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Abstract

This work studies the problem of sparse structured generalized linear models with sorted
nonsmooth penalties, which are known to induce an automatic grouping of the features
without a priori knowledge. Generalizing the Sorted L1 Penalty (SLOPE), we introduce a
family of nonconvex sorted penalties which not only promote clustering of variables, but are
less biased than their popular convex counterpart. For sorted weakly convex penalties (e.g.
sorted MCP and SCAD), we provide an algorithm that exactly and efficiently computes their
proximal operator. Moreover, we show that a slight modification of this algorithm turns out
to be remarkably efficient to tackle the computation of the proximal operator of sorted ℓq
with q ∈ ]0, 1[, which is not weakly convex and whose prox yields a challenging combinatorial
problem. We demonstrate the interest of using such penalties on several experiments.

1 Introduction

Sparsity and structure are two desirable characteristics for a model as they improve its interpretability and
decrease its complexity. Sparsity is most usually enforced through a penalty term favoring variable selection,
i.e. solutions that use only a subset of features. Such sparsity-promoting penalties share the common property
to be nonsmooth at zero. While being widely used, the convex ℓ1 norm (the Lasso, Tibshirani, 1996) has the
drawback of shrinking all nonzero coefficients towards 0. In the sparse recovery literature, this undesirable
property is commonly called bias . It can be mitigated by using nonconvex penalties (Selesnick & Bayram,
2014). These include smoothly clipped absolute deviation (SCAD, Fan & Li, 2001), minimax concave penalty
(MCP, Zhang et al., 2013) or the log-sum penalty (Candes et al., 2008). Another very popular class of
nonconvex penalties are the ℓq regularizers (Grasmair et al., 2008), with q ∈ ]0, 1[. The latter are not only
nonconvex and nonsmooth (like MCP and SCAD) but also non-Lipschitz. We refer to Appendix A for an
overview of popular nonconvex penalties.

Beyond sparsity, one may be interested in clustering features, i.e. in assigning equal values to coefficients of
correlated features. In practice, such groups should be recovered without prior knowledge about the clusters.
The Lasso is unfit for this purpose as it tends to only select one relevant feature from a group of correlated
features. The Fused Lasso (Tibshirani et al., 2005) is a remedy, but only works for features whose ordering is
meaningful, as groups can only be composed of consecutive features. Elastic-Net regression (Zou & Hastie,
2003), which combines ℓ1 and squared ℓ2 regularization, encourages a grouping effect, but does not enforce
exact clustering. In contrast, the OSCAR model (Bondell & Reich, 2008) combines a ℓ1 and a pairwise ℓ∞
penalty to simultaneously promote sparsity and equality of some coefficients, i.e. clustering. OSCAR has
been shown to be a special case of the sorted ℓ1 norm regularization (Bogdan et al., 2013; Zeng & Figueiredo,
2014). As our present work heavily builds upon this penalty, we recall its definition below.
Definition 1.1 (SLOPE (Bogdan et al., 2013), OWL (Zeng & Figueiredo, 2014)). The sorted ℓ1 penalty,
denoted ΨSLOPE, writes, for x ∈ Rp:

ΨSLOPE(x) =
p∑
i=1

λi|x(i)| , (1)

where x(i) is the i-th component of x sorted by non-decreasing magnitude, i.e. such that |x(1)| ≥ · · · ≥ |x(p)|,
and where λ1 ≥ · · · ≥ λp ≥ 0 are chosen regularization parameters.

1



Under review as submission to TMLR

0 10 20

−5

0

5

‖x̂−x∗‖
‖x∗‖ : 0.47, F1: 0.83

0 10 20

‖x̂−x∗‖
‖x∗‖ : 0.28, F1: 0.83

0 10 20

‖x̂−x∗‖
‖x∗‖ : 0.29, F1: 0.79

Figure 1: Sorted penalties for denoising: x̂ is the proximal operator of the penalty applied to a noisy version
of the ground truth x∗. With equivalent cluster recovery performance (same F1 score), nonconvex sorted
penalties mitigate the bias give amplitudes closer to the ground truth compared to convex SLOPE. Note
that the clusters are contiguous only for visualization purposes: shuffling the noisy signal does not affect the
results. Details on the setup and complete results are in Section 5.1.

The main feature of SLOPE is its ability to exactly cluster coefficients (Figueiredo & Nowak, 2014; Schneider
& Tardivel, 2022). Solving many issues of the Lasso, e.g. high False Discovery Rate (Su et al., 2017), SLOPE
has attracted much attention in the last years. It has found many applications both in compressed sensing
(El Gueddari et al., 2019), in finance (Kremer et al., 2020) or for neural network compression (Zhang et al.,
2018). One line of research has focused on its statistical properties: minimax rates (Su & Candès; Bellec
et al., 2018), optimal design of the regularization sequence (Hu & Lu, 2019; Kos & Bogdan, 2020), pattern
recovery guarantees (Bogdan et al., 2022). Dedicated numerical algorithms were also developed, comprising
screening rules (Larsson et al., 2020; Elvira & Herzet, 2023), full path computation à la LARS (Dupuis &
Tardivel, 2024) or hybrid coordinate descent methods (Larsson et al., 2023).

Although it mitigates some of the biases of the Lasso, SLOPE is still convex and thus penalizes large
coefficients too much. It is thus tempting to use nonconvex variants of SLOPE, replacing the absolute value
in Equation (1) by a nonconvex sparse penalty. However, one of the reasons behind the success of SLOPE is
its practical usability through the availability of its proximal operator, which can be computed exactly (Zeng
& Figueiredo, 2014; Dupuis & Tardivel, 2022). It comes down to solving isotonic regression, which can be
done efficiently using the Pool Adjacent Violators (PAV) algorithm (Best & Chakravarti, 1990, recalled in
Algorithm 2).

For nonconvex sorted penalties, results are scarcer. A sorted version of MCP was proposed by Feng & Zhang
(2019), who studied its statistical properties. The authors also proposed a “majorization-minimization” ap-
proach to deal with some sorted nonconvex penalties, using a linear convex approximation of the regularization
term. The authors limited their investigation to sorted SCAD and sorted MCP.

In this paper, we consider a large array of nonconvex sorted penalties (sorted versions of SCAD, MCP,
Log-Sum, ℓq), that leverage both advantages of nonconvexity and sorting, i.e. unbiasedness and automatic
features clustering. Their interest is illustrated on Figure 1, where it is visible that, with equal cluster
recovery performance, they decrease the bias of the solution, leading to lower estimation error than SLOPE
lead to lower estimation error than SLOPE. To exploit them efficiently, we propose specific algorithms to
compute their proximal operators. This allows for their use in combination with virtually any datafit, be it
for regression or classification.

Contribution. Our contribution is two-fold:

• In Section 3, we show that the proximal operator of sorted weakly convex penalties (including
sorted MCP and sorted SCAD) can be directly computed: we generalize the PAV algorithm to
exactly compute such proximal operators.
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• In Section 4, we consider another class of nonconvex penalties, the sorted ℓq penalties for q ∈]0, 1[,
which, as far as we know, have not been studied yet. It presents an additional level of complexity
due to the underlying scalar penalty ℓq not being Lipschitz continuous. We characterize the local
minimizers of the prox minimization problem and provide a PAV-like algorithm which we prove to
converge to a subset of them including global minimizer. Moreover, experiments tend to indicate that
the proposed PAV-like algorithm may not reach the global solution only for very specific settings and
we were not able to build such counter-examples.

Notation. Lowercase bold letters such as x denote vectors. We denote by xi the i-th component of x. For a
vector x, we denote by x↓ the vector obtained by sorting its components by non-increasing magnitude, and x(i)
is the i-th component of x↓: |x(1)| ≥ · · · ≥ |x(p)|. We denote |x| the element-wise absolute value of a vector x.
Note that |x|↓ = |x↓|. We denote by Kp the non-increasing monotone cone: Kp := {x ∈ Rp : x1 ≥ · · · ≥ xp}.
In addition, K+

p denotes the non-negative non-increasing monotone cone: K+
p := Kp ∩ Rp+. The sign function

simply denoted as sign acts element-wise on some vector x ∈ Rp, i.e. sign(x) ∈ {−1, 0, 1}p. The positive part
is (·)+ and also acts element-wise on vectors. The Hadamard product (i.e. element-wise product) is denoted
as ⊙. For a set of indices B ⊂ J1, pK, its cardinality is |B|; for some vector y ∈ Rp, we define ȳB as its average
value on the block B: ȳB = 1

|B|
∑
i∈B yi .

2 Background on proximal operator for sorted penalties

In this section, we revisit key properties of sorted penalties, focusing on how the proximal calculation problem
simplifies to an isotonic problem. We end this section by recalling the Pool Adjacent Violators (PAV)
algorithm, which is the standard method for solving such isotonic problems.
We consider composite penalized problems that write as:

arg min
x∈Rp

f(x) + Ψ(x) , (2)

where f is an L−smooth convex datafit and the function Ψ is the chosen penalty.

Our focus is on Ψ , which we take to be a sorted penalty built from a positive scalar penalty ψ : R×R+ → R+,
differentiable with respect to its first variable on R+. To construct Ψ , we also fix a non-increasing sequence of
regularization parameters (λi)i∈J1,pK such that λ1 ≥ · · · ≥ λp ≥ 0 (with at least one strict inequality). Then,
the sorted penalty writes:

Ψ : x 7→
p∑
i=1

ψ(|x(i)|;λi) . (3)

The choices we use1 for ψ are nonsmooth at 0, hence so is Ψ . The most common algorithm to solve Equation (2)
is then proximal gradient descent (also referred to as forward-backward splitting, Combettes & Wajs, 2005),
which iterates

xk+1 = proxηΨ
(
xk − η∇f(xk)

)
, (4)

where η is the stepsize; refinements such as FISTA (Beck & Teboulle, 2009) improve the convergence speed.
All these state-of-the-art algorithms rely on the proximal operator of Ψ : its computation is mandatory in
order to use sorted penalties in practice. The rest of the paper is thus devoted to the computation of proxηΨ ,
for Ψ of the form in Equation (3).

2.1 Basic properties

First, we present general properties of proximal operators for sorted penalties. We recall here, in a more
general form, results already known in the case of SLOPE (Definition 1.1). Proximal operators were first
studied by Moreau (1965) in the case of proper, lower semi-continuous (l.s.c.) and convex functions. Because
most functions under scrutiny in this work are nonconvex, we will introduce here a more general definition
(referred to as proximal mapping) following the framework of Beck (2017, Chapter 6).

1MCP, SCAD, ℓq , log, etc.
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Definition 2.1 (Proximal mapping). The proximal mapping of a function Ψ : Rp → (−∞,+∞] is, for any
x ∈ Rp:

proxΨ (x) = arg min
y∈Rp

{
Ψ(y) + 1

2∥y− x∥2
}
.

Proposition 2.2 (Non-emptiness of the prox under closedness and coerciveness, Beck, 2017, Thm. 6.4). If
Ψ is proper, l.s.c. and Ψ + 1

2 || · −x||2 is coercive for all x ∈ Rp, then proxΨ (x) is nonempty for all x ∈ Rp.

In our setup, since Ψ is bounded below by 0 and thus ηΨ + 1
2 || · −x||2 is coercive, proxηΨ is nonempty for any

stepsize η > 0. As the next proposition shows, to compute the proximal operator of a sorted penalty, it is
enough to be able to compute it on non-negative and non-increasing vectors.
Proposition 2.3. For any y ∈ Rp, we can recover proxηΨ (y) from proxηΨ (|y|↓) by:

proxηΨ (y) = sign(y)⊙P⊤
|y| proxηΨ (|y|↓) ,

where P|y| denotes any permutation matrix that sorts |y| in non-increasing order: P|y|(|y|) = |y|↓.

The proof is in Appendix B. We get from Proposition 2.3 that the difficulty in computing the prox of a sorted
penalty at any point y ∈ Rp is the same as computing this prox for sorted positive vectors y ∈ K+

p only.
Moreover, it turns out that the latter can be replaced by an equivalent non-negative isotonic2 constrained
problem, as stated by Proposition 2.4.
Proposition 2.4 (Proximal operator of sorted positive vectors). Let y ∈ K+

p , i.e. y1 ≥ · · · ≥ yp ≥ 0. Then:

proxηΨ (y) = arg min
x∈K+

p

Pηψ(x; y) , (5)

where

Pηψ(x; y) ≜
p∑
i=1

ψ(xi, λi) + 1
2η ∥y− x∥2 . (6)

Note that this minimization problem depends solely on the unsorted penalty constrained to a convex set. To
sum up, if one is able to solve the problem given in Equation (5), then from Proposition 2.3, one can recover
the proximal operator of ηΨ at any y ∈ Rp.

2.2 The PAV algorithm for isotonic convex problems

The PAV algorithm has been introduced by Best & Chakravarti (1990) to solve the isotonic regression
problem, i.e. the orthogonal projection onto the isotonic cone K+

p . Best et al. (2000) have extended it to the
minimization of separable convex functions over K+

p .

We give PAV pseudo code in Appendix C and briefly explain below how it operates. In simple terms, the PAV
algorithm starts from the unconstrained optimal point and partitions the solutions into blocks (singletons
at initialization). It then iterates through the blocks, merging them using a pooling operation when the
monotonicity constraint is violated:

• Forward pass: PAV merges the current working block with its successor if monotonicity is violated.
• Backward pass: Once this forward pooling done, the current working block is merged with its

predecessors as long as monotonicity is violated.

Finally, the additional non-negative condition is dealt with by taking the positive part of the solution as the
end of the algorithm (i.e. projecting on the non-negative cone). PAV is of linear complexity when the pooling
operation is done in O(1). The correctness proof of the PAV algorithm (Best et al., 2000, Theorem 2.5)
consists in showing that the KKT conditions are satisfied when the algorithm ends. The PAV algorithm works
for any separable convex functions as long as one knows the pooling operation to be done when updating the
values.

2as in isotonic regression, to be understood as monotonic
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3 Generalization to sorted weakly-convex penalties

In this section, we describe how the PAV algorithm can be used to efficiently compute the prox operator of
many Sorted nonconvex sparse penalties, such as sorted SCAD, sorted MCP or sorted log-sum, leveraging
their weak convexity.

Assumption 1 (Weak convexity). A function ψ is said to be µ-weakly convex if ψ + µ
2 ∥ · ∥

2 is convex for
some µ > 0. We focus in this section on sorted penalties built from scalar weakly convex penalties: there
exists some µ > 0 such that for any i ∈ J1, pK, the scalar penalty ψ(·;λi) is µ-weakly convex.

The next proposition shows that computing the proximal operator under Assumption 1 comes down to solving
a convex problem.
Proposition 3.1. If the sorted penalty Ψ is built from a positive scalar penalty ψ satisfying Assumption 1
for some µ > 0, then, for 0 < η < 1

µ , the unsorted objective Pηψ in Equation (6) is convex and the proximal
mapping proxηΨ is a singleton on Rp.

Proof. The proximal mapping is nonempty for any x ∈ Rp, η > 0. Then Pηψ is clearly convex if η < 1
µ and

Assumption 1 holds. From Proposition 2.3 and Proposition 2.4, as the set of minimizers of a strongly convex
function, proxηΨ (y) is a singleton for all y ∈ Rp.

Remark 3.2. Proposition 3.1 requires that the stepsize η is smaller than a constant depending on the
weak-convexity parameter of the penalty. Although it may seem restrictive, note that it is consistent with the
condition for convergence of the PGD algorithm (Equation (4)) that imposes η < 1

L with a L-smooth datafit f .

3.1 Computation of the proximal operator with a PAV algorithm

With the stepsize η taken as η < 1/µ, then the prox problem becomes a convex isotonic problem so the PAV
algorithm can be used.

The pooling operation, which updates value on a block B, χ(B), is defined as:

χ(B) ≜ arg min
z∈R+

∑
i∈B

1
2η (z − yi)2 + ψ(z;λi) . (7)

Proposition 3.3 shows that, for sorted weakly convex penalties, the pooling operation given by Equation (7)
can be written as a scalar proximal operation.
Proposition 3.3 (Writing χ as a proximal operation). Under Assumption 1, for a block of successive indices
B, the minimizer χ(B) defined by Equation (7) is the proximal point of an averaged scalar penalty evaluated
at an averaged data point.

χ(B) = prox η
|B|

∑
i∈B

ψ(·;λi)(ȳB) , (8)

where we use the notation x̄B as the average value of the vector x on the block B: x̄B =
∑
i∈B xi. Besides, if

ψ(·;λ) = λiψ0(·), then we have a direct formulation of χ(B) as:

χ(B) = proxλ̄Bηψ0
(ȳB) . (9)

Proof. Let y ∈ Rp such that y = |y|↓ the point for which we want to compute proxηΨ(y). Let B = Jq, rK be
a block of consecutive indices. Then, χ(B) is the unique zero of the function fB defined as

fB(z) = |B|
[

1
η

(z − ȳB) +
∑
i∈B ψ

′(z;λi)
|B|

]
= |B| ∂

∂z

[
1
2η (z − ȳB)2 +

∑
i∈B ψ(z;λi)
|B|

]
.

So, χ(B) is the unique minimizer of the strongly convex function z 7→ 1
2η (z − ȳB)2 +

∑
i∈B

ψ(z;λi)
|B| , which

gives the expected result.
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Remark 3.4. For a standard non-sorted penalty, one would apply the proximal operator component-wise.
Proposition 3.3 points out that the use of sorted penalties enforces the proximal operation to be done block-wise,
which enforces coefficient grouping, as intended.
Example 3.5 (Sorted MCP). For any γ > 0, λ > 0, the MCP penalty is defined on R+ × R+ as:

ψ : (z;λ) 7→
{
λz − z2

2γ if z ≤ γλ ,
λ2γ

2 otherwise .

It is 1
γ -weakly convex, so is Ψ . From Proposition 3.3, the solution χ(B) of Equation (7) is the zero of the

continuous, strictly increasing affine function fB:

fB : z 7→ 1
η
|B| (z − ȳB) +

∑
i∈B

(
λi − z

γ

)
+
.

By denoting for every i ∈ B = Jq, rK, vi ≜ [|B|γ − η(i− q + 1)]λi + η
∑i
j=q λj , we have an explicit expression

for χ(B) that only depends on the position of ȳB in the sequence (vi)i∈B:

χ(B) =
ȳB − η

|B|
∑i
j=q λi

1− i−q+1
|B|

η
γ

,

with i such that |B|vi+1 ≤ ȳB < |B|vi (we denote vq−1 = +∞, vr+1 = 0 and
∑q−1
j=q = 0).

Example 3.6 (Sorted Log-Sum). For any ϵ > 0, λ > 0, the log-sum penalty is defined on R+ × R+ as
ψ : (z;λ) 7→ λ log

(
1 + z

ϵ

)
. It is λ

ϵ2 -weakly convex. So, Ψ is λ1
ϵ2 - weakly convex. Then, for every η < ϵ2

λ1
,

proxηΨ can be computed in O(n) using the PAV algorithm and updating each block using the known formula
of the proximal operator of log-sum (Prater-Bennette et al., 2022).

χ(B) =
{

0 if ȳB ≤ λ̄B

ϵ ,

1
2 (ȳB − ϵ) +

√
1
4 (ȳB + ϵ)2 − λ̄B otherwise .

Links with the MM approach Feng & Zhang (2019) proposed a majorization-minimization algorithm in
which they first upper bound Ψ by Ψ+ = Ψ + Ψ−, and then minimize the majorizing function with one step of
proximal gradient descent, using PAVA to compute proxηΨ+ . For weakly convex penalties, one can take Ψ−
equal to a quadratic. The main difference with our work is that we show that prox can be directly computed,
without relying on a majorization. We provide in Appendix I more details on Feng & Zhang (2019) approach
as well as experimental comparison.

4 Extension to nonconvex Sorted ℓq

This section addresses the more complex case of the sorted ℓq penalty with q ∈ ]0, 1[: it provides characteriza-
tions for local and global minimizers, and explains how PAV can be adapted to compute them.
The ℓq penalty is not weakly convex, so cannot be treated as in the previous section. While being more
difficult to handle, several experimental studies (Li et al., 2018; Yuan et al., 2019) show that ℓq outperforms
ℓ1 or SCAD penalties for specific inverse problems: its recurrent appearance in the scientific literature makes
it worthy of interest. Among the ℓq penalties, ℓ1/2 and ℓ2/3 stand out as the two penalties whose proximal
operator can be computed in closed form (Xu et al., 2012; Chen et al., 2016). Nevertheless, we treat a
generic q.

For the ℓq penalty, Proposition 2.4 still holds and so our prox minimization problem is an isotonic regression
problem:

min
x∈K+

p

1
2η ∥x− y∥2 +

p∑
i=1

λix
q
i .
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Up to a scaling of the sequence (λi)i∈J1,pK, it rewrites:

(Pp) : min
x∈K+

p

∥x− y∥2 +
p∑
i=1

λix
q
i . (10)

Before delving into Equation (10), we study the scalar case.

4.1 Background on the prox of scalar ℓq

For y ≥ 0, λ > 0, we consider the scalar proximal objective function of ℓq,

F : z 7→ (y − z)2 + λzq. (11)

Proposition 4.1 (Local minimizers of F ). We denote τ the threshold defined as τ ≜
[

2−q
1−q

] (
λq(1−q)

2

) 1
2−q .

• If y < τ , then F has only one minimizer which is 0.
• If y ≥ τ , then F has two local minimizers on R+ which are 0 and another one that we denote ρ+(y, λ).

Proposition 4.2 (Minimum of F ). We denote T the threshold defined as T ≜
[

1
2

2−q
1−q

]
(λ(1− q))

1
2−q . Then,

arg min
z∈R+

F (z) =


{0} if y < T ,

{0, ρ+(y, λ)} if y = T ,

{ρ+(y, λ)} if y > T ,

where ρ+ is the minimizer introduced in Proposition 4.1.

The proofs of Propositions 4.1 and 4.2 can be found in Xu et al. (2012); Chen et al. (2016).

Since the thresholds defined in Propositions 4.1 and 4.2 are such that T ≥ τ , we can distinguish the following
three cases (also described in Figure 6, Appendix E):

1. y ≤ τ : the unique global minimizer of F on R+ is 0.
2. τ ≤ y ≤ T : there are two local minimizers, 0 and ρ+, 0 being the global minimizer of F on R+.
3. T < y : there are two local minimizers, 0 and ρ+, ρ+ being the global minimizer of F on R+.

Lemma 4.3. For y ≥ τ , then ρ+ the local minimizer of F on R+∗ satisfies the following inequality.

ρ+(y, λ) ≥
(
λq(1− q)

2

) 1
2−q

.

Lemma 4.4. For y ≥ T , then ρ+ the global minimizer of F on R+ satisfies the following inequality.

ρ+(y, λ) ≥ (λ(1− q))
1

2−q .

An extensive study of the proximal operator of ℓq is provided in Appendix D, as it sheds light on the nature
of the functions to be minimized in the sorted case.

4.2 Local minimizers of the sorted ℓq prox problem

Our first goal is to describe the set of local minimizers of the problem (Pp). We have the following
characterization of these elements.

For a block B = Jq, rK, we define as FB , or alternatively Fq:r the scalar prox objective function on R+:

FB = Fq:r : z 7→
∑
i∈B

(yi − z)2 + λiz
q . (12)
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Theorem 4.5 (Characterization of local minimizers). We denote Lp the set of local minimizers of the problem
(Pp). Then, u ∈ Lp if and only if, on each maximal3 block B = Jq, rK where u is constant equal to ũ, the two
following results hold:

(i) ũ ∈ {χ(B), 0}, where

χ(B) ≜
{
ρ+(ȳB , λ̄B) if ȳB ≥ τB ,

0 otherwise .
(13)

(ii) when ũ = χ(B), then for all j ∈ Jq, r − 1K we have,

either χ(Jq, jK) ≤ χ(B) ≤ χ(Jj + 1, rK), (14)
either χ(Jq, jK) ≥ χ(Jj + 1, rK) ≥ χ(B). (15)

Moreover if χ(B) > 0, Fq:j is increasing at χ(B) and Fj+1:r is decreasing at χ(B) while if χ(B) = 0
both Fq:j and Fj+1:r are increasing at χ(B).

Proof. The detailed proof is in Appendix E; it relies on a careful study of the different possible variation
profiles for FB . Informally, the main ideas behind of the proof are as follows.

(i) Theorem 4.5 (i) is obtained from the fact that the value of each block of a local minimizer has to be
itself a local minimizer of the corresponding subproblem.

(ii) Theorem 4.5 (ii) is obtained from the fact that any feasible infinitesimal move around a local minimizer
should not decrease the objective value.

The second point of Theorem 4.5 highlights a key difference with the weakly convex case and the use of
the PAV algorithm. In the weakly convex setting, PAV algorithm merges blocks that violate the isotonic
constraint. Yet, for non weakly convex functions, Equation (15) points out a more pathological behavior:
merging correctly ordered blocks, which PAV does not do, might actually lead to better solutions. Nevertheless,
making use of the sufficient conditions of Theorem 4.5, we are able to show that, while being non exhaustive,
the PAV algorithm still reaches a local minimizer of the proximal sorted ℓq problem.

Theorem 4.6 (Convergence of PAV algorithm). The PAV Algorithm 2 based on the update rule B 7→ χ(B)
with χ defined in Equation (13) finds a local minimizer of the problem (Pp).

Proof. Proof is given in Appendix F; it comes down to showing each pooling operation in the PAV Algorithm 2
preserves Equation (14) which is a sufficient condition to reach local optimality.

4.3 On global minimizers of the sorted ℓq prox problem

The goal of this section is to better describe global minimizers of the ℓq prox problem. To this end, we restrict
ourselves to sequences of regularization parameters which write as λi = Λ(i) with Λ concave, non-decreasing
and non-negative. In particular, this setting encompasses the famous OSCAR model (Bondell & Reich, 2008)
where the regularization parameters λi decrease linearly:

λi = λ0 + λ(p− i) ∀i ∈ J1, pK . (16)

Theorem 4.7 (Necessary conditions on global minimizers). Let the regularization parameters (λi)i be
described by a concave, non-decreasing and non-negative function of i ∈ N. Let xp be a global minimizer of
(Pp). Then, xp ∈ Sp, where Sp is given by

Sp ≜
{

(ui
∗−1, χ(Ji∗, pK), . . . , χ(Ji∗, pK)), z1, . . . , zp

}
,

zi ≜ (ui−1, 0, . . . , 0) ∀i ∈ J1, pK ,
ui ∈ Li ∀i ∈ J1, pK .

where i∗ denotes the largest index such that (ui∗−1, χ(Ji∗, kK), . . . , χ(Ji∗, kK)) is feasible.
3meaning that if B is extended, x is no longer constant on it
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Proof. Proof of Theorem 4.7 is given in Appendix G. Restricting the sequence of regularization parameters
restricts the set of points where Equation (15) occurs. This simplifies the setting, as the last block of the
solution, which is always a global minimizer for its related scalar block function, can only be obtained by
merging unsorted blocks, which is more intuitive. Then, the proof establishes these necessary conditions
on global minimizers through a geometrical approach. It constructs other local minimizers using sufficient
conditions outlined in Theorem 4.5, and show they can not achieve global optimality.

The importance of the necessary conditions stated in Theorem 4.7 is twofold. First, it gives more information
on the structure of the last block. Then, it also highlights the need to consider separately the solutions built
with a last block of zeros. It motivates the use of a modified version of the PAV algorithm, described below,
which explicitly explores these cases.

The D-PAV algorithm The standard PAV algorithm iterates over the indices k ∈ J1, pK. At each step k,
it takes the result of size k−1, i.e. uk−1 and test if (uk−1, χ({k})) is feasible. If not, it backtracks by merging
the last component with the previous blocks until it gets (uk−1

[i−1], χ(Ji, kK), . . . , χ(Ji, kK)) feasible. Doing so,
it exactly computes i∗ the largest index such that the vector (ui∗−1, χ(Ji∗, kK), . . . , χ(Ji∗, kK)) ∈ Kk and
ui∗−1 ∈ Li∗−1 (Theorem 4.6). Yet, it does not explore local minimizers with a last block of 0 (denoted as z
in Theorem 4.7). This suggests introducing a decomposed PAV algorithm (D-PAV, Algorithm 1) to explicitly
consider these local minimizers: as we compute the PAV solution, we store the intermediate solutions of size
k ≤ p, complete them with zeros at the end of the vector, and finally keep the one leading to the smallest
objective value.

Algorithm 1: D-PAV for sorted ℓq

input : data y ∈ Rp, regularization sequence (λi)i∈J1,kK
y← |y|↓
for k ∈ J1, pK do

xk1:k ← PAV (y[k],λ[k]); /* Algorithm 2 */
xki+1:p ← 0
if F (xk) < F (x) then

x← xk
end

end
return x

4.4 Toward a generic algorithm ?

Our investigation of Sorted ℓq provides computational means along with theoretical guarantees for this
specific penalty. Yet, our approach may be generalized: it also adapts to µ weakly-convex penalties in the
non weakly-convex regime when assuming larger step sizes η in the prox computation, i.e. η ≥ 1

µ . In this
setting, the prox objective shows similar variations to the case of the ℓq penalty (see Figure 6 for a reminder):

1. the existence of two thresholds, τ and T such that
(a) τ decides whether there is one minimizer which is 0 or two local minimizers, 0 and ρ+ on R+.
(b) T ≥ τ decides whether 0 or ρ+ is the global minimizer.

2. some lower bounds on the second minimizer ρ+ which is non-decreasing with λ such as in Lemma 4.3.

Given the knowledge of these two elements, we directly recover the necessary and sufficient conditions on
local minimizers (Theorem 4.5).

As an illustration, we lay down the directions to adapt our results on ℓq to the log-sum penalty

ψϵ(x;λ) = λ log
(

1 + |x|
ϵ

)
, (17)

where ϵ > 0.

9
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Prater-Bennette et al. (2022) derive explicit expressions for its proximal operator. In particular, they show
the existence of two regimes depending on λ, ϵ:

1. Weakly-convex regime: As seen in Section 3, the log-sum penalty is λ
ϵ2 -weakly convex. So, for η < ϵ2

λ1
,

the proximal operator proxηΨϵ
can be computed using standard PAV algorithm.

2. Not weakly-convex regime: Prater-Bennette et al. (2022, Lemma 2, Proposition 2) give the existence
of the two thresholds τ and T :
(a) τ = 2

√
ηλ− ϵ decides whether there is one minimizer which is 0 or two local minimizers, 0 and

ρ+ on R+.
(b) T ≥ τ , defined implicitely, decides whether 0 or ρ+ is the global minimizer.
Prater-Bennette et al. (2022, Lemma 3) also explicit a lower bound on ρ+, which is non-decreasing
with λ, : for y ≥ τ , then ρ+ ≥

√
ηλ− ϵ.

The D-PAV algorithm can be used in this setting, leveraging on the explicit form of the proximal operator
given by Prater-Bennette et al. (2022).

5 Experiments

The code to reproduce all the experiments is included in the supplementary material for frictionless repro-
ducibility. The attached code package relies on sklearn and skglm (Pedregosa et al., 2011; Bertrand et al.,
2022); it will be released on GitHub upon acceptance.

5.1 Denoising

In this first experiment, we demonstrate the property that, generalizing from classical ℓ1 versus nonconvex
penalties, one can expect from sorted nonconvex penalties: they lead to estimators with less bias.

The setup is the following: we generate a true vector x∗ ∈ R28 with 4 equal-sized clusters of coefficients, on
which it takes the values 7,−5, 3 and -1. The clusters are taken contiguous simply to visualize them better in
Figure 1, but we stress that this does not help the algorithms: their performance would be the same if we
shuffled the vector to be recovered. We add i.i.d Gaussian noise of standard deviation 0.3 to x to create 1000
samples of noisy vector x.

To denoise x, we apply the proximal operators of SLOPE, sorted MCP and sorted ℓ0.5 respectively. The
sequence (λi) is selected4 as λi = r(28− i), with r > 0 controlling the strength. For each of the 3 penalties,
we compute denoised versions of x by applying to it their proximal operator, for 100 geometrically-spaced
values of r. For each resulting denoised vector x̂, we define the normalized error as ∥x̂ − x∗∥/∥x∗∥. To
measure the cluster recovery performance, we define the binary matrix M(x) as having entry i, j equal to 1
if |xi| = |xj | (i.e. i and j are in the same cluster in x) and 0 otherwise. The reported F1 score is then the
F1 score between M(x̂) and M(x∗), i.e. the F1 score of the classification task “predict if two entries of the
vector belong to the same cluster”. An F1 score of 1 means that x̂ perfectly recovers the clusters of x∗.

Figure 2 displays the variation of F1 score and error. For each penalty, we define the optimal penalty strength
r as the lowest r for which the F1 score is superior to 80% of the maximal F1 score reached for this penalty
(vertical dashed lines). One can see that, for an equivalent F1 score, nonconvex sorted penalty are less biased
and reach a lower error. Denoised vector for the optimal choice of r are displayed in Figure 1.

5.2 Regression

We now turn to the setting of Equation (2), with a least squares datafit f(x) = 1
2∥Ax− b∥2. The setup is

the following. The matrix A is in R50×100, it is random Gaussian with Toeplitz-structured covariance, equal
to (0.98|i−j|)i,j . The ground truth x∗ has entries from 1 to 10 and 50 to 55 equal to 5, the rest being 0. The
target b is Ax∗ + ϵ where ϵ has independent Gaussian entries, scaled so that the SNR ∥Ax∗∥/∥ϵ∥ is equal to

4for ℓ0.5 we use r(28 − i)1.5 as concave sequences empirically turned out to yield better performance for ℓq
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Figure 2: Top: F1 score (averaged on the 1000 samples, with standard deviation) for cluster recovery, as a
function of the penalty strength. Bottom: Normalized estimation error (averaged on the 1000 samples, with
standard deviation), as a function of the penalty strength. For each penalty, the dashed line is set at 80% of
the maximum F1 score and displays a tradeoff between small estimation error and high F1 score.
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Figure 3: Solutions of Ψ -penalized regression for SLOPE (blue), sorted MCP (yellow) and sorted ℓ1/2 (green),
for decreasing penalty strengths (from left column to right). The ground truth is in black; SLOPE has more
false positive and bias.

5. All penalties use the Benjamini-Hochberg sequence λj = r prob(1− 0.1j/(2p)) where prob is the probit
function, and r > 0 a scaling parameter to control penalty strength.

Figure 3 displays the result for 4 values of penalization strength. It highlights the bias of SLOPE, which
creates many false positives and still underestimates the ground truth strength as the penalty strength
diminishes. On the contrary, sorted ℓ1/2 and MCP have few false positives and better identify the magnitude
of the true nonzero coefficient.

5.3 Discussion on the D-PAV algorithm for Sorted ℓq

We introduced Section 4.3 the D-PAV algorithm, a variation of the PAV algorithm to handle Sorted ℓq. This
section highlights when and how D-PAV succeeds where standard PAV algorithm would fail. We recall that
D-PAV specifically consider solutions that have a block of zeros at the end.

D-PAV algorithm versus standard PAV algorithm. We recall that the pooling operation of the PAV
algorithm consists in solving the scalar objective function taken on each block B. In the case of ℓq, we have
seen that there exist two thresholds τ and T which respectively state if one or two local minima exist / which
one is the global minima. Hence, in order to use PAV in this non-convex setting (yet loosing convergence
guarantees), there would be two ways to define the pooling operation:

• setting it to χ(B) defined in Equation (13), i.e, the largest local minimizer of FB ,
• setting it to χ∗(B) ∈ {χ(B), 0}, the global minimizer of FB .
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Figure 4: Left: Landscape of the proximal objective of ℓ1/2 and solutions for different algorithms. Right:
Positions of (y, λ) w.r.t. thresholds T and τ .

PAV solution

Other candidate in 

Figure 5: Left: The PAV algorithm merges unsorted blocks. Right: The vector in green has been merged
using Equation (15) and is in Sp: hence, it may be a global minimizer.

In Figure 4, we show that these two ideas (referred respectively to PAVχ and PAVχ∗) both fail in finding
the global solution in simple 2D toy examples. In contrast, the proposed D-PAV algorithm (see Section 4.3)
succeeds. The setting we considered here is the following. For both, y1 ≥ τ1 and y2 ≥ τ2 so F1 and F2 have
both two local minimizers. Besides, we also have y1 < T1 and y2 > T2 meaning F1 has 0 as global minimizer
and F2 has χ(2) as its global minimizer.

Building counter-examples to D-PAV ? We recall that Theorem 4.7 defines a subset of local minimizers
which contain the global minimizer. While the D-PAV algorithm explores this subset, there may exist some
setting where the algorithm misses some candidates and fail to recover the global minimizer. From the form
of the solution, we know we at least recover the correct last block. Yet, on the first part of the solution,
one may be able to find other blocks structure by merging correctly ordered blocks (Equation (15)). The
following experiments show that the combination of (y,λ) such that this setting may occur are very rare.
Even by purposely constructing such adversarial examples, we cannot find a setting where D-PAV fails.

D-PAV versus exhaustive search. To benchmark our D-PAV approach, we compare it with the bruteforce
approach where we compute all the possible partitions of the vector into blocks. We take y ∈ R10: each point
yi is such that yi = T (λi) + ϵ with ϵ ∼ N (−0.3, 1). We compute the value of the blocks using χ. We test on
10 different seeds for which D-PAV always recovers the solution. We also compare ourselves for y ∈ R100

with the Sequential Least Squares Programming implemented in the scipy library: we run on 100 initial
points and keep the better solution. Once again, D-PAV systematically beats the solution from scipy.

Adversarial settings. The D-PAV algorithm could fail in a setup where it does not merge sorted blocks
χ(B1) ≥ χ(B2) while χ(B1 ∪ B2) could have achieved a better objective value. See Figure 5 for an
illustration. To explore the rate of occurence of such a setup, we do the following experiment. We
fix a value for (yB2 , λB2). We are looking for a set of points such that yB1 ≥ yB2 , λB1 ≥ λB2 and
χ(B1) ≥ χ(B2) ≥ χ(B1 ∪B2). As, χ(B1 ∪B2) is a function of the averaged (y, λ), it rewrites as a function
of (yB1∪B2 = tyB1 + (1− t)yB2 , λB1∪B2 = tλB1 + (1− t)λB2). Then, we look for (yB1 , λB1) and t such that
χ(B1) ≥ χ(B2) ≥ χ(B1 ∪ B2). Results are plotted in Figure 9: we observe that the set of points where
D-PAV could theorically fail (indeed, it nevers merges B1 and B2 if χ(B1) ≥ χ(B2)) is scarce. Next, we pick
such values of (y, λ) and build a candidate counter-example in R6 as in Figure 5. Our D-PAV algorithm
systematically yields better solutions than the ones obtained with the merging described above.
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6 Conclusion

Sorted nonconvex penalties generalize the Sorted ℓ1 norm penalty: they benefit from both the sparsity-
enhancing and clustering properties of SLOPE but promote solutions with less bias. We have proposed a
unified approach to deal with regularized regression problems using such penalties by providing efficient
algorithms to compute, exactly or approximately, their proximal operator, which paves the way for a more
general use in practical cases.
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A Non-convex penalties

We give here a few examples of non-convex penalties used as alternatives to the ℓ1 norm to mitigate amplitude
bias of the solution.

Definition A.1 (Minimax Concave Penalty (MCP), Zhang et al. (2013)). For any γ > 0, λ > 0, the MCP is
defined by ψ(| · |;λ) where, for all t ≥ 0,

ψ(t;λ) =
{
λt− t2

2γ if t ≤ γλ ,
λ2γ

2 otherwise.
(18)

Definition A.2 (Smoothly Clipped Absolute Deviation (SCAD), Fan & Li (2001)). For any γ > 2, λ > 0,
the SCAD is defined by ψ(| · |;λ) where, for all t ≥ 0,

ψ(t;λ) =


λt if t ≤ λ ,
2γλt−t2−λ2

2(γ−1) if λ < t ≤ γλ ,
λ2(γ+1)

2 otherwise.
(19)

Definition A.3 (Log-sum penalty, Candes et al. (2008)). For any ϵ > 0, λ > 0, the log-sum penalty is
defined by ψ(| · |;λ) where, for all t ≥ 0,

ψ(t;λ) = λ log
(

1 + t

ϵ

)
. (20)

Definition A.4 (ℓq pseudo-norm). For 0 < q < 1, λ > 0, the ℓq pseudo-norm regularizer is, for all t ≥ 0:

ψ(t;λ) = λtq . (21)
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B Properties of sorted penalties

We recall several properties of proximal operators of sorted penalties, that will ease their computation, and
give the proof of Propositions 2.3 and 2.4. Note that these properties have already been shown in several
previous works Zeng & Figueiredo (2014); Bogdan et al. (2015); Feng & Zhang (2019). First, to ease the
presentation of the following proofs, let introduce the objective function of the sorted proximal operator

QηΨ (x; y) ≜ 1
2η ∥y− x∥2

2 + Ψ(x) = 1
2η ∥y− x∥2

2 +
p∑
i=1

ψ(|x(i)|, λi), (22)

which must not be confused with the non-sorted objective Pηψ defined in Equation (6).

Proposition B.1 (Sign of the proximal operator). Let x ∈ Rp and p ∈ proxηΨ (x). Then, for every i ∈ J1, pK:

pixi ≥ 0 .

Proof. Suppose that there exists i ∈ J1, pK such that xipi < 0. Since for every x ∈ Rp, Ψ(x) = Ψ(|x|), we can
assume xi > 0 and pi < 0 without loss of generality. It then follows that:

(xi − pi)2 > (xi − |pi|)2.

Let p̃ be equal to p everywhere except at index i where p̃i = |pi|. One has Ψ(p̃) = Ψ(p) and:

QηΨ (p̃,x) = 1
2

∑
j ̸=i

(xj − pj)2 + 1
2(xi − |pi|)2 + ηΨ(p̃)

<
1
2

∑
j ̸=i

(xj − pj)2 + 1
2(xi − pi)2 + ηΨ(p̃)

= 1
2

∑
j ̸=i

(xj − pj)2 + 1
2(xi − pi)2 + ηΨ(p) = QηΨ (p,x) ,

which contradicts the optimality of p.

Proposition B.2 (Monotonicity of the proximal operator). Let x ∈ Rp and p ∈ proxηΨ (x). Then, the
components of x and those of p are ordered in the same way: ∀i, j ∈ J1, pK , xi < xj =⇒ pi ≤ pj.

Proof. Let i, j ∈ J1, pK such that xi < xj and pi > pj . Then:

(xi − pi)2 + (xj − pj)2 = x2
i + x2

j + p2
i + p2

j − 2xipi − 2xjpj .

Yet by assumption (xi − xj)(pj − pi) > 0, and so −xipi − xjpj > −xjpi − xipj . It follows:

(xi − pi)2 + (xj − pj)2 > x2
i + x2

j + p2
i + p2

j − 2xjpi − 2xipj = (xj − pi)2 + (xi − pj)2.

Let p̃ be equal to p, except for p̃i = pj and p̃j = pi. As Ψ is a sorted penalty, Ψ(p) = Ψ(p̃). Therefore,

QηΨ (p̃,x) = 1
2

∑
k ̸=i,j

(xk − pk)2 + 1
2(xj − pi)2 + 1

2(xi − pj)2 + ηΨ(p̃)

<
1
2

∑
k ̸=i,j

(xk − pk)2 + 1
2(xi − pi)2 + 1

2(xj − pj)2 + ηΨ(p) = QηΨ (p,x) ,

which contradicts the optimality of p.
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Proof of Proposition 2.3. For any y ∈ Rp, we know from Proposition B.1 that y and proxηΨ (y) share the
same sign element-wise. As flipping the sign of an element of y does not change the value of Ψ(y), it follows
easily that proxηΨ (y) = sign(y)⊙ proxηΨ (|y|). It remains to show that for y non-negative:

proxηΨ (y) = P⊤
y proxηΨ (P|y|y) . (23)

For any permutation matrix Q and any x,y ∈ Rp, ∥Q(y− x)∥2 = ∥y− x∥2. Moreover, by definition of the
sorted penalty Ψ , we have Ψ(P|y|y) = Ψ(y). Thus for any x,y ∈ Rp:

Ψ(P|y|y) + 1
2∥P|y|(y− x)∥2 = Ψ(y) + 1

2∥y− x∥2 ,

from which we deduce Equation (23), by change of variable y′ = P|y|y.

Proof of Proposition 2.4. First, let x∗ ∈ proxηΨ (y). From Propositions B.1 and B.2, because y is sorted and
has positive entries, so is x∗: x∗ = |x∗|↓. Thus,

proxηΨ (y) = arg min
x∈K+

p

QηΨ (x,y).

Then, given that for every x ∈ K+
p , QηΨ (x,y) = PηΨ (x,y) completes the proof.

C Pool Adjacent Violators algorithm

In the following, a block is a set of consecutive indices of J1, pK on which the components of the iterate x
are equal. At each iteration of the algorithm, a block B0 ≜ Jq, rK is taken as the working block. Likewise,
B− ≜ J..., q − 1K and B+ ≜ Jr + 1, . . .K respectively denote the blocks before and after B0, potentially empty.
We denote xB as the common value of the components of x on the block B. We introduce two functions that
operate on blocks: Pred(B) (resp. Succ(B)) returns the block just before (resp. after) the block B if it
exists, otherwise, it returns the empty set.

Algorithm 2: PAV algorithm
input : data y ∈ Rp
x← (χ({1}), . . . , χ({p})) ; /* Initialisation with unconstrained solution */
B− ← ∅
B0 is the block such that 1 ∈ B0 and B+ ← Succ(B0)
while B+ ̸= ∅ do

if xB0 ≥ xB+ then
B0 ← B+, B− ← B0, B+ ← Succ(B+)

end
; /* If blocks are ordered, move forward */
else

Update x on B0 ∪B+: xB0∪B+ ← χ(B0 ∪B+) ; /* If not, pooling operation */
B0 ← B0 ∪B+, B+ ← Succ(B0)
while

(
xB− ≤ xB0

)
∧ (B− ̸= ∅) do

Update x on B− ∪B0: xB−∪B0 ← χ(B− ∪B0) ; /* Backward pass to ensure correct
ordering after pooling */
B0 ← B− ∪B0, B− ← Pred(B−)

end
end

end
return (x)+

17
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D Proximal operator of ℓq

We aim to find the minimizers of the function F defined as:

F : z 7→ (y − z)2 + λzq

The function F is defined on R+ and differentiable on R+∗, thus its minimum may be attained at 0 or at a
critical point of F on R+∗. This motivates the following study of the variations of F . We denote by f = F ′,
defined on R+∗.

f : z 7→ 2
(
z − y + λq

2 zq−1
)

Proposition D.1. If y > τ ≜
[

2−q
1−q

] (
λq(1−q)

2

) 1
2−q , then f admits exactly two zeros on R+∗. We denote ρ+

the largest one which locally minimizes F .

Proof. The function f is differentiable on R+∗:

f ′(z) = 2
(

1− λq(1− q)
2 zq−2

)
We study the variations of f . We denote its unique minimum m.

f ′(z) = 0 ⇐⇒ z =
(
λq(1− q)

2

) 1
2−q

≜ m

f(m) = 2
(
m

[
1 + λ

q

2m
q−2

]
− y

)
= 2

(
m

[
1 + λ

q

2
2

λq(1− q)

]
− y

)
= 2

(
m

2− q
1− q − y

)
= 2

[(
2− q
1− q

) (
λq(1− q)

2

) 1
2−q

− y

]

x

f

0 m +∞

+∞+∞

f(m)f(m)

+∞+∞

• Either f(m) > 0 and f is positive on R+∗

• Either f(m) = 0 and m is the only root of f .
• Either f(m) < 0 and f has 2 roots: we denote ρ+ the largest one.

The condition f(mB) < 0 rewrites as follows.

y >

(
2− q
1− q

) (
λq(1− q)

2

) 1
2−q

= τ (24)

As f = F ′, it follows:

• Either y ≤ τ , and F has no local minima on R+∗,
• Either y > τ , and F has one local minima on R+∗ which is ρ+.
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Proof of Proposition 4.2. Assume 0 is the global minimizer of F over R+, meaning F (0) < F (z) for all z > 0.
It translates as:

z2 − 2yz + λzq > 0 ∀z > 0

i.e. z − 2y + λzq−1 > 0 for all z > 0. Then, we define g : z 7→ z + λzq−1.

g′(z) = 1 + (q − 1)λzq−2

g′′(z) = (q − 1)(q − 2)λzq−3 > 0 ∀z > 0

From the sign of g′′, we have g strictly convex on R+∗. It achieves its minimum value at M ≜ (λ(1− q))
1

2−q .
Then, g(z) > 2y for every z > 0 if and only if g(M) > 2y, which translates as y < T .

Proof of Lemma 4.3. Because ρ+ is defined as the largest root of f (the derivative of the prox objective
function F ), ρ+ is larger than the minimum of f which gives the inequality.

Proof of Lemma 4.4. We assume y > T so ρ+ is the global minimizer of F . Using the previous notations, we
have M ≜ (λ(1− q))

1
2−q . We compute f(M):

f(M) = 2
(
M − y + λq

2 Mq−1
)

= 2
(
M

(
1 + λq

2 Mq−2
)
− y

)
= 2

(
M

(
1 + λq

2λ(1− q)

)
− y

)
= 2

(
M

(
2− q

2(1− q)

)
− y

)
= 2 (T − y) < 0

So, we get that M < ρ+ as f > 0 on (ρ+,+∞).

E Proof of Theorem 4.5

We first recall some important notations. If we consider a block of successive indices B = Jq, rK, We define
as FB or Fq:r the prox objective function on a block of successive indices B. The prox objective function is
defined on Rp+ or on R+, depending if it is evaluated at a vector or scalar point:

FB(z) =
∑
i∈B

(yi − zi)2 + λiz
q
i ,

FB(z) =
∑
i∈B

(yi − z)2 + λiz
q .

In similar fashion, we denote fB or fq:r the derivative of FB on Rp+ or on R+. We define, on a block B, χ(B)
which is the largest largest local minimizer of F .

χ(B) ≜
{
ρ+(ȳB , λ̄B) if ȳB ≥ τB
0 otherwise ,

where ρ+ and τB are defined in Proposition 4.1. We recall the three different shapes that (scalar) FB may
have :

1. ȳB ≤ τB : χ(B) = 0 and is the unique global minimizer of FB on R+ (Figure 6a).
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(a) ȳB ≤ τB . χ(B) = 0 and the
unique global minimizer of FB on
R+ is 0.
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(b) τB ≤ ȳB ≤ Tb. χ(B) =
ρ+(ȳB , λ̄B) and 0 is the global min-
imizer of FB on R+.
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(c) TB < ȳB : χ(B) = ρ+(ȳB , λ̄B)
and χ(B) is the global minimizer of
FB on R+.

Figure 6: The 3 different possible shapes of FB . The red dot represents the global minimizer of FB .

2. τB ≤ ȳB ≤ Tb : χ(B) = ρ+(ȳB , λ̄B) but χ(B) is not the global minimizer of FB on R+ (0 is)
(Figure 6b).

3. TB < ȳB : χ(B) = ρ+(ȳB , λ̄B) and χ(B) is the global minimizer of FB on R+ (Figure 6c).

In order to prove Theorem 4.5, we need the following lemma which shows that by merging two blocks that
are not sorted in the correct order, the new value on the merged block is in between the two previous ones.

Lemma E.1. Let B1 and B2 be two successive blocks of indices. Then, if χ(B1) < χ(B2), the merged block
satisfies the following inequality.

χ(B1) ≤ χ(B1 ∪B2) ≤ χ(B2) .

Proof. We denote B ≜ B1 ∪B2 the merged block. We first study the case where χ(B1) = 0, then if χ(B) = 0,
the inequality trivially holds. Otherwise χ(B) = ρ+(ȳB , λ̄B). Then, the two following equality holds:

fB [χ(B)] = fB1 [χ(B)] + fB2 [χ(B)] (by separability)
fB [χ(B)] = 0 (by definition) .

As FB1 is increasing on R+(Figure 6a), we have fB1 [χ(B)] > 0 so fB2 [χ(B)] < 0, from which we get
χ(B) < χ(B2) (Figures 6b and 6c).

Next, we consider the case where χ(B1) > 0.

fB (χ(B2)) = fB1 (χ(B2)) + fB2 (χ(B2))︸ ︷︷ ︸
=0

= fB1 (χ(B2)) > 0 .

The last inequality comes from the fact that we have χ(B2) > χ(B1) and FB1 is increasing on (χ(B1),+∞), so
its derivative fB1 is positive on this interval (Figures 6b and 6c). Likewise, we obtain the following equation:

fB (χ(B1)) = fB1 (χ(B1))︸ ︷︷ ︸
=0

+fB2 (χ(B1))

= fB2 (χ(B1)) .

Then, from Lemma 4.3 and λ̄B1 ≥ λ̄B2 (the λi’s are non-increasing), we have the following inequalities:

χ(B1) = ρ+(ȳB1 , λ̄B1) ≥
(
λ̄B1q(1− q)

2

) 1
2−q

≥
(
λ̄B2q(1− q)

2

) 1
2−q

= mB2 ,

where mB2 denotes the minimizer of fB2 . So, mB2 ≤ χ(B1) < χ(B2). From the variations of fB2 (Figures 6b
and 6c), we deduce that fB2 [χ(B1)] < 0. To wrap up, we have fB [χ(B1)] < 0, fB [χ(B2)] > 0. Because by
assumption χ(B1) < χ(B2), we get the expected inequality.
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Proof of Theorem 4.5. Necessary conditions Let u be a local minimizer of (Pk), i.e. u ∈ Lk and let B =
Jq, rK be a maximal block of indices on which u is constant equal to ũ, i.e. uq−1 > uq = · · · = ur = ũ > ur+1.
We demonstrate the two points of the theorem:

(i) If ũ ̸∈ {χ(B), 0}, then ũ is not a local minimizer of FB (Proposition 4.1). One can thus either
infinitesimally increase or decrease ũ so as to decrease FB while letting u feasible. Then, the total
objective value F1:k(u) = F1:q−1(u1:q−1) + FB(ũ) + Fr+1:k(ur+1:k) decreases which contradicts u
being a local minima.

(ii) Now, let ũ = χ(B) and pick an index j ∈ Jq, r − 1K. We distinguish two cases
• If ũ = χ(B) = 0, then if χ(Jq, jK) = 0 and/or χ(Jj + 1, rK) = 0, either Equation (14) or Equa-

tion (15) hold true. It remains to prove that one of these two inequalities is also valid when
χ(Jq, jK) > 0 and χ(Jj + 1, rK) > 0. In this case we necessarily have χ(Jq, jK) ≥ χ(Jj + 1, rK),
otherwise Lemma E.1 would contradicts the fact that χ(B) = 0. Hence Equation (15) holds
true.

• If ũ = χ(B) > 0, assume that Fq:j is non-increasing at ũ. Then, given that Fq:j admits a finite
number of critical points minimizers (at most 3), there exists a sufficiently small ζ > 0 such that,
for all ϵ ∈ (0, ζ),

ũ+ ϵ < uq−1 and Fq:j(ũ+ ϵ) < Fq:j(ũ),
which implies that the point v defined as u everywhere except on the bloc Jq, jK where it takes
the value ũ+ ϵ is feasible and verifies F (v) < F (u). This contradicts the local optimality of u.
As such Fq:j is increasing at ũ. Similarly, we can show that Fj+1:r is decreasing at ũ. Then, we
get from the possible variations of FB for a block B (see Figure 6) that

ũ ≤ χ(Jj + 1, rK) (ũ on a decreasing part of Fj+1:r)
ũ ≤ χ(Jq, jK) or ũ ≥ χ(Jq, jK) (ũ on an increasing part of Fq:j)

Moreover, when both ũ ≤ χ(Jj + 1, rK) and ũ ≤ χ(Jq, jK), we get from ũ > 0 together with
Lemma E.1 that χ(Jq, jK) ≥ χ(Jj + 1, rK) ≥ ũ, which completes the proof.

Sufficient conditions Let u be such that the conditions of Theorem 4.5 hold. First of all, note that only
the last block of u can be 0. Then, for each block B = Jq, rK of u such that its value χ(B) > 0, let define for
all j ∈ Jq, r − 1K, ζB,j > 0 such that Fq:j is increasing on (χ(B), χ(B) + ζB,j) and Fj+1:r is decreasing on
(χ(B)− ζB,j , χ(B)). Note that such ζB,j always exists from the conditions of Theorem 4.5.
We define ζ̄ = minB,j∈B ζB,j . Now, take v ∈ B(0, ζ̄) such that u + v is a feasible point. Hence, on each block
B of u, the values of v are sorted in decreasing order (to preserve feasibility). Let us look at one block of u,
say the first one B = J1, rK (wlog), for which we denote by l ∈ J1, rK be the index corresponding to the first
negative value of v. We have the decomposition vB =

∑r
j=1 wj where

wj = (vj −max(vj+1, 0))11:j ,∀j ∈ J1, l − 1K (25)
wj = (vj −min(vj−1, 0))1j:r,∀j ∈ Jl, rK (26)

with 1m:n a vector of size r with ones between m and n. See Figure 7 for an illustration. Moreover, for all
j ∈ B, we have wj ∈ B(0, ζ̄). It then follows from the fact that, on B(0, ζ̄), F1:j is increasing ∀j ∈ J1, l − 1K
and Fj:r is decreasing ∀j ∈ Jl, rK (by definition of ζ̄), that

FB(uB) ≤ FB(uB + w1) ≤ FB(uB + w1 + w2) ≤ FB(uB +
∑r
j=1 wj) = FB(uB + vB).

Repeating this for each block of u and observing that if its last block is 0, then it is on an increasing part of
each sub-function over this block, we get that F (u) ≤ F (v), for all v ∈ B(0, ζ̄) such that u + v is feasible.
This proves that u is a local minimizer.

F Proof of Theorem 4.6

Lemma F.1. Let B1 and B2 be two successive blocks of indices such that max (χ(B1), χ(B2)) > 0. Then

χ(B1 ∪B2) ≤ max (χ(B1), χ(B2)) .
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Figure 7: Illustration of the proof of Theorem 4.5.

Proof. Let B = B1 ∪B2 . If χ(B) = 0, then the result trivially holds. If χ(B) > 0, assume that the statement
is not true with χ(B) > max (χ(B1), χ(B2)) > 0. Hence, from the variations of FB1 and FB2 , we get that
χ(B) belongs to an increasing part of each of these two functions. Hence, there exists ε > 0 such that

FB(χ(B)− ε) = FB1(χ(B)− ε) + FB2(χ(B)− ε)
≤ FB1(χ(B)) + FB2(χ(B)) = FB(χ(B)),

which contradicts the fact that χ(B) > 0 is the unique positive minimizer of FB .

Proof of Theorem 4.6. Let x be the solution returned by the PAV algorithm. First of all, by construction of
the PAV algorithm, each block of x satisfies the first point of Theorem 4.5. To prove that the second point of
the Theorem is also verified, let B = Jq, rK be a block of x. If χ(B) = 0, implying it is the last block of x, the
second point of Theorem 4.5 is immediately satisfied. From now on, χ(B) > 0. Assume that this block has
been involved at most within one backward pass. Then, given the steps of the PAV algorithms, there exists a
partition of B in I blocks defined by the indices q = q1 < q2 < · · · qI ≤ r (where qi, is the first index of the
i-th block of the partition and we set qI+1 = r + 1 by convention) such that ∀i ∈ J1, IK,

• ∀j ∈ Jqi + 1, qj+1 − 1K, the singleton {j} was added during a forward pass, i.e.,

χ(Jqi, j − 1K) ≤ χ(Jqi, jK) ≤ χ({j}) . (27)

• The block χ(Jqi, qi+1 − 1K) was merged during a backward pass

χ(Jqi, qi+1 − 1K) ≤ χ(Jqi, rK) ≤ χ(Jqi+1, rK) . (28)

where in both cases the inequalities with the central term are due to Lemma E.1.
Now let take l ∈ B \ {r} and denote by i∗ the index of the block such that qi∗ ≤ l < qi∗+1. Recall that
we want to prove the block B satisfies the second point of Theorem 4.5 via showing Equation (14) i.e.
χ(Jq, lK) < χ(Jl + 1, rK). We have from Equation (27) together with the feasibility of the forward pass,

χ(Jq1, q2 − 1K) > · · · > χ(Jqi∗ , qi∗+1 − 1K) ≥
(27)

χ(Jqi∗ , lK), (29)

It then follows from Lemma F.1 that

χ(Jq1, lK) ≤ χ(Jq1, q2 − 1K) ≤
(28)

χ(Jq1, rK) = χ(B). (30)

Note also that from the previous two equations we have

χ(Jqi∗ , lK) ≤ χ(B) . (31)

Now, combining the inequalities in Equation (28), we deduce that

χ(Jqi∗ , rK) ≥ χ(Jq1, rK) = χ(B) . (32)
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Figure 8: Illustration of the proof of Theorem 4.6. Dashed green blocks illustrate the feasibility of the forward
pass while the continuous green block is due to Equation (27). Together, they illustrate the inequalities
in Equation (29). Then, inequalities in Equation (30) impose that χ(Jq, lK) lies in the gray area. On the
other hand, dashed orange blocs illustrate the constraints in Equation (28) due to the backward pass (with
in particular inequalities in Equation (32)). Finally, the red area correspond to Equation (33), highlighting
the region were χ(Jl, rK) belongs to. We clearly see that l separate the block in two subblocks satisfying the
conditions of Theorem 4.5.

Then, with Equations (31) and (32) and Lemma F.1, we get

χ(Jl, rK) ≥ χ(Jqi∗ , rK) ≥ χ(B) . (33)

Finally, with Equations (30) and (33), we conclude that the block B satisfies the second point of Theorem 4.5.
If B was the result of multiple backward passes (not at most one as assumed above), we can get the results
through the repetition of the above arguments. Finally, repeating that for each bloc of x shows that the
whole x satisfies the second point of Theorem 4.5. Hence x is a local minimizer of F .

G Proof for the ℓq OSCAR model

Lemma G.1. We assume the regularization parameters (λi)i follow the OSCAR model. For any successive
blocks of indices B1 and B2 such that χ(B1) > χ(B2), we cannot have χ(B1) > χ(B2) > χ(B1 ∪ B2) with
χ(B1 ∪B2) minimizer of FB1∪B2 .

Proof. We denote B ≜ B1 ∪B2. By contradiction, let assume χ(B1) > χ(B2) > χ(B) with χ(B) minimizer
of FB . Then, by Lemma 4.4, we have the following inequality:

χ(B) = ρ+(ȳB , λ̄B) ≥
(
λ̄B(1− q)

) 1
2−q .

Besides, fB1(χ(B)) > 0, because fB1(χ(B)) + fB2(χ(B)) = 0 with fB2(χ(B)) < 0 (because χ(B2) > χ(B) ≥
mB ≥ mB2 , see Figure 6c). We deduce χ(B) < mB1 (actually, χ(B) is smaller than the smallest root of fB1

corresponding to the local maxima of FB1). We obtain the following inequality on (λi)i.(
λ̄B(1− q)

) 1
2−q ≤

(
λ̄B1

q(1− q)
2

) 1
2−q

⇐⇒ λ̄B ≤ λ̄B1

q

2

⇐⇒ (k −m) + (k − n)
2 =

∑n
i=m(k − i)
|B|

≤ q

2

∑j
i=m(k − i)
|B1|

= q

2
(k − j) + (k −m)

2
=⇒ k −m ≤ 2k −m− n ≤ q

2(2k − j −m) ≤ q(k −m)

which leads to a contradiction as q < 1.
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Proof of Theorem 4.7. Let x be a global minimizer of (Pk) and i be the first index of its last block, i.e. such
that xi = · · · = xk = x̃ and xi−1 > x̃. We distinguish two cases depending on the value of x̃.

• If x̃ = 0, then x[i−1] must be a global minimizer of (Pi−1), otherwise this would contradicts the
optimality of x for (Pk). As such, we have x[i−1] ∈ Li−1, and x ∈ Sk.

• If x̃ = χ(Ji, kK) > 0. Then, x̃ is the global minimizer of Fi:k (otherwise (x[i−1], 0, . . . , 0) would
lead to a better objective value). Let now assume that there exists another local minimizer
(ui∗−1, χ(Ji∗, kK), . . . , χ(Ji∗, kK)) with i∗ > i. Given that x is a global (and thus local) minimizer of
(Pk), we get from Theorem 4.5, that:

– either χ(Ji, i∗ − 1K) ≤ x̃ ≤ χ(Ji∗, kK),
– χ(Ji, i∗ − 1K) ≥ χ(Ji∗, kK) ≥ x̃.

Yet, Lemma G.1 eliminates the case χ(Ji, i∗ − 1K) ≥ χ(Ji∗, kK) ≥ x̃ (because x̃ is the global minimizer
of Fi:k), so we must have χ(Ji, i∗ − 1K) ≤ x̃ ≤ χ(Ji∗, kK).
By construction, ui∗−1 ∈ Li∗−1 and ui

∗−1
i∗−1 ≥ arg minx∈R+ Fi∗:k(x).

– Case arg minx∈R+ Fi∗:k(x) = χ(Ji∗, kK). There exists a block B of ui∗−1 which contains i and we
denote it B = Js, tK with s ≤ i ≤ t < i∗. Then by feasibility of (ui∗−1, χ(Ji∗, kK), . . . , χ(Ji∗, kK)),
we have χ(Ji∗, kK) < χ(Js, tK). Moreover, from the same arguments as used previously, involv-
ing Theorem 4.5 and Lemma G.1, we get χ(Ji, tK) ≤ x̃. Finally, from the local optimality of
(ui∗−1, χ(Ji∗, kK), . . . , χ(Ji∗, kK)), we obtain from Theorem 4.5 that χ(Ji, tK) ≥ χ(Js, tK). Gather-
ing these different inequalities, we get

χ(Ji∗, kK) < χ(Js, tK) ≤ χ(Ji, tK) ≤ x̃ ,

which leads to a contradiction with x̃ being smaller than χ(Ji∗, kK).
– Case arg minx∈R+ Fi∗:k(x) = 0. It contradicts x being a global minimizer of (Pk), as one could

set x[i∗:k] to 0 and get a better global objective value.

To sum up, we cannot have i < i∗. Then, if i > i∗, it means that x[1:i−1] ̸∈ Li−1, so one can change
some components while remaining feasible and decrease the objective value which contradicts x being
a global minimizer. We finally get that i must equal i∗ so x ∈ Sk.

Proof of Theorem 4.7 focuses on the popular OSCAR sequence, but its conditions can be weakened: as long
as (λi)i∈J1,kK are chosen such that λi = Λ(i) with Λ concave, non-decreasing and non-negative, Theorem 4.7
still holds due to the following Lemma G.2.

Lemma G.2 (Extension of Lemma G.1). We assume the regularization parameters (λi)i write as follows:

λi = Λ(i) ,

with Λ concave, non-increasing and non-negative. Then, Lemma G.1 holds.
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Proof. We want to show that for any block B = Jm,nK, any sub-block B1 = Jm, lK, we have λ̄B > λ̄B1
q
2 .

λ̄B = 1
|B|

n∑
i=m

Λ(i) = 1
|B|

n∑
i=m

∫ i+1

i

Λ(i)dt

≥ 1
|B|

n∑
i=m

∫ i+1

i

Λ(t)dt (Λ non-increasing.)

= 1
|B|

∫ n+1

m

Λ(t)dt

≥ Λ(m) + Λ(n+ 1)
2 (Hermite inequality.)

≥ Λ(m)
2 (Λ non-negative.)

>
q

2Λ(m) (q < 1.)

≥ q

2
1
|B|

j∑
i=m

Λ(i) (Λ non-increasing.)

= q

2 λ̄B1
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Figure 9: Left: In blue, points (yB , λB) such that χ(B) ≥ χ(B2), in green, χ(B) < χ(B2). Right: Pink
points are points (yB , λB) such that χ(B1) ≥ χ(B2) ≥ χ(B). Pink points are the only set of points where
D-PAV could theoretically fail as it does not consider merging B1 and B2 when χ(B1) ≥ χ(B2).

H Details on clustering properties of sorted nonconvex penalties

For every solution x∗ of minx f(x) + Ψ(x), there exists a value of τ ∈ R such that x∗ also solves

min f(x) s.t. Ψ(x) ≤ τ . (34)

Hence, solving the the regularized problem can be seen as finding the smallest level line of f that intersect
the ball {x : Ψ(x) ≤ τ}, the solution being the corresponding intersection point. To get intuition on how
the clustering operates using sorted penalties, Figure 10 displays the projection on the unit ball for various
choices of penalties:
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• Points of non-differentiability of the penalty attract the solution towards corners of the unit ball.
They enforce sparsity for the ℓ1 ball and both sparsity and clustering for the SLOPE and sorted ℓ1/2
unit balls.

• For the ℓ1/2 unit ball, due to the nonconvexity of the ball, the corners associated with clustering are
more or less attractive depending on the choice of the regularization sequence (λi)i.

We also plot in Figure 11 the level lines of Sorted MCP. We observe that for τ large enough in the constrained
problem, the sublevel set is the whole space (the penalty saturates), the projection is the identity and there
is no longer any clustering. Yet, for smaller τ , we still recover the corners associated with clustering.

x1

x 2

(a) ℓ2 constraint.

x1

x 2

(b) ℓ1 constraint.

x1

x 2

(c) SLOPE constraint.

x1

x 2

(d) Sorted ℓ1/2 constraint, λ2 = λ1
2 .

x1

x 2

(e) Sorted ℓ1/2 constraint, λ2 = λ1
4 .

Figure 10: Sparse regression in its constrained form. We display the level lines of the least squares datafit and
the sublevel set of various penalties (red). Sparsity: the non-differentiability of ℓ1 attracts the solution towards
the corners of the ball. Structure: SLOPE also attracts solutions towards points with equal coefficients.
These corners are also present in sorted ℓ1/2 and their attractivity depends on the choice of the regularization
sequence.
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x1

x 2

Figure 11: Level lines for the Sorted MCP constraint. γ = 1.4, λ1 = 3, λ2 = 2.5.

I Discussion about the MM approach from Feng & Zhang (2019)

We develop in this section the main differences between our method and the majorization-minimization
approach from Feng & Zhang (2019). To that end, we consider the example of Sorted MCP, denoted ΨSMCP,
for which a detailed algorithm is given in Algorithms 2 to 4 of Feng & Zhang (2019). It relies on the
decomposition of ΨSMCP as a difference of two convex functions. While there is no single such decomposition,
given the piecewise quadratic nature of MCP, a natural one is given by

ΨSMCP(x, γ, (λi)i) = ΨSMCP(x, γ, (λi)i) + 1
2γ ∥x∥

2︸ ︷︷ ︸
Ψ+(·,γ,(λi)i) (convex sorted penalty)

− 1
2γ ∥x∥

2︸ ︷︷ ︸
Ψ−

. (35)

This allows them to easily deploy a majorization minimization (MM) approach through the majorization of
the concave term −Ψ− by its tangent at the current point. More precisely, the MM iterations are given by

xk+1 = arg min
x

f(x) + (x+ − x)T∇Ψ−(xk) + Ψ+(x, γ, (λi)i) (36)

where f denotes the datafit, assumed to be differentiable. The minimization of this surrogate function is then
tackled with a proximal gradient method. This requires the computation of proxΨ+ which can be done using
a PAV algorithm. Differently, our approach leverages the weak convexity of the Sorted MCP penalty to use
proximal algorithms (such as ISTA, FISTA) directly on the original problem.

We experimentally highlight the difference between these two methods. The setup is the following. The matrix
A is in R150×50, it is random Gaussian with Toeplitz-structure covariance equal to (0.4|i−j|)i,j . The dataset
is then splitted in 3 equal subsets for training, validatation and test. We denote n the number of samples
and d the number of features. The ground truth x⋆ has a sparsity of 60% (i.e. only 40% of non-zero entries)
and is made of two clusters of equal coefficients, respectively equal to +0.5 and −0.5. The penalty used is
Sorted MCP with parameter γ equal to 1.1 and linearly decreasing regularization strength: λi = α× d−i

d for
i ∈ J1, dK where α is determined by grid-search.

We consider, using this synthetic dataset, two different settings:

1. Regression: the target b is defined as b = Ax⋆ + ϵ where ϵ is a vector of white Gaussian noise such
that the signal-to-noise ratio is 10. The datafit used is a least squares datafit f(x) = 1

2∥Ax− b∥2.
2. Classification: The target b is equal to sign(Ax⋆) except for 10% of the samples for which the sign

of bi is flipped. The datafit used is a logistic regression datafit f(x) = 1
n

∑n
i=1 log

(
1 + e−bi(Ax)i

)
.

The algorithms are stopped when the loss difference between two successive iterations is smaller than a
tolerance fixed at 10−5. We consider a MM algorithm with one step of prox-grad at each MM iteration
(defined in Equation (36)).
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Appendix I display the evolution of the penalized loss value which we aim to minimize:

1. For the least square regression problem, the MM approach from Feng & Zhang (2019) (denoted as
LCA SMCP for Linear Convex Approximation Sorted MCP) behaves the same as our method. The
convex approximation relies on a quadratic rectification added to the datafit which does not change
the behaviour of the loss for the least square case.

2. For the logistic regression problem, the MM approach from Feng & Zhang (2019) has slower
convergence rate compared to our direct approach.
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Figure 12: Comparison of MM and our direct approach on least square and logistic regression problems.

J Real data

We illustrate here the solution paths on the diabetes data set (Efron et al., 2004). For these numerics, we
compare various choices of penalties on a least square regression problem with n = 442 and d = 10 features.
We focus on a low-dimensional problem so as to visualize the solution paths. For the sorted penalties
(i.e. SLOPE and Sorted MCP), we take λ = 1.5λ∗(1,

√
2 − 1, . . . ,

√
11 −

√
10) which corresponds to the

quasi-spherical OSCAR sequence (see. Nomura (2020)), where λ∗ varies along the path. For the MCP and
the Sorted MCP penalty, the parameter γ is equal to 3. Results are displayed Figure 13. We observe that
Sorted MCP indeed clusters features (so does SLOPE when compared to LASSO) and decreases amplitude
bias (so does MCP when compared to LASSO). We also observe exact clustering properties when compared
to Elastic-Net, which gathers coefficients but does not make them exactly equal.
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Figure 13: Solution paths for convex, nonconvex, sorted and non sorted penalties.
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