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Abstract

We obtain asymptotic minimax optimal posterior contraction rates for estimation of prob-
ability distributions on [0, 1]d under the Wasserstein-v metrics using Bayesian Histograms.
To the best of our knowledge, our analysis is the first to provide minimax optimal posterior
contraction rates under the Wasserstein-v metrics for every problem dimension d ≥ 1. Our
proof technique takes advantage of the conjugacy of the Bayesian Histogram.

1 Introduction

The Wasserstein metric is a popular tool for comparing two distributions µ and ν defined on a common
metric space (Ed, ∥ · − · ∥2) where E ⊆ R. For 1 ≤ v < ∞, the Wasserstein distance Wv is defined as

Wv(µ1, µ2) :=
(

inf
π∈M(µ1,µ2)

∫
∥x− y∥v

2 dπ(x, y)
)1/v

, (1)

where M(µ1, µ2) is the set of couplings of µ1 and µ2; specifically the joint probability measures on E × E
with marginals µ1 and µ2 respectively. Some benefits of using the Wasserstein metric include its sensitivity
to distance in the underlying space, ability to compare distributions regardless of continuity level, and its 1-
dimension equivalent representation as the Lv distance between quantile functions, which facilitates quantile
function inference (Zhang et al., 2020).

In this paper we study the problem of non–parametrically estimating a distribution P0 on Ed (where E =
[0, 1]) under the Wasserstein metric from n independent and identically distributed (i.i.d) random variables
Y1, . . . , Yn drawn from P0. Our focus is on the unconstrained problem; that is, we place no additional
assumptions on P0. From the viewpoint of analyzing only frequentist estimators, this is a well studied
problem. The frequentist convergence rates of the empirical measure under the expected Wasserstein distance
are studied in (Fournier & Guillin, 2015; Singh & Póczos, 2018; Bobkov & Ledoux, 2019; Weed & Bach,
2019) to varying degrees of generality. A consequence of the work of (Singh & Póczos, 2018) is that on the
metric space ([0, 1]d, ∥ · − · ∥2), for d ∈ N, for the class of Borel probability measures, the empirical measure
is minimax optimal (at least up to logarithmic terms) for every v ≥ 1. Further, the minimax rate is lower
bounded by n−1/2v for d ≤ 2v, and n−1/d for d > 2v.

Far less has been done in providing frequentist guarantees for Bayesian statistical procedures when the
inferential goal is to estimate a non-parametric distribution underneath a Wasserstein distance. In a non-
parametric Bayesian model aimed at inferring a probability distribution on Ed, for each sample size n, a prior
Π0n is placed on the space of Borel probability measures on Ed. We denote this space Pd(E). The sample
size n posterior distribution, which we denote Πn(·|Y1, Y2, . . . , Yn), is a regular conditional distribution over
Pd(E) induced from the likelihood and the prior Π0n. Given a distance function d̃ between probability
measures on E (e.g Kullback-Leibler, Hellinger, Wasserstein–1, Total Variation, etc.) we say the sequence of
posterior distributions contracts at the rate ϵn under P0 if Πn(P ∈ Pd(E) : d̃(P0, P ) ≥ Mnϵn) converges in
probability to 0 as n → ∞ for any arbitrarily slowly increasing sequence Mn when Y1, Y2, . . . , Yn

iid∼ P0. If for
every P0 ∈ Pd(E) the Posterior Contraction Rate (PCR) ϵn is achieved, and ϵn is the frequentist minimax
rate over Pd(E), we say the Bayesian method is agnostic to the prior choice in the presence of an infinite
amount of data under class Pd(E).
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Ghosal et al. (2000) provides a general three condition strategy for proving these PCRs, but their approach
is more difficult to use when d̃ is a Wasserstein metric. Challenges include Wv, v ≥ 2 not being dominated
by Total Variation or Hellinger distances, causing the need for explicit test construction. Also, the Kullback-
Leibler neighborhood condition, which ensures such neighborhoods of P0 have sufficient prior mass, may
make it more difficult to achieve the minimax rate under Wv, v ≥ 1 because depending on the model under
consideration, approximation of distributions under the Kullback-Leibler divergence may not be achievable
at the square of minimax rate under Wv

1. In light of these challenges, there have been far fewer theoretical
advances in proving minimax optimal PCRs for distribution estimation under Wv, v ≥ 1 than under Total
Variation and Hellinger distances. Chae et al. (2021) successfully derives posterior contraction rates under
Wasserstein distance when E = R, but their results are restricted to dimension d = 1. Camerlenghi et al.
(2022) develops a framework to study Wasserstein PCRs for models where the posterior distribution is not
available through Bayes formula. But the only model in which they apply their framework to derive PCRs for
each d ∈ N, v ≥ 1 is the one placing a Dirichlet process prior on the data generating distribution. In addition,
the PCR derived for P0 ∈ Pd([0, 1]) is ≳ n− 1

2
1

(d+v) which via the discussion earlier in this section is slower
decaying than the minimax rate by a polynomial factor for every d ∈ N, v ≥ 1.Wasserstein distance PCRs for
estimation of the mixing distribution in a convolved data generating distribution where the noise distribution
is known are derived in Rousseau & Scricciolo (2023),Gao & van der Vaart (2016), and Scricciolo (2018) but
these papers do not focus on directly estimating the data generating distribution under Wasserstein distance.

1.1 Contributions

Our main contribution is Theorem 1. In it we obtain PCRs for every dimension d ≥ 1 and for every distance
Wv, v ≥ 1 and the PCRs achieved are minimax optimal at least up to logarithmic terms. To the best of our
knowledge, our result is the first to provide a minimax optimal PCR across each (d ∈ N, v ≥ 1) setting for
estimating an unconstrained P0 ∈ Pd([0, 1]). These rates are achieved using a Bayesian Histogram model
that partitions [0, 1]d into bd

n equal area squares where bn := 2⌈log2(kn)⌉ for a sequence kn growing as a
function of the sample size n at the appropriate rate, uses the Multinomial likelihood to weight the constant
density within each square, and places a sample size dependent Dirichlet prior distribution on the weight
vector with prior concentration vector αααbn

(of dimension bd
n). This model induces a sequence of posterior

distributions Πn,kn,αααbn
over Pd([0, 1]). In Theorem 1, we show that

Πn,kn,αααbn
(P ∈ Pd([0, 1]) : Wv(P0, P ) ≥ ϵn(d, v)) i.p P0→ 0

provided that

1. If d ≤ 2v then kn = n
1

2v ,
∑

jjj∈2d⌈log2(kn)⌉ αααjjj,bn
≲ n

1
2 , ϵn ≍ n− 1

2v

2. If d > 2v, then kn = n
1
d ,
∑

jjj∈2d⌈log2(kn)⌉ αααjjj,bn ≲ n1− v
d , ϵn ≍ n− 1

d

where log terms in ϵn which are specified in the theorem are ignored here. In the problem of providing
optimal PCRs for estimating distributions on [0, 1]d under Wasserstein-v distance, our results close the gap
between the minimax rates for this problem and the Wasserstein PCRs provided by Camerlenghi et al. (2022).

The remainder of this paper is organized as follows. In Section 2 we formally introduce the Bayesian
Histogram model. In Section 3 we state the main theorem and the two fundamental lemmas upon which the
main theorem depends. We then prove the main theorem. In Section 4 we provide the proofs of the lemmas
and in section 5 we provide concluding remarks.

1Chae et al. (2021) (p.3644) already encounters Kullback-Liebler condition limitations when only estimating distributions
on R
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2 Bayesian Histogram

2.1 General Notations

Since we always consider probability distributions on [0, 1)d, we drop the E notation of the introduction and
denote

Pd := {Borel Probability Measures on [0, 1)d}

Excluding the right end points are a notational convenience but extension of the arguments that follow to
include the right endpoint is trivial.

For b, d ∈ N, we denote [b] := {1, 2, . . . , b} and [b]d :=
∏d

j=1[b]. For B ⊆ Rd, B(B) denotes the Borel
measurable subsets of B. For j ∈ N, Sj−1 refers to the (j − 1) dimensional probability simplex. That is
Sj−1 := {(x1, . . . , xj) ∈ Rj :

∑j
t=1 xt = 1, xt ≥ 0 for t ∈ [j]}. Also note that R+ := {x ∈ R : x > 0} and for

z ∈ N and ααα ∈ Rz
+, the Dirichlet probability measure Dirichlet : B(Sz−1) → [0, 1] is given by

Dirichlet(G|ααα) = 1
B(ααα)

∫
G

z∏
i=1

xαi−1
i dxxx, (2)

where B(ααα = (α1, α2, . . . , αz)) :=
∏z

j=1
Γ(αj)

Γ(
∑z

j=1
αj)

is the z dimensional Beta function and Γ(x) denotes the

Gamma function evaluated at x and G ∈ B(Sz−1). For b ∈ N and a multi-index iii = (i1, i2, . . . , id) ∈ [b]d,
define

Aiii,b :=
[
i1 − 1
b

,
i1
b

)
×
[
i2 − 1
b

,
i2
b

)
× . . . ,×

[
id − 1
b

,
id
b

)
. (3)

Clearly, {Aiii,b}iii∈[b]d form a partition of [0, 1)d. For a vector of weights πππ = {πjjj}jjj∈[b]d ∈ Sbd−1, the d

dimensional Histogram probability measure Histogram : B([0, 1)d) → [0, 1] is a weighted mixture of uniform
distributions on the partition sets Aiii,b, defined by

Histogram(G|πππ, b) :=
∫

G

∑
iii∈[b]d

bdπiiiI(yyy ∈ Aiii,b)dyyy, (4)

where G ∈ B([0, 1)d).

2.2 Bayesian Histogram Model Definition

We suppose Y1, Y2, . . . , Yn, . . .
iid∼ P0 where P0 ∈ Pd. For b ∈ N, let αααb := {αjjj,b}jjj∈[b]d ∈ Rbd

+ . For an increasing
sequence kn, let bn := 2Kn , where Kn := ⌈log2(kn)⌉, πππn := {πn,jjj}jjj∈[bn]d ∈ Sbnd−1. For n ∈ N, the Bayesian
Histogram model likelihood and prior are given by

Y1, . . . , Yn|πππn
i.i.d∼ Histogram(·|πππn, bn), πππn|αααbn ∼ Dirichlet(·|αααbn). (5)

Also, let z∗
n(·|Y1, . . . , Yn) refer to the posterior probability measure over Sbnd−1 derived from equation 5. As

αiii,bn
> 0 for every iii ∈ [bn]d and for every n ∈ N, equation 5 induces a sequence of posterior distributions

over Pd. Specifically let ψb : Sbd−1 → Pd be the map that takes a given πππ = {πjjj}jjj∈[b]d and produces its
corresponding Histogram probability measure. That is

ψb(πππ) = Histogram(·|πππ, b). (6)

For a measurable set B ⊆ Pd, the posterior measure Πn,kn,αααbn
is

Πn,kn,αααbn
(B|Y1, . . . , Yn) = z∗

n(ψ−1
bn

(B)|Y1, . . . , Yn). (7)

Due to conjugacy, it is straightforward to show that

z∗
n(·|Y1, . . . , Yn) = Dirichlet(·|α∗

bn
α∗

bn
α∗

bn
),
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where for iii ∈ [bn]d

α∗
iii,bn

= αiii,bn +
n∑

j=1
I(Yj ∈ Aiii,bn). (8)

Now allowing αααbn ∈ {x ∈ R : x ≥ 0}bnd, we define the sequence of estimators for P0, denoted P̄n, by

P̄n,kn,αααbn
:= ψbn


(

α∗
iii,bn∑

jjj∈[bn]d α∗
jjj,bn

)
iii∈[bn]d

 = ψbn
{(Ez∗

n
(πiii|Y1, . . . , Yn))iii∈[bn]d}, (9)

where the second equality above holds if αiii,bn
> 0 for iii ∈ [bn]d.

We note that posterior distributions derived from improper prior distributions are not considered in this
work, and therefore to consider the posterior measure sequence Πn we require that αiii,bn

> 0 for iii ∈ [bn]d.
However, we allow P̄n to be defined regardless of whether or not the prior distribution over the simplex is
proper. In particular, it is still defined in the event that some or all of the αiii,bn parameters are zero. When
the prior distribution is proper, P̄n has an additional interpretation: it is the posterior mean Histogram.
In the lemmas and theorems that follow that involve analysis of the posterior distribution sequence Πn, we
make clear that we require αiii,bn

> 0 for iii ∈ [bn]d and n ∈ N.

P̄n,kn,αααbn
(and Πn,kn,αααbn

) are indexed by the choice of kn (which determines the total number of bins) and
αααbn

, which gives the prior concentrations on those bins. In the subsequent subsection we establish constraints
on kn and αααbn

that ensure P̄n,kn,αααbn
and Πn,kn,αααbn

are minimax statistical procedures.

3 Posterior Contraction Results

Our results utilize the following two assumptions for d ∈ N and v ≥ 1.
Assumption 1. For n ∈ N

kn =
{
n1/2v d ≤ 2v,
n1/d d > 2v,

and
Assumption 2. ∑

jjj∈[bn]d

αjjj,bn
≲

{
n1/2 d ≤ 2v.
n1− v

d d > 2v.

Our main PCR result is the following theorem.

Theorem 1. Let Y1, . . . , Yn
iid∼ P0 ∈ Pd. Suppose γ > 1 and kn satisfies Assumption 1 and

ϵn(d, v) := C0(d, v)


n− 1

2v log
γ
v (n) d < 2v,

n− 1
2v log

1+γ
v (n) d = 2v,

n− 1
d log

γ
v (n) d > 2v,

(10)

Now assuming that for each n ∈ N and jjj ∈ [bn]d, αjjj,bn
> 0, and that αααbn

satisfies Assumption 2, we have
that for 1 ≤ v < ∞ and d ∈ N and C0(d, v) sufficiently large,

Πn,kn,αααbn
(P ∈ Pd : Wv(P0, P ) ≥ ϵn(d, v)) i.p P0→ 0,

where bn = 2⌈log2(kn)⌉.

According to Singh & Póczos (2018),

inf
P̃

sup
P0∈Pd

EP0Wv(P̃ , P0) ≳
{
n− 1

2v d ≤ 2v,
n− 1

d d > 2v,
(11)
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where the inf is taken over all estimators P̃ from n observations. Thus the PCRs of Theorem 1 are up to
logarithmic terms attaining the minimax rates. The assumption on the prior concentrations, Assumption 2,
is flexible enough to support a vague prior. Specifically, the mean of a Dirichlet distribution with common
concentration on all categories is a discrete uniform distribution, so the practitioner wishing to encode
vagueness by asserting that under the prior on average all bin probabilities are equal will want to set all
prior bin concentrations to a common value. When d ≤ 2v, by assumption 1, the number of bins is ≍ n

d
2v ,

thus Assumption 2 is satisfied when each concentration is set to Cn−( d
2v − 1

2 ) for some C > 0. Likewise when
d > 2v, by assumption 1, there are ≍ n bins and Assumption 2 is satisfied when all concentrations are Cn− v

d .
Also note that while Assumption 2 places an upper bound on the total volume of the prior concentrations
to ensure the prior does not overwhelm the empirical Histogram at large sample sizes, it in general does
not place any shape restrictions on the prior; in particular other prior shapes besides the uniform can be
constructed.

The proof of Theorem 1 is composed from the following two auxiliary lemmas. The first auxiliary lemma
upper bounds the rate of convergence of the posterior mean histogram, P̄n,kn,αααbn

, towards P0 in mean Wv

distance. The second lemma establishes a PCR around P̄n,kn,αααbn
, rather than P0. It is the second lemma

that leverages the conjugacy of this model.

Lemma 1. Let Y1, . . . , Yn
iid∼ P0 ∈ Pd. Suppose kn satisfies Assumption 1, αααbn satisfies Assumption 2 and

that for n ∈ N and jjj ∈ [bn]d, αjjj,bn
≥ 0. Then

EP0Wv(P0, P̄n,kn,αααbn
) ≲


n− 1

2v d < 2v.
n− 1

2v log
1
v (n) d = 2v.

n− 1
d d > 2v.

Lemma 2. Let Y1, . . . , Yn
iid∼ P0 ∈ Pd. Suppose kn satisfies Assumption 1. Let γ > 1, and let {τn(d, v)}∞

n=1
be a sequence satisfying

τn(d, v) = C1(d, v)


n− 1

2v log
γ
v (n) d < 2v,

n− 1
2v log

1+γ
v (n) d = 2v,

n− 1
d log

γ
v (n) d > 2v,

(12)

Then, provided that αjjj,bn > 0 for each n ∈ N and jjj ∈ [bn]d, we have that for 1 ≤ v < ∞ and d ∈ N and
C1(d, v) sufficiently large

Ep0Πn,kn,αααbn
(P ∈ Pd : Wv(P, P̄n,kn,αααbn

) ≥ τn(d, v)) → 0 as n → ∞.

The main technical challenges appear in proving the auxiliary lemmas. Given Lemmas 1 and 2, Theorem 1
follows easily and we show this now. For ease in notation, through the remainder of the paper we drop the
kn and αααbn

subscripts from the notation for the posterior, thus Πn,kn,αααbn
is referred to as Πn (and P̄n,kn,αααbn

is referred to as P̄n). This does not cause ambiguity in what follows because the values of kn and αααbn are
given in assumptions 1 and 2.

Proof of Theorem 1. By the triangle inequality and the union bound

Ep0 [Πn (P ∈ Pd : Wv(P0, P ) ≥ ϵn(d, v))] ≤ Ep0

[
Πn

(
P ∈ Pd : Wv(P0, P̄n) ≥ ϵn(d, v)

2

)]
+ Ep0

[
Πn

(
P ∈ Pd : Wv(P, P̄n) ≥ ϵn(d, v)

2

)]
= P0

[
Wv(P0, P̄n) ≥ ϵn(d, v)

2

]
+ Ep0

[
Πn

(
P ∈ Pd : Wv(P, P̄n) ≥ ϵn(d, v)

2

)]
, (13)

5
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Using Markov’s inequality and Lemma 1

P0

[
Wv(P0, P̄n) ≥ ϵn(d, v)

2

]
≤ 2Ep0Wv(P0, P̄n)

ϵn(d, v) ≲



n− 1
2v

n− 1
2v log

γ
v (n)

d < 2v

n− 1
2v log

1
v (n)

n− 1
2v log

1+γ
v (n)

d = 2v

n− 1
d

n− 1
d log

γ
v (n)

d > 2v


→ 0 as n → ∞. (14)

Setting C0(d, v) ≥ 2C1(d, v) we have that τn(d, v) ≤ ϵn(d,v)
2 for every v ≥ 1, d ∈ N where τn(d, v) is as defined

in Lemma 2. Using this and Lemma 2, we have that for every v ≥ 1, d ∈ N,

Ep0

[
Πn

(
P ∈ Pd : Wv(P, P̄n) ≥ ϵn(d, v)

2

)]
≤ Ep0

[
Πn

(
P ∈ Pd : Wv(P, P̄n) ≥ τn(d, v)

)]
→ 0 (15)

as n → ∞. By equations 13, 14, and 15, we conclude that for all d ∈ N, v ≥ 1,

Ep0 [Πn (P ∈ Pd : Wv(P0, P ) ≥ ϵn(d, v))] → 0 (16)

as n → ∞. By Markov the theorem statement follows.

4 Proofs of Auxiliary Lemmas

In this section we prove Lemmas 1 and 2. First we need to state a couple of technical tools.

4.1 Technical Tools

The first tool is the multiresolution upper bound on the Wasserstein distance. See Weed & Bach (2019)
section 3 or Singh & Póczos (2018) appendix section A for a good review. Here we use an application of this
general result for the metric space ([0, 1)d, ∥ · ∥2).
Lemma 3. (Wasserstein Multiresolution Upper Bound) Let S0 = [0, 1)d and for k ∈ N,

Sk :=
{[

i1 − 1
2k

,
i1
2k

)
×
[
i2 − 1

2k
,
i2
2k

)
× · · · ×

[
id − 1

2k
,
id
2k

)
for (i1, i2, . . . , id) ∈ [2k]d

}
,

If µ, ν are probability measures on [0, 1)d, then for v ≥ 1

W v
v (µ1, µ2) ≤ dv/2

((
1
2

)Kv

+
K∑

k=1

(
1
2

)(k−1)v ∑
S∈Sk

|µ1(S) − µ2(S)|
)
.

Proof. This is a straightforward application of proposition 1 of Weed & Bach (2019).

The next technical tool is an upper bound on the L1 concentration of a Multinomial distribution around its
mean.
Lemma 4 (Multinomial concentration). If (X1, . . . , Xk) ∼ Multinomial(n, p1, . . . , pk) and Z :=

∑k
j=1 |Xj −

npj |, then

E(Z/n) ≤
√
k − 1
n

.

Proof. Applying Jensen’s inequality and then Cauchy-Schwarz

E(Z
n

) ≤
k∑

j=1

√
Var(Xj

n
) = 1√

n

k∑
j=1

√
pj(1 − pj) ≤ 1√

n

√√√√ k∑
j=1

pj

k∑
j=1

(1 − pj) =
√
k − 1
n

6
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The last tool is the concentration of the Dirichlet distribution around its mean in the L1 norm.
Lemma 5. (Dirichlet Concentration) Let k ∈ N and (π1, π2, . . . , πk) ∼ Dirichlet(α1, α2, . . . , αk). Then for
δ > 0

P

 k∑
j=1

|πj − E(πj)| ≥ (ᾱ)− 1
2
√
k

δ

 ≤ δ,

where ᾱ :=
∑k

j=1 αj.

Proof. Basic properties of the Dirichlet distribution give that for j ∈ {1, 2, . . . , k}, πj ∼ Beta(αj , ᾱ − αj).
Also, if X ∼ Beta(α, β) then Var(X) = αβ/((α + β)2(α + β + 1)). Using these properties, in addition to
Jensen’s inequality and Cauchy–Schwarz inequality, we have that

E

 k∑
j=1

|πj − E(πj)|

 ≤
k∑

j=1

√
Var(πj)

=
k∑

j=1

√
αj(ᾱ− αj)
ᾱ2(ᾱ+ 1)

≤ (ᾱ)− 3
2

k∑
j=1

√
αj(ᾱ− αj)

≤ (ᾱ)− 3
2

√√√√√
 k∑

j=1
αj

 k∑
j=1

ᾱ− αj


= (ᾱ)− 3

2
√
ᾱ(ᾱk − ᾱ)

≤ (ᾱ)− 1
2
√
k. (17)

By Markov the result follows.

4.2 Proof of Lemma 1

We now prove Lemma 1.

Proof of lemma 1. Due to the nesting of the dyadic models and since bn = 2Kn , we have for k ∈ {1, 2, . . . ,Kn}
and S ∈ Sk a set Is,k,n ⊆ [bn]d such that

S =
⋃

jjj∈Is,k,n

Ajjj,bn . (18)

Moreover {∪jjj∈IS,k,n
Ajjj,bn}S∈Sk

partitions [0, 1)d and {Is,k,n}S∈Sk
partitions [bn]d. Using this and lemma 3,

we have that

Ep0W
v
v (P0, P̄n) ≲

(
1
2

)Knv

+
Kn∑
k=1

(
1
2

)(k−1)v

Ep0

∑
S∈Sk

∣∣∣∣∣∣P̄n(
⋃

jjj∈IS,k,n

Ajjj,bn) − P0(S)

∣∣∣∣∣∣ . (19)

By definition of P̄n and since the Ajjj,bn
are disjoint,∣∣∣∣∣∣P̄n(

⋃
jjj∈IS,k,n

Ajjj,bn
) − P0(S)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

jjj∈IS,k,n

αjjj,bn
+
∑n

t=1 I(Yt ∈ Ajjj,bn
)

n+
∑

iii∈[bn]d αiii,bn

− P0(S)

∣∣∣∣∣∣
=

∣∣∣∣∣
∑

jjj∈IS,k,n
αjjj,bn +

∑n
t=1 I(Yt ∈

⋃
jjj∈IS,k,n

Ajjj,bn)
n+

∑
iii∈[bn]d αiii,bn

− P0(S)

∣∣∣∣∣
7



Under review as submission to TMLR

≤

∣∣∣∣∣ n

n+
∑

iii∈[bn]d αiii,bn

∑n
t=1 I(Yt ∈ S)

n
− P0(S)

∣∣∣∣∣+
∑

jjj∈IS,k,n
αjjj,bn

n+
∑

iii∈[bn]d αiii,bn

≤

∣∣∣∣∣ n

n+
∑

iii∈[bn]d αiii,bn

− 1

∣∣∣∣∣
∑n

t=1 I(Yt ∈ S)
n

+
∣∣∣∣∑n

t=1 I(Yt ∈ S)
n

− P0(S)
∣∣∣∣ (20)

+
∑

jjj∈IS,k,n
αjjj,bn

n+
∑

iii∈[bn]d αiii,bn

.

Using this and that Sk partitions [0, 1)d and Lemma 4 yields

Ep0

∑
S∈Sk

∣∣∣∣∣∣P̄n(
⋃

jjj∈IS,k,n

Ajjj,bn) − P0(S)

∣∣∣∣∣∣ ≲
∑

jjj∈[bn]d αjjj,bn

n+
∑

iii∈[bn]d αiii,bn

+ n− 1
2
√

|Sk|

Using this and equation 19 and that |Sk| = 2dk

Ep0W
v
v (P0, P̄n) ≲

(
1
2

)Knv

+
∑

iii∈[bn]d αiii,bn

n+
∑

iii∈[bn]d αiii,bn

Kn∑
k=1

(
1
2

)(k−1)v

+ n−1/2
Kn∑
k=1

2−k(v− d
2 )

≲ k−v
n +

∑
iii∈[bn]d αiii,bn

n+
∑

iii∈[bn]d αiii,bn

+ n− 1
2

(
max(1, 2Kn( d

2 −v))I(d ̸= 2v) +KnI(d = 2v)
)

(21)

Applying Assumptions 1 and 2 now allows us to conclude that Ep0W
v
v (P0, P̄n) ≲ n− 1

2 when d < 2v,
≲ n− v

d log(n) when d = 2v and ≲ n− v
d when d > 2v. Applying Jensen’s inequality to upper bound(

Ep0Wv(P0, P̄n)
)v by Ep0W

v
v (P0, P̄n) completes the proof.

4.3 Proof of Lemma 2

We now prove Lemma 2

Proof of Lemma 2. Again using Lemma 3 and the sets Is,k,n from equation 18, we have for n ∈ N,πππ1,πππ2 ∈
Sbnd−1

W v
v (ψbn(πππ1), ψbn(πππ2)) ≤ dv/2

[(
1
2

)Knv

+
Kn∑
k=1

(
1
2

)(k−1)v ∑
S∈Sk

|ψbn(πππ1)(S) − ψbn(πππ2)(S)|
]

= dv/2

(1
2

)Knv

+
Kn∑
k=1

(
1
2

)(k−1)v ∑
S∈Sk

|ψbn
(πππ1)(

⋃
jjj∈Is,k,n

Ajjj,bn
) − ψbn

(πππ2)(
⋃

jjj∈Is,k,n

Ajjj,bn
)|


= dv/2

(1
2

)Knv

+
Kn∑
k=1

(
1
2

)(k−1)v ∑
S∈Sk

∣∣∣∣∣∣
∑

jjj∈IS,k,n

π1jjj −
∑

jjj∈IS,k,n

π2jjj

∣∣∣∣∣∣


(22)
Using the above equation, the preimage form of Πn (equation 7), the definition of P̄n (equation 9), the
definition of z∗

n (the posterior measure over the simplex Sbnd−1), and that by assumption 1, 2−Knv =

8
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o(τv
n(d, v)) (as n → ∞) we have that almost surely under P0 and eventually in n and for each d ∈ N, v ≥ 1

Πn(P ∈ Pd : Wv(P, P̄n) ≥ τn(d, v))
= z∗

n(πππ1 ∈ Sbnd−1 : W v
v (ψbn(πππ1), ψbn(Ez∗

n
(πππ|Y1, . . . , Yn))) ≥ τv

n(d, v))

≤ z∗
n

πππ1 ∈ Sbnd−1 : 1
2Knv

+
Kn∑
k=1

1
2(k−1)v

∑
S∈Sk

∣∣∣∣∣∣
∑

jjj∈IS,k,n

π1jjj −
∑

jjj∈IS,k,n

Ez∗
n
(πjjj |Y1, . . . , Yn)

∣∣∣∣∣∣ ≥ d−v/2τv
n(d, v)


≤ z∗

n

πππ1 ∈ Sbnd−1 :
Kn∑
k=1

1
2(k−1)v

∑
S∈Sk

∣∣∣∣∣∣
∑

jjj∈IS,k,n

π1jjj −
∑

jjj∈IS,k,n

Ez∗
n
(πjjj |Y1, . . . , Yn)

∣∣∣∣∣∣ ≥ 1
2d

−v/2τv
n(d, v)


≤ z∗

n

πππ1 ∈ Sbnd−1 :
Kn∑
k=1

1
2kv

∑
S∈Sk

∣∣∣∣∣∣
∑

jjj∈IS,k,n

π1jjj −
∑

jjj∈IS,k,n

Ez∗
n
(πjjj |Y1, . . . , Yn)

∣∣∣∣∣∣ ≥ 2v−1d−v/2τv
n(d, v)

)
,

(23)
Now note that

Kn∑
k=1

2−kv

 logγ(n)2 dk
2√

n+
∑

iii∈[bn]d αiii,bn

 = logγ(n)√
n+

∑
iii∈[bn]d αiii,bn

Kn∑
k=1

2−k(v− d
2 ) ≲ τv

n(d, v) (24)

To see the ≲ in equation 24, observe that by Assumption 2, the total prior concentration is dominated by n
and therefore the term in front of the summand on LHS of ≲ is ≍ logγ (n)√

n
. Thus by definition of τv

n(d, v), this
is sufficient to conclude LHS ≲ τv

n(d, v) in the d < 2v case. In the d = 2v case the sum contributes a factor
log(n) to LHS and so again LHS ≲ τv

n(d, v). In the d > 2v case, the sum contributes an asymptotic factor
2Kn( d

2 −v) ≍ k
d
2 −v
n = n

1
2 − v

d to LHS so that LHS ≍ logγ(n)n− v
d and so again LHS ≲ τv

n(d, v). By equation
24, for each d ∈ N, v ≥ 1, we set C1(d, v) sufficiently large so that eventually in n

Kn∑
k=1

2−kv

 logγ(n)2 dk
2√

n+
∑

iii∈[bn]d αiii,bn

 < 2v−1d−v/2τv
n(d, v) (25)

With C1(d, v) this large, we therefore have that eventually in n

z∗
n

πππ1 ∈ Sbnd−1 :
Kn∑
k=1

1
2kv

∑
S∈Sk

∣∣∣∣∣∣
∑

jjj∈IS,k,n

π1jjj −
∑

jjj∈IS,k,n

Ez∗
n
(πjjj |Y1, . . . , Yn)

∣∣∣∣∣∣ ≥ 2v−1d−v/pτv
n(d, v)


≤ z∗

n

πππ1 ∈ Sbnd−1 : ∃k ∈ {1, 2, . . . ,Kn} s.t
∑

S∈Sk

∣∣∣∣∣∣
∑

jjj∈IS,k,n

π1jjj −
∑

jjj∈IS,k,n

Ez∗
n
(πjjj |Y1, . . . , Yn)

∣∣∣∣∣∣ (26)

> logγ(n)
√

2dk

n+
∑

jjj∈[bn]d αjjj,bn

)

≤
Kn∑
k=1

z∗
n

πππ1 ∈ Sbnd−1 :
∑

S∈Sk

∣∣∣∣∣∣
∑

jjj∈IS,k,n

π1jjj −
∑

jjj∈IS,k,n

Ez∗
n
(πjjj |Y1, . . . , Yn)

∣∣∣∣∣∣ > logγ(n)
√

2dk

n+
∑

jjj∈[bn]d αjjj,bn

)
,

where in the last line we have used the union bound. Now recall {IS,k,n}S∈Sk
partitions [bn]d for

k ∈ {1, 2, . . . ,Kn}. In particular, since z∗
n = Dirichlet(·|{α∗

jjj,bn
}jjj∈[bn]d), under z∗

n, {
∑

jjj∈IS,k,n
πjjj}S∈Sk

∼
Dirichlet({

∑
jjj∈IS,k,n

α∗
jjj,bn

}S∈Sk
). Moreover,

∑
S∈Sk

∑
jjj∈IS,k,n

α∗
jjj,bn

=
∑

jjj∈[bn]d α∗
jjj,bn

a.s= n +
∑

jjj∈[bn]d αjjj,bn
.

Finally note that by definition of Sk, |Sk| = 2dk. So for n ∈ N and k ∈ {1, 2, . . . ,Kn} applying Dirichlet con-
centration of measure Lemma 5 with δ := log−γ(n) , we have that for C1(d, v) sufficiently large, eventually

9
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in n,

Kn∑
k=1

z∗
n

πππ1 ∈ Sbnd−1 :
∑

S∈Sk

∣∣∣∣∣∣
∑

jjj∈IS,k,n

π1jjj −
∑

jjj∈IS,k,n

Ez∗
n
(πjjj |Y1, . . . , Yn)

∣∣∣∣∣∣ > logγ(n)
√

2dk

n+
∑

jjj∈[bn]d αjjj,bn

)
≤

Kn log−γ(n) (27)

Finally note Kn log−γ(n) → 0 since Kn ≲ log(n) and γ > 1. By equations 23, 26 and 27, we have that for
each d ∈ N and v ≥ 1 and C1(d, v) sufficiently large,

Πn(P ∈ Pd : Wv(P, P̄n) ≥ τn(d, v)) → 0 as n → ∞. (28)

almost surely under P0. By dominated convergence the conclusion of the lemma follows.

5 Conclusions

In this work we obtained minimax optimal PCRs for unconstrained distribution estimation on [0, 1]d under-
neath the Wasserstein-v distances for every data dimension d. To the best of our knowledge these are the first
PCRs achieving minimaxity for every problem dimension d under Wv, v ≥ 1 distance. Our proof technique
avoids verifying a Kullback-Liebler prior support condition by using conjugacy and a direct analysis of the
posterior distribution.

These results may be useful to practicioners needing to estimate a distribution underneath a Wasserstein
distance when they have some knowledge prior to data collection about the shape of the distribution they
are estimating, intend to encode this through a prior distribution to potentially achieve increased accuracy
at low sample sizes, and yet simultaneously require a guarantee of precision at large sample sizes that is
robust to inaccurate prior selection.

An important area for future work is to determine whether for high dimensional data, Bayesian models can
adaptively achieve minimax optimal PCRs underneath Wasserstein-v distances in constrained distribution
estimation settings where it is safe to assume that the distribution to be estimated is of low entropy or has
a smooth density.
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