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Abstract

Topology optimization plays a crucial role in de-
signing efficient and manufacturable structures.
Traditional methods often yield free-form voids
that, although providing design flexibility, intro-
duce significant manufacturing challenges and
require extensive post-processing. Conversely,
feature-mapping topology optimization reduces
post-processing efforts by constructing topolo-
gies using predefined geometric features. Never-
theless, existing approaches are significantly con-
strained by the limited set of geometric features
available, the variety of parameters that each type
of geometric feature can possess, and the neces-
sity of employing differentiable signed distance
functions. In this paper, we present a novel
method that combines Neural Heaviside Signed
Distance Functions (Heaviside SDFs) with struc-
tured latent shape representations to generate
manufacturable voids directly within the opti-
mization framework. Our architecture incorpo-
rates encoder and decoder networks to effectively
approximate the Heaviside function and facili-
tate optimization within a unified latent space,
thus addressing the feature diversity limitations
of current feature-mapping techniques. Experi-
mental results validate the effectiveness of our
approach in balancing structural compliance, of-
fering a new pathway to CAD-integrated design
with minimal human intervention.

1. Introduction
Accelerating the development of manufacturable structures
with minimal human input is a significant concern in the
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design industry. While tools like Computer-Aided Design
(CAD) have reduced early design errors and expedited the
creation of documentation, there remains a need for en-
hanced automation, particularly in design decision-making.

Component design relies on meeting strength characteristic
requirements and manufacturability criteria, meaning that
components must be tailored to specific, predefined manu-
facturing methods.

Topological optimization allocates material within a de-
sign space to meet strength or thermal requirements. How-
ever, it encounters challenges, including complex geome-
tries that necessitate advanced manufacturing techniques
and extensive post-processing, which can diminish the time
advantages gained from minimal engineer involvement in
the topology optimization process.

Recent advancements have addressed manufacturability
concerns in topology optimization. In additive manufactur-
ing, manufacturability-focused approaches, such as stress-
minimization topology optimization, tackle practical issues
by incorporating connectivity constraints into the optimiza-
tion process (Chao et al., 2021). Additionally, projection-
based algorithms enforce nozzle size restrictions in mate-
rial extrusion-based additive manufacturing, ensuring com-
pliance with production constraints (Carstensen, 2020).

Innovative computational techniques, including
performance-aware diffusion models, surpass GAN-based
methods in manufacturability-aware topology optimization
by integrating constraint guidance into the optimization
process (Mazé & Ahmed, 2023). Furthermore, machine
learning approaches automate the adjustment of geometric
constraints and optimize building orientations for addi-
tive manufacturing, thereby enhancing the feasibility of
topology-optimized structures (Mohseni & Khodaygan,
2024). Recent studies, such as (Zehnder et al., 2021),
indicate that neural topology optimization with implicit
representations and self-supervised learning can match the
performance of state-of-the-art mesh-based solvers.

Multi-scale design methods further enhance manufactura-
bility by bridging the gap between macro- and micro-level
design features, facilitating manufacturable topology opti-
mization while reducing computational costs (Groen, 2018;

1



Feature-Mapping Topology Optimization with Neural Heaviside Signed Distance Functions

Figure 1. Example of SDF and Heaviside function for quadrangle geometric feature

Xia & Breitkopf, 2015; Zhu et al., 2017). Additionally,
techniques like advection-diffusion-based filtering ensure
machinable designs by applying efficient computational fil-
ters to unstructured meshes (Høghøj & Träff, 2022).

Feature-based modeling incorporates geometric primitives
to produce CAD-compatible designs during topology opti-
mization, thereby facilitating direct manufacturability (Liu
& Ma, 2015). Moreover, constructive solid geometry
(CSG) approaches optimize structural boundaries using
implicit representations, enhancing scalability and control
over complex geometries (Mei et al., 2008).

Thus, topology optimization is increasingly transitioning
from a conceptual tool to a practical enabler of manufac-
turable designs that align with real-world constraints.

Building on this potential, our research aims to integrate
advanced optimization techniques with machine learning
paradigms to overcome the inherent limitations of current
feature-mapping methods in topological optimization. By
addressing these challenges, we strive to enhance the scala-
bility, flexibility, and overall effectiveness of topology opti-
mization processes, ultimately leading to the development
of more efficient and manufacturable structural designs.

To generate manufacturable solutions through topology op-
timization that replicate those created by engineers using
CAD, geometric features must consist of closed chains of
linear and arc segments connected tangentially, without re-
stricting the number of elements in the chain. However, ex-
isting feature-mapping methods cannot accommodate such
geometric representations. Although it is possible to ex-
plicitly express the Signed Distance Function (SDF) (see
Fig. 1) within these methods, calculating gradients at seg-
ment contacts presents significant challenges. Moreover,
these methods lack the ability to seamlessly transform one
type of geometric feature into another.

In response to these challenges, we propose leveraging an
variational autoencoder-based model to approximate the
Heaviside function, thereby providing a unified represen-
tation for diverse geometric features within a single la-
tent space. We illustrate this approach using examples
of ellipses, triangles, and quadrilaterals. Furthermore, we
demonstrate how the decoder of the trained model can
be utilized for topology optimization by treating the la-
tent representation of a geometric feature as its parameters.
The code and models are publicly available at https://
github.com/Alexander19970212/NHSDF-TOp.

2. Related Work
Topology optimization involves the optimization of mate-
rial distribution within a design domain to achieve maxi-
mum structural performance under specified constraints. It
has been applied across various fields, including structural
engineering (Izumi et al., 2024), fluid dynamics (Li et al.,
2023), and thermal systems (Yu et al., 2020).

SIMP. One of the most widely utilized methods in topol-
ogy optimization is the Solid Isotropic Material with Penal-
ization (SIMP) method (Bendsøe & Kikuchi, 1988), which
employs a continuous density variable (or pseudo-density)
to interpolate material properties between solid and void
states, where values close to zero correspond to the void
state and values near one represent the solid state. Typi-
cally, each pseudo-density variable is associated with a spe-
cific element within the finite element method (FEM) dis-
cretized domain (see Appendix B). The objective function
is commonly formulated to minimize compliance while ad-
hering to a volume fraction constraint. Two of the most
prevalent approaches for solving the optimization problem
formulated in the SIMP framework are the Optimality Cri-
teria (OC) method and the Method of Moving Asymptotes
(MMA), both of which utilize adjoint differentiation for

2

https://github.com/Alexander19970212/NHSDF-TOp
https://github.com/Alexander19970212/NHSDF-TOp


Feature-Mapping Topology Optimization with Neural Heaviside Signed Distance Functions

sensitivity analysis (Bendsøe & Sigmund, 2004).

Feature Mapping Methods. Feature mapping methods op-
timize the sizes and positions of geometric features within
the design domain to ensure that FEM elements inside
the feature are designated as either material (Norato et al.,
2015) or voids (Saxena, 2010; Zhang et al., 2017a; Wein
et al., 2020). Various studies have represented geometric
features using hyperellipses (Guo et al., 2014; Zhang et al.,
2017b; Sharma et al., 2017; Norato, 2018), B-splines (Lee
& Kwak, 2008; Lee et al., 2007; Kim et al., 2008), and
Bézier curves (Wang & Yang, 2009). In a recent work
(Padhy et al., 2025), the authors introduce polygon-based
geometric features constructed by combining half-spaces.

To achieve a smooth transition of pseudo-density at the
feature boundaries, the Heaviside Signed Distance Func-
tion (SDF) is utilized. The SDF value for a point is de-
fined as the distance to the feature boundary, with a pos-
itive sign if the point resides inside the feature and a
negative sign otherwise. This SDF value is transformed
into a pseudo-density value through a Heaviside function,
which can be implemented using hyperbolic tangent func-
tion (Wein & Stingl, 2018), polynomials (Zhang et al.,
2016; Dunning, 2018), or trigonometric functions (Norato
et al., 2015). Many feature mapping methods incorporate
various smooth combination functions to ensure continu-
ous derivatives with respect to high-level parameters, such
as the Kreisselmeier-Steinhauser function (Shapiro, 2002)
or smooth R-functions (Chen et al., 2007).

By maintaining smoothness throughout the computational
process SDF-based methods can leverage a range of
gradient-based optimization techniques (Zhang & Norato,
2018). In these approaches, derivatives with respect to
parameters are calculated using the chain rule, analogous
to the techniques used in SIMP with the adjoint method
(Tröltzsch, 2010). It is noteworthy that some proposed
methods employ a non-differentiable maximum function,
necessitating the use of stochastic optimization methods
such as genetic algorithms (Wang & Yang, 2009), evolu-
tionary strategies (Bujny et al., 2017), Bayesian optimiza-
tion (Sharpe et al., 2018), and support vector regression
(Lei et al., 2018) as alternative solutions.

Neural Network Approximation of the Heaviside SDF.
Neural networks have been employed to approximate the
Heaviside function for boundary transitions in paramet-
ric level-set methods for topology optimization (Deng &
To, 2021). Beyond topology optimization, neural net-
works are utilized to approximate SDFs in various appli-
cations. A prominent example is DeepSDF (Park et al.,
2019), which encodes 3D shapes and represents contin-
uous signed distance fields. MetaSDF (Sitzmann et al.,
2020) enhances SDF representation by leveraging previ-
ously learned knowledge. Additionally, (Chibane et al.,

2020) introduces Neural Distance Fields to represent dis-
tance fields for non-closed surfaces, while (Jiang et al.,
2020) employs neural networks to represent SDFs with dif-
ferentiability for solving inverse problems such as 3D re-
construction.

3. Background
The table of all notations used in this paper is shown in
Appendix A.

3.1. FEM Discretization for 2D Elasticity Problem

The finite element method (FEM) is employed to discretize
the design domain for the 2D elasticity problem by dividing
it into a mesh of finite elements, typically bilinear quadri-
laterals or triangular elements. Each element is associated
with a set of nodal degrees of freedom corresponding to
displacements in the x and y directions. The equilibrium
equations for the elasticity problem are derived using the
principle of virtual work, leading to the following system
of linear equations

Ku = f (1)

where K is the global stiffness matrix, u is the displace-
ment vector, and f is the external force vector. The stiffness
matrix K is assembled from the elemental stiffness matri-
ces, which are functions of the material properties and the
geometry of each element. As an example, the assembling
of the stiffness matrix is shown in Appendix B.

3.2. SIMP Method Problem Formulation

The Solid Isotropic Material with Penalization (SIMP)
method is a widely used approach in topology optimization
for determining the optimal material distribution within a
design domain. The primary objective is to minimize the
compliance C of the structure, defined as the work done by
the external forces

min
ρ

C(ρ) = uT f (2)

subject to the equilibrium equation

K(ρ)u = f (3)

and a volume constraint

N∑
e=1

veρe ≤ Vmax (4)

where ρe ∈ [ρmin, 1] represents the pseudo-density variable
for element e, and ve is the volume of element e. N is the
total number of elements, and Vmax is the maximum allow-
able volume, ρmin ≥ 0 is the minimum allowable pseudo-
density. The stiffness matrix K(ρ) is interpolated using the
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Figure 2. Neural Heaviside SDF Model

SIMP penalization scheme

K(ρ) =

N∑
e=1

ρpeKe (5)

where Ke is the element stiffness matrix of the solid ma-
terial of the element e and p > 1 is the penalization fac-
tor that encourages the solution towards a 0-1 (black-and-
white) design.

3.3. Feature-Mapping Topology Optimization (FMTO)
Problem Formulation

Feature-Mapping Topology Optimization (FMTO) extends
traditional topology optimization by incorporating geomet-
ric features into the design process. In FMTO, pseudo-
densities are parameterized using the defining attributes of
these geometric features, such as scale, offset, and rotation
angle. The optimization problem can thus be formulated as

mins C(s) = uTK(ρ(s))u =
N∑
e=1

ρpe(s)u
TKeu

s.t. K(ρ(s))u = f
N∑
e=1

veρe(s) ≤ Vmax

(6)

where s represents the set of feature parameters. The fea-
ture mapping involves defining a correspondence between
the design variables s and the element pseudo-densities ρ,
typically through a Signed Distance Function (SDF) rep-
resentation. This mapping ensures that the geometric fea-
tures are smoothly integrated into the design domain, facil-
itating a more controlled and manufacturable optimization
process.

4. Method
4.1. Neural Signed Distance Function

In the proposed method, we use a neural approximation
of the Heaviside function of the Signed Distance Function
(SDF) of geometric features to represent voids in Feature
Mapping Topology Optimization.

SDF and Heaviside Function. For a specified geometric
feature m we define a subset of parameters sm, the signed
distance function (SDF) is defined as

sdf(sm, ξ) =

{
d(ξ, ∂Ω(sm)) if ξ ∈ Ω(sm)

−d(ξ, ∂Ω(sm)) otherwise
(7)

where d(ξ, ∂Ω(sm)) represents the distance from point ξ to
the boundary of feature m. Ω(sm) is the domain occupied
by the geometric feature, parameterized by sm.

The motivation for using the Heaviside function is to scale
the distance function to the range [0, 1], which is conve-
nient for the optimization process and for training the neu-
ral network. We approximate the Heaviside function using
a sigmoid function

H(sm, ξ) =
1

1 + e−β sdf(sm,ξ)
(8)

where β controls the steepness of the sigmoid function (see
Fig. 1), typical value is β = 20.

By employing a neural approximation, we obtain a differen-
tiable approximation of the Heaviside function in a new la-
tent space, such that H̃(sm, ξ) ≈ NNHeaviside(zm, ξ), where
zm is a latent representation of the feature parameters sm
mapped using shape encoder.

Neural Heaviside SDF. The proposed model is based
on variational autoencoder-based architecture (Kingma &
Welling, 2022) consisting of a shape encoder and several
decoders (see Fig. 2). During training, we establish a com-
mon latent space for different geometric features by mini-
mizing multiple loss functions.

Shape Code. The shape code χm is a vector of 15 ele-
ments organized in a one-hot manner: for each feature type,
a specific segment of the code is activated while the remain-
ing elements are set to zero, except for the first element
χm[0], which serves as a normalized label. For instance,
in our experiments, an ellipse is labeled as 0, a triangle as
0.5, and a quadrangle as 1. For an ellipse, χm[1] parame-
terizes the semi-axis ratio, with the major axis fixed at 0.25.
In the case of a triangle, χm[2, 3] specify the coordinates
of its movable vertex, while the other vertices are fixed at
(−0.5,−0.5) and (0.5,−0.5). The elements χm[4 : 6] rep-
resent the rounded radii of the triangle’s vertices. For a
quadrangle, χm[7, 8] and χm[9, 10] denote the coordinates
of the two top vertices, respectively, while the bottom ver-
tices remain fixed as in the triangle. Finally, χm[11 : 14]
specify the rounded radii of the quadrangle’s vertices. This
scheme is illustrated in Figure 3.

Shape Encoder. The encoder receives a shape code χm

for a geometric feature m, and outputs a latent vector, zm =
NNenc(χm).
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Figure 3. Assembly of Shape Code χ for Various Geometric Features. Here, c represents a normalized label, b denotes the minor axis
of an ellipse, vi and Ri indicate the vertices and rounded radii of the i-th polygon corner, and xi and yi are the coordinates of the i-th
vertex of the polygon.

Heaviside Decoder. The decoder takes the latent vec-
tor zm concatenated with the point coordinates ξ as an
input, and outputs the value of H̃ at that point, H̃ =
NNHeaviside(zm, ξ).

Reconstruction Decoder. This decoder is responsible for
reconstructing the shape code from the latent space, χ̃m =
NNrecon(zm).

Loss Functions. During training, we minimize the mean
squared error (MSE) between the predicted and true values
of H and χm. The Kullback-Leibler divergence (DKL) is
employed as a regularization term to ensure that the latent
distribution is close to the Gaussian distribution.

The total loss function is defined as

L =
1

B

B∑
i=1

(H(χi, ξi)− NNHeaviside(NNenc(χi), ξi))
2

+
λKL

B

B∑
i=1

DKL(qϕ(zi|χi)||p(zi))

(9)

where B is the batch size, λKL is the regularization param-
eter for the KL divergence, qϕ(zi|χi) is the encoder distri-
bution for the latent vector zi given the shape code χi, and
p(zi) is the prior (normal) distribution over the latent vector
zi.

It is important to note that the reconstruction decoder is
trained separately, while all other parts of the model remain
frozen. The MSE loss is exclusively applied to the recon-

struction decoder

Lrecon =
1

B

B∑
i=1

(χi − NNrecon(NNenc(χi)))
2 (10)

4.2. Feature Mapping Topology Optimization with
Neural Heaviside SDF. Inference

During inference, we employ the pretrained Heaviside De-
coder with fixed weights to approximate the Heaviside
function for the geometric features represented by the latent
vectors. This approximation also enables us to compute the
gradients required to adjust these latent vectors with respect
to the compliance objective function.

Problem Formulation. Unlike the classical approach to
topology optimization, which specifies the final volume re-
quirement as a constraint, our proposed method incorpo-
rates this requirement into the objective function. This re-
quirement becomes active only if the volume exceeds a
specified threshold. Apart from this constraint, the prob-
lem formulation remains similar to classical FMTO, where
the goal is to minimize compliance, and the optimization
is performed with respect to high-level geometric feature
variables that define the boundaries of voids

min
{w,b,α,z}

N∑
e=1

ρpeu
TKeu+ λvol max(0, vT ρ− Vmax)

s.t. ρe = 1−maxMm=1

(
NNHeaviside(ξ̂e,m, zm)

)
ξ̂e,m = wm(ξe − bm)R(αm)
K(ρ)u = f

(11)
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where M is the number of geometric features, wm and bm
are the scale and offset of feature m, R(αm) is the rota-
tion matrix, αm is the rotation angle, and zm represents the
shape variables for feature m in the latent space. Conse-
quently, sm is defined as sm = {wm, bm, αm, zm}. ξe is
the centroid coordinates of the element e.

The motivation behind formulating the pseudo-density
function is to obtain a combined Heaviside function that
yields a value close to 1 when a point lies within one of the
features and close to 0 otherwise, thereby creating a void
within the feature.

To achieve a smooth approximation of the maximum func-
tion, we employ the Kreisselmeier-Steinhauser function,
taking into account the ρ limits

max
m=1...M

(NNHeaviside(ξ̂e,m, zm)) ≈

≈ 1− ρmin

γKS
ln

(
M∑
i=1

exp(γKSNNHeaviside(ξ̂e,m, zm))

)
(12)

where γKS is the smoothing parameter.

Gradient Chain Rule for High-Level Design Variables.
To solve the optimization problem with the combined ob-
jective function, we employ an iterative method using ad-
joint differentiation. The sensitivity of the function J(sm)
with respect to a high-level design variable sm is computed
as follows

∂J

∂sm
=

N∑
e=1

[(
∂J

∂ρe
+ p ρp−1

e uTKeu

)
∂ρe
∂sm

]
(13)

5. Implementation Details
Variable Initialization. Variables are initialized such
that, in the first iteration, geometric features form a regular
grid of squares with maximum rounded radii. The initial
value of zm for the first iteration is computed via Shape
Encoder.

Variable Limitations. To constrain the values of design
variables, preventing them from becoming too small or too
large and ensuring they remain within the design domain,
we apply sigmoid reparameterization

sm,j = (smax,j − smin,j)
1

1 + exp(−ŝm,j)
+ smin,j (14)

where smax,j and smin,j are the maximum and minimum
allowable values of the design variable sm,j , respectively;
j = 1, 2, 3, 4.

As a result, we minimize the objective function with respect
to the logits of the design variables ŝm,j .

Refactoring Mechanism. To prevent the latent variable
to be infeasible, we realize refactoring mechanism, where
every 5 iterations we update the value of zm using the re-
construction Decoder and Encoder

zm = NNenc(NNrecon(z
old
m )) (15)

Additional implementation details include the implementa-
tion of the KS function and the selection of its parameters.
Further details are provided in Appendix G.

6. Results
6.1. Neural Heaviside SDF

To evaluate the performance of the Neural Heaviside SDF,
we conducted several experiments using generated datasets
and a comprehensive set of metrics.

Metrics. The accuracy of the predictions for H and χ
was assessed using Mean Squared Error (MSE). For the
topology optimization process to converge effectively, it is
crucial to minimize noise in the predicted H . To evaluate
this noise, we compute the norm of the gradient of the pre-
dicted H using the finite difference method on grid points

Smth =
1

Np

Np∑
i=1

∥∇ (NNHeaviside(zm, ξi)−H(χm, ξi)) ∥2

(16)
where Np represents the number of sensor points. This
metric was computed across each m-th feature in the test
dataset and subsequently averaged.

Datasets. Our datasets include training and testing
datasets for the Heaviside Decoder and the Reconstruc-
tion Decoder. The dataset for training the Heaviside De-
coder contains samples of geometric features and randomly
located points with their corresponding Heaviside values.
The dataset for training the Reconstruction Decoder con-
tains only samples of shape codes. To evaluate the Smth
metric, we generated a dataset that includes feature code
shapes and a grid of points with their Heaviside values. Fur-
ther details can be found in Appendix E.

Model Architecture. The architecture of the Encoder
consists of a block of fully-connected layers with batch nor-
malization and LeakyReLU activation functions. The archi-
tecture of the Reconstruction Decoder mirrors that of the
Encoder. The Heaviside Decoder utilizes the architecture
of the DeepSDF decoder (Park et al., 2019). For more de-
tails on the model architecture, please refer to the Appendix
C. To demonstrate the effectiveness of using the DeepSDF
model as a decoder, we trained various model types, includ-
ing Autoencoders (AE), Variational Autoencoders (VAE),
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and Maximum Mean Discrepancy VAEs (MMD-VAE), en-
suring that each model had an equivalent number of pa-
rameters in their respective blocks. A symmetric decoder
model mirroring the encoder was also employed for com-
parison with the DeepSDF Decoder.

The comparative results are presented in Table 1 for 20
model training runs. Additionally, we conducted a t-test to
confirm the superiority of the best combination of training
strategies and model architectures over the other combina-
tions. The results are presented in Appendix F.

Table 1. Comparison of different model architectures with and
without DeepSDF as decoder and different training strategies.

MSEHv MSEχ Smoothness

DeepSDF Decoder

AE
0.000346

± 1.81e-05
0.0002

± 3.4e-05
0.00586

± 9.95e-05
MMD
-VAE

0.000368
± 1.95e-05

0.000228
± 3.52e-05

0.006
± 0.000102

VAE
0.000277

± 1.07e-05
0.000202

± 2.82e-05
0.00575

± 7.11e-05

Symmetric Decoder

AE
0.0014

± 0.000268
0.000229
± 3.5e-05

0.0165
± 0.000658

MMD
-VAE

0.00134
± 0.000233

0.000212
± 3.08e-05

0.0161
± 0.000667

Tr
ai

ni
ng

la
te

nt
vi

a
H

ea
vi

si
de

D
ec

.

VAE
0.00128

± 0.000201
0.000117
± 2e-05

0.0163
± 0.000574

DeepSDF Decoder

AE
0.000796

± 0.000101
0.000226

± 5.04e-05
0.0084

± 0.000286
MMD
-VAE

0.00059
± 5.42e-05

0.000195
± 1.61e-05

0.00818
± 0.000403

VAE
0.000475

± 3.51e-05
7.42e-05

± 1.09e-05
0.00806

± 0.000187

Symmetric Decoder

AE
0.00155

± 0.000257
0.000232

± 5.27e-05
0.0175

± 0.00044
MMD
-VAE

0.0015
± 0.00023

0.000198
± 2.21e-05

0.017
± 0.000704

Tr
ai

ni
ng

la
te

nt
vi

a
R

ec
on

st
r.

D
ec

.

VAE
0.00146

± 0.000327
7.02e-05

± 4.82e-06
0.017

± 0.000888

In all cases, we observe improved metrics when adding
DeepSDF compared to the symmetric decoder.

Training Strategies. We also compared two training
strategies: 1. Training the latent representation using the
Heaviside decoder and then fine-tuning the Reconstruction
decoder on the trained latent representation. 2. Training
the latent representation using the Reconstruction decoder

(a) First Strategy (b) Second Strategy

Figure 4. Comparison of latent representations of geometric fea-
tures clusters for different training strategies. a) First strategy.
Training latent representation using the Heaviside decoder. b)
Second strategy. Training latent representation using the Recon-
struction decoder.

(a) Heaviside contour (b) Geometry Reconstruction

Figure 5. Reconstruction of geometric features from simplex tran-
sition between features in the latent space. a) Reconstruction of
contour from Heaviside values. b) Reconstruction of geometry
through the Reconstruction decoder.

and then fine-tuning the Heaviside decoder on the trained
latent representation.

Notably, the first strategy achieves good metrics for both
MSEHv and MSEχ. In contrast, the second strategy yields
better metrics for MSEχ but does not achieve sufficiently
good metrics for MSEHv. We suggest that training the la-
tent representation with the Heaviside decoder results in a
latent space tailored specifically to the contours of geomet-
ric features. Conversely, training with the Reconstruction
decoder focuses the latent representation on the shape code
of the features without adequately considering their geome-
try. This is indirectly supported by the distribution of latent
vectors reduced to a 2D plane using t-SNE (Laurens van
der Maaten & Hinton, 2008), as shown in Figure 4.

Based on these presumptions, we can consider a triangle
as a special case of a quadrangle from the perspective of
the Heaviside contour, where one vertex connects collinear
edges. This results in overlapping distribution clusters for
these features (see Figure 6.1). Additionally, for ellipses,
the transitional shapes to other features in our dataset are
not well-represented, leading to noticeably poorer transi-
tion quality. Figure 5 clearly shows the transitions in latent
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space between different geometric features using the Heav-
iside decoder and the Reconstruction decoder.

6.2. Topology Optimization

We present the results of utilizing the Neural Heaviside
SDF for feature mapping in topology optimization across
several classic cases. Detailed descriptions and examples
of solutions obtained using the SIMP method are provided
in Figure 6 and Appendix D.

vf = 0.254
C = 3.78 · 10−5Task 1

P

P

vf = 0.36
C = 1.42 · 10−3Task 2 vf = 0.44

C = 1.25 · 10−3Task 3P

P

vf = 0.34
C = 1.04 · 10−4Task 4

P

vf = 0.41
C = 1.51 · 101Task 5

P

vf = 0.41
C = 2.21 · 101Task 6

Figure 6. Classical topology optimization tasks, and solutions ob-
tained using the SIMP method.

Table 2. Comparison of different topology optimization methods
via Compliance metric, the final volume fraction (vf) is given in
brackets.

Method Task 1
×10−5

Task 2
×10−3

Task 3
×10−3

Task 4
×10−4

Task 5
×101

Task 6
×101

SIMP 3.78
(0.254)

1.42
(0.36)

1.25
(0.44)

1.04
(0.34)

1.51
(0.41)

2.21
(0.41)

TopoDiff N/A N/A N/A N/A 1.70
(0.424)

2.44
(0.415)

Fr
ee

-F
or

m

NTopo 4.08
(0.255) N/A 1.63

(0.438)
1.07
(0.339)

1.60
(0.412)

2.31
(0.41)

Ellipses 4.39
(0.297)

2.22
(0.368)

1.74
(0.449)

1.55
(0.345)

1.58
(0.426)

2.45
(0.416)

TreeTOp 5.85
(0.266) N/A 3.73

(0.455)
1.62
(0.356)

1.57
(0.449)

3.09
(0.439)FM

TO

NHSDF
(Ours)

3.91
(0.255)

1.98
(0.354)

1.63
(0.437)

1.52
(0.337)

1.55
(0.409)

2.34
(0.401)

Among the various Feature Mapping methods, we imple-
mented an approach similar to (Kumar & Saxena, 2022),
where all geometric features are represented by ellipses.
Additionally, we use the official TreeTOp implementation
(Padhy et al., 2025) for comparison, where geometric fea-
tures are represented as polygons constructed from a set of
half-spaces. Utilizing ellipses as geometric features signifi-
cantly limits the value of the parameter Vmax. In our experi-
ments, we used the minimum volume fraction (vf) required
to obtain a valid solution. Here, the volume fraction is de-
fined as the ratio of the volume of solid elements to the
total volume of the design domain. Specifically, with our
method, we intentionally reduced the target value of Vmax

to demonstrate that even with less material, better compli-
ance values can be achieved. Refer to the comparison in
Table 2.

Additionally, we present comparative results from NTopo
(Zehnder et al., 2021) and TopoDiff (Mazé & Ahmed,
2023). Both methods are free-form topology optimization
approaches that use neural models to predict optimal topol-
ogy solutions. NTopo employs a deep learning technique
to parameterize the density and displacement fields within
the optimization process. TopoDiff uses a conditional dif-
fusion model as a surrogate guidance strategy that actively
favors designs with low compliance. The TopoDiff method
is implemented only for square design domains. Therefore,
we introduced two new tasks (Tasks 5 and 6), which repli-
cate Tasks 1 and 3 on square domains. Although NTopo
supports domain modifications, defining boundary condi-
tions is challenging, so we did not apply it to these tasks.
TreeTOp is implemented exclusively for rectangular do-
mains. Consequently, the comparison for the Bracket prob-
lem (Task 2) includes only the SIMP and Ellipses FMTO
approaches. The final topology results for all methods are
presented in Figure 7, and the von Mises stress distribution
plots are provided in Appendix H.

For FMTO methods, the metric values obtained by SIMP
and NTopo are unattainable because they can create small,
locally conditioned edges through free-form approach,
which our methods counteract to ensure manufacturability.
So SIMP method as added to estimate the lower bound of
the compliance metric. However, it is worth noting that our
method closely matches the SIMP solution when the topol-
ogy is simpler, as observed in Task 1.

Table 2 shows that among all FMTO methods (TreeTOp,
Ellipses, and NeuralHeavisideSDF), our approach achieves
the best compliance metric while using less material. Addi-
tionally, in some experiments our method is comparable to
NTopo (see Task 3) and outperforms TopoDiff on square-
domain tasks.

7. Limitations and Future Work
In the previous section, we demonstrated successful inte-
gration of Neural Heaviside Signed Distance Function for
Feature Mapping topology optimization. Nevertheless, sev-
eral limitations must be addressed, which also offer av-
enues for future research.

Poor transitions between different geometric feature
types. We observed that shape transitions are largely cor-
rupted by the Reconstruction decoder, whereas the Heav-
iside decoder produces accurate contours for intermediate
shapes.
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vf = 0.297
C = 4.39 · 10−5Task 1

P

P

vf = 0.368
C = 2.22 · 10−3Task 2 vf = 0.449

C = 1.74 · 10−3Task 3P

P

vf = 0.345
C = 1.55 · 10−4Task 4

P

vf = 0.426
C = 1.58 · 101Task 5

P

vf = 0.416
C = 2.45 · 101Task 6

(a) Ellipses (Kumar & Saxena, 2022)

vf = 0.255
C = 4.08 · 10−5Task 1

P

vf = 0.438
C = 1.63 · 10−3Task 3P

P

vf = 0.339
C = 1.07 · 10−4Task 4

P

vf = 0.412
C = 1.6 · 101Task 5

P

vf = 0.41
C = 2.31 · 101Task 6

(b) NTopo (Zehnder et al., 2021)

vf = 0.255
C = 3.91 · 10−5Task 1

P

P

vf = 0.354
C = 1.98 · 10−3Task 2 vf = 0.437

C = 1.63 · 10−3Task 3P

P

vf = 0.337
C = 1.52 · 10−4Task 4

P

vf = 0.409
C = 1.55 · 101Task 5

P

vf = 0.401
C = 2.34 · 101Task 6

(c) Neural Heaviside SDF (OUR)

vf = 0.266
C = 5.85 · 10−5Task 1

P

vf = 0.455
C = 3.73 · 10−3Task 3P

P

vf = 0.356
C = 1.62 · 10−4Task 4

P

vf = 0.449
C = 1.57 · 101Task 5

P

vf = 0.439
C = 3.09 · 101Task 6

(d) TreeTOp (Padhy et al., 2025)

Figure 7. Classical topology optimization tasks and corresponding solutions obtained using different methods: (a) Ellipses, (b) NTopo,
(c) Neural Heaviside SDF, and (d) TreeTOp.

P

vf = 0.424
C = 1.7 · 101Task 5

P

vf = 0.415
C = 2.44 · 101Task 6

Figure 8. Solutions obtained using the TopoDiff method (Mazé &
Ahmed, 2023) for Square domain tasks.

Presence of a large number of conflicting variables dur-
ing optimization. This issue necessitates alternating the
optimized variables or periodically decreasing their learn-
ing rate. Furthermore, the optimization process struggles
to stabilize the offset variables, leading to oscillatory move-
ments of geometric figures at the end of the optimization.
Currently, this problem is effectively resolved by artificially
slowing down the optimization speed.

As noted in (Wein et al., 2020), and as we also empha-
size, topology optimization outcomes depend on initial con-

ditions. Future work will explore improved initialization
strategies and expand our geometric feature set.

We performed a t-test to assess the statistical significance
of our model approximator’s performance relative to other
models, and we present the results in Appendix F. In a fu-
ture journal paper, we will provide a detailed analysis of
our model’s robustness.

8. Conclusion
In this work, we have demonstrated several new approaches
that can significantly expand the capabilities of FM topol-
ogy optimization: generalization of parameters of various
geometric features through latent space; a mechanism for
training the latent representation via a Heaviside decoder,
which allows focusing on the geometry of features; a refac-
toring mechanism that avoids the issue of the latent rep-
resentation exceeding the permissible domain and enables
control over individual high-level feature parameters. Our
experiments demonstrate that this approach can be applied
to Feature Mapping topology optimization, thereby ensur-
ing the technological feasibility of the optimized solution,
as FM approaches are always technologically feasible. We
anticipate that the proposed approaches can be extended to
more complex tasks, involving a greater variety of geomet-
ric features and three-dimensional (3D) problems.
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A. Notations and Definitions

Table 3. Notations and Definitions (Part I)

Notation Definition

K Global stiffness matrix obtained by assembling all element stiffness matrices Ke.

Ke Element stiffness matrix for element e. The size of the matrix is equal to the size of matrix K.

ke Local element stiffness matrix (for element e) before assembly. It is equavelent to the matrix Ke but
without the zero rows and columns.

u Nodal displacement vector in the FEM discretization.

f External force vector.

e Index of element in the FEM mesh.

N Total number of elements in the FEM mesh.

ρe Pseudo-density variable for element e with ρe ∈ [ρmin, 1].

ρ Vector of pseudo-density variables for all elements in the FEM mesh.

ρmin Minimum allowable pseudo-density (to avoid singular stiffness matrices).

ve Volume of element e.

v Vector of volumes for all elements in the FEM mesh.

Vmax Maximum allowable volume in the design (volume constraint).

p Penalization factor in the SIMP interpolation (ρpe), with p > 1.

C(ρ) or C(s) Compliance of the structure, defined as uT f or uTKu.

s Set of high-level design variables defined the set of geometric features.

sm Subset of parameters defining geometric feature m.

M Total number of geometric features used in the optimization.

sdf(sm, ξ) Signed distance function for geometric feature m at point ξ.

ξ A point in the design domain.

Ω(sm) Domain occupied by geometric feature m as determined by sm.

∂Ω(sm) Boundary of the geometric feature m.

d(ξ, ∂Ω(sm)) Euclidean distance from point ξ to the boundary ∂Ω(sm).

H(sm, ξ) Approximated Heaviside of the signed distance function for feature m at point ξ using a sigmoid
function.

β Steepness parameter in the sigmoid approximation of the Heaviside function. Typical value is β = 20.

H̃(sm, ξ) Neural approximation of the Heaviside of the signed distance function for feature m at point ξ using
latent representation of the feature parameters sm mapped using shape encoder.

NNHeaviside(zm, ξ) Neural network approximator for the Heaviside of the signed distance function for feature m at point
ξ, taking latent vector zm as input.

zm Latent vector associated with geometric feature m, obtained via the shape encoder.

χm Shape code for geometric feature m (the encoded representation of its parameters).

NNenc Shape Encoder network that maps χm to the latent vector zm.

χ̃m Reconstructed shape code for geometric feature m using the reconstruction decoder.

NNrecon Reconstruction Decoder that maps the latent vector zm back to a reconstructed shape code χm.
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Table 4. Notations and Definitions (Part II)

Notation Definition

B Batch size used during training (in the loss computations).

χ Batch of shape codes for all geometric features.

z Batch of latent vectors associated with all geometric features, obtained via the shape encoder.

DKL Kullback-Leibler divergence function.

λKL Regularization parameter for the KL divergence.

qϕ(zi|χi) Encoder distribution for the latent vector zi given the shape code χi.

p(zi) Prior distribution over the latent vector zi.

λvol Penalty factor for volume constraint violations in the objective function.

ξe A center point of element e.

ξ̂e,m Transformed coordinate for point ξe with respect to feature m; defined as

ξ̂e,m = wm

(
ξe − bm

)
R(αm).

wm Scale factor for geometric feature m used to adjust its size in topology optimization.

bm Offset (translation) for geometric feature m.

αm Rotation angle for geometric feature m.

R(αm) Rotation matrix corresponding to the angle αm.

γKS Smoothing parameter in the Kreisselmeier-Steinhauser function used for smooth maximum approxi-
mation. Typical value is γKS = 40.

smin,j , smax,j Lower and upper bounds for the design variables sm,j . Since for the proposed method, the sm is
defined as sm = {wm, bm, αm, zm}, so smin,1 = wmin, smin,2 = bmin, smin,3 = αmin, and smin,4 =
zmin and similarly for the upper bounds.

ŝm,j Unconstrained (logit) representation of design variable sm,j before sigmoid reparameterization.

Smth Smoothness metric quantifying the noise in the neural Heaviside approximation:

Smth =
1

Np

Np∑
i=1

∥∥∥∇(
NNHeaviside(zm, ξi)−H(χm, ξi)

)∥∥∥
2
.

Np Number of sensor points used to compute the smoothness metric.

Nnode Total number of nodes in the FEM mesh.

λ, µ Lamé constants used in the elasticity (Hooke) matrix construction.

dofsFree Set of degrees of freedom with unknown displacements (free DOFs).

dofsFixedMoved Set of degrees of freedom with prescribed (fixed) displacements.
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B. Assembling of the Global Stiffness Matrix
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Figure 9. Example of building the element stiffness matrix for a triangular element for a domain discretized with 8 nodes in the FEM
method.

In this section, we do not provide the full derivation of the system of linear equations from the 2D elasticity differential
equations. Instead, we present only assembling of the element stiffness matrix. Comprehensive explanations can be found
in (Cenanovic & Jonsson).

The discretized displacement field for the domain Ω with Nnode nodes is represented by the vector

u = [u1,x,u1,y,u2,x,u2,y, . . . ,ui,x,ui,y, . . . ,uNnode,x,uNnode,y]
T (17)

where ui,x and ui,y are the displacement components along the x and y axes, respectively, and i denotes the node index.

Consider a local element e within the discretized domain, for which a local stiffness matrix ke is constructed using the
Galerkin method and Mendel notation (Galerkin, 1915). For a triangular element, the matrix dimensions are 3dof × 3dof,
where dof represents the number of degrees of freedom per node. In the 2D case, dof = 2, making ke a 6× 6 matrix. From
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this matrix, an element stiffness matrix Ke ∈ R2Nnode×2Nnode is constructed such that all values are zero except for those
corresponding to the degrees of freedom of the nodes belonging to element e. An example of assembling the stiffness
matrix for a domain discretized with 8 nodes can be found in Figure 9.

To assemble the global stiffness matrix K ∈ R2Nnode×2Nnode , it is necessary to sum all the element stiffness matrices Ke

K =

N∑
e=1

Ke (18)

During the topology optimization process, pseudo-density variables ρe are used to indicate the solidity of each element

K =

N∑
e=1

ρpeKe

0 < ρmin ≤ ρe ≤ ρmax

(19)

Implementation of boundary conditions. Let dofsFixedMoved denote the set of degrees of freedom with known displace-
ments, and dofsFree denote the set of degrees of freedom with unknown displacements (see Fig. 9). The global stiffness
matrix used for the solution is obtained by removing the rows and columns corresponding to dofsFixedMoved and incorporat-
ing the known displacements into the right-hand side of the system of equations

K[dofsFree, dofsFree] · u[dofsFree] = f [dofsFree]−K[dofsFree, dofsFixedMoved] · u[dofsFixedMoved] (20)

During optimization, whenever an update to u is required, the system in Equation 20 is solved, and the entire vector u is
updated with the solution values.

16



Feature-Mapping Topology Optimization with Neural Heaviside Signed Distance Functions

C. Model Architecture
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(a) Architecture used for the Encoder, Reconstruction Decoder, and symmetric version of the Heaviside Decoder
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(b) Architecture of the Heaviside Decoder, using the DeepSDF architecture

Figure 10. Schematics and parameters of the model’s architecture.

Figure 10(a) shows the architecture used for the Encoder, Reconstruction Decoder, and the symmetric version of the
Heaviside Decoder. The Encoder architecture consists of a block of fully-connected layers with batch normalization and
LeakyReLU activation functions. The Reconstruction Decoder mirrors the Encoder’s architecture. Figure 10(b) illustrates
the architecture of the Heaviside Decoder, which utilizes the DeepSDF decoder architecture (Park et al., 2019).

D. Topology Optimization Schemes
The detailed schemes of the tasks are presented in Figure 11.

Task 1: Cantilever Beam. The design domain is fixed on the left side, while a load of P = −0.0025N is applied at the
midpoint of the right side. The rectangular domain measures 0.25m × 0.60m.

Task 2: Bracket. This task has an L-shaped form with dimensions 0.15m × 0.15m. The top part is fixed, and a uniform
load of P = −0.0025N is distributed on the top part of the protrusion.

Task 3: MBB Beam Half Design Domain. This domain typically represents a symmetric half of the MBB beam. The
design domain measures 1.2m × 0.4m. A vertical rolling condition is applied to the left side, and a horizontal rolling
condition is applied to the bottom right corner. A load of P = −0.0025N is applied at the upper left corner.

Task 4: Cantilever Beam with distributed load. The domain of the task is a rectangle with dimensions 1m × 0.50m. A
distributed load of P = 0.0025N is applied to the upper part of the domain, and the left side is fixed.

Task 5: Square Cantilever Beam. This task replicates Task 1 with the design domain modified to a square measuring
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Cantilever
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P
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Cantilever
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P

Square
Beam
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P

Figure 11. Schematics and solutions of the tasks.

1m × 1m.

Task 6: Square Beam. This task replicates a previous task (Task 3), but the design domain has been modified to a square
measuring 1m × 1m.

For all cases, the Poisson ratio and Young’s modulus are set to ν = 0.3 and E = 1 Pa. Schematics of these cases are shown
in Fig. 6, along with the solutions obtained using the SIMP method.

E. Datasets
Dataset for training the Heaviside Decoder consists of 5k samples for each type of geometric feature (ellipse, triangle,
quadrilateral) with varying rounding radii. As illustrated in Fig. 3, each sample is designed to include the minimal number
of variables for each feature. For ellipses, one axis is fixed at 0.5, and the axis ratio is used as the variable in χ. For
triangles and quadrilaterals, two vertices are fixed at coordinates (−0.5,−0.25) and (0.5,−0.25), respectively, while the
coordinates of the remaining vertices are used in χ along with the rounding radii. For each geometric feature, 1 000 random
points are generated within the square [−1, 1]× [−1, 1]. The approximated Heaviside function is computed using Equation
8.

Dataset for training the Reconstruction Decoder contains only 5 million samples of χ for each type of geometric feature.

Dataset for testing the Heaviside Decoder is generated similarly to the training dataset, but it contains 500 samples for
each type of geometric feature.

Dataset for testing the Reconstruction Decoder is generated similarly to the training dataset, but it contains 10k samples
for each type of geometric feature.

The surface test dataset contains 100 geometric features with 1225 points per feature, generated in a grid format. This
dataset is used to compute the smoothness metric.

F. T-test for Comparison of Different Model Architectures
Note:

• The test was conducted on metric evaluations after 20 model training runs. All seeds are not fixed.

• The p-value is shown in the graphs on the right, relative to the best method for each specific metric.
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• "st1" means the first strategy, where the latent space is trained via the Heaviside decoder. "st2" means the second
strategy, where the latent space is trained via the Reconstruction decoder.

Figure 12. Boxplot for all training strategies and models.
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G. Kreisselmeier-Steinhauser (KS) Function, Implementation Details
It is important for us to maintain sensitivity with respect to the objective function; however, to ensure the method does
not fail, we are forced to clamp the ρ parameter because the KS function can produce values greater than 1. Therefore, in
addition to equation (11), we use the following formula to scale ρ

ρe =
1− ρmin

KSmax −KSmin

(
KSmax −

ln
∑M

m=1 exp(γKSH̃m,e)

γKS

)
+ ρmin (21)

where KSmin is the minimum value of the KS function, which is equal to

KSmin =
lnP

γKS
(22)

and KSmax is the maximum value of the KS function, which is equal to

KSmax =
ln(P exp(γKS))

γKS
(23)

where P is the expected maximum number of geometric primitives intersecting at one point (by default, this is 2).

Therefore, the combined ρ will exceed the range [ρmin, 1] only at intersections where more than P geometric primitives
overlap. In these cases, ρ is clamped to the range and becomes insensitive to the objective function.

In our case, the primary topology shape is a non-overlapping primitive in which a void must form. For large values of
P but small values of γKS , the value of ρ inside the primitive becomes considerably higher than ρmin. This behavior is
evident from the minimum ρ values (min(ρ)) reported in Table 5 for Task 3: MBB beam half, where no primitives intersect.
Therefore, we choose γKS to be as large as possible while ensuring that computations remain practical and that excessively
large values of exp(γKS) are avoided.

Changing γKS above 10 has little impact on convergence or final topology, whereas lower values worsen convergence
because ρe remains too high for void formation.

We conducted experiments with different γks values for Example 3: Bracket. The results are shown in Table 6 and Figure
13.

Table 5. Experiments with different γks values for Task 3: MBB beam half

γks 10 20 30 40 50 60 70 80
vf 0.454 0.471 0.487 0.437 0.510 0.460 0.451 0.465
C 0.00182 0.00169 0.00151 0.00163 0.00141 0.00155 0.00156 0.00153
min(ρ) 0.06997 0.03533 0.02378 0.01800 0.01454 0.01223 0.01058 0.00934
max(ρ) 0.93014 0.96479 0.97634 0.98212 0.98559 0.98790 0.98955 0.99078

Table 6. Experiments with different γks values for Task 2: Bracket

γks 10 20 30 40 50 60 70 80
vf 0.373 0.358 0.347 0.355 0.347 0.344 0.357 0.354
C 0.00238 0.00212 0.00209 0.00207 0.00210 0.00213 0.00203 0.00198
min(ρ) 0.00067 0.00105 0.00504 0.00089 0.00116 0.00163 0.00623 0.00103
max(ρ) 0.87418 0.93682 0.95769 0.96813 0.97439 0.97857 0.98155 0.98379
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(a) γks = 10...40 (b) γks = 50...80

Figure 13. Brecket results for different γks ranges.
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H. Method Comparison
The task schemes are presented in Figure 11.

Notes:

• The presented von Mises plot is used here for a visual assessment of the quality of the internal stress distribution in
the structure. Using its maximum values as a metric for comparing methods is impractical in this case.

• The specified Vmax value in FMTO is chosen to demonstrate that even with the smallest amount of material, our
method achieves better compliance metric values.

• TreeTOP is implemented only for rectangular domains. Although the NTopo method allows for domain modifica-
tions, specifying the boundary conditions is complicated, and therefore we did not implement it. Consequently, the
comparison for the "Bracket" problem includes only SIMP and Elliptical FMTO.

(a) Task 5: Square Cantilever Beam (b) Task 6: Square Beam

Figure 14. Solutions obtained using SIMP, TopoDiff and Neural Heaviside SDF for Task 5 and Task 6.
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Figure 17. Cantilever Beam
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