
Published in Transactions on Machine Learning Research (05/2025)

Learning distributed representations with efficient SoftMax
normalization

Lorenzo Dall’Amico lorenzo.dallamico@isi.it
ISI Foundation

Enrico Maria Belliardo enrico.belliardo@isi.it
ISI Foundation

Reviewed on OpenReview: https: // openreview. net/ forum? id= 9M4NKMZOPu

Abstract

Learning distributed representations, or embeddings, that encode the relational similarity
patterns among objects is a relevant task in machine learning. A popular method to learn
the embedding matrices X, Y is optimizing a loss function of the term SoftMax(XY T). The
complexity required to calculate this term, however, runs quadratically with the problem
size, making it a computationally heavy solution. In this article, we propose a linear-
time heuristic approximation to compute the normalization constants of SoftMax(XY T)
for embedding vectors with bounded norms. We show on some pre-trained embedding
datasets that the proposed estimation method achieves higher or comparable accuracy with
competing methods. From this result, we design an efficient and task-agnostic algorithm
that learns the embeddings by optimizing the cross entropy between the softmax and a set of
probability distributions given as inputs. The proposed algorithm is interpretable and easily
adapted to arbitrary embedding problems. We consider a few use cases and observe similar
or higher performances and a lower computational time than similar “2Vec” algorithms.

1 Introduction

A foundational role of machine learning is providing complex objects with expressive vector representations
that preserve some properties of the represented data. These vectors, also known as embeddings or distributed
representations, enable otherwise ill-defined operations on the data, such as assessing their similarity (Bengio
et al., 2013; Bellet et al., 2015). Relational patterns among the represented objects are a relevant example of
a property that embedding vectors can efficiently encode. For instance, in language processing, distributed
representations capture the semantic similarity between words, leveraging the patterns in which they appear
in a text. One way of achieving this result is by training the softmax scores SoftMax(XY T), where X, Y are
two embedding matrices, possibly with X = Y . The softmax scores range between 0 and 1 and can be used
to promote similar representations for related objects. The optimization of the softmax scores is at the core
of all “2Vec”-type algorithms but is also key in attention-based transformers (Vaswani et al., 2017).

A known limitation of optimizing the softmax scores is the computational complexity, which scales quadrat-
ically with the system size and is impractical for large datasets. As a turnaround, Mikolov et al. (2013)
considered two approximation strategies to train the embedding vectors, namely hierarchical softmax (Good-
man, 2001; Morin & Bengio, 2005), and negative sampling. Thanks to its efficiency, negative sampling is
largely adopted and several works proposed analyses or extensions (Mu et al., 2019; Rawat et al., 2019; Shan
et al., 2018; Bamler & Mandt, 2020), but also highlighted the weaknesses of this approach (Landgraf &
Bellay, 2017; Chen et al., 2018; Qin et al., 2016; Mimno & Thompson, 2017). Both efficient implementations
of 2Vec-type algorithms, however, consider de facto modified loss functions with respect to the originally
proposed one, thus circumventing the computational bottleneck. A large body of literature, instead, focused
on and is still actively exploring methods to approximate and train softmax efficiently. These works include

1

https://openreview.net/forum?id=9M4NKMZOPu

Published in Transactions on Machine Learning Research (05/2025)

importance sampling methods (Bengio & Senécal, 2003; Blanc & Rendle, 2018; Rawat et al., 2019; Baharav
et al., 2024), random feature methods based on the kernel trick (Rahimi & Recht, 2007; Choromanski et al.,
2020; Peng et al., 2021), low-rank approximations (Drineas et al., 2005; Shim et al., 2017; Xiong et al., 2021),
and local hashing techniques (Mussmann et al., 2017; Zaheer et al., 2020; Beltagy et al., 2020).

In this work, we provide a closed formula to approximate the softmax normalization constants in linear time,
with theoretical and empirical results supporting our method. We evaluate the accuracy of the proposed
approximation on pre-trained embeddings and compare it with several related methods. Building on this
result, we design an efficient embedding algorithm in the 2Vec spirit, training a loss function containing the
term log[SoftMax(XY)]. Given their good scalability and simplicity of design, the 2Vec algorithms proved
extremely useful for machine learning users and have been applied to various contexts. However, we recall
that 2Vec algorithms do not optimize the proposed loss function in their most popular implementation. Our
algorithm, instead, optimizes the original loss function efficiently and leverages the existing theoretical works
that analyzed it, like (Jaffe et al., 2020). We note that our proposed approximation of the softmax score
normalization is sufficient to efficiently compute log[SoftMax(XY T)] because this term is composed of two
parts: the numerator XY T that is low rank and can consequently be efficiently optimized; the denominator
involving the softmax normalization constants that is the computational bottleneck. Our estimation formula
allows us to compute it in O(n) operations, and thus to efficiently optimize the embedding cost function. We
showcase a few practical applications evidencing that our algorithm is competitive or outperforms comparable
methods in speed and performance.1 We recall that all these benchmark algorithms have a linear complexity
in n, and do not optimize the softmax function as we do. We stress that we do not claim sampling approaches
are bad per se, but rather, we investigate how to optimize a cost function containing the softmax scores
efficiently. A Python implementation of our algorithm is available at github.com/lorenzodallamico/EDRep.

2 Main result

This section describes how to efficiently approximate the normalization constants of SoftMax(XY T), where
X ∈ Rn×d, Y ∈ Rm×d are two embedding matrices, with a potentially different number of rows, but with
the same number of columns. We denote with {xi}i=1,...,n and {ya}a=1,...,m the sets of vectors contained in
the rows of X and Y , respectively. The i-th softmax score normalization constant reads

Zi =
m∑

a=1
exT

i ya . (1)

In the remainder, we let m = O(n), implying that computing all the Zi’s requires O(dnm) = O(dn2)
operations, which is prohibitively expensive for large datasets. This condition determines the relevance of
our problem setting; if m≪ n, one can efficiently compute the normalization constants. We further assume
d≪ n, a necessary condition to estimate all Zi in linear time. We remark that other works, such as Baharav
et al. (2024), have considered a complementary view to ours, by estimating the softmax normalization in
sub-linear time in d. This setting is relevant for high-dimensional embedding vectors with d = On(n).

2.1 Linear-time softmax normalization

We consider a vector xi ∈ Rd fixed (corresponding to the i-th row of X) and treat {y1, . . . , ym} as random
independent vectors drawn from an unknown distribution. This allows us to study Zi as a random variable
and describe its concentration properties. Note that we are not assuming the embedding dimensions to be
independent, thus preventing the representation of complex similarity patterns. Such relations are captured
by the underlying unknown probability distribution on which we make no assumption besides requiring
embedding vectors to have bounded norms. We derive our approximation in three steps. In the first, we
show the concentration of Zi/m around its expectation for which we obtain an integral form, depending on the
unknown distribution fi of the scalar product xT

i ya. In the second, we introduce a variational approximation
by substituting the unknown distribution of the scalar product fi with a Gaussian distribution. In the third,
we introduce a clustering-based method applied to the rows of Y to improve the estimation accuracy.

1All codes are run on a Dell Inspiron laptop with 16 GB of RAM and with a processor 11th Gen Intel Core i7-11390H @
3.40GHz × 8.

2

https://github.com/lorenzodallamico/EDRep

Published in Transactions on Machine Learning Research (05/2025)

Concentration properties of the normalization constants

We succinctly describe the main concentration result of the normalization constants Zi, which we formally
enunciate and prove in Appendix A. We denote with fi,m the unknown empirical distribution of the scalar
product xT

i ya and suppose its support is in [−h, h] for h = Om(1). Assuming the convergence in distribution
of fi,m to fi, with high probability

lim
m→∞

Zi

m
=
∫ h

−h

dt etfi(t) . (2)

Our result holds unchanged also in the case X = Y . We remark that we do not require any assumptions
on the embedding vectors’ distribution (besides having finite norms), nor that the embedding vectors are
identically distributed. For a more accurate enunciation, we refer the reader to Theorem A.1. The constant
h controls the concentration speed of Zi/m around its mean: a smaller h implies a faster convergence.
The assumption h = Om(1) guarantees good concentration properties, and it can be easily enforced by
considering embedding vectors with bounded norms. Equation 2 is obtained by combining Theorem A.1
with Theorem A.3 in which we show that the E[Zi]/m converges to the integral form on the right hand-side.
This is generally not true under the loose assumption of convergence in distribution we formulated.

Gaussian approximation of the scalar product distribution

Equation (2) gives a tractable expression of the random variable Zi, but it cannot be solved without additional
hypotheses. We thus proceed by introducing a variational approximation of fi, denoted with f̃i. Thanks to
Theorem A.3, the goodness of this approximation only needs to hold in distribution sense, i.e., the cumulative
density functions of fi and f̃i should be close. We choose to write f̃i as a Gaussian distribution. Recalling
that fi is the distribution of a scalar product – i.e., a sum of random variables – we expect that for d large
enough, it is well approximated by the normal distribution. As shown in Section 2.2, the empirical evidence
confirms the goodness of this approximation on real data. We denote with µ, Ω the mean and covariance of
y and with E[·] the expectation over y. We obtain E[xT

i y] = xT
i µ and V[xT

i y] = xT
i Ωxi and write

lim
m→∞

Zi

m
=
∫ h

−h

dt etfi(t) ≈
∫
R

dt etN (t; xT
i µ, xT

i Ωxi) = exp
{

xT
i µ + 1

2xT
i Ωxi

}
. (3)

Note that this approximation does not require the embedding vectors to be drawn from a multivariate
Gaussian distribution. As a remark, we move from an integral on [−h, h] to one over the real axis, but
the contribution from the tails is negligible since the integrand goes to zero at least as fast as e−|t|. The
considerable advantage of Equation (4) is that, given µ and Ω, the normalization constant Zi is computed in
O(d2) operations, independently of m. This allows us to estimate all Zi’s in O(n) operations. Since µ and
Ω are both estimated in O(n) operations, this formula allows the linear-time estimation of the normalization
constants. We note the quadratic complexity in d, but, since we are working under the assumption d ≪ n,
this does not hamper the computational efficiency of the proposed method.

Multivariate Gaussian approximation of the scalar product distribution

To obtain Equation (3), we assumed all embedding vectors to be well described by the same distribution. In
practice, it is common that the represented objects form clusters in the embedded space that mirror affinity
groups. We can leverage these clusters to improve the estimation accuracy by clustering the embedding
vectors to reduce the within-group embedding variance. We subdivide the set V of all elements in κ non-
overlapping subsets Vα=1,...,κ. The normalization constant then reads

Zi =
m∑

a=1
exT

i ya =
κ∑

α=1

∑
a∈Vα

exT
i ya

︸ ︷︷ ︸
Z̄iα

=
κ∑

α=1
Z̄iα .

3

Published in Transactions on Machine Learning Research (05/2025)

If Vα = Om(m) for all α, then Z̄iα respects the same concentration properties of Equation (2). This
assumption is also necessary to keep a low computational complexity. We update Equation (3) as follows

Zi

m
≈

κ∑
α=1

πα exT
i µα+ 1

2 xT
i Ωαxi , (4)

where µα, Ωα are the mean vector and covariance matrix of the vectors y in class α, and πα = |Vα|/m.

πα = |Vα|
m

; µα = 1
|Vα|

∑
i∈Vα

xi; Ωα = 1
|Vα| − 1

∑
i∈Vα

(xi − µα)(xi − µα)T . (5)

We choose the partition of V to minimize the variance xT
i Ωαxi within each class. We define the total variance

V and show the following relation with the k-means objective (MacQueen, 1967).

V =
κ∑

α=1

∑
a∈Vα

xT
i Ωαxi →

κ∑
α=1

∑
a∈Vα

[
xT

i (ya − µα)
]2 ≤ ∥xi∥2

κ∑
α=1

∑
a∈Vα

∥ya − µα∥2 .

Using k-means to obtain the clusters Vα=1,...,κ, we minimize the upper bound of the total variance, hence
improving the estimation performance. The complexity of Lloyd algorithm (Lloyd, 1982) to perform k-means
clustering scales as O(ndκ). As such, with Equation (4) all Zis can be computed in O(nκd2) operations.

2.2 Empirical evaluation

We consider 6 datasets taken from the NLPL word embeddings repository2 (Kutuzov et al., 2017), repre-
senting word embeddings obtained with different algorithms and trained on different corpora:

0. British National Corpus; Continuous Skip-Gram, n = 163.473, d = 300;
7. English Wikipedia Dump 02/2017 ; Global Vectors, n = 273.930, d = 300;

16. Gigaword 5th Edition; fastText Skipgram, n = 292.967, d = 300;
30. Ancient Greek CoNLL17 corpus; Word2Vec Continuous Skip-gram, n = 45742, d = 100;

187. Taiga corpus; fastText Continuous Bag-of-Words, 192.415, d = 300;
224. Ukrainian CoNLL17 corpus; Continuous Bag-of-Word, n = 99.884, d = 200.

The number reported in the list above corresponds to the ID used in the repository. For each dataset, we
(1) rescale the embedding vectors so that their average norm equals 1; (2) sample 1000 random indices; (3)
compute the corresponding exact and the estimated Zi values for different approximation orders κ. We then
repeat the same procedure by imposing that all embedding vectors have unitary norms. Figure 1 shows the
results of this procedure. The first column compares the empirical distribution cumulative density functions
(CDF) of fi and f̃i obtained for κ = 5. Here, i is a randomly selected node and X = Y , and we use
the rescaled version of the embedding matrix. The third column shows the same result for the normalized
embedding matrices. The plots confirm that in all cases, the multivariate Gaussian approximation we
introduced achieves high accuracy in estimating fi. The second and fourth columns of Figure 1 evaluate
the accuracy of the estimation method, by showing the cumulative density function of the error between the
exact and the estimated values of Zi. As expected, the precision of our method increases with κ.

Performance comparison

We compare the accuracy of our estimation method with several competing approaches. For all methods,
we set the hyper-parameters to have a comparable execution time with our method.

• Sampling. A simple way of estimating the normalization constant Zi efficiently is sampling g ≪ m
indices of the sum appearing in Equation (1). Small values of g improve the algorithm’s speed but lead
2The datasets can be found at http://vectors.nlpl.eu/repository/ and are shared under the CC BY 4.0 license.

4

http://vectors.nlpl.eu/repository/

Published in Transactions on Machine Learning Research (05/2025)

0.00 0.25 0.50 0.75 1.000.0

0.5

1.0

CD
F

mvGaussian Empirical

5 4 3 2 1
0.0

0.5

1.0

= 1
= 5
= 15

Adapt. softmax

RF
PRF
Nyström
Top-k

0.00 0.25 0.50 0.75 1.000.0

0.5

1.0
mvGaussian Empirical

5 4 3 2 1
0.0

0.5

1.0

= 1
= 5
= 15

Adapt. softmax

RF
PRF
Nyström
Top-k

0 1 20.0

0.5

1.0

CD
F

5 4 3 2 1
0.0

0.5

1.0

0.0 0.5 1.00.0

0.5

1.0

5 4 3 2 1
0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.000.0

0.5

1.0

CD
F

4 2 0
0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.000.0

0.5

1.0

5 4 3 2 1
0.0

0.5

1.0

0 1 20.0

0.5

1.0

CD
F

4 2 0
0.0

0.5

1.0

0.0 0.5 1.00.0

0.5

1.0

4 2
0.0

0.5

1.0

0.0 0.5 1.0 1.50.0

0.5

1.0

CD
F

4 2 0
0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.000.0

0.5

1.0

4 2
0.0

0.5

1.0

1 0 1
xT

i ya

0.0

0.5

1.0

CD
F

4 2 0
log10()

0.0

0.5

1.0

0.0 0.5 1.0
xT

i ya

0.0

0.5

1.0

5 4 3 2 1
log10()

0.0

0.5

1.0

Figure 1: Evaluation of the softmax normalization constants approximation. Each row corresponds
to one of the six embeddings listed in Section 2.2 which appear in the same order. The first two columns
consider the rescaled embedding matrices in which the average norms are equal to one. In the last two, all
embedding vectors are normalized to one. The first and third columns show the cumulative density function
(CDF) of the scalar product distribution fi for an arbitrary index i. The black dashed-dotted curve is the
estimated multivariate Gaussian approximation f̃i for κ = 5. The second and fourth columns show the CDF
of the error ϵ = |Z−Zest|/n in estimating the softmax score normalization constants. The solid lines refer to
our proposed method for three values of κ (color-coded). The other lines refer to the methods described in
Section 2.2: “Adapt. softmax”, pink dashed-dotted line (Blanc & Rendle, 2018); “RF”, red loosely-dashed
line (Rahimi & Recht, 2007); “PRF”, orange dashed line (Choromanski et al., 2020); “Nyström”, gray dotted
line (Drineas et al., 2005); “Top-k”, green dashed double dotted line (Mussmann et al., 2017).

to higher variance estimates. In (Bengio & Senécal, 2003), the authors showed that importance sampling
reduces the estimation variance and proposed an unbiased estimator that, however, requires the exact
softmax distribution. The authors of (Blanc & Rendle, 2018) proposed adaptive softmax in which the
sampling probability of index a is proportional to 1 + α(xT

i ya)2. Leveraging a tree structure and the
kernel trick, they further showed how to compute the softmax normalization constants in O(d2nlog n)
operations. This algorithm’s performance is denoted by “Adapt. softmax” in Figure 1.

5

Published in Transactions on Machine Learning Research (05/2025)

• Random features. The terms exT
i ya are closely related to the Gaussian kernel e−∥xi−ya∥2 and the

random feature methods exploit the kernel trick to linearize the softmax score matrix. One defines a
random matrix W ∈ RD×d with entries distributed according to N (0d, Id), and a mapping, ϕW : Rd →
R2D so that EW [(ϕW (x))T

ϕW (y)] = e− ∥x−y∥2
2 . This approximation allows one to compute Zi efficiently:

Zi =
m∑

a=1
exT

i ya = e
∥xi∥2

2

m∑
a=1

e
∥ya∥2

2 E
[
(ϕW (xi))T

ϕW (ya)
]

= e
∥xi∥2

2 E
[
(ϕW (xi))T

mW

]
,

where mW =
∑k

a=1 e
∥ya∥2

2 ϕW (ya) needs to be computed only once. The complexity of these methods
runs as O(nD). In Figure 1, the line denoted as “RF” considers the mapping ϕ using random features as
proposed in (Rahimi & Recht, 2007), while “PRF” is the line obtained for the positive random features
proposed in (Choromanski et al., 2020) Both methods are implemented for D = 1000.

• Low-rank approximations. Letting Qia = e−∥xi−ya∥2 , the softmax normalization constant reads
Zi = (Q1m)i. If Q can be written as the product of two low-rank matrices A, B, then Zi = ABT 1m can
be computed efficiently by multiplying from right to left, without materializing Q. One way of performing
such a low-rank approximation is to use the Nyström method (Drineas et al., 2005), which we consider
for X = Y , leading to a symmetric Q. We sample g indices and compute the corresponding rows and
columns of Q. Without loss of generality, we let the sampled indices be the first g and write

Q =
(

Qss QT
us

Qus Quu

)
≈
(

Qss QT
us

Qus QusQ
†
ssQ

T
us

)
.

The matrix Quu ∈ R(n−g)×(n−g) represents the entries of the unsampled indices and is approximated
with QusQ

†
ssQ

T
us, where † denotes the Moore-Penrose pesudo-inverse. The matrix Q†

ss ∈ Rg×g is small,
while Qus ∈ R(n−g)×g. Assuming g ≪ n, this method estimates all Zi in O(ndg) operations. The curve
“Nyström” in Figure 1 reports its performance for g = 50.

• Top-k approximation. The sum in Equation (1) is dominated by the large values of xT
i ya, because of

the exponential function. One can leverage the large literature on maximum inner product search to find
the k closest embedding vectors to xi and use them to define an estimator of Zi with lower variance. For
instance, following (Mussmann et al., 2017), we let Si be a set with the indices corresponding to the k
closest vectors to xi and Ti a set of g randomly sampled indices from V \ Si. The estimator of Zi reads

Zi ≈
∑
a∈Si

exT
i ya + n− |Si|

|Ti|
∑
a∈Ti

exT
i ya .

Several methods exist to efficiently estimate the set Si, and all the Zis can be computed in O(nd(k + g))
operations. The curve “Top-k” in Figure 1 shows the result of this method for k = g = 25.

The results show our method systematically outperforms the competing ones, with one exception in which
the Nyström-based approach provides better results, even if on other datasets it is outperformed by other
methods. Most importantly, we observe high performance for κ = 1. Here, the clustering step can be omitted
and is of particular interest, since the estimator is obtained from simple matrix operations.

3 EDRep: an algorithm for efficient distributed representations

Building on the results of Section 2, we describe an efficient algorithm – which we name EDRep – to obtain
distributed representations in the 2Vec spirit. These algorithms are still extremely popular among machine
learning users thanks to their efficiency, scalability, and flexibility. They build on Word2Vec (Mikolov et al.,
2013), an algorithm designed for word embeddings, and were adapted to a variety of domains, including
graphs (Perozzi et al., 2014; Grover & Leskovec, 2016; Gao et al., 2019; Rozemberczki et al., 2019; Nickel &
Kiela, 2017; Narayanan et al., 2017), time (Kazemi et al., 2019), temporal contact sequences (Goyal et al.,
2020; Rahman et al., 2018; Nguyen et al., 2018; Sato et al., 2021; Torricelli et al., 2020), biological entities

6

Published in Transactions on Machine Learning Research (05/2025)

(Du et al., 2019; Ng, 2017), tweets (Dhingra et al., 2016) and higher order interactions (Billings et al.,
2019) among others. Word2Vec trains the embedding in an unsupervised fashion by letting words commonly
appearing in the same context have a similar representation. The generalizations of Word2Vec to other
contexts require the “translation” of the input dataset into a text on which Word2Vec is then applied. For
instance, in Node2Vec, a text is created by performing random walks on a graph.

In our formulation, we take a different perspective and consider a probability matrix P as the input of
our problem. This matrix encodes relational patterns between object pairs and is well-suited for datasets
describing affinity measures among the embedded objects. We formulate a general embedding problem easily
customized to an arbitrary setting. The optimal design of the probability matrix P is problem-dependent
and beyond the scope of this article. However, we show in a few applications that simple choices lead to
comparable results with competing or better 2Vec algorithms but with a lower computation time.

3.1 Problem formulation

We consider a set V of n items to be embedded. The relational patterns among the objects in V are encoded
by an affinity probability matrix P ∈ Rn×n. Our goal is to learn an embedding matrix X ∈ Rd that preserves
the relational patterns encoded in the matrix P . To do so, we adopt a variational approach and minimize
the cross entropy between the rows of P and of SoftMax(XXT) over the embedding vectors. This allows
us to learn the best parametric approximation X to fit the input matrix P . More formally, we define the
embedding matrix X as the solution to the following optimization problem:

X = arg min
Y ∈Un×d

∑
i∈V

[
−
∑
j∈V

Pij log
(

SoftMax(Y Y T)ij

)
︸ ︷︷ ︸

cross−entropy

+ 1
n

yT
i

∑
j∈V

yj︸ ︷︷ ︸
regularization

]
, (6)

where Un×d denotes the set of all matrices of size n × d having in their rows unitary vectors. The loss
function includes a regularization term that promotes embedding matrices with a centered mean. We empir-
ically observed that this term improves the embedding quality in practical applications. The computational
bottleneck of this optimization problem lies in the calculation of the softmax score normalization constants.
We denote with E the number of non-zero entries of P , with 1n the all-ones vector of size n, and with tr(·)
the trace operator. Then, the optimization problem of Equation (6) can be reformulated as follows:

X = arg min
Y ∈Un×d

[
− tr

(
Y T PY

)︸ ︷︷ ︸
O(Ed)

+
∑
i∈V

log(Zi)︸ ︷︷ ︸
O(dn2)

+ 1
n

tr
(
Y T 1n1nY T

)︸ ︷︷ ︸
O(nd)

]
, (7)

where the values below the brackets indicate the computational cost required for each element. The derivation
of this expression is reported in Appendix B. In many relevant settings, P is a sparse matrix, thus E ≪ n2.
The calculation of the softmax score normalization constants, instead, requires O(dn2) operations regardless
of E and is the computational bottleneck. We can thus adopt the approximation introduced in Equation (4)
to efficiently optimize this cost function and to define an efficient embedding algorithm.
Remark 3.1. In Equation (6) and in the remainder, we focus on square matrices P , in which rows and
columns are defined over the same set V. The optimization problem in Equation (6) can however be general-
ized to an asymmetric scenario in which the entries Pia are defined for i ∈ V and a ∈ W, thus invoking the
term SoftMax(XY T), for X ̸= Y . We provide Python codes to obtain the embedding also in this setting.

Let us now detail the main steps needed to translate the result of Equation (4) into a practical algorithm to
produce efficient distributed representations.

3.2 Optimization strategy

We obtain the embedding matrix X by optimizing the problem formulated in Equation (6) with stochastic
gradient descent. We substitute the approximated values of Zi introduced in Equation (4) and we let

7

Published in Transactions on Machine Learning Research (05/2025)

Algorithm 1 EDRep
Input: P ∈ Rn×x probability matrix encoding similarities; d, embedding dimension; ℓ ∈ {1, . . . , κ}n node
label vector; η0, learning rate; n_epochs, number of training epochs
Output: Xn×d, embedding matrix
X ← initialize the embedding matrix with random unitary vectors
η ← η0 initial learning rate
πα=1,...,κ ← as per Equation (5)
for 1 ≤ t ≤ n_epochs do

µα=1,...,κ , Ωα=1,...,κ ← update the parameters as per Equation (5)
{gi}i∈V ← gradient matrix as in Equation (8)
for 1 ≤ i ≤ n do

g′
i ← gi − (gT

i xi)xi remove the parallel component
g′′

i ← g′
i/∥g′

i∥ normalize
xi ←

√
1− η2 xi − ηg′′

i ; gradient descent step
end for
η ← η − η0

n_epochs linear update of the learning rate
end for

M ∈ Rκ×d have the {µα}α=1,...,κ values in its rows. We further define Z ∈ Rn×κ as

Ziα = πα exp
{

xT
i µα + 1

2xT
i Ωαxi

}
.

With this notation Zi/n = (Z1κ)i. The i ∈ V and q ∈ {1, . . . , d} gradient component reads

giq = − [(P + P T)X]iq︸ ︷︷ ︸
O(Ed)

+ 2
n

[1n1T
n X]iq︸ ︷︷ ︸

O(nd)

+ 1
(Z1κ)i

[
ZM +

κ∑
α=1
Ziα(XΩα)

]
iq︸ ︷︷ ︸

O(κnd2)

, (8)

where the values underneath the brackets indicate the computational complexity required to compute each
addend of the gradient matrix. The derivation of Equation (8) is reported in Appendix C. To keep the
normalization, we first compute g′ removing the component parallel to xi, then we normalize it and obtain
g′′

i to finally update the embedding as follows for 0 ≤ η ≤ 1: xnew
i =

√
1− η2 xi − ηg′′

i , that implies
∥xnew

i ∥ = 1. Note that Algorithm 1 requires the labeling vector ℓ as an input but it is generally unknown.
A workaround consists in running EDRep for κ = 1 for which ℓ = 1n, then run κ-class clustering k-means
and rerun EDRep algorithm for the so-obtained vector ℓ.

3.3 Computational complexity

To determine the complexity of Algorithm 1, let us focus on its computationally heaviest steps:

1. The calculation of ℓ if κ > 1. This is obtained in O(nκd) operations with k-means algorithm.
2. The parameters update as per Equation (5). This step is performed in O(nκd2) operations.
3. The gradient calculation as per Equation (8). This is obtained in O(Ed + nκd2) operations as

indicated by the brackets in Equation (8).

The gradient calculation is thus the most expensive operation. Our approximation reduces the complexity
required to compute the “Z part” of the gradient from O(dn2) to O(κnd2), with κ, d ≪ n. The most
expensive term thus requires O(Ed) operations. This complexity is prohibitive for dense matrices, but
in typical settings P is sparse and the product can be performed efficiently. Nonetheless, even for large
values of E, if P can be written as the product (or sum of products) of sparse matrices, PX can still be

8

Published in Transactions on Machine Learning Research (05/2025)

5000
10000

n

0

20

40

co
m

p.
 ti

m
e

(s
)

(A)
Exact

y x2

5000
10000

n

1

2

3

co
m

p.
 ti

m
e

(s
)

(B)
EDRep

y x

0 50 100 150

epoch

4.5

4.0

3.5

3.0

lo
g 1

0(
C t

) (C)

= 1
= 3

= 5
= 7

Figure 2: Comparison with exact gradient calculation. Panels A, B: computation time of the opti-
mization of Equation (6) with gradient descent as function of the size n. Panel A refers to the exact gradient,
panel B is Algorithm 1. The blue dots are the mean obtained over 10 realizations, the shadow line has the
width of one standard deviation. Panel C : logarithm of embedding error Ct = 1

n∥XtX
T
t − X̄tX̄

T
t ∥F between

the true and the estimated embedding matrices at training epoch t. In this experiment, n = 3000. In color
code and marker style, we report the results for different values of κ. The embedding algorithms are run
with the same initial condition and parameters: η0 = 0.7, d = 32, nepochs = 25 (for the first two plots).

computed efficiently. In fact, let P = Pm ·Pm−1 . . . P1 for some positive m, then PX can be obtained without
materializing P , taking the products from right to left:

PX = (
⇐=

Pm · Pm−1 · · · · · P1X) ,

thus speeding up the computational bottleneck of our algorithm. In our implementation, we explicitly
consider this representation of P as an input. When a non-factorized dense matrix P is provided, one could
envision adopting a method such as the one presented in (Le Magoarou & Gribonval, 2016) to approximate
a dense matrix P with the product of sparse matrices to speed up the algorithm.

3.4 Comparison with exact gradient computation

We compare the EDRep algorithm described in the previous section with its analogous counterpart in which
the gradient of Equation (6) is computed analytically in O(n2d) operations. We considered P as the row-
normalized random matrix in which the (ij) entry is set to 1 with probability proportional to θiθj and
θi follows a negative binomial distribution with parameters N = 3, p = 0.3. This choice allows us to
generate heterogeneity in the P structure while being capable of controlling the size n. Figure 2A shows
the computational time corresponding to the exact gradient calculation, while panel B reports the same
result for EDRep. Let Xt be the EDRep embedding at epoch t and Yt be the corresponding one of the full
gradient calculation, we define Ct = 1

n∥XtX
T
t −YtYt∥F, quantifying the deviation between the two embedding

methods. Figure 2C shows the behavior of Ct for different κ values, evidencing only slight disagreements
between the exact and the approximated embeddings that, as expected, decrease with κ.

4 Use cases

We consider a few use cases of our algorithm to test it and showcase its flexibility in practical settings. To
perform these tests, we must specify the set P and we adopt simple strategies to define it. We show that,
even for our simple choices, the EDRep approach achieves competitive (sometimes superior) results in terms
of performance with competing 2Vec algorithms, with a (much) lower computational time.3 We would like
to underline that the sampling probabilities choice is a hard and problem-dependent task and optimally
addressing it is beyond the scope of this article. Our aim is not to develop state-of-the-art algorithms for

3It should be noted that performances typically increase with training time The parameter choice of the 2Vec algorithms is
such that the competing algorithms are comparable on one of the two measures so that the other can be evenly compared.

9

Published in Transactions on Machine Learning Research (05/2025)

1 2 3 4 5
0.0

0.3

0.6

0.9

NM
I

(A)

EDRep
Node2Vec
SC

0.5 0.0 0.5 1.0
xT

i xj (EDRep)
0

2

4

6

PD
F

(C)
non interacting
interacting

0 100 200 300 400
time

0

100

200

n.
 in

fe
ct

ed

(E)
DyANE
EDRep
Measured

1 2 3 4 5

20

40

t
(s

ec
)

(B)

0 5 10
xT

i xj (Gene2Vec)
0.0

0.5

1.0

1.5

PD
F

(D)

0 50 100 150 200
Prediction DyANE

0

100

Pr
ed

ict
io

n
ED

Re
p

(F)

Figure 3: EDRep use cases. First column: community detection. Panel A: normalized mutual information
(NMI) as a function of the problem hardness α (see Appendix D) for a DCSBM graph. We consider graphs
with n = 30 000 nodes, expected average degree c = 10, and q = 4 communities. The green circles refer
to the EDRep algorithm with d = 32, κ = 1 and w = 3, the brown diamonds are DeepWalk with d = 32,
while the blue narrow diamonds are the spectral clustering algorithm of (Dall’Amico et al., 2021). Panel
B: corresponding computational time in seconds. Panels A and B: averages are over 10 samples and the
error bar width equals the standard deviation. The two panels share the same legend. Second column: gene
embedding. Scalar product between gene embedding representation for non-interacting (blue histogram) and
interacting (purple histogram) gene pairs. Panel C : embedding obtained with EDRep; Panel D embedding
obtained with the Gene2Vec algorithm. Panels C and D share the same legend. Third column: dynamic
aware node embedding. Panel E : number of infected individuals of a SIR process on a proximity network
(black solid line) and reconstructed values by DyANE (orange dashed line) and using the EDRep embedding
(blue dashed-dotted line), with d = 200 for both methods. The shaded lines are the standard deviations
over 50 random trials of the process. Panel F : with reference to Panel E, this is the scatter plot between the
predicted number of infected per time-stamp by the two strategies.

specific problems but to show that with simple choices we can adapt our algorithm to compete with the
closest competing methods in terms of speed and accuracy. For further implementation details regarding the
next section, we refer the reader to Appendix D.

4.1 Community detection

Graphs are mathematical objects that model complex relations between pairs of items. They are formed by
a set of n nodes V and a set of edges E connecting node pairs (Newman, 2003). Graphs can be represented
with the adjacency matrix A ∈ Rn×n, so that Aij = 1 if (ij) ∈ E and equals zero otherwise. A relevant
problem in graph learning is community detection, the task of determining a non-overlapping node partition,
unveiling more densely connected groups of nodes (Fortunato & Hric, 2016). A common way of proceeding
– see e.g. (Von Luxburg, 2007) – is to create a node embedding encoding the community structure and then
clustering the nodes in the embedded space. Following this strategy, we adopt the EDRep to produce a node
embedding with P being P = 1

w

∑w
t=1 (Lrw)t, where Lrw is the row-normalized adjacency matrix. The entry

Pij is the limiting probability that a random walker on G goes from node i to j in one w or fewer steps.

We evaluate our algorithm on synthetic graphs generated from the degree-corrected stochastic block model
(DCSBM) (Karrer & Newman, 2011), capable of creating graphs with a community structure and an arbitrary
degree distribution.4 The inference accuracy is expressed with the normalized mutual information between

4The degree of a node is its number of connections.

10

Published in Transactions on Machine Learning Research (05/2025)

the inferred and the ground truth partition. This score ranges between 0 (random assignment) and 1
(perfect assignment). Figure 3A shows the NMI for different values of α, a function of the generative model
parameters, controlling for the hardness of the reconstruction problem.5 The results are compared against
other two algorithms that were alternatively deployed to obtain the embedding: the spectral method of
(Dall’Amico et al., 2021) that was shown to be nearly Bayes-optimal for this task and DeepWalk (Perozzi
et al., 2014).6 The communities are obtained from the embeddings using k-class k-means clustering.

The results show that the EDRep-based algorithm performs almost as well as the optimal algorithm of
(Dall’Amico et al., 2021) and a slight mismatch is only observed for α approaching 1. This is a particularly
challenging setting in which only a few algorithms can retrieve the community structure. Compared to the
DeepWalk approach, our method generally yields better results for all α. Figure 3B further compares the
computation times, giving the EDRep approach a decisive advantage with respect to DeepWalk. The main
advantage with respect to the spectral algorithm, instead, is the algorithm’s computational complexity. For
a graph with q communities, the considered spectral clustering algorithm runs in O(nq3) operations, while
the complexity of EDRep is independent of q.

4.2 Gene embeddings

In (Du et al., 2019), the authors develop an algorithm to embed DNA genes from a list of pairs whose
co-expression exceeds a threshold value. The dataset comprises 8832 genes and 263016 gene pairs and a list
of gene pairs with a binary label indicating whether or not that corresponds to an interacting pair. The
Gene2Vec algorithm of (Du et al., 2019) builds on Word2Vec to obtain meaningful gene vector representations
based on their co-expression and uses it to predict pairs of interacting genes.

We obtain the EDRep embedding using the row-normalized gene co-occurrence matrix as our choice of P .
The Gene2Vec embedding is generated with the code provided by the authors with default parameters. Both
embeddings have dimension d = 200. The computation time of EDRep is approximately 6 seconds against
the 12 seconds needed for Gene2Vec. We then train a logistic regression classifier on the embedding cosine
similarities with the 70% of the labeled data and test it on the remaining 30% of the data. Our model
achieves an accuracy of 92% and outperforms Gene2Vec which has an accuracy of 84%. Figures 3(C, D)
show the histogram of the cosine similarities between interacting and non-interacting groups that visually
explains the performance gap.

4.3 Causality aware temporal graph embeddings

In (Sato et al., 2021) the authors describe a method to embed temporal networks while preserving the role
of time in defining causality. Temporal networks are represented as a sequence of temporal edges (i, j, t),
denoting an interaction between i and j at time t. The method relies on the embedding of a supra-adjacency
matrix, Asupra in RD×D, where D =

∑T
t=1 |Vt| and Vt is the set of active nodes at time t. Here, each

node corresponds to a pair “node-time” in the original temporal graph. The supra-adjacency matrix is the
adjacency matrix of a weighted directed acyclic graph, accounting for time-driven causality. In (Sato et al.,
2021) the authors use DeepWalk to obtain an embedding from Asupra and use it to reconstruct the states of
a partially observed dynamical process taking place on the temporal graph (such as an epidemic spreading)
from few observations. Following the same procedure of (Sato et al., 2021), we obtain Figure 3(E-F), in
which we compare the reconstruction of an epidemic spreading obtained using DeepWalk against EDRep, with
P being the row-normalization of Asupra. The results are barely distinguishable, but EDRep is more than 5
times faster than the competing approach.

5Detection is theoretically feasible if and only if α > 1 (Gulikers et al., 2018; 2017).
6For the spectral method we used the authors’ Python implementation available at lorenzodallamico.github.io/codes under

the CC BY 4.0 license. For DeepWalk, we used the C++ implementation of github.com/thibaudmartinez/node2vec with its
default values, released under the Apache License 2.0.

11

https://lorenzodallamico.github.io/codes
https://github.com/thibaudmartinez/node2vec

Published in Transactions on Machine Learning Research (05/2025)

5 Conclusions

This article introduces a linear-time approximation of the softmax scores normalization for embedding vectors
with bounded norms. Our result relies on a variational approximation of the unknown scalar product
probability distribution between embedding vectors. We provide both theoretical and empirical validation
for our estimation formula. By testing our approximation on several empirical datasets, we showed that it
can achieve high accuracy levels, outperforming the competing methods.

Based on this result, we describe a simple embedding algorithm in the 2Vec style with a loss computed in
O(n2) operations. Because of its complexity, the competing methods use alternative loss functions, while our
algorithm efficiently optimizes the original loss function. The proposed EDRep algorithm is general-purpose
and takes a probability matrix P as input. To prove its efficiency, we tested it on a few use cases and made
specific choices for the matrix P . The simulations showed that simple and intuitive definitions of such matrix
could lead to higher or similar performances compared with competing algorithms. We also observed the
EDRep algorithm to be systematically faster than its competitors.

Let us now consider some limitations of our work. Given the generality of the formulation, we did not provide
a bound to the error on the Zi estimation. However, we extensively tested our method on several embeddings
and matrices P , weighted and unweighted, symmetric and not, and with different sparsity levels. In all cases,
the results confirmed the goodness of our proposed approach. The reasons justifying these results are two: (1)
our approximation needs only to hold in “distribution” sense and we do not need a more stringent point-wise
accuracy; (2) the multivariate normal approximation is particularly powerful to approximate the distribution
of the scalar product. Unsurprisingly, we also observed that the performance of EDRep – compared to the
2Vec methods – highly depends on the matrix P . In some cases, our method provides a neat advantage
in terms of performance, while in others the results are essentially identical, with our method being faster.
We lack a clear interpretation of the role of P in determining the embedding quality and the convergence
speed and we believe this aspect deserves further investigation in the future. We highlight, however, that
this analysis is task-dependent, and finding a good P should specifically address a precise research question.

Our approximation is a simple yet efficient method to bypass the quadratic computational complexity re-
quired by the softmax normalization. The direct application of this result to the proposed EDRep algorithm
has several advantages. Despite its simplicity, the practicality of this algorithm makes it particularly appeal-
ing to machine learning users who can easily adapt the algorithm to an arbitrary embedding problem. For
instance, the EDRep algorithm has already been adopted to define the distance between pairs of temporal
graphs in (Dall’Amico et al., 2024). Moreover, as observed in (Levy et al., 2015) for word embeddings, tailored
fine-tuning, and data preprocessing often have a higher impact in determining the embedding quality than
the architecture itself. As such, the EDRep constitutes a simple, interpretable, minimal unit to efficiently cre-
ate distributed representations. Moreover, given the generality of our framework, one can effortlessly adapt
EDRep to other similar cost functions. The most immediate change is to consider a contrastive learning
setting in which also the term SoftMax(−XY T) appears. With minor modifications to Algorithm 1, one can
also account for non-normalized (but bounded) embedding vectors, or choose P as an arbitrary non-negative
matrix. On the other hand, while efficiently dealing with the computation of the softmax scores is crucial
in transformer architectures, our results do not directly allow the design of an efficient transformer. How-
ever, we envision that ours can be a significant contribution to the design of efficient methods to generate
distributed representations.

Acknowledgments

LD acknowledges support from the the Lagrange Project of the ISI Foundation funded by CRT Foundation,
from the European Union’s Horizon 2020 research and innovation programme under grant agreement No.
101016233 (PERISCOPE) and from Fondation Botnar (EPFL COVID-19 Real Time Epidemiology I-DAIR
Pathfinder). EMB acknowledges support from CRT Lagrange Fellowships in Data Science for Social Impact
of the ISI Foundation. The authors thank Ciro Cattuto for fruitful discussions and Cosme Louart for his
valuable feedback on the proofs of Theorems A.1, A.3.

12

Published in Transactions on Machine Learning Research (05/2025)

References
Tavor Baharav, Ryan Kang, Colin Sullivan, Mo Tiwari, Eric Sager Luxenberg, David Tse, and Mert Pilanci.

Adaptive sampling for efficient softmax approximation. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

R Bamler and S Mandt. Extreme classification via adversarial softmax approximation. In International
Conference on Learning Representations, 2020.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science, 286(5439):
509–512, 1999.

Aurélien Bellet, Amaury Habrard, and Marc Sebban. Metric learning. Synthesis lectures on artificial intel-
ligence and machine learning, 9(1):1–151, 2015.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150, 2020.

Yoshua Bengio and Jean-Sébastien Senécal. Quick training of probabilistic neural nets by importance sam-
pling. In International Workshop on Artificial Intelligence and Statistics, pp. 17–24. PMLR, 2003.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new perspec-
tives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828, 2013.

Jacob Charles Wright Billings, Mirko Hu, Giulia Lerda, Alexey N Medvedev, Francesco Mottes, Adrian On-
icas, Andrea Santoro, and Giovanni Petri. Simplex2vec embeddings for community detection in simplicial
complexes. arXiv preprint arXiv:1906.09068, 2019.

Guy Blanc and Steffen Rendle. Adaptive sampled softmax with kernel based sampling. In International
conference on machine learning, pp. 590–599. PMLR, 2018.

Ciro Cattuto, Wouter Van den Broeck, Alain Barrat, Vittoria Colizza, Jean-François Pinton, and Alessandro
Vespignani. Dynamics of person-to-person interactions from distributed rfid sensor networks. PLOS
ONE, 5(7):e11596, 07 2010. doi: 10.1371/journal.pone.0011596. URL http://dx.doi.org/10.1371%
2Fjournal.pone.0011596.

Long Chen, Fajie Yuan, Joemon M Jose, and Weinan Zhang. Improving negative sampling for word repre-
sentation using self-embedded features. In Proceedings of the Eleventh ACM International Conference on
Web Search and Data Mining, pp. 99–107, 2018.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. In International Conference on Learning Representations, 2020.

Lorenzo Dall’Amico, Romain Couillet, and Nicolas Tremblay. Revisiting the bethe-hessian: improved com-
munity detection in sparse heterogeneous graphs. In Advances in Neural Information Processing Systems,
pp. 4039–4049, 2019.

Lorenzo Dall’Amico, Romain Couillet, and Nicolas Tremblay. A unified framework for spectral clustering in
sparse graphs. Journal of Machine Learning Research, 22(217):1–56, 2021.

Lorenzo Dall’Amico, Alain Barrat, and Ciro Cattuto. An embedding-based distance for temporal graphs.
Nature Communications, 15(1), November 2024. ISSN 2041-1723. doi: 10.1038/s41467-024-54280-4. URL
http://dx.doi.org/10.1038/s41467-024-54280-4.

Bhuwan Dhingra, Zhong Zhou, Dylan Fitzpatrick, Michael Muehl, and William W. Cohen. Tweet2vec:
Character-based distributed representations for social media. 54th Annual Meeting of the Association for
Computational Linguistics, ACL 2016 - Short Papers, pp. 269 – 274, 2016. doi: 10.18653/v1/p16-2044.

Petros Drineas, Michael W Mahoney, and Nello Cristianini. On the nyström method for approximating a
gram matrix for improved kernel-based learning. Journal of Machine Learning Research, 6(12), 2005.

13

http://dx.doi.org/10.1371%2Fjournal.pone.0011596
http://dx.doi.org/10.1371%2Fjournal.pone.0011596
http://dx.doi.org/10.1038/s41467-024-54280-4

Published in Transactions on Machine Learning Research (05/2025)

Jingcheng Du, Peilin Jia, Yulin Dai, Cui Tao, Zhongming Zhao, and Degui Zhi. Gene2vec: distributed
representation of genes based on co-expression. BMC genomics, 20(1):7–15, 2019.

Santo Fortunato and Darko Hric. Community detection in networks: A user guide. Physics reports, 659:
1–44, 2016.

Zheng Gao, Gang Fu, Chunping Ouyang, Satoshi Tsutsui, Xiaozhong Liu, Jeremy Yang, Christopher Gessner,
Brian Foote, David Wild, Ying Ding, et al. edge2vec: Representation learning using edge semantics for
biomedical knowledge discovery. BMC bioinformatics, 20(1):1–15, 2019.

Joshua Goodman. Classes for fast maximum entropy training. In 2001 IEEE International Conference
on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No. 01CH37221), volume 1, pp. 561–564.
IEEE, 2001.

Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. dyngraph2vec: Capturing network dynamics
using dynamic graph representation learning. Knowledge-Based Systems, 187:104816, 2020.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings of the
22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 855–864, 2016.

Lennart Gulikers, Marc Lelarge, and Laurent Massoulié. A spectral method for community detection in
moderately sparse degree-corrected stochastic block models. Advances in Applied Probability, 49(3):686–
721, 2017.

Lennart Gulikers, Marc Lelarge, and Laurent Massoulié. An impossibility result for reconstruction in the
degree-corrected stochastic block model. The Annals of Applied Probability, 2018.

Ariel Jaffe, Yuval Kluger, Ofir Lindenbaum, Jonathan Patsenker, Erez Peterfreund, and Stefan Steinerberger.
The spectral underpinning of word2vec. Frontiers in applied mathematics and statistics, 6:593406, 2020.

Brian Karrer and Mark EJ Newman. Stochastic blockmodels and community structure in networks. Physical
review E, 83(1):016107, 2011.

Seyed Mehran Kazemi, Rishab Goel, Sepehr Eghbali, Janahan Ramanan, Jaspreet Sahota, Sanjay Thakur,
Stella Wu, Cathal Smyth, Pascal Poupart, and Marcus Brubaker. Time2vec: Learning a vector represen-
tation of time. arXiv preprint arXiv:1907.05321, 2019.

Matt J Keeling and Pejman Rohani. Modeling infectious diseases in humans and animals. Princeton uni-
versity press, 2011.

Andrei Kutuzov, Murhaf Fares, Stephan Oepen, and Erik Velldal. Word vectors, reuse, and replicability: To-
wards a community repository of large-text resources. In Proceedings of the 58th Conference on Simulation
and Modelling, pp. 271–276. Linköping University Electronic Press, 2017.

Andrew J Landgraf and Jeremy Bellay. Word2vec skip-gram with negative sampling is a weighted logistic
pca. arXiv preprint arXiv:1705.09755, 2017.

Luc Le Magoarou and Rémi Gribonval. Flexible multilayer sparse approximations of matrices and applica-
tions. IEEE Journal of Selected Topics in Signal Processing, 10(4):688–700, 2016.

Michel Ledoux. The concentration of measure phenomenon. American Mathematical Soc., 2001.

Omer Levy, Yoav Goldberg, and Ido Dagan. Improving distributional similarity with lessons learned from
word embeddings. Transactions of the association for computational linguistics, 3:211–225, 2015.

Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):129–137,
1982.

WAJ Luxemburg. Arzela’s dominated convergence theorem for the riemann integral. The American Mathe-
matical Monthly, 78(9):970–979, 1971.

14

Published in Transactions on Machine Learning Research (05/2025)

James MacQueen. Some methods for classification and analysis of multivariate observations. In Proceedings of
the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics, volume 5,
pp. 281–298. University of California press, 1967.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations of
words and phrases and their compositionality. Advances in neural information processing systems, 26,
2013.

David Mimno and Laure Thompson. The strange geometry of skip-gram with negative sampling. In Empirical
Methods in Natural Language Processing, 2017.

Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network language model. In Interna-
tional workshop on artificial intelligence and statistics, pp. 246–252. PMLR, 2005.

Cun Mu, Guang Yang, and Yan Zheng. Revisiting skip-gram negative sampling model with rectification. In
Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 485–497. Springer,
2019.

Stephen Mussmann, Daniel Levy, and Stefano Ermon. Fast amortized inference and learning in log-linear
models with randomly perturbed nearest neighbor search. arXiv preprint arXiv:1707.03372, 2017.

Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen, Yang Liu, and Shan-
tanu Jaiswal. graph2vec: Learning distributed representations of graphs. arXiv preprint arXiv:1707.05005,
2017.

Mark EJ Newman. The structure and function of complex networks. SIAM review, 45(2):167–256, 2003.

Patrick Ng. dna2vec: Consistent vector representations of variable-length k-mers. arXiv preprint
arXiv:1701.06279, 2017.

Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee Koh, and Sungchul Kim.
Continuous-time dynamic network embeddings. In Companion proceedings of the the web conference 2018,
pp. 969–976, 2018.

Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representations. Ad-
vances in neural information processing systems, 30, 2017.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A Smith, and Lingpeng Kong. Random
feature attention. In 9th International Conference on Learning Representations, ICLR 2021, 2021.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representations. In
Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 701–710, 2014.

Pengda Qin, Weiran Xu, and Jun Guo. A novel negative sampling based on tfidf for learning word repre-
sentation. Neurocomputing, 177:257–265, 2016.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances in neural
information processing systems, 20, 2007.

Mahmudur Rahman, Tanay Kumar Saha, Mohammad Al Hasan, Kevin S Xu, and Chandan K Reddy.
Dylink2vec: Effective feature representation for link prediction in dynamic networks. arXiv preprint
arXiv:1804.05755, 2018.

Ankit Singh Rawat, Jiecao Chen, Felix Xinnan X Yu, Ananda Theertha Suresh, and Sanjiv Kumar. Sampled
softmax with random fourier features. Advances in Neural Information Processing Systems, 32, 2019.

Benedek Rozemberczki, Ryan Davies, Rik Sarkar, and Charles Sutton. Gemsec: Graph embedding with self
clustering. In Proceedings of the 2019 IEEE/ACM international conference on advances in social networks
analysis and mining, pp. 65–72, 2019.

15

Published in Transactions on Machine Learning Research (05/2025)

Koya Sato, Mizuki Oka, Alain Barrat, and Ciro Cattuto. Predicting partially observed processes on temporal
networks by dynamics-aware node embeddings (dyane). EPJ Data Science, 10(1), 2021. doi: 10.1140/
epjds/s13688-021-00277-8.

Yingchun Shan, Chenyang Bu, Xiaojian Liu, Shengwei Ji, and Lei Li. Confidence-aware negative sampling
method for noisy knowledge graph embedding. In 2018 IEEE International Conference on Big Knowledge
(ICBK), pp. 33–40. IEEE, 2018.

Kyuhong Shim, Minjae Lee, Iksoo Choi, Yoonho Boo, and Wonyong Sung. Svd-softmax: Fast softmax
approximation on large vocabulary neural networks. Advances in neural information processing systems,
30, 2017.

Michel Talagrand. Concentration of measure and isoperimetric inequalities in product spaces. Publications
Mathématiques de l’Institut des Hautes Etudes Scientifiques, 81:73–205, 1995.

Maddalena Torricelli, Márton Karsai, and Laetitia Gauvin. weg2vec: Event embedding for temporal net-
works. Scientific Reports, 10(1):1–11, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17:395–416, 2007.

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and Vikas
Singh. Nyströmformer: A nyström-based algorithm for approximating self-attention. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 35, pp. 14138–14148, 2021.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for longer sequences.
Advances in neural information processing systems, 33:17283–17297, 2020.

A Concentration theorems

In this appendix we provide the enunciate and prove the Theorems motivating Equation (2). The first result
describes the concentration of Zi/m around its mean.
Theorem A.1. Consider a vector xi ∈ Rd and a set {y1, . . . , ym} of m independent random vectors in Rd.
Let |xT

i ya| ≤ h = Om(1) for all a. Letting Zi be defined as in Equation (1), then for all t > 0

P
(∣∣∣∣Zi

m
− E

[
Zi

m

]∣∣∣∣ ≥ t

)
≤ 4e−(

√
mt/4eh)2

.

Before proceeding with the proof of Theorem A.1, let us enunciate the following concentration theorem that
we will use in our demonstration.
Theorem A.2 ((Talagrand, 1995), (Ledoux, 2001), Corollary 4.10). Given a random vector ω ∈ [u, v]n with
independent entries and a 1-Lipschitz (for the euclidean norm) and convex mapping g : Rn → R, one has
the concentration inequality:

∀ t > 0 : P (|g(ω)− E[g(ω)]| ≥ t) ≤ 4e−t2/4(u−v)2
.

Proof (Theorem A.1). Let ω(i) ∈ Rm be a vector with entries {xT
i ya}a=1,...,m. Then, the vector ω(i) satisfies

the hypothesis of Theorem A.2 for all i and for v = −u = h. We let g be:

g(w(i)) = 1
m

m∑
a=1

ew(i)
a ,

16

Published in Transactions on Machine Learning Research (05/2025)

then one can immediately verify that Zi = mg(ω(i)). We are left to prove that g satisfies the hypotheses of
Theorem A.2 as well. Firstly, g is convex because it is the sum of convex functions. We now compute the
Lipschitz parameter. Considering ω, ω′ ∈ [−h, h]m one obtains the following bound:

|g(ω)− g(ω′)|
(a)
≤ 1

m

m∑
a=1

∣∣∣eωa − eω′
a

∣∣∣ (b)
≤ e

m

m∑
a=1
|ωa − ω′

a|
(c)= e

m
· 1T

m|ω − ω′|

(d)
≤ e

m
· ∥1m∥ · ∥ω − ω′∥ = e√

m
∥ω − ω′∥ ,

where in (a) we used the triangle inequality, in (b) we exploited the fundamental theorem of calculus, in (c)
the | · | is meant entry-wise and finally in (d) we used the Cauchy-Schwartz inequality. This set of inequalities
implies that

√
mg
e is 1-Lipschitz and is a suitable choice to apply Theorem A.2. Theorem A.1 is then easily

obtained from a small play on t and exploiting the relation between Zi and g(ω(i)).

We remark that this result holds unchanged in the case X = Y . The proof can be easily adapted by singling
out the negligible contribution given by e∥xi∥2 ≤ eh = On(1), obtaining the same result.

Theorem A.3. Consider a vector xi ∈ Rd and a set {y1, . . . , ym} of m independent random vectors in
Rd. Let |xT

i ya| ≤ h = Om(1) for all a. Let fi,m denote the empirical distribution of xT
i ya and assume fi,m

converges in distribution to fi, then,

lim
m→∞

E
[

Zi

m

]
=
∫ h

−h

dt etfi(t) .

Also in this case, before proceeding with the proof, let us enunciate the dominated convergence theorem that
allows one to invert the integral and limit signs.

Theorem A.4 ((Luxemburg, 1971)). Let F1, . . . , Fn be a sequence of Riemann-integrable functions – defined
on a bounded and closed interval [a, b] – which converges on [a, b] to a Riemann-integrable function F . If
there exists a constant m > 0 satisfying |Fn(t) ≤M | for all x ∈ [a, b] and for all n, then

lim
n→∞

∫ b

a

dt Fn(t) =
∫ b

a

dt lim
n→∞

Fn(t) =
∫ b

a

dt F (t) .

Proof (Theorem A.3). The values xT
i ya := ω

(i)
a are a sequence of m random variables with cumulative

densities Fi,1, . . . , Fi,m, where Fi,p denotes the integral of fi,p.

lim
m→∞

E
[

Zi

m

]
= lim

m→∞

1
m

m∑
a=1

E
[
eω(i)

a

]
= lim

m→∞
E
[
eω(i)

m

]
= lim

m→∞

∫ h

−h

dt etfi,m(t)

(a)= lim
m→∞

[
etFi,m(t)

∣∣∣h
−h
−
∫ h

−h

dt etFi,m(t)
]

(b)−→
m→∞

etFi(t)
∣∣∣h
−h
−
∫ h

−h

dt etFi(t) =
∫ h

−h

dt etfi(t) .

In (a) we performed an integration by parts; in (b) we exploited the fact that convergence in distribution
implies the pointwise convergence of the probability density function and we applied Theorem A.4 for M = eh.

17

Published in Transactions on Machine Learning Research (05/2025)

B Derivation of Equation (7)

We here report the derivation of Equation (7) from (6).

L = −
∑

i,j∈V
Pij log

(
SoftMax(Y Y T)ij

)
+ 1

n

∑
i,j∈V

yT
i yj

(a)= −
∑

i,j∈V
Pij(Y Y T)ij +

∑
i,j∈V

Pij log(Zi) + 1
n

∑
i,j∈V

(Y Y T)ij

(b)= −
∑

i,j∈V
Pij(Y Y T)ij +

∑
i∈V

log(Zi) + 1
n

∑
i,j∈V

(1n1T
n)ij(Y Y T)ij

(c)= −
∑
i∈V

(PY Y T)ii +
∑
i∈V

log(Zi) + 1
n

∑
i∈V

(1n1T
n Y Y T)ii

(d)= −tr(PY Y T) +
∑
i∈V

log(Zi) + 1
n

tr(1n1T
n Y Y T)

(e)= −tr(Y T PY) +
∑
i∈V

log(Zi) + 1
n

tr(Y T 1n1T
n Y) ,

where in (a) we used the softmax definition and rewrote yT
i yj = (Y Y T)ij ; in (b) we used

∑
j∈V Pij = 1; in

(c) we used the fact that Y Y T is a symmetric matrix; in (d) we leverage the trace definition; in (e) we use
the property of the trace tr(AB) = tr(BA).

C Derivation of the gradient

We here derive the gradient expression as it appears in Equation (8). Note that in this derivation, the
quantities µα, Ωα are considered as constants, in a stochastic gradient descent fashion. We observed that
this gradient form achieves better results in fewer epoch. Let us first rewrite the loss function of Equation (6).
Following the passages detailed in Appendix B, we obtain

L = −
∑

i,j∈V

(
Pij −

1
n

)
xT

i xj +
∑
i∈V

log(Zi) .

We now introduce the approximation of Equation (4) and rewrite

L ≈ −
∑

i,j∈V

(
Pij −

1
n

)
xT

i xj +
∑
i∈V

log
κ∑

α=1
nπα exp

{
xT

i µα + 1
2xT

i Ωαxi

}

= −
∑

i,j∈V

d∑
q=1

(
Pij −

1
n

)
xiqxjq +

∑
i∈V

log
κ∑

α=1
nπα exp

{
d∑

q=1
xiqµα,q + 1

2

d∑
q,p=1

xiqΩα,qpxip

}
.

We now compute the derivative with respect to xkr to obtain the respective gradient term.

∂xkr
L ≈ −

∑
i,j∈V

d∑
q=1

(
Pij −

1
n

)
δqr [δikxjq + δjkxiq]

+
∑
i∈V

∑κ
α=1 πα exT

i µα+ 1
2 xT

i Ωαxi

(∑d
q=1 δikδqrµα,q +

∑d
q,p=1 Ωα,qp [δikδqrxip + δikδprxiq]

)
∑κ

α=1 πα exT
i

µα+ 1
2 xT

i
Ωαxi

.

18

Published in Transactions on Machine Learning Research (05/2025)

We now use the notation Ziα = πα exT
i µα+ 1

2 xT
i Ωαxi and compute the sums.

∂xkr
L ≈ −

∑
i∈V

(
Pik −

1
n

)
xir −

∑
j∈V

(
Pkj −

1
n

)
xjr

+ 1∑κ
α=1Zkα

·
κ∑

α=1
Zkα

(
µα,r + 1

2

d∑
q=1

xkqΩα,rq + 1
2

d∑
q=1

xkqΩα,qr

)

Now we recall that
∑κ

α=1Ziα = Zi/n and Mα,r = µα,r and that Ωα = ΩT
α .

∂xkr
L ≈ −

[(
P T − 1

n
1n1T

n

)
X

]
kr

−
[(

P − 1
n

1n1T
n

)
X

]
kr

+ 1
(Z1κ)k

·

(
[ZM]kr +

κ∑
α=1
Zkα[XΩα]kr

)
,

thus obtaining Equation (8).

D Experiment implementation details

We here report some implementation details in the experiments we conducted. This section complements
the information in the main text when this is insufficient to reproduce our results.

D.1 Node embeddings

In the experiments we test the node embedding problem for the task of community detection. To do so, we
work with synthetic graphs generated from the degree corrected stochastic block model (DCSBM) (Karrer
& Newman, 2011) that we here define.
Definition D.1 (DCSBM). Let ω : V → {1, . . . , q} be a class labeling function, where q is the number of
classes. Let P(ωi = a) = q−1 and consider two positive integers satisfying cin > cout ≥ 0. Further Let θ ∼ pθ

be a random variable that encodes the intrinsic node connectivity, with E[θ] = 1 and finite variance. For all
i ∈ V, θi is drawn independently at random from pθ. The entries of the graph adjacency matrix are generated
independently (up to symmetry) at random with probability

P(Aij = 1) = θiθj

n
·

{
cin if ω(i) = ω(j)
cout else

In words, nodes in the same community (ω(i) = ω(j)) are connected with a higher probability than nodes in
different communities. From a straightforward calculation, the expected degree is E[di] ∝ θi, thus allowing
one to model the broad degree distributions typically observed in real networks (Barabási & Albert, 1999).
Given this model, the community detection task consists in inferring the node label assignment from a
realization of A. It was shown that this is theoretically feasible (in the large n regime) if and only if
α = (c− cout)

√
E[θ2]

c > 1. This is the α parameters appearing in the main text. In the simulations the θi’s
are obtained by: i) drawing a random variable from a uniform distribution between 3 and 12; ii) raising it
to the power 6; iii) normalize it so that E[θ] = 1. This leads to a rather broad degree distribution, even if it
maintains a finite support.

For all three methods under comparison we obtain the embedding vectors from A and then cluster the nodes
into communities by applying k-means and supposing that the number of communities q is known. The
algorithm of (Dall’Amico et al., 2019; 2021) obtains the embedding by extracting a sequence of eigenvectors
from a sequence of parameterized matrices that are automatically learned from the graph and does not require
any parametrization. The DeepWalk and EDRep algorithms generate embeddings in d = 32 dimensions.
We observed that the results are essentially invariant in a large spectrum of d values for both embedding
algorithms.

19

Published in Transactions on Machine Learning Research (05/2025)

D.2 Dynamically aware node embeddings

This experiment features three main steps: i) the creation of the supra-adjacency matrix from a temporal
network; ii) the creation of an embedding based on this matrix; iii) the reconstruction of a dynamical process
taking place on the network. We now describe these steps in detail.

Definition of the supra-adjacency matrix

We consider a temporal graph collected by the SocioPatterns collaboration. This dataset describes face-to-
face proximity encounters between people at a conference. The data are recorded with a temporal resolution
of 20 seconds and correspond to interactions within a distance of approximately 1.5 meters.7 The dataset
contains approximately 3000 different time-stamps. Following the procedure of (Sato et al., 2021) we ag-
gregate them into T = 180 windows of approximately 15 minutes each. We thus obtain a temporal graph
that is represented as a sequence of weighted temporal edges (i, j, t, wijt), indicating that i, j interacting at
snapshot t for a cumulative time equal to wijt. We say that a node is active at time t if it has neighbors at
time t. We let ti,a be the time at which node i is active for the a-th time. Given this graph, we then build
the supra-adjacency matrix that is defined as follows.
Definition D.2 (Supra-adjacency matrix). Consider a temporal graph represented as a sequence of weighted
temporal edges (i, j, t, ωijt). We define a set of “temporal nodes” given by all the pairs i, ti,a where i is a node
of the temporal graph and ti,a is the time of the a-th appearance of i in the network. We denote this set D,
formally defined as

D = {(i, ti,a) : i ∈ V,∃ j ∈ V : (i, j, ti,a) ∈ E},

where V is the set of nodes and E of temporal edges. The cardinality of this set is D = |D|. We then define
a directed graph with D being the set of nodes. The directed edges are placed between

(i, ti,a)→ (i, ti,a+1) self connections
(i, ti,a)→ (i, tj,b+1) if ti,a = tj,b and (i, j, t) ∈ E
(i, tj,b)→ (i, ta,a+1) if ti,a = tj,b and (i, j, t) ∈ E .

The supra-adjacency matrix Asupra ∈ RD×D is the adjacency matrix of the graph we just defined.

Creation of the embedding

Given Asupra, the authors generate an embedding with the DeepWalk algorithm. Here, the random walker
can only follow time-respecting paths, by construction of the matrix. We let the random walks have length
equal to 15 steps and deploy also in this case the embedding dimension d = 30. For EDRep we use the
row-normalized version of Asupra as P . As a result we obtain an embedding vector for each (i, ti,a) pair.

Reconstruction of a partially observed dynamic process

Following (Sato et al., 2021) we consider an epidemic process taking place on the temporal network. We
use the SIR model (Keeling & Rohani, 2011) in which infected nodes (I) can make susceptible nodes (S) to
transition to the infected state with a probability β if they are in contact. Infected individuals then recover
(R) with a probability µ and are unable to infect or get infected. We run the SIR model letting all nodes to
be in the S state at the beginning of the simulation and having one infected node. The experiment is run
with β = 0.15 and µ = 0.01 and it outputs the state of each node at all times, i.e., for all (i, ti,a).

We then suppose to observe a fraction of these states (every node is expected to only be observe once) and
obtain a binary variable for each (i, ti,a) indicating whether node i was infected at time ti,a. Exploiting the
embeddings, we train a logistic regression model to predict the state of the node in each unobserved time and
compare the predicted number of infected individuals against the observed ones. We repeat the experiment
for 50 different realizations of the observed training set.

7The experiment is described in (Cattuto et al., 2010). The data are shared under the Creative Commons Public Domain
Dedication license and can be downloaded at http://www.sociopatterns.org/datasets/sfhh-conference-data-set/.

20

http://www.sociopatterns.org/datasets/sfhh-conference-data-set/

	Introduction
	Main result
	Linear-time softmax normalization
	Empirical evaluation

	EDRep: an algorithm for efficient distributed representations
	Problem formulation
	Optimization strategy
	Computational complexity
	Comparison with exact gradient computation

	Use cases
	Community detection
	Gene embeddings
	Causality aware temporal graph embeddings

	Conclusions
	Concentration theorems
	Derivation of Equation (7)
	Derivation of the gradient
	Experiment implementation details
	Node embeddings
	Dynamically aware node embeddings

