leveraging the patterns in which
they appear in a text. This is possible, for instance, by training the attention score matrix SoftMax(XY T ),
where X,Y are two embedding matrices, possibly with X = Y . This term ranges between 0 and 1 for each
pair of indices, promoting similar representations for related objects. The optimization of the attention scores
motivates several embedding algorithms such as Word2Vec Mikolov et al. (2013) and the many “2Vec”-type
algorithms that followed. This term also appears in attention-based transformers, with great importance for
several machine learning tasks Vaswani et al. (2017).

A known limitation of optimizing the attention scores lies in its computational complexity. For a system of n
objects, computing this matrix requires O(n2) operations, which is impractical for large datasets. Methods
to reduce this complexity have a long history and are still actively explored, as reviewed in Tay et al. (2022).
Since McFadden (1977), sampling was recognized as an effective workaround Bengio & Senécal (2003). One
of the most popular methods is negative sampling Mikolov et al. (2013), considering de facto an alternative
loss function that can be computed in O(n) operations. While it has been extensively studied and improved
Mu et al. (2019); Rawat et al. (2019); Shan et al. (2018); Bamler & Mandt (2020), several works highlighted
the weaknesses of sampling Landgraf & Bellay (2017); Chen et al. (2018); Qin et al. (2016); Mimno &
Thompson (2017). Other methods rely on approximate, but easy-to-normalize forms of the attention score
matrix Wang et al. (2020); Xiong et al. (2021) exploiting, for instance, the kernel trick Choromanski et al.
(2020); Peng et al. (2021).

In this work, we provide a closed formula to compute in linear time the attention score normalization
constants. We provide theoretical and empirical results supporting our method. Testing our approximation
on several pre-trained embeddings, we observe a systematic gain in the accuracy of our method, even by
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orders of magnitude, compared to approaches based on the kernel trick. We then build on this result to
design an efficient embedding algorithm in the 2Vec spirit. Given their good scalability and simplicity
of design, these algorithms proved extremely useful for machine learning users and have been applied to
various contexts. However, while their initial formulation describes a loss function containing the attention
score matrix, negative sampling is often adopted and the proposed loss function is not actually optimized.
We address this gap by showing how to efficiently optimize a cost function taking log[SoftMax(XY T )] as
argument. This term can be decomposed into two parts: the numerator XY T that is low rank and can
consequently be efficiently optimized; the denominator involving the softmax normalization constants that is
the computational bottleneck. Our estimation formula allows us to compute it in O(n) operations, and thus
to efficiently optimize the embedding cost function. We then showcase a few practical applications evidencing
that our algorithm is competitive or outperforms comparable methods in terms of speed and performance.1
We recall that all these benchmark algorithms have a linear complexity in n, and do not optimize the softmax
function as we do. We stress that we do not claim that sampling approaches are bad per se, but rather, we
investigate how to efficiently optimize a cost function containing the softmax attention scores. A Python
implementation of our algorithm is shared alongside the paper, in the supplementary material.

2 Main result

This section describes how to efficiently compute the normalization constants of the attention score matrix
SoftMax(XY T ). Here X ∈ Rn×d, Y ∈ Rm×d are two embedding matrices, with a potentially different
number of rows, but with the same number of columns. In the remainder, we let m = O(n). We denote
with {xi}i=1,...,n and {ya}a=1,...,m the sets of vectors contained in the rows of X and Y , respectively. The
i-th attention score normalization constant reads

Zi =
m∑
a=1

ex
T
i ya . (1)

Computing all the Zi’s requires O(dnm) = O(dn2) operations, which scales quadratically with the problem
size. In the following, we require the embedding vectors to have bounded norms and treat them as inde-
pendent random vectors drawn from an unknown distribution. Note that this assumption does not imply
the representation dimensions to be themselves independent thus preventing the possibility of representing
complex similarity patterns. On the opposite, such patterns are captured by the underlying unknown prob-
ability distribution on which we make no assumption, besides requiring embedding vectors to have bounded
norms. In Theorem 2.1 we provide a concentration result of Zi/m around its expectation. This allows us to
treat the normalization constants as deterministic variables. We then obtain an integral form for the expec-
tation of Zi, depending on the unknown distribution fi of the scalar product xTi ya. Finally, we introduce a
multivariate Gaussian approximation of order κ to approximate the distribution fi. We propose a heuristic
strategy to efficiently obtain the Gaussian approximation and derive an explicit formula to estimate all the
Zi’s of Equation (2). The empirical tests show that this approximation gives good results for small values
of κ, making it useful in practical settings. The proofs of Theorem 2.1, 2.2 are given in Appendix A.

2.1 Linear-time attention score normalization

The following theorem provides a concentration result of the rescaled Zi value around its mean. This
simplifies the analysis, allowing us to substitute the attention score normalization with its expectation.
Theorem 2.1. Consider a vector xi ∈ Rd and a set {y1, . . . ,ym} of m independent random vectors in Rd.
Let |xTi ya| ≤ h = Om(1) for all a. Letting Zi be defined as in Equation (1), then for all t > 0

P
(∣∣∣∣Zim − E

[
Zi
m

]∣∣∣∣ ≥ t) ≤ 4e−(
√
mt/4eh)2

.

This result holds unchanged in the case X = Y . The proof can be easily adapted by singling out the
negligible contribution given by e‖xi‖2 ≤ eh = On(1), obtaining the same result. Theorem 2.1 states that,

1All codes are run on a Dell Inspiron laptop with 16 Gb of RAM and with a processor 11th Gen Intel Core i7-11390H @
3.40GHz × 8.
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for all large m, the random variables Zi/m asymptotically converge to its expectation and can thus be
treated as deterministic. We underline that, not only Theorem 2.1 does not make assumptions on the
embedding vectors’ distribution, but it also does not require them to be identically distributed. These
general assumptions allow us to exploit Theorem 2.1 in practical tasks, as detailed in the remainder.

We enunciate Theorem 2.2, which provides a formula for the expectation of Zi/m in the large m limit.

Theorem 2.2. Under the same assumptions of Theorem 2.1, assume that for all a, xTi ya converges in
distribution to a variable ωi ∼ fi, then,

lim
m→∞

E
[
Zi
m

]
=
∫ h

−h
dt etfi(t) .

Theorem 2.2 assumes the loosest type of convergence and shows that under the assumptions of Theorem 2.1
it implies the convergence in expectation. The theorem can be easily extended for X = Y , also in this case.
Combining Theorems 2.1, 2.2, in the large m limit, we thus obtain an integral expression to which Zi/m
converges, under mild assumptions. With no additional hypotheses, however, the integral can still not be
solved. We thus proceed by introducing a parametric approximation of fi, denoted with f̃i. Thanks to
Theorem 2.2, the goodness of this approximation only needs to hold in distribution sense, i.e. the cumulative
density functions of fi and f̃i should be close. We choose to write f̃i as a mixture of κ Gaussians since they
are capable of approximating density functions with an arbitrary small error, provided κ is large enough
Goodfellow et al. (2016). Recalling that fi is the distribution of a scalar product – i.e. a sum of random
variables – we expect that for d large enough, this distribution will be well approximated by the Gaussian
mixture for even small κ values. As shown in Section 2.2, the empirical evidence confirms the goodness of
this approximation on real data.

∫ h

−h
dt etfi(t) ≈

∫
R
dt et

κ∑
α=1

πα N (t;xTi µα,xTi Ωαxi) ,

where µa ∈ Rd, Ωa ∈ Rd×d and 1Tκπ = 1. The expression of the means and variances follows from fi
being the distribution of xTi ya. Note that this approximation does not require the embedding vectors
to be, themselves, drawn from a multivariate Gaussian distribution. As a remark, we move from an integral
on [−h, h] to one over the real axis, but the contribution from the tails is negligible since the integrand goes
to zero at least as fast as e−|t|. Combining the mixture of Gaussians approximation with Theorems 2.1, 2.2,
we can formulate our main result. For κ ≥ 1 and a set of parameters {πa,µa,Ωa}a=1,...,κ one can write

Zi
m
≈

κ∑
α=1

πα e
xTi µα+ 1

2x
T
i Ωαxi . (2)

The remarkable advantage of Equation (2) is that – given the parameters {πα,µα,Ωα}α=1,...,κ – Zi is
computed in O(κd2) operations, independently of m. This allows us to estimate all Zi’s in O(n) operations,
provided that the parameters can also be obtained in O(n) operations. In the case κ = 1, the parameters
µ,Ω are the mean vector and covariance matrix of the embedding and π = 1. These parameters are indeed
obtained in O(m) = O(n) operations. For κ > 1 we split the dataset with a clustering algorithm, defining
a labeling function ` : V → {1, . . . , κ}. We define µα,Ωα as the mean vector and covariance matrix of the
embedding vectors of class α, and πα as its relative size. Letting Vα = {i ∈ V : `i = α},

πα = |Vα|
m

; µα = 1
|Vα|

∑
i∈Vα

xi; Ωα = 1
|Vα| − 1

∑
i∈Vα

(xi − µα)(xi − µα)T . (3)

This step can still be performed in O(n) operations, thus allowing the linear-time estimation of all the Zi’s
in linear time with respect to n. We now proceed by testing our approximation on pre-trained embedding
vectors and we confront the results with comparable methods.
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Figure 1: Empirical evaluation of the attention score normalization constants. Each row corresponds to one of the
six embeddings listed in Section 2.2 which appear in the same order. The first two columns consider the rescaled embedding
matrices in which the average norms are equal to one. In the last two, all embedding vectors are normalized to one. The first
and third columns show the CDF of the scalar product distribution fi for an arbitrary index i. The black dash-dotted curve is
the estimated multi-variate Gaussian approximation f̃i for κ = 5. The second and fourth columns show the CDF of the relative
error ε in estimating the attention score normalization constants. The solid lines are referred to our proposed method for three
values of κ (color-coded). The dashed line is the Performer method of Choromanski et al. (2020), while the dotted line is the
Random Feature Attention of Peng et al. (2021).

2.2 Empirical evaluation

We consider 6 datasets taken from the NLPL word embeddings repository2 (Kutuzov et al., 2017), repre-
senting word embeddings obtained with different algorithms and trained on different corpora:

0. British National Corpus; Continuous Skip-Gram, n = 163.473, d = 300;
7. English Wikipedia Dump 02/2017 ; Global Vectors, n = 273.930, d = 300;

16. Gigaword 5th Edition; fastText Skipgram, n = 292.967, d = 300;
2The datasets can be found at http://vectors.nlpl.eu/repository/ and are shared under the CC BY 4.0 license.
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30. Ancient Greek CoNLL17 corpus; Word2Vec Continuous Skip-gram, n = 45742, d = 100;
187. Taiga corpus; fastText Continuous Bag-of-Words, 192.415, d = 300;
224. Ukrainian CoNLL17 corpus; Continuous Bag-of-Word, n = 99.884, d = 200.

The number reported in the list above, corresponds to the ID used in the repository. For each dataset we
(1) re-scale the embedding vectors so that their average norm equals 1; (2) sample 1000 random indices; (3)
compute the corresponding exact and the estimated Zi values for different approximation orders κ. We then
repeat the same procedure by imposing that all embedding vectors have unitary norms. Figure 1 shows the
results of this procedure. The first column compares the empirical distribution cumulative density functions
(CDF) of fi and f̃i obtained for κ = 5. Here, i is a randomly selected node andX = Y and we use the rescaled
version of the embedding matrix. The third column shows the same result for the normalized embedding
matrices. The plots confirm that in all cases, the multivariate Gaussian approximation we introduced achieves
high accuracy in estimating fi. We compare our estimation method with two strategies based on the kernel
trick Choromanski et al. (2020); Peng et al. (2021). According to these methods, one first defines a random
matrix W ∈ RD×d with entries distributed according to N (0d, Id), then defines a mapping, φW : Rd → R2D

so that EW [(φW (x))T φW (y)] = e−
‖x−y‖2

2 . This approximation allows one to efficiently compute Zi:

Zi =
m∑
a=1

ex
T
i ya = e

‖xi‖
2

2

m∑
a=1

e
‖ya‖2

2 E
[
(φW (xi))T φW (ya)

]
= e

‖xi‖
2

2 E
[
(φW (xi))T mW

]
,

where mW =
∑k
a=1 e

‖ya‖2
2 φW (ya) needs to be computed only once. The second column of Figure 1 shows

the CDF of the relative error ε (in logarithmic scale) for our proposed approach with three values of κ and the
methods of Choromanski et al. (2020); Peng et al. (2021). The fourth column of Figure 1 shows the results
of the same procedure applied to the normalized embedding vectors. As expected, the precision increases
with κ, but low errors are obtained for κ = 1, already. In this case, the clustering step can be omitted
and is, therefore, of particular interest. Moreover, even for κ = 1, we systematically obtain better results
than Choromanski et al. (2020); Peng et al. (2021) by even orders of magnitude. It has to be noted that
the accuracy of these methods increases by increasing the dimension of the projection, D. Here we choose
D = 1000 for which we have comparable computation times with our method.

3 EDRep: an algorithm for efficient distributed representations

Building on the results of Section 2, we describe an efficient algorithm to obtain distributed representations.
We name this algorithm EDRep and formulate it as a general embedding problem. One of the main advantages
of this formulation is that it can be easily customized to an arbitrary setting. In fact, given a set of entities
V, the embedding algorithm requires the description of a probability distribution relating pairs of elements
in V and translates it into an embedding. The optimal design of the probabilities is a problem-dependent
task, which is beyond the scope of this article. We show in a few applications that simple choices lead to
comparable results with competing or better 2Vec algorithms but with a lower computation time.

3.1 Problem formulation

We consider a set V of n items to be embedded. For all i ∈ V, let p(i) ∈ Rn be a probability distribution
defined on V, encoding similarity: a large p(i)

j implies high affinity between i and j. We aim at giving
a distributed representation of {p(i)}i∈V , in the form of an embedding matrix X ∈ Rn×d preserving the
relational patterns encoded by the probability distributions. We adopt a variational approach, approximating
{p(i)}i∈V with a distribution parameterized by the embedding vectors. To this, we add the regularization
term to improve the embedding quality. We define X as the solution to the following optimization problem:

X = arg min
Y ∈Un×d

∑
i∈V

[
−
∑
j∈V

p
(i)
j log

(
SoftMax(Y Y T )ij

)
︸ ︷︷ ︸

cross−entropy

+yTi
∑
j∈V

p0,j yj︸ ︷︷ ︸
regularization

]
, (4)
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Algorithm 1 EDRep

Input: {p(i)}i∈V , set of probabilities; p0 ∈ Rn vector of regularization weights; d, embedding dimension;
` ∈ {1, . . . , κ}n node label vector; η0, learning rate; n_epochs, number of training epochs
Output: Xn×d, embedding matrix
X ← initialize the embedding matrix with random unitary vectors
η ← η0 initial learning rate
πα=1,...,κ ← as per Equation (3)
for 1 ≤ t ≤ n_epochs do
µα=1,...,κ ,Ωα=1,...,κ ← update the parameters as per Equation (3)
{gi}i∈V ← gradient matrix as in Equation (6)
for 1 ≤ i ≤ n do
g′i ← gi − (gTi xi)xi remove the parallel component
g′′i ← g′i/‖g′i‖ normalize
xi ←

√
1− η2 xi − ηg′′i ; gradient descent step

end for
η ← η − η0

n_epochs linear update of the learning rate
end for

where Un×d denotes the set of all matrices of size n× d having in their rows unitary vectors and p0 ∈ Rn is
so that pT0 1n = 1. This cost function is the combination of a cross-entropy with a regularization term. To
understand the role of p0, consider for instance p0,i = n−1 for all i and let µ be the mean embedding vector.
In this case, the regularization is proportional to ‖µ‖2, thus promoting centered embedding vectors. With
other choices of p0, one can give a different weight to each item.

The computational bottleneck of this optimization problem lies in the calculation of the attention score
normalization constants. In fact, we let P ∈ Rn×n be the matrix with entries Pij = p

(i)
j and denote with E

the number of non-zero entries of P . We further denote with 1n the all-ones vector of size n and with tr(·)
the trace operator. Then, the optimization problem of Equation (4) can be reformulated as follows:

X = arg min
Y ∈Un×d

[
− tr

(
Y TPY

)︸ ︷︷ ︸
O(Ed)

+
∑
i∈V

log(Zi)︸ ︷︷ ︸
O(dn2)

+ tr
(
Y T1np0Y

T
)︸ ︷︷ ︸

O(nd)

]
, (5)

where the values below the brackets indicate the computational cost required for each element. The derivation
of this expression is reported in Appendix B. In many relevant settings, P is a sparse matrix, thus E � n2.
The calculation of the attention score normalization constants, instead, requires O(dn2) operations regardless
of E and is the computational bottleneck. We can thus adopt the approximation introduced in Equation (2)
to efficiently optimize this cost function and to define an efficient embedding algorithm.
Remark 3.1. In Equation (4) and in the remainder, we focus on distributions p(i) that are defined and
indexed over the same set V. The optimization problem in Equation (4) can however be generalized to an
asymmetric scenario in which the entries p(i)

a are defined for i ∈ V and a ∈ W, thus invoking the term
SoftMax(XY T ), for X 6= Y . We provide Python codes to obtain the embedding also in this setting.

Let us now detail the main steps needed to translate the result of Equation (2) into a practical algorithm to
produce efficient distributed representations.

3.2 Optimization strategy

We obtain the embedding matrix X by optimizing the problem formulated in Equation (4) with stochastic
gradient descent. We substitute the approximated values of Zi introduced in Equation (2) and we let
M ∈ Rκ×d have the {µα}α=1,...,κ values in its rows. We further define Z ∈ Rn×κ as

Ziα = πα exp
{
xTi µα + 1

2x
T
i Ωαxi

}
.
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With this notation Zi/n = (Z1κ)i. The i ∈ V and q ∈ {1, . . . , d} gradient component reads

giq = − [(P + PT )X]iq︸ ︷︷ ︸
O(Ed)

+ [1npT0 X + p01TnX]iq︸ ︷︷ ︸
O(nd)

+ 1
(Z1κ)i

[
ZM +

κ∑
α=1
Ziα(XΩα)

]
iq︸ ︷︷ ︸

O(κnd2)

, (6)

where the values underneath the brackets indicate the computational complexity required to compute each
addend of the gradient matrix. The derivation of Equation (6) is reported in Appendix C. To keep the
normalization, we first compute g′ removing the component parallel to xi, then we normalize it and obtain
g′′i to finally update the embedding as follows for 0 ≤ η ≤ 1: xnew

i =
√

1− η2 xi − ηg′′i , that implies
‖xnew

i ‖ = 1. Note that Algorithm 1 requires the labeling vector ` as an input but it is generally unknown.
A workaround consists in running EDRep for κ = 1 for which ` = 1n, then run κ-class clustering and rerun
EDRep algorithm for the so-obtained vector `.

3.3 Computational complexity

To determine the complexity of Algorithm 1, let us focus on its computationally heaviest steps:

1. The calculation of ` if κ > 1. This is obtained in O(nκd) operations with k-means algorithm.

2. The parameters update as per Equation (3). This step is performed in O(nκd2) operations.

3. The gradient calculation as per Equation (6). This is obtained in O(Ed + nκd2) operations as
indicated by the brackets in Equation (6).

The gradient calculation is then the most expensive operation. Our approximation reduces the complexity
required to compute the “Z part” of the gradient from O(dn2) to O(κnd2), with κ� n. The most expensive
term thus requires O(Ed) operations. This complexity is prohibitive for dense matrices, but in typical
settings P is sparse and the product can be performed efficiently. Nonetheless, even for large values of E, if
P can be written as the product (or sum of products) of sparse matrices, PX can still be computed efficiently.
In fact, let P = Pm · Pm−1 . . . P1 for some positive m, then PX can be obtained without materializing P ,
taking the products from right to left:

PX = (
⇐=

Pm · Pm−1 · · · · · P1X) ,

thus speeding up the computational bottleneck of our algorithm. In our implementation, we explicitly
consider this representation of P as an input. When a non-factorized dense matrix P is provided, one could
envision adopting a method such as the one presented in (Le Magoarou & Gribonval, 2016) to approximate
a dense matrix P with the product of sparse matrices to speed up the algorithm.

3.4 Comparison with exact gradient computation

We compare the EDRep algorithm described in the previous section with its analogous counterpart in which
the gradient of Equation (4) is computed analytically in O(n2d) operations. We considered P as the row-
normalized random matrix in which the (ij) entry is set to 1 with probability proportional to θiθj and
θi follows a negative binomial distribution with parameters N = 3, p = 0.3. This choice allows us to
generate heterogeneity in the P structure while being capable of controlling the size n. Figure 2A shows
the computational time corresponding to the exact gradient calculation, while panel B reports the same
result for EDRep. Let Xt be the EDRep embedding at epoch t and Yt be the corresponding one of the full
gradient calculation, we define Ct = 1

n‖XtX
T
t −YtYt‖F, quantifying the deviation between the two embedding

methods. Figure 2C shows the behavior of Ct for different κ values, evidencing only slight disagreements
between the exact and the approximated embeddings that, as expected, decrease with κ.
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Figure 2: Comparison with exact gradient calculation. Panels A, B: computation time of the optimization of Equa-
tion (4) with gradient descent as function of the size n. Panel A refers to the exact gradient, panel B is Algorithm 1. The blue
dots are the mean obtained over 10 realizations, the shadow line has the width of one standard deviation. Panel C : logarithm
of embedding error Ct = 1

n
‖XtXT

t − X̄tX̄T
t ‖F between the true and the estimated embedding matrices at training epoch t.

In this experiment, n = 3000. In color code and marker style, we report the results for different values of κ. The embedding
algorithms are run with the same initial condition and parameters: η0 = 0.7, d = 32, nepochs = 25 (for the first two plots).

4 Use cases

We consider a few use cases of our algorithm to test it and showcase its flexibility in practical settings. To
perform these tests, we must specify the set {p(i)}i∈V and we adopt simple strategies to define it. We show
that, even for our simple choices, the EDRep approach achieves competitive (sometimes superior) results in
terms of performance with competing 2Vec algorithms, with a (much) lower computational time.3 We would
like to underline that the sampling probabilities choice is a hard and problem-dependent task and optimally
addressing it is beyond the scope of this article. Our aim is not to develop state-of-the-art algorithms for
specific problems but to show that with simple choices we can adapt our algorithm to compete with the
closest competing methods in terms of speed and accuracy. For further implementation details regarding the
next section, we refer the reader to Appendix D.

4.1 Community detection

Graphs are mathematical objects that model complex relations between pairs of items. They are formed by
a set of n nodes V and a set of edges E connecting node pairs (Newman, 2003). Graphs can be represented
with the adjacency matrix A ∈ Rn×n, so that Aij = 1 if (ij) ∈ E and equals zero otherwise. A relevant
problem in graph learning is community detection, the task of determining a non-overlapping node partition,
unveiling more densely connected groups of nodes (Fortunato & Hric, 2016). A common way of proceeding
– see e.g. (Von Luxburg, 2007) – is to create a node embedding encoding the community structure and then
clustering the nodes in the embedded space. Following this strategy, we adopt the EDRep to produce a node
embedding with P being P = 1

w

∑w
t=1 (Lrw)t, where Lrw is the row-normalized adjacency matrix. The entry

Pij of this matrix is the limiting probability that a random walker on G goes from node i to j in one w or
fewer steps. We further set p0 = 1n/n.

We evaluate our algorithm on synthetic graphs generated from the degree-corrected stochastic block model
(DCSBM) (Karrer & Newman, 2011), capable of creating graphs with a community structure and an arbitrary
degree distribution.4 The inference accuracy is expressed with the normalized mutual information between
the inferred and the ground truth partition. This score ranges between 0 (random assignment) and 1
(perfect assignment). Figure 3A shows the NMI for different values of α, a function of the generative model
parameters, controlling for the hardness of the reconstruction problem.5 The results are compared against
other two algorithms that were alternatively deployed to obtain the embedding: the spectral method of

3It should be noted that performances typically increase with training time The parameter choice of the 2Vec algorithms is
such that the competing algorithms are comparable on one of the two measures so that the other can be evenly compared.

4The degree of a node is its number of connections.
5Detection is theoretically feasible if and only if a function of the model parameters α > 1 (Gulikers et al., 2018; 2017).
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Figure 3: EDRep use cases. First column: community detection. Panel A: normalized mutual information (NMI) as a function
of the problem hardness α (see Appendix D) for a DCSBM graph. We consider graphs with n = 30.000 nodes, expected average
degree c = 10, and q = 4 communities. The green circles refer to the EDRep algorithm with d = 32, κ = 1 and w = 3, the brown
diamonds are DeepWalk with d = 32, while the blue narrow diamonds are the spectral clustering algorithm of (Dall’Amico et al.,
2021). Panel B: corresponding computational time in seconds. Panels A and B: averages are over 10 samples and the error bar
width equals the standard deviation. Second column: gene embedding. Scalar product between gene embedding representation
for non-interacting (blue histogram) and interacting (purple histogram) gene pairs. Panel C : embedding obtained with EDRep;
Panel D embedding obtained with the Gene2Vec algorithm. Third column: dynamic aware node embedding. Panel E: number
of infected individuals of a SIR process on a proximity network (black solid line) and reconstructed values by DyANE (orange
dashed line) and using the EDRep embedding (blue dashed-dotted line), with d = 200 for both methods. The shaded lines are
the standard deviations over 50 random trials of the process. Panel F : with reference to Panel E, this is the scatter plot between
the predicted number of infected per time-stamp by the two strategies.

(Dall’Amico et al., 2021) that was shown to be nearly Bayes-optimal for this task and DeepWalk (Perozzi
et al., 2014).6 The communities are obtained from the embeddings using k-class k-means clustering.

The results show that the EDRep-based algorithm performs almost as well as the optimal algorithm of
(Dall’Amico et al., 2021) and a slight mismatch is only observed for α approaching 1. This is a particularly
challenging setting in which only a few algorithms can retrieve the community structure. Compared to the
DeepWalk approach, our method generally yields better results for all α. Figure 3B further compares the
computation times, giving the EDRep approach a decisive advantage with respect to DeepWalk. The main
advantage with respect to the spectral algorithm, instead, is the algorithm’s computational complexity. For
a graph with q communities, the considered spectral clustering algorithm runs in O(nq3) operations, while
the complexity of EDRep is independent of q.

4.2 Gene embeddings

In (Du et al., 2019), the authors develop an algorithm to embed DNA genes from a list of pairs whose
co-expression exceeds a threshold value. The dataset comprises 8832 genes and 263016 gene pairs and a list
of gene pairs with a binary label indicating whether or not that corresponds to an interacting pair. The
Gene2Vec algorithm of (Du et al., 2019) builds on Word2Vec to obtain meaningful gene vector representations
based on their co-expression and uses it to predict pairs of interacting genes.

6For the spectral method we used the authors’ Python implementation available at lorenzodallamico.github.io/codes under
the CC BY 4.0 license. For DeepWalk, we used the C++ implementation of github.com/thibaudmartinez/node2vec with its
default values, released under the Apache License 2.0.
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We obtain the EDRep embedding using the row-normalized gene co-occurrence matrix as our choice of P .
The Gene2Vec embedding is generated with the code provided by the authors with default parameters. Both
embeddings have dimension d = 200. The computation time of EDRep is approximately 6 seconds against
the 12 seconds needed for Gene2Vec. We then train a logistic regression classifier on the embedding cosine
similarities with the 70% of the labeled data and test it on the remaining 30% of the data. Our model
achieves an accuracy of 92% and outperforms Gene2Vec which has an accuracy of 84%. Figures 3(C, D)
show the histogram of the cosine similarities between interacting and non-interacting groups that visually
explains the performance gap.

4.3 Causality aware temporal graph embeddings

In (Sato et al., 2021) the authors describe a method to embed temporal networks while preserving the role
of time in defining causality. Temporal networks are represented as a sequence of temporal edges (i, j, t),
denoting an interaction between i and j at time t. The method relies on the embedding of a supra-adjacency
matrix, Asupra in RD×D, where D =

∑T
t=1 |Vt| and Vt is the set of active nodes at time t. Here, each

node corresponds to a pair “node-time” in the original temporal graph. The supra-adjacency matrix is the
adjacency matrix of a weighted directed acyclic graph, accounting for time-driven causality. In (Sato et al.,
2021) the authors use DeepWalk to obtain an embedding from Asupra and use it to reconstruct the states of
a partially observed dynamical process taking place on the temporal graph (such as an epidemic spreading)
from few observations. Following the same procedure of (Sato et al., 2021), we obtain Figure 3(e-f), in which
we compare the reconstruction of an epidemic spreading obtained using DeepWalk against EDRep, with P
being the row-normalization of Asupra. The results are barely distinguishable, but EDRep is more than 5
times faster than the competing approach.

5 Conclusions

In this work, we introduced a computationally efficient method to estimate the normalization constants of
attention scores for embedding vectors with bounded norms. Our main result relies on two theorems that
characterize concentration properties of the normalization constants and that are formulated under very
general assumptions. From these theoretical results, we introduced a heuristic approximation and obtained
an explicit formula to compute the attention score normalization in linear time with the problem size.
From this result, we then described an embedding algorithm based on the optimization of attention scores.
This sort of loss function commonly appears in many embedding algorithms of the 2Vec-type, but it is not
optimized because of its computational complexity. The most common strategy, in fact, is considering a
different cost function with linear complexity in the problem size.

We tested our approximation on several empirical data, showing that it can achieve high accuracy levels,
outperforming competing methods based on the kernel trick. We then tested our embedding algorithm on a
few use cases. The EDRep embedding algorithm we defined is very general and problem-agnostic. It takes as
input a probability matrix P that encodes relational patterns among the embedded objects. To benchmark
the results against comparable methods, we had to make specific choices for the matrix P . The simulations
showed that simple and intuitive definitions of such matrix could lead to higher or similar performances
compared with competing algorithms. We also observed the EDRep algorithm to be systematically faster
than its competitors. Despite its simplicity, we believe that the practicality of this algorithm can make it
particularly appealing to machine learning users who only need to define the proper P for their problem.
We further note that, given the generality of our theoretical argument, one can effortlessly adapt EDRep
to similar cost functions. The most immediate changes can be done by considering a contrastive learning
setting in which also the term SoftMax(−XY T ) appears. With minor modifications to Algorithm 1, one can
also consider non-normalized (but bounded) embedding vectors, or choose P as an arbitrary non-negative
matrix. This flexibility enriches the practicality of the proposed algorithm.

Let us now consider some limitations of our work. Given the generality of the formulation, we did not provide
a bound to the error on the Zi estimation. However, we extensively tested our method on several embeddings
and matrices P , weighted and unweighted, symmetric and not, and with different sparsity levels. In all cases,
the results confirmed the goodness of our proposed approach. The reasons justifying these results are two: (1)
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our approximation needs only to hold in “distribution” sense and we do not need a more stringent point-wise
accuracy; (2) the multivariate normal approximation is particularly powerful to approximate the distribution
of the scalar product. Unsurprisingly, we also observed that the performance of EDRep – compared to the
2Vec methods – highly depends on the matrix P . In some cases, our method provides a neat advantage
in terms of performance, while in others the results are essentially identical, with our method being faster.
We lack a clear interpretation of the role of P in determining the embedding quality and the convergence
speed and we believe this aspect deserves further investigation in the future. We highlight, however, that
this analysis is task-dependent, and finding a good P should specifically address a precise research question.
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A Proofs

In this appendix we provide the proofs of Theorem 2.1 and 2.2, which we also report here for convenience.
Theorem (2.1). Consider a vector xi ∈ Rd and a set {y1, . . . ,ym} of m independent random vectors in Rd.
Let |xTi ya| ≤ h = Om(1) for all a. Letting Zi be defined as in Equation (1), then for all t > 0

P
(∣∣∣∣Zim − E

[
Zi
m

]∣∣∣∣ ≥ t) ≤ 4e−(
√
mt/4eh)2

.

Before proceeding with the proof of Theorem 2.1, let us first enunciate the following concentration theorem
that we will use in our demonstration.
Theorem A.1 ((Talagrand, 1995), (Ledoux, 2001), Corollary 4.10). Given a random vector ω ∈ [u, v]n with
independent entries and a 1-Lipschitz (for the euclidean norm) and convex mapping g : Rn → R, one has
the concentration inequality:

∀ t > 0 : P (|g(ω)− E[g(ω)]| ≥ t) ≤ 4e−t
2/4(u−v)2

.

Proof (Theorem 2.1). Let ω(i) ∈ Rm be a vector with entries {xTi ya}a=1,...,m. Then, the vector ω(i) satisfies
the hypothesis of Theorem A.1 for all i and for v = −u = h. We let g be:

g(w(i)) = 1
m

m∑
a=1

ew
(i)
a ,

then one can immediately verify that Zi = mg(ω(i)). We are left to prove that g satisfies the hypotheses of
Theorem A.1 as well. Firstly, g is convex because it is the sum of convex functions. We now compute the
Lipschitz parameter. Considering ω,ω′ ∈ [−h, h]m one can give the following bound:

|g(ω)− g(ω′)|
(a)
≤ 1

m

m∑
a=1

∣∣∣eωa − eω′a ∣∣∣ (b)
≤ e

m

m∑
a=1
|ωa − ω′a|

(c)= e

m
· 1Tm|ω − ω′|

(d)
≤ e

m
· ‖1m‖ · ‖ω − ω′‖ = e√

m
‖ω − ω′‖ ,
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where in (a) we used the triangle inequality, in (b) we exploited the fundamental theorem of calculus, in (c)
the | · | is meant entry-wise and finally in (d) we used the Cauchy-Schwartz inequality. This set of inequalities
implies that

√
mg
e is 1-Lipschitz and is a suitable choice to apply Theorem A.1. Theorem 2.1 is then easily

obtained from a small play on t and exploiting the relation between Zi and g(ω(i)).

We now proceed with the proof of Theorem 2.2 which we here recall for convenience.
Theorem (2.2). Under the same assumptions of Theorem 2.1, assume that for all a, xTi ya converges in
distribution to a variable ωi ∼ fi, then,

lim
m→∞

E
[
Zi
m

]
=
∫ h

−h
dt etfi(t) .

Also in this case, before proceeding with the proof, let us enunciate the dominated convergence theorem that
allows one to invert the integral and limit signs.
Theorem A.2 ((Luxemburg, 1971)). Let F1, . . . , Fn be a sequence of Riemann-integrable functions – defined
on a bounded and closed interval [a, b] – which converges on [a, b] to a Riemann-integrable function F . If
there exists a constant m > 0 satisfying |Fn(t) ≤M | for all x ∈ [a, b] and for all n, then

lim
n→∞

∫ b

a

dt Fn(t) =
∫ b

a

dt lim
n→∞

Fn(t) =
∫ b

a

dt F (t) .

Proof (Theorem 2.2). The values xTi ya := ω
(i)
a are a sequence of m random variables with cumulative

densities Fi,1, . . . , Fi,m.

lim
m→∞

E
[
Zi
m

]
= lim
m→∞

1
m

m∑
a=1

E
[
eω

(i)
a

]
= lim
m→∞

E
[
eω

(i)
m

] (a)= lim
m→∞

∫ h

−h
dt etfi,m(t)

(b)= lim
m→∞

[
etFi,m(t)

∣∣∣h
−h
−
∫ h

−h
dt etFi,m(t)

]
(c)−→

m→∞
etFi(t)

∣∣∣h
−h
−
∫ h

−h
dt etFi(t) =

∫ h

−h
dt etfi(t) .

In (a) we denoted with f the derivative of F , i.e. the probability density function; in (b) we performed
an integration by parts; in (c) we exploited the fact that convergence in distribution implies the pointwise
convergence of the probability density function and we applied Theorem A.2 for M = eh.

B Derivation of Equation (5)

We here report the derivation of Equation (5) from (4).

L = −
∑
i,j∈V

p
(i)
j log

(
SoftMax(Y Y T )ij

)
+
∑
i,j∈V

p0,j y
T
i yj

(a)= −
∑
i,j∈V

p
(i)
j (Y Y T )ij +

∑
i,j∈V

p
(i)
j log(Zi) +

∑
i,j∈V

p0,j(Y Y T )ij

(b)= −
∑
i,j∈V

Pij(Y Y T )ij +
∑
i∈V

log(Zi) +
∑
i,j∈V

(1npT0 )ij(Y Y T )ij

(c)= −
∑
i∈V

(PY Y T )ii +
∑
i∈V

log(Zi) +
∑
i∈V

(1npT0 Y Y T )ii

(d)= −tr(PY Y T ) +
∑
i∈V

log(Zi) + tr(1npT0 Y Y T )

(e)= −tr(Y TPY ) +
∑
i∈V

log(Zi) + tr(Y T1npT0 Y ) ,

where in (a) we used the softmax definition and rewrote yTi yj = (Y Y T )ij ; in (b) we used the definition
Pij = p

(i)
j and exploited the property

∑
j∈V p

(i)
j = 1; in (c) we used the fact that Y Y T is a symmetric

matrix; in (d) we leverage the trace definition; in (e) we use the property of the trace tr(AB) = tr(BA).

14



Under review as submission to TMLR

C Derivation of the gradient

We here derive the gradient expression as it appears in Equation (6). Note that in this derivation, the
quantities µα, Ωα are considered as constants, in a stochastic gradient descent fashion. We observed that
this gradient form achieves better results in fewer epoch. Let us first rewrite the loss function of Equation (4).
Following the passages detailed in Appendix B, we obtain

L = −
∑
i,j∈V

(Pij − p0,j)xTi xj +
∑
i∈V

log(Zi) .

We now introduce the approximation of Equation (2) and rewrite

L ≈ −
∑
i,j∈V

(Pij − p0,j)xTi xj +
∑
i∈V

log
κ∑

α=1
nπα exp

{
xTi µα + 1

2x
T
i Ωαxi

}

= −
∑
i,j∈V

d∑
q=1

(Pij − p0,j)xiqxjq +
∑
i∈V

log
κ∑

α=1
nπα exp

{
d∑
q=1

xiqµα,q + 1
2

d∑
q,p=1

xiqΩα,qpxip

}
.

We now proceed computing the derivative with respect to xkr to obtain the respective gradient term.

∂xkrL ≈ −
∑
i,j∈V

d∑
q=1

(Pij − p0,j) δqr [δikxjq + δjkxiq]

+
∑
i∈V

∑κ
α=1 πα e

xTi µα+ 1
2x

T
i Ωαxi

(∑d
q=1 δikδqrµα,q +

∑d
q,p=1 Ωα,qp [δikδqrxip + δikδprxiq]

)
∑κ
α=1 πα e

xT
i
µα+ 1

2x
T
i

Ωαxi
.

We now use the notation Ziα = πα e
xTi µα+ 1

2x
T
i Ωαxi and compute the sums.

∂xkrL ≈ −
∑
i∈V

(Pik − p0,k)xir −
∑
j∈V

(Pkj − p0,j)xjr

+ 1∑κ
α=1Zkα

·
κ∑

α=1
Zkα

(
µα,r + 1

2

d∑
q=1

xkqΩα,rq + 1
2

d∑
q=1

xkqΩα,qr

)

Now we recall that
∑κ
α=1Ziα = Zi/n and Mα,r = µα,r and that Ωα = ΩTα .

∂xkrL ≈ −
[(
PT + p01Tn

)
X
]
kr
−
[(
P + 1npT0

)
X
]
kr

+ 1
(Z1κ)k

·

(
[ZM ]kr +

κ∑
α=1
Zkα[XΩα]kr

)
,

thus obtaining Equation (6).

D Experiment implementation details

We here report some implementation details in the experiments we conducted. This section complements
the information in the main text when this is insufficient to reproduce our results.

D.1 Node embeddings

In the experiments we test the node embedding problem for the task of community detection. To do so, we
work with synthetic graphs generated from the degree corrected stochastic block model (DCSBM) (Karrer
& Newman, 2011) that we here define.
Definition D.1 (DCSBM). Let ω : V → {1, . . . , q} be a class labeling function, where q is the number of
classes. Let P(ωi = a) = q−1 and consider two positive integers satisfying cin > cout ≥ 0. Further Let θ ∼ pθ
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be a random variable that encodes the intrinsic node connectivity, with E[θ] = 1 and finite variance. For all
i ∈ V, θi is drawn independently at random from pθ. The entries of the graph adjacency matrix are generated
independently (up to symmetry) at random with probability

P(Aij = 1) = θiθj
n
·

{
cin if ω(i) = ω(j)
cout else

In words, nodes in the same community (ω(i) = ω(j)) are connected with a higher probability than nodes in
different communities. From a straightforward calculation, the expected degree is E[di] ∝ θi, thus allowing
one to model the broad degree distributions typically observed in real networks (Barabási & Albert, 1999).
Given this model, the community detection task consists in inferring the node label assignment from a
realization of A. It was shown that this is theoretically feasible (in the large n regime) if and only if
α = (c− cout)

√
E[θ2]
c > 1. This is the α parameters appearing in the main text. In the simulations the θi’s

are obtained by: i) drawing a random variable from a uniform distribution between 3 and 12; ii) raising it
to the power 6; iii) normalize it so that E[θ] = 1. This leads to a rather broad degree distribution, even if it
maintains a finite support.

For all three methods under comparison we obtain the embedding vectors from A and then cluster the nodes
into communities by applying k-means and supposing that the number of communities q is known. The
algorithm of (Dall’Amico et al., 2019; 2021) obtains the embedding by extracting a sequence of eigenvectors
from a sequence of parameterized matrices that are automatically learned from the graph and does not require
any parametrization. The DeepWalk and EDRep algorithms generate embeddings in d = 32 dimensions.
We observed that the results are essentially invariant in a large spectrum of d values for both embedding
algorithms.

D.2 Dynamically aware node embeddings

This experiment features three main steps: i) the creation of the supra-adjacency matrix from a temporal
network; ii) the creation of an embedding based on this matrix; iii) the reconstruction of a dynamical process
taking place on the network. We now describe these steps in detail.

Definition of the supra-adjacency matrix

We consider a temporal graph collected by the SocioPatterns collaboration. This dataset describes face-to-
face proximity encounters between people at a conference. The data are recorded with a temporal resolution
of 20 seconds and correspond to interactions within a distance of approximately 1.5 meters.7 The dataset
contains approximately 3000 different time-stamps. Following the procedure of (Sato et al., 2021) we ag-
gregate them into T = 180 windows of approximately 15 minutes each. We thus obtain a temporal graph
that is represented as a sequence of weighted temporal edges (i, j, t, wijt), indicating that i, j interacting at
snapshot t for a cumulative time equal to wijt. We say that a node is active at time t if it has neighbors at
time t. We let ti,a be the time at which node i is active for the a-th time. Given this graph, we then build
the supra-adjacency matrix that is defined as follows.

Definition D.2 (Supra-adjacency matrix). Consider a temporal graph represented as a sequence of weighted
temporal edges (i, j, t, ωijt). We define a set of “temporal nodes” given by all the pairs i, ti,a where i is a node
of the temporal graph and ti,a is the time of the a-th appearance of i in the network. We denote this set D,
formally defined as

D = {(i, ti,a) : i ∈ V,∃ j ∈ V : (i, j, ti,a) ∈ E},

7The experiment is described in (Cattuto et al., 2010). The data are shared under the Creative Commons Public Domain
Dedication license and can be downloaded at http://www.sociopatterns.org/datasets/sfhh-conference-data-set/.
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where V is the set of nodes and E of temporal edges. The cardinality of this set is D = |D|. We then define
a directed graph with D being the set of nodes. The directed edges are placed between

(i, ti,a)→ (i, ti,a+1) self connections
(i, ti,a)→ (i, tj,b+1) if ti,a = tj,b and (i, j, t) ∈ E
(i, tj,b)→ (i, ta,a+1) if ti,a = tj,b and (i, j, t) ∈ E .

The supra-adjacency matrix Asupra ∈ RD×D is the adjacency matrix of the graph we just defined.

Creation of the embedding

Given Asupra, the authors generate an embedding with the DeepWalk algorithm. Here, the random walker
can only follow time-respecting paths, by construction of the matrix. We let the random walks have length
equal to 15 steps and deploy also in this case the embedding dimension d = 30. For EDRep we use the
row-normalized version of Asupra as P . As a result we obtain an embedding vector for each (i, ti,a) pair.

Reconstruction of a partially observed dynamic process

Following (Sato et al., 2021) we consider an epidemic process taking place on the temporal network. We
use the SIR model (Keeling & Rohani, 2011) in which infected nodes (I) can make susceptible nodes (S) to
transition to the infected state with a probability β if they are in contact. Infected individuals then recover
(R) with a probability µ and are unable to infect or get infected. We run the SIR model letting all nodes to
be in the S state at the beginning of the simulation and having one infected node. The experiment is run
with β = 0.15 and µ = 0.01 and it outputs the state of each node at all times, i.e. for all (i, ti,a).

We then suppose to observe a fraction of these states (every node is expected to only be observe once) and
obtain a binary variable for each (i, ti,a) indicating whether node i was infected at time ti,a. Exploiting the
embeddings, we train a logistic regression model to predict the state of the node in each unobserved time and
compare the predicted number of infected individuals against the observed ones. We repeat the experiment
for 50 different realizations of the observed training set.
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