051

Federated Heavy Hitter Recovery under Linear Sketching

Anonymous Authors¹

Abstract

Motivated by real-life deployments of multiround federated analytics with secure aggregation, we investigate the fundamental communicationaccuracy tradeoffs of the heavy hitter discovery and approximate (open-domain) histogram problems under a linear sketching constraint. We propose efficient algorithms based on local subsampling and invertible bloom look-up tables (IBLTs). We also show that our algorithms are informationtheoretically optimal for a broad class of interactive schemes. The results show that the linear sketching constraint does increase the communication cost for both tasks by introducing an extra linear dependence on the number of users in a round. Moreover, our results also establish a separation between the communication cost for heavy hitter discovery and approximate histogram in the multi-round setting. The dependence on the number of rounds R is at most logarithmic for heavy hitter discovery whereas that of approximate histogram is $\Theta(\sqrt{R})$. We also empirically demonstrate our findings.

1. Motivation

Collecting and aggregating user data drives improvements in the app and web ecosystems. For instance, learning popular out-of-dictionary words can improve the auto-complete feature in a smart keyboard, and discovering malicious URLs 039 can enhance the security of a browser. However, sharing user data directly with a service provider introduces several 041 privacy risks.

043 It is thus desirable to only make aggregated data avail-044 able to the service provider, rather than directly sharing 045 (unanonymized) user data with them. This is typically 046 achieved via multi-party cryptographic primitives, such as 047 a secure vector summation protocol (Melis et al., 2016; Bonawitz et al., 2017; Corrigan-Gibbs et al., 2020; Bell 049 et al., 2020). For instance, for closed domain histogram 050 applications, the users can first "one-hot" encode their data into a vector of length d (the size of the domain) and then 052 participate in a secure vector summation protocol to make 053 the aggregate histogram (but never the individual user con-054

tributions) available to the service provider.

Federated heavy hitters recovery. The abovementioned solution requires $\Omega(d)$ communication. However, in many real life applications the domain size is very large or even unknown a priori. For example, the set of new URLs can be represented via 8-bit character strings of length 100, and can thus take $d = 256^{100}$ values, which is clearly impossible to support in practice. In such settings, linear¹ sketching is often used to reduce the communication load. For example, Melis et al. use secure count-min sketch aggregation for privacy preserving training of recommender systems, and Corrigan-Gibbs & Boneh rely on count-min sketches for gathering browser statistics, i.e. aggregate histogram queries. Similarly, Hu et al. rely on secure aggregation of variants of Flajolet-Martin sketches for distributed cardinality estimation. Boneh et al. uses sketching to reduce the cost for distributed subset-histogram queries. In the work closest to ours, Chen et al. show that count-sketches can be used to recover the *heavy hitter* items (i.e. frequently appearing items) while reducing the communication overhead. All these protocols operate in the single-round setting.

Sketching in multi-round aggregation schemes. Even though count-sketches are great step towards solving the heavy hitters problem, this approach has only been analyzed in the single round data aggregation setting. However, most commonly deployed systems for federated analytics employ multi-round schemes for data aggregation (Bonawitz et al., 2019). This is primarily because (a) not all users are available around the same time, (b) the population may be very large (in the billions of devices) and therefore the server has to aggregate data over batches for bandwidth/compute reasons, and (c) running the cryptographic secure vector summation protocol has compute and communication costs that are super linear in the number of users we are aggregating over (Bell et al., 2020; Bonawitz et al., 2017). Further, count sketch based approaches have a decoding runtime that is linear in d, which is infeasible in the open domain setting, and improving it to $\log d$ involves blowing up the communication cost by the same factor.

¹Linearity is necessary because non-linear compression/sketching schemes would not work under the secure vector summation primitive which only makes the sum of client-held vectors available to the server.

Our contributions. Our paper thus takes a principled approach towards uncovering the fundamental accuracy-057 communication tradeoffs of the heavy hitters recovery prob-058 lem under the linearity constraints imposed by secure vector 059 summation protocols. Surprisingly, we show that count-060 sketches are strictly sub-optimal for this application, and 061 we develop a novel provably optimal approach that com-062 bines client-side (local) subsampling with inverse Bloom 063 lookup tables (IBLTs). Roughly speaking, we show (via 064 lower bounds) that in the R-round case, any approach that 065 solves an approximate histogram problem (with additive 066 error) will incur a \sqrt{R} factor penalty in the communication 067 cost, while our optimal approach incurs log(R). Hence, 068 even non-trivial modifications of count-sketches are strictly 069 sub-optimal.

070 We also empirically evaluate our proposed algorithms and compare it with count-sketch baselines. Significant advantage of our algorithm is observed, especially when R is large. In the setting of Figure 2, to achieve an F1 score of 074 0.8, we see a 10x improvement in communication compared 075 to the baseline using Count-sketch. 076

071

072

073

077

Organization. We formally define the problem in Sec-078 tion 2 and then discuss our results in Section 3. Due to page 079 limits, in the main, we focus on heavy hitter recovery in Section 4 and present the experimental results in Section 5. In 081 the appendix, we present the detailed algorithms and their 082 practical modification in Appendix A, Appendix B, and 083 Appendix C. All proofs will be presented in the appendix.

086 2. Problem setup and preliminaries 087

We consider heavy hitter discovery in the distributed setting 088 with multi-round communication between the users and a 089 central server. Suppose users come in R rounds. In round 090 $r \in [R]$, there are n users, denoted by the set B_r . We 091 assume the sets are pairwise disjoint, *i.e.*, $\forall r \neq r', B_r \cap$ 092 $B'_r = \emptyset$. Each user $i \in B_r$ contributes m_i samples with a 093 contribution bound $m_i \leq m$ from a finite domain \mathcal{X} of size 094 d. Let h_i denote the user's local histogram where $\forall x \in \mathcal{X}$, 095 $h_i(x)$ is the number of times element x appeared in user i's 096 local samples. By assumption, we have $||h_i||_1 = m_i \leq m$. 097 Let $h^{(r)}$ be the aggregated histogram in round r, *i.e.*, $\forall x \in \mathcal{X} : h^{(r)}(x) = \sum_{i \in B_r} h_i(x)$. 098 099

100 The aggregated histogram across all R rounds is denoted by $h^{[R]}$ where $\forall x \in \mathcal{X} : h^{[R]}(x) = \sum_{r \in [R]} h^{(r)}(x)$.

The total number of users is denoted by N := nR. We will focus on cases where $d \gg Nm$, *i.e.*, the case where the 104 support is large and the data is sparse. 105

106 The goal of the server is to learn useful information about 107 the aggregated histogram $h^{[R]}$. More precisely, we consider 108 the two tasks described below. 109

 τ -heavy hitter (ApproxHH). For a given threshold τ , the goal of τ -heavy hitter recovery on the entire data stream is to return a set H such that with probability $1 - \beta$,

1. If
$$h^{[R]}(x) \ge \tau, x \in H$$
.
2. If $h^{[R]}(x) \le \tau/10, x \notin H$

 τ -approximate histogram (ApproxHist). The goal is to return an approximate histogram $\widehat{h}^{[R]}$ such that with probability $1 - \beta$,

$$\forall x \in \mathcal{X}, \qquad \left| \widehat{h}^{[R]}(x) - h^{[R]}(x) \right| \le \tau.$$

It can be seen that $\tau/3$ -approximate histogram is a harder problem than τ -heavy hitter (HH) since an $\tau/3$ -approximate histogram would imply a set of approximate heavy hitters by returning H to be the list of elements with approximate frequency more than $\tau - \tau/2$.

Efficient decoding. Since we consider cases where $d \gg Nm$, we require efficient encoding (run by users) and decoding (run by the server). More precisely, the encoding/decoding time should be polynomial in $N, R, \log d, \log(1/\beta)$ and other parameters.

Per-user communication complexity. We focus on settings where each user has limited uplink communication capacity. In particular, each user must compress their local histogram h_i to a message of bit length ℓ , denoted by Y_i . And the server must solve the above tasks based on the received messages. The communication complexity of each task is the smallest bit length such that there exists a communication protocol to solve the task.

Distributed estimation with linear sketching (LinSketch). A even more stringent communication model is the linear summation model. In each round r, each user $i \in B_r$ can only send a message Y_i from a finite ring G_r based on their local histogram and shared randomness U. For all $i \in B_r$, let

$$Y_i = f_i(h_i, U).$$

Under the linear aggregation model, the server only observes $Y^{(r)} = \sum_{i \in B_r} Y_i$, where the addition is the additive operation in the ring G_r and by definition, $Y^{(r)} \in G_r$. The reason why we restrict ourselves to a finite ring is for compatibility with cryptographic protocols for secure vector summation (Bonawitz et al., 2017; Bell et al., 2020), which operate in over a finite space. These protocols ensure that any additional information observed by the server beyond $Y^{(r)}$ can in fact be simulated given $Y^{(r)}$, under standard cryptographic assumptions. As mentioned above, we abstract away the specifics of the underlying protocol and assume that the server observes exactly $Y^{(r)}$. For vector summation, it is convenient to think of G_r as $\mathbb{Z}_{q_r}^{\ell}$, i.e. length- ℓ vectors with integer entries mod q_r (we might chose

110 q_r to be prime when we require division, e.g. in the IBLT construction).

If the protocol is *interactive*, for $i \in B_r$, Y_i is allowed to depend on $Y^{(1)}, \ldots, Y^{(r-1)}$. In this case, each f_i is a function of $Y^{(1)}, \ldots, Y^{(r-1)}$. If the protocol is *non-interactive*, f_i 's must be fixed independently from previous messages.

The server then must recover heavy hitters (and their frequencies) based on the transcript of the protocol, denoted by

 $\Pi = (Y^{(1)}, \dots, Y^{(R)}, U).$

3. Results and technique

We consider both approximate heavy hitter recovery and approximate histogram estimation in the linear aggregation model. We establish tight (up to logarithmic factors) communication complexity for both tasks in the single-round and multi-round settings. The results are summarized in Table 1. Our results have the following interesting implications on the communication complexity of these problems.

Linear aggregation increases the communication cost. As shown in the table, under LinSketch, for both tasks, the per-user communication would incur a linear dependence on n, the number of users in each round. On the other hand, without linear aggregation constraint, there won't be a linear dependence on n since each user can simply send their m local samples losslessly using $O(m \log d)$ bits. The result establishes the fundamental cost of linear aggregation communication protocols for heavy hitter recovery.

Task	Single-round	<i>R</i> -round
τ -ApproxHH	$\tilde{\Theta}\left(\frac{mn}{\tau}\right)$	$ ilde{\Theta}ig(rac{mn}{ au}ig)$
au-ApproxHist	$\tilde{\Theta}\left(\frac{mn}{\tau}\right)$	$\tilde{\Theta}\left(mn\cdot\min\{\frac{\sqrt{R}}{\tau},1\}\right)$

Table 1. Per-user communication complexity with LinSketch. All described bounds can be acheived by a *non-interactive* protocol with efficient server runtime. All bounds cannot be improved up to logarithmic factors under *interactive* protocols.

ApproxHist is harder than ApproxHH. A nature way to obtain heavy hitters is to obtain an approximate histogram and do proper thresholding to select the heavy elements. Although in the single-round case, there is at most a logarithmic gap between the communication complexity for the two problems. In the *R*-round case, our result shows that this is strictly sub-optimal. More precisely, the communication cost for τ -ApproxHH increases by a factor of \sqrt{R} while that of ApproxHist depends at most logarithmically in *R*. This implies a gap between the per-user communication

cost for τ -ApproxHist and τ -ApproxHH in the multi-round case.

3.1. Our technique - IBLT with local subsampling

As discussed above, when solving the approximate heavy hitter problem in the multi-round setting, algorithms that rely on obtaining an approximate histogram and thresholding won't give the optimal communication complexity. In the paper, we propose to use invertible bloom lookup tables (IBLTs) (Goodrich & Mitzenmacher, 2011) and local subsampling. At a high-level, IBLT is a bloom filter-type linear data structure that supports efficient listing of the inserted elements and their exact counts. The size of the table scales linearly with the number of unique keys inserted. To reduce the communication cost, we perform local threshold sampling (Duffield et al., 2005a) on users' local datasets. This guarantees that the "light" elements will be discarded with high probability and hence won't take up the capacity of the IBLT data structure. Compared to frequency-oracle based approach, the noise introduced in our subsampling-based approach for each item is proportional to its accumulative count, which gives better estimates for elements with frequencies near the threshold. For elements with counts way above the threshold, the frequency estimate will have a larger error but this won't affect heavy hitter recovery since only whether the count is above τ is crucial to our problem. See detail of the algorithm in Appendix A.

4. Approximate heavy hitter under linear aggregation

In this section, we study the approximate heavy hitter problem and show that the problem can be solved with per-user communication complexity $\tilde{O}\left(\frac{mn}{\tau}\log d\right)$, stated in Theorem 4.1.

A natural comparison to make is the heavy hitter recovery algorithm obtained from getting a frequency oracle up to accuracy $\Theta(\tau)$. Since there are R rounds, the naive approach would require an accuracy of $\Theta(\tau/R)$ in each round and classic methods such as Count-min and Count-sketch would require a per-user communication complexity of $\tilde{\Theta}(mnR/\tau)$. In the R-round case, our result improves upon this by a factor of R. In fact, as we show in Theorem B.2, any frequency oracle-based approach would require per-user communication complexity of at least $\Omega(mn\sqrt{R}/\tau)$. Our result improves upon these and show that the dependence on R is at most logarithmic.

Theorem 4.1. There exists a non-interactive linear sketching protocol with communication cost $\tilde{O}(\frac{mn}{\tau})$ bits per user, which solves the τ -approximate heavy hitter problem. Moreover, the running time of the algorithm is $\tilde{O}(\frac{mn}{\tau})$.

The next theorem shows that the above communication

165 complexity is minmax optimal up to logarithmic factors.

Theorem 4.2. For any τ and interactive algorithm A with per-user communication cost $o\left(\frac{mn}{\tau}\right)$, there exists a dataset $h_i, i \in B_r, r \in [R]$, such that A cannot solve τ -heavy hitter (HH) with success probability at least 2/3.

Due to space constraints, we present the detailed protocol
that achieves Theorem 4.1 in Appendix A and discuss the
proof of the lower bound Theorem 4.2 in Appendix I.1.

Below we give an overview of the two main components
used in the protocol: (i) a probabilistic data structure called
Invertible Bloom Look up Table (IBLT) introduced by
Goodrich & Mitzenmacher, and (ii) local subsampling. We
start by introducing IBLTs, starting from the more standard
Bloom filters.

181 **IBLT: Bloom filters with efficient listing.** Note that each 182 user's local histogram h_i can be viewed as a sequence of 183 key-value pairs $(x, h_i(x))$. The Bloom filter data structure 184 is a standard linear data structure to representing a set of key-185 value pairs with keys coming from a large domain. IBLT 186 is a version of Bloom filter that supports an efficient listing 187 operation - while preserving the other nice properties of 188 Bloom counting filters, namely linearity (and thus merge-189 able by summation), and succintness (linear size in number 190 of indices it holds). 191

192 These properties are summarized in the following Lemma.

193 **Lemma 4.3** ((Goodrich & Mitzenmacher, 2011)). Consider 194 a collection of local histograms $(h_i)_{i \in [n]}$ over [d] such that 195 $\|\sum_{i \in [n]} h_i\|_0 \le L_0$.

For any $\gamma > 0$, there exist local linear sketches $\{f_i\}_{i \in [n]}$ of length $\ell = \tilde{O}(\gamma L_0)$ and an $O(\ell)$ time decoding procedure Dec (\cdot) such that

$$\operatorname{Dec}(\sum_{i \in [n]} f_i(h_i)) = \sum_{i \in [n]} h_i$$

succeeds except with probability at most $O\left(L_0^{2-\gamma}
ight)$.

200

201

202

203

204

205 For the purpose of this paper we can focus on the two main 206 operations supported by an IBLT instance \mathcal{B} (see (Goodrich 207 & Mitzenmacher, 2011) for details on deletions and look-208 ups): Insert(k, v), which inserts the pair (k, v) into 209 \mathcal{B} , and ListEntries(), which enumerates the set of 210 key-value pairs in \mathcal{B} . Note that $f_i(h_i)$ in Lemma A.1 211 corresponds to the IBLT \mathcal{B}_i resulting from inserting the 212 set $\{(x, h_i(x)) \mid h_i(x) > 0\}$ into an empty IBLT. Also, 213 ListEntries() corresponds to Dec in Lemma A.1. Fi-214 nally, $\sum_{i=1}^{n} f_i(h_i)$ corresponds to the encoding of the IBLT 215 resulting from inserting the set $\{(x, \sum_{i=1}^{n} h_i(x)) \mid \exists i \in [n] :$ 216 $h_i(x) > 0$ into an empty IBLT. In other words, each client 217 $i \in [n]$ computes *local* IBLT $\mathcal{B}_i := f_i(h_i)$, and the (se-218 cure) aggregation of the \mathcal{B}_i 's results in the global IBLT 219

 $\mathcal{B} := \sum_{i=1}^{n} f_i(h_i)$. Further details on IBLT are stated in Appendix H.

Reducing capacity via threshold sampling. Note that the guarantee in Lemma A.1 relies on the number of unique elements in $\sum_{i \in [n]} h_i$, which can be at most mn in the worst-case, leading to an O(mn) not matching our lower bound in Lemma 4.2. For heavy hitter recovery, we reduce the communication cost by local subsampling. More precisely, we use the threshold sampling algorithm from (Duffield et al., 2005b), detailed in Algorithm 1 to achieve the (optimal) dependency $O(mn/\tau)$.

5. Experiments

In this section, we empirically evaluate our proposed algorithms (Algorithms 2 and 4) for the task of heavy hitter recovery and compare it with baseline methods including (1) Count-sketch based method; (2) IBLT-based method without subsampling (Algorithm 2 with $\tau = 1$). We measure communication cost in units of words (denoted as C) and each word unit is an int16 object (can be communicated with 2 bytes) in python and C++ for implementation purposes.

The data we use is simulated based on the ground-truth distribution of strings in the Stackoverflow dataset in Tensorflow Federated. Due to space constraints, we defer the details of the data simulation and implementation of the algorithms to Appendix D.

In Figure 1, we plot the F1 score comparison under different communication costs when R = 30, $\tau = 50$, M = 10000. It can be seen that our proposed algorithms significantly outperforms the Count-sketch method. Among the IBLT-based methods, Subsampled IBLT with adaptive tuning is performing the best. For non-interactive algorithms, sub-sampled IBLT with fixed subsampling probability is better compared to the unsampled counter part for a wide range of small capacity.

Figure 1. F1 score comparison under different communication cost $(R = 30, \tau = 50, M = 10000)$.

We list more comparisons in Appendix D.

220 References

- Acharya, J., Canonne, C. L., Sun, Z., and Tyagi, H. Unified lower bounds for interactive high-dimensional estimation under information constraints. *arXiv preprint arXiv:2010.06562*, 2020.
- Bar-Yossef, Z., Jayram, T., Kumar, R., and Sivakumar, D. An information statistics approach to data stream and communication complexity. *Journal of Computer and System Sciences*, 68(4):702–732, 2004. ISSN 0022-0000. doi: https://doi.org/10.1016/j.jcss.2003.11.006. URL https://www.sciencedirect.com/science/article/pii/S002200003001855. Special Issue on FOCS 2002.
- Bell, J. H., Bonawitz, K. A., Gascón, A., Lepoint, T., and Raykova, M. Secure single-server aggregation with (poly)logarithmic overhead. In *CCS*, pp. 1253–1269. ACM, 2020.
- Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H. B., Patel, S., Ramage, D., Segal, A., and Seth, K. Practical secure aggregation for privacypreserving machine learning. In *Proceedings of the* 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS '17, pp. 1175–1191, New York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450349468. doi: 10.1145/ 3133956.3133982. URL https://doi.org/10. 1145/3133956.3133982.
- Bonawitz, K. A., Eichner, H., Grieskamp, W., Huba, D.,
 Ingerman, A., Ivanov, V., Kiddon, C., Konečný, J., Mazzocchi, S., McMahan, B., Overveldt, T. V., Petrou, D.,
 Ramage, D., and Roselander, J. Towards federated learning at scale: System design. In *MLSys.* mlsys.org, 2019.
- Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., and Ishai, Y. Lightweight techniques for private heavy hitters. In 2021 IEEE Symposium on Security and Privacy (SP), pp. 762–776, 2021. doi: 10.1109/SP40001.2021.00048.
- Braverman, M., Garg, A., Ma, T., Nguyen, H. L., and
 Woodruff, D. P. Communication lower bounds for statistical estimation problems via a distributed data processing inequality. In *Proceedings of the forty-eighth annual ACM symposium on Theory of Computing*, pp. 1011–1020, 2016.
- Charikar, M., Chen, K., and Farach-Colton, M. Finding frequent items in data streams. In *Automata, Languages and Programming: 29th International Colloquium, ICALP*2002 Málaga, Spain, July 8–13, 2002 Proceedings 29, pp. 693–703. Springer, 2002.
- Chen, W.-N., Özgür, A., Cormode, G., and Bharadwaj,
 A. The communication cost of security and privacy

in federated frequency estimation, 2022. URL https: //arxiv.org/abs/2211.10041.

- Cormode, G. and Muthukrishnan, S. An improved data stream summary: the count-min sketch and its applications. *Journal of Algorithms*, 55(1):58–75, 2005. ISSN 0196-6774. doi: https://doi.org/10.1016/j.jalgor.2003.12. 001. URL https://www.sciencedirect.com/ science/article/pii/S0196677403001913.
- Cormode, G. and Muthukrishnan, S. Combinatorial algorithms for compressed sensing. In 2006 40th Annual Conference on Information Sciences and Systems, pp. 198–201. IEEE, 2006.
- Corrigan-Gibbs, H. and Boneh, D. Prio: Private, robust, and scalable computation of aggregate statistics. In *NSDI*, pp. 259–282. USENIX Association, 2017.
- Corrigan-Gibbs, H., Boneh, D., Chen, G., Englehardt, S., Helmer, R., Hutten-Czapski, C., Miyaguchi, A., Rescorla, E., and Saint-Andre, P. Privacy-preserving firefox telemetry with prio. https://rwc.iacr.org/2020/ slides/Gibbs.pdf, 2020.
- Donoho, D. L. Compressed sensing. *IEEE Transactions on information theory*, 52(4):1289–1306, 2006.
- Duffield, N., Lund, C., and Thorup, M. Learn more, sample less: control of volume and variance in network measurement. *IEEE Transactions on Information Theory*, 51(5): 1756–1775, 2005a. doi: 10.1109/TIT.2005.846400.
- Duffield, N., Lund, C., and Thorup, M. Learn more, sample less: control of volume and variance in network measurement. *IEEE Transactions on Information Theory*, 51(5): 1756–1775, 2005b. doi: 10.1109/TIT.2005.846400.
- Gilbert, A. C., Li, Y., Porat, E., and Strauss, M. J. Approximate sparse recovery: optimizing time and measurements. In *Proceedings of the forty-second ACM symposium on Theory of computing*, pp. 475–484, 2010.
- Goodrich, M. T. and Mitzenmacher, M. Invertible bloom lookup tables. In 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 792–799, 2011. doi: 10.1109/Allerton.2011.6120248.
- Han, Y., Özgür, A., and Weissman, T. Geometric lower bounds for distributed parameter estimation under communication constraints. *IEEE Transactions on Information Theory*, 67(12):8248–8263, 2021. doi: 10.1109/TIT. 2021.3108952.
- Hu, C., Li, J., Liu, Z., Guo, X., Wei, Y., Guang, X., Loukides, G., and Dong, C. How to make private distributed cardinality estimation practical, and get differential privacy for free. In *USENIX Security Symposium*, pp. 965–982. USENIX Association, 2021.

- 275 Jayram, T. S. Hellinger strikes back: A note on the multi-276 party information complexity of and. In Dinur, I., Jansen, 277 K., Naor, J., and Rolim, J. (eds.), Approximation, Ran-278 domization, and Combinatorial Optimization. Algorithms 279 and Techniques, pp. 562-573, Berlin, Heidelberg, 2009. 280 Springer Berlin Heidelberg. ISBN 978-3-642-03685-9. 281 Melis, L., Danezis, G., and Cristofaro, E. D. Efficient private 282 statistics with succinct sketches. In NDSS. The Internet 283 Society, 2016. 284 285 Minton, G. T. and Price, E. Improved concentration bounds
- and Price, E. Improved concentration bounds
 for count-sketch. In *Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms*, pp. 669–686. SIAM, 2014.
- Mitzenmacher, M. and Upfal, E. Probability and Computing: Randomization and Probabilistic Techniques in Algorithms and Data Analysis. Cambridge University Press, USA, 2nd edition, 2017. ISBN 110715488X.
- Molloy, M. Cores in random hypergraphs and boolean
 formulas. *Random Structures & Algorithms*, 27(1):124–
 135, 2005.

323 324 325

A. Approximate heavy hitter under linear aggregation

In this section, we present details about the approximate heavy hitter recovery protocol in Section 4. To recall, we study the approximate heavy hitter problem and show that the problem can be solved with per-user communication complexity $\tilde{O}(\frac{mn}{\tau} \log d)$, stated in Theorem 4.1.

```
Algorithm 1 Threshold sampling.
```

1: Input: h : local histogram. $t \in \mathbb{R}_+$: threshold. 2: for $x \in \operatorname{supp}(h)$ do 3: if $h(x) \ge t$, then 4: h'(x) = h(x). 5: else 6: 7: end if 8: end for

9: **Return:** h'

At a high level, the protocol relies on two main components: (i) a probabilistic data structure called Invertible Bloom Look up Table (IBLT) introduced by Goodrich & Mitzenmacher, and (ii) local subsampling. We start by introducing IBLTs, starting from the more standard (counting) Bloom filters.

4 **IBLT: Bloom filters with efficient listing.** Note that each user's local histogram h_i can be viewed as a sequence of 5 key-value pairs $(x, h_i(x))$. The Bloom filter data structure is a standard linear data structure to representing a set of 6 key-value pairs with keys coming from a large domain. IBLT is a version of Bloom filter that supports an efficient listing 7 operation – while preserving the other nice properties of Bloom counting filters, namely linearity (and thus mergeable by 8 summation), and succintness (linear size in number of indices it holds). These properties are summarized in the following 9 Lemma.

Lemma A.1 ((Goodrich & Mitzenmacher, 2011)). Consider a collection of local histograms $(h_i)_{i \in [n]}$ over [d] such that $\|\sum_{i \in [n]} h_i\|_0 \le L_0$.

For any $\gamma > 0$, there exist local linear sketches $\{f_i\}_{i \in [n]}$ of length $\ell = \tilde{O}(\gamma L_0)$ and an $O(\ell)$ time decoding procedure Dec (\cdot) such that

$$\operatorname{Dec}(\sum_{i\in[n]}f_i(h_i))=\sum_{i\in[n]}h_i$$

succeeds except with probability at most $O(L_0^{2-\gamma})$.

370 For the purpose of this paper we can focus on the two main operations supported by an IBLT instance \mathcal{B} (see (Goodrich 371 & Mitzenmacher, 2011) for details on deletions and look-ups): Insert(k, v), which inserts the pair (k, v) into \mathcal{B} , and 372 ListEntries(), which enumerates the set of key-value pairs in \mathcal{B} . Note that $f_i(h_i)$ in Lemma A.1 corresponds to the 373 IBLT \mathcal{B}_i resulting from inserting the set $\{(x, h_i(x)) \mid h_i(x) > 0\}$ into an empty IBLT. Also, ListEntries() corresponds 374 to Dec in Lemma A.1. Finally, $\sum_{i=1}^{n} f_i(h_i)$ corresponds to the encoding of the IBLT resulting from inserting the set 375 $\{(x, \sum_{i=1}^{n} h_i(x)) \mid \exists i \in [n] : h_i(x) > 0\}$ into an empty IBLT. In other words, each client $i \in [n]$ computes *local* IBLT 376 $\mathcal{B}_i := f_i(h_i)$, and the (secure) aggregation of the \mathcal{B}_i 's results in the global IBLT $\mathcal{B} := \sum_i^n f_i(h_i)$. Further details on IBLT 377 are stated in Appendix H. 378

Reducing capacity via threshold sampling. The second tool in our main protocol is threshold sampling. Note that the guarantee in Lemma A.1 relies on the number of unique elements in $\sum_{i \in [n]} h_i$, which can be at most mn in the worst-case, leading to an O(mn) not matching our lower bound in Lemma 4.2. For heavy hitter recovery, we reduce the communication cost by local subsampling. More precisely, we use the threshold sampling algorithm from (Duffield et al., 2005b), detailed in Algorithm 1 to achieve the (optimal) dependency $O(mn/\tau)$.

Under review at ICML 2023

Alg	orithm 2 Subsampled IBLT with LinSketch.
1:	Input: ${h_i}_{i \in B_r, r \in [R]}$: local histograms; d : alphabet size; R : number of rounds; m : per-user contribution bound; n :
	number of users per round; τ : threshold for heavy hitter recovery; β : failure probability.
2:	Let $t = \max\{\tau/2, 1\}, b = \lceil 10 \log(\frac{4mnR}{\tau\beta}) \rceil$ and $L_0 = 20 \frac{mn}{\tau} \log R, \gamma = \log R.$
3:	for $r\in [R]$ do
4:	for $j\in [b]$ do
5:	Each user $i \in B_r$ applies Algorithm 1 with threshold t in to their local histogram with fresh randomness to get $h'_{i,j}$.
6:	Each user sends message $Y_{i,j} = f_{i,j}(h'_{i,j})$ where $f_{i,j}$'s are mappings from Lemma A.1 with parameter L_0, γ and fresh randomness.
7:	Server observes $\sum_{i \in B_r} Y_{i,j}$ and computes
	$\hat{h}_{re,i} = \text{Dec}(\sum Y_{i,i}).$
	$i \in B_r$
	If the decoding is not successful, we let $\hat{h}_{r,j}$ be the all-zero vector.
8:	end for
9:	end for
10:	for $j \in [b]$ do
11:	Server computes $\hat{h}_{j}^{[R]} = \sum_{r \in [R]} \hat{h}_{r,j}$, and obtain list
	$H_j = \{ x \in [d] \mid \hat{h}_j^{[R]} > 0 \}.$
12.	end for
12. 13·	Return:
10.	$H = \{u \mid \sum \mathbb{1} \{u \in H\} > b\}$
	$H = \{x \mid \sum \mathbb{I} \{x \in H_j\} \ge \frac{1}{2}\}.$

The algorithm can be viewed as $b := \lceil 20 \log(\frac{40mnR}{\tau\beta}) \rceil$ independent runs of a basic protocol, each of which returns a list H_i of potential heavy hitters. And the repetition is to boost the error probability.

420 In each basic protocol, users first apply Algorithm 1 to subsample to the data, which reduces the number unique elements while maintaining the heavy hitters upon aggregation. Then the user encodes their samples using IBLTs, whose aggregation is then sent to the server to decode. Since the number of unique elements is reduced through subsampling, the decoding 423 of the aggregated IBLT will be successful with high probability, hence recovering the aggregation of subsampled local histograms. The detailed proof of Theorem 4.1 is presented in Appendix F.

B. Approximate histogram under linear aggregation

417

418 419

421

422

424

425 426

427

In this section, we study the task of obtaining an approximate histogram in the multi-round linear aggregation model. The 428 first observation we make is that using Algorithm 2 with threshold τ , we are able to return a list H of heavy hitters such that 429 with high probability, the list contains all x's with frequency more than τ and no tail elements. The approximate histogram 430 algorithm builds on this and further asks each user to send a linear sketching of the their unsampled local data alongside the 431 IBLT data structures in Algorithm 2. The server would then use the aggregation of these linear sketches as a frequency 432 oracle to estimate the frequency of elements in H. 433

434 The above protocol leads to near optimal performance in the single-round case. However, the *R*-round case is trickier since 435 the error will build up along all R rounds and the naive application of the sketching algorithm will lead to an error that 436 depends linearly in R. This can be solved by carefully choosing the dependence of hash functions in all R rounds and show 437 that the dependence on R can be reduced to \sqrt{R} . We further show that the \sqrt{R} dependence is in fact optimal by proving a 438 matching lower bound, stated in Theorem B.2. 439

At a high-level, to improve the dependence on R, we use Count-sketches where the location hashes are fixed across rounds

while the sign hashes are generated with fresh randomness. The details of the algorithm are described in Algorithm 3. The proof follows from the guarantee in Theorem 4.1 and standard analysis for the Count-sketch algorithm. We defer the complete proof to Appendix G.

Theorem B.1. In the *R*-round setting, there exists a linear aggregation protocol with communication cost $\tilde{O}\left(\frac{mn\sqrt{R}}{\tau}\right)$ per user, which solves the τ -approximate histogram problem. Moreover, the running time of the algorithm is $\tilde{O}\left(\frac{mn\sqrt{R}}{\tau}\right)$.

Algorithm 3 *R*-round ApproxHist with LinSketch

Input: {h_i}_{i∈B_r,r∈[R]} : local histograms; d : alphabet size; R : number of rounds; m : per-user contribution bound; n : number of users per round; τ : error for approximate histogram; β : failure probability.
 Let w = [10mn√R / τ and b = [log (4mnR / τβ)].
 Get independent hash functions {g_j : [d] → [w]}_{j∈[w]} and {s_{j,r} : [d] → {±1}}_{j∈[w],r∈[R]}.

4: for
$$r \in [R]$$
 c

(In Parallel) Each user $i \in B_r$ implements the protocol in Algorithm 2 and sends messages Y_i . 5:

(In Parallel) User $i \in B_r$ encode $j \in [b]$ and $k \in [w]$, 6:

$$T_i(j,k) = \sum_x \mathbb{1} \left\{ g_j(x) = k \right\} s_{j,r}(x) \cdot h_i(x)$$

7: end for

8: Server obtains a list H of heavy hitters from the the messages Y_i 's.

9: Server obtains $\forall r \in [r], T_r = \sum_{i \in B_r} T_i$ and constructs \hat{h} , where $\forall x \in H$

$$\hat{h}(x) = \operatorname{Median}\left(\left\{\sum_{r \in [R]} T_r(j, g_j(x)) \cdot s_{j,r}(x)\right\}_{j \in [b]}\right),\$$

and $\forall x \notin H, \hat{h}(x) = 0.$

10: Return \hat{h} .

Lower bound for ApproxHist We prove the following lower bound on ApproxHist, which shows that the bound in Theorem B.1 is tight up to logarithmic factors, establishing the separation between the sample complexity for

Theorem B.2. For any τ and a *R*-round ApproxHistprotocol with per-user communication cost $o\left(\frac{mn\sqrt{R}}{\tau}\right)$, there exists a dataset $\{h_i\}_{i \in B_r, r \in [R]}$, such that the protocol cannot solve τ -approximate histogram with error probability at most 1/5.

C. Practical adaptive tuning for instance-specific bounds

In practical scenarios, the per-user communication $\cot \ell$ is often determined by system constraints (e.g., delay tolerance, bandwidth constraint) and the goal is to recovery heavy hitters with the small enough τ under a fixed communication cost $\ell_{\rm max}$. While we have shown in Theorem 4.2, in the worst case, we can only reliably recover heavy hitters with frequency at least $\Omega(\frac{mn}{\ell-m})$. However, since the successful decoding of IBLTs only requires the number of *unique* elements in a round to be small, when users' data is more favorable, it is possible to obtain better instance-specific bounds when the data is more concentrated on "heavy" elements.

We give an adaptive tuning algorithm for the subsampling parameter, which can be implemented when interactivity is allowed. The details of the algorithm are described in Algorithm 4. At a high level, our algorithm is based on an estimate for $\|\sum_{i\in B_r} h'_i\|_0$ where h'_i s are the subsampled histograms. When the decoding is successful, we can compute $\|\sum_{i\in B_r} h'_i\|_0$ exactly. When the decoding is not successful, we rely on an analysis based on the "core size" of a random graph (Molloy, 2005) to get an estimate of $\|\sum_{i \in B_n} h'_i\|_0$. Under the assumption that for a fixed subsampling parameter t, $\|\sum_{i \in B_n} h'_i\|_0$ will be relatively stable across rounds. We can then increase/decrease t based on past estimates of the data process.

We will empirically demonstrate the effectiveness of our tuning procedure. We leave proving rigorous guarantees on the

495 adaptive tuning algorithm as an interesting future direction. 496 497 Algorithm 4 Adaptive subsampled IBLT 498 **Input:** Communication budget C, number of users n, user contribution bound m. 499 **Update**: a tuning function that updates the subsampling parameter based on past observations. 1: Set $t_0 = \Theta\left(\frac{nB}{C}\right)$. 500 2: for r = 0, 1, 2, ..., R do 501 502 3: Each user $i \in B_r$ applies Algorithm 1 with threshold t in to their local histogram with fresh randomness to get h'_i . 503 Each user sends message $Y_i = f_i(h'_i)$ where f_i 's are mappings from Lemma A.1 with parameter L_0, γ and fresh 4: 504 randomness. 505 Server observes $\sum_{i \in B_r} Y_i$ and computes 5: $\hat{h}_r = \operatorname{Dec}(\sum_{i \in B_r} Y_i)$ 506 507 508 If the decoding is not successful, we let $\hat{h}_{r,j}$ be the all-zero vector. 509 if The decoding is successful, then 510 6: Set $\hat{s}_r = \|\hat{h}_r\|_0$. 7: 511 8: else 512 Get an estimate \hat{s}_r for $\|\sum_{i \in B_r} h'_i\|_0$ based on $\sum_{i \in B_r} Y_i$ using Equation (3). 513 9: 10: end if 514 515 11: Set $t_{r+1} =$ **Update** (t_r, C, \hat{s}_r) . 516 517 12: end for 518 519

D. Experiments

520

521

548

549

In this section, we empirically evaluate our proposed algorithms (Algorithms 2 and 4) for the task of heavy hitter recovery and compare it with baseline methods including (1) Count-sketch based method; (2) IBLT-based method without subsampling (Algorithm 2 with $\tau = 1$). We measure communication cost in units of words (denoted as *C*) and each word unit is an int16 object (can be communicated with 2 bytes) in python and C + + for implementation purposes. We will mainly focus on string data with characters from ROOT consisting of lower-case letters, digits and special symbols in {' @ $\# - ; * : ./_{-}$ }. Below are the details of our implementation.

529 **Count-median sketch.** We use H hash functions, each with domain size W and the total communication cost is $C = H \cdot W$ 530 words². In the *R*-round setting, for each round r, we loop over all $x \in \mathcal{X}$ and compute an estimate $h_r(x)$ and the recovered 531 heavy hitters are those with $\sum_r \hat{h}_r(x) \ge \tau$. Note that in the open-domain setting, $d = |\mathcal{X}|$ can be large and this decoding 532 procedure can be computationally infeasible. There are more computationally feasible variants including tree-based decoding 533 but these come at the cost of higher communication cost or lower utility. We stick to the described version in this work 534 and show that our proposed algorithms outperform this computationally expensive version. This advantage will be be even 535 larger for the more computationally feasible versions. We will mainly focus on small domain sizes (strings of length as most 536 3) to make the computation cost of count-sketch based methods feasible. 537

⁵³⁸ **IBLT-based method.** In our experiment, each IBLT data structure is of size $8L_0$, where L_0 is the targeted capacity for IBLT. We state more details about how the size is computed in Appendix H.

We consider fixed subsampling and adaptive subsampling. For fixed subsampling, when the max number of items in each round is upper bounded by M_{max} , we set the subsampling parameter in Algorithm 1, to be $t = \max\{1, \min\{\frac{M_{\text{max}}}{L_0}, \frac{\tau}{2}\}\}$. In practice, M_{max} can be obtained by system parameters such as the number of users in a round and the maximum contribution by a single user. Setting $t \le \tau/2$ guarantees that the heavy hitters will be kept with high probability. And setting $t = \frac{M_{\text{max}}}{L_0}$ guarantees that with high probability, the decoding of IBLT in each round will succeed and the we can preserve more information. We set b = 1 in our experiments, the estimated and the heavy hitters are defined as those with estimated frequency at least τ . For the update rule, we use $t_{r+1} = 0.5t_r + 0.5t_r \times \frac{\hat{s}_r}{C}$. We leave designing better update rules as

²In our experiments, mn will be between ~ 1000 and ~ 10,000, and hence one word is enough to store an entry in the sketch.

550 important future work.

551

569 570

571

572

573

574

575

576 577

578 579

580

581 582

583

595

552 **Client data simulation.** We take the ground-truth distribution of strings in the Stackoverflow dataset in Tensorflow 553 Federated and cut them to the first 3 characters in set ROOT. This is to make sure that the computation is feasible 554 for Count-median Sketch. And the data universe is of size d = 97336. In each round, we take $M_r \sim \mathcal{N}(M, M/10)$ 555 *i.i.d.* samples from the this distribution and encode them using the algorithms mentioned above. In the experiment, we 556 assume all samples come from different users (m = 1). For Count-sketch, this won't affect the performance. For IBLT with 557 threshold sampling, this will only increase the noise introduced in the sampling process. The metric we use is the F1 score 558 of real heavy hitters (heavy hitters with true cumulative frequency at least τ) and the estimated heavy hitters.

We take $R \in \{10, 30, 50, 100\}, \tau \in \{10, 20, 50, 100, 200, 500\}, M \in \{1000, 2000, 5000, 10000\}$ and $C \in \{100, 200, 500, 1000, 2000, 5000, 30000, 40000, 50000\}$. And our proposed algorithms consistently outperforms the sketching based method. Below we list a few plots and analyze their performance. For Count-median method, we take the max F1 score over all $H \in \{5, 7, 9, 11\}$ for each communication cost.

In Figure 2, we plot the F1 score comparison under different communication costs when R = 30, $\tau = 50$, M = 10000. It can be seen that our proposed algorithms significantly outperforms the Count-sketch method. Among the IBLT-based methods, Subsampled IBLT with adaptive tuning is performing the best. For non-interactive algorithms, subsampled IBLT with fixed subsampling probability is better compared to the unsampled counter part for a wide range of small capacity.

Figure 2. F1 score comparison under different communication cost ($R = 30, \tau = 50, M = 10000$).

In Figure 3, we plot the F1 score comparison under different round numbers when C = 10000, $\tau = 200$, M = 10000. As we can see, the performance of Count-sketch decreases significantly when the number of rounds increase while the performance of IBLT-based methods remains relatively flat, which is consistent with the theoretical results. The slight increase in the F1 score when R increases might be due to the *i.i.d.* generating process of the data in each round. As Rincreases, we get more information about the underlying distribution and this effect outweighs additional noise introduced by multiple rounds. Better understanding of this effect is an interesting further direction.

In Figure 4, we further demonstrate our adaptive tuning method by showing that it is comparable with the best possible subsampling parameter in a candidate set. More specifically, we run subsampled IBLT with $t \in \{1, 1.25, 2, 5, 10, 20, 50, 100\}$ for all communication costs. And the F1 score for SubsampledIBLT (best fixed) is defined as the best F1 score among these candidates.

596 **E. Related work** 597

598 Linear dimensionality reduction techniques for frequency estimation and heavy hitter recovery has been widely studied

599 to reduce storage or communication cost, such as Count-sketch, Count-min sketch (Charikar et al., 2002; Cormode & 600 Muthukrishnan, 2005; Donoho, 2006; Minton & Price, 2014), and efficient decoding techniques have also been proposed

600 Muthukrishnan, 2005; Donoho, 2006; Minton & Price, 2014), and effici 601 (Cormode & Muthukrishnan, 2006; Gilbert et al., 2010).

The closest to our work is the concurrent work of (Chen et al., 2022), which studies approximate histogram estimation under
 linear sketching constraint in the single round case. The work also establishes gap between communication complexities

Figure 3. F1 score comparison with different number of rounds ($\tau = 200, M = 10000, C = 10000$).

Figure 4. F1 score comparison (adaptive vs best fixed probability) ($\tau = 200, M = 10000, C = 5000$).

with/without Secure Aggregation. However, their result is in a more restricted setting of m = 1 and R = 1. Moreover, our algorithm also has the advantage of being computationally efficient (runtime only depends logarithmically in d), which is important for applications with large support but sparse data.

F. Proof of Theorem 4.1

 Note that the algorithm can be viewed as $b := \lceil 20 \log(\frac{40mnR}{\tau\beta}) \rceil$ independent runs of a basic protocol, each of which returns a list H_i of potential heavy hitters.

The next lemma states the probabilities of heavy elements and tail elements falling in the list. Lemma F.1. For all H_j defined in Algorithm 2, if $h^{[R]}(x) \ge \tau$,

$$\Pr\left(x \in H_j\right) \ge 4/5.$$

Else if $h^{[R]}(x) \leq \tau/10$,

$$\Pr\left(x \in H_j\right) \le \frac{2h^{[R]}(x)}{\tau}$$

Before proving the lemma, we first show how Theorem 4.1 can be implied by Lemma F.1.

By Lemma F.1, for x with $h^{[R]}(x) \ge \tau$, we have

$$\Pr(x \in H) \ge \Pr(\operatorname{Binom}(b, 4/5) \ge b/2) \ge 1 - \frac{\beta\tau}{40mnR}$$

where the last inequality follows from standard concentration bounds for Binomial random variables (*e.g.*, Chernoff bound (Mitzenmacher & Upfal, 2017)). Hence by union bound, we have for all x with $h^{[R]}(x) > \tau$ (at most mnR/τ such elements), we have

 $\Pr\left(\{x\in [d]\mid h^{[R]}(x)>\tau\}\subset H\right)\geq 1-\frac{\beta}{40}.$

667 For any x, with $h^{[R]}(x) \le \tau/10$, by Lemma F.1, we have

$$\begin{aligned} \Pr\left(x \in H\right) &\leq \Pr\left(\operatorname{Binom}\left(b, \frac{2h^{[R]}(x)}{\tau}\right) \geq b/2\right) \\ &\leq \frac{b}{2} \left(\frac{8e}{5} \cdot \frac{2h^{[R]}(x)}{\tau}\right)^{b/2}, \end{aligned}$$

674 where the last inequality follows from Binomial tail bound (See Lemma Lemma J.1 in the Appendix).

Hence by union bound we have

$\Pr\left(\{x\in [d]\mid h^{[R]}(x)\leq \tau/10\}\cap H=\emptyset\right)$	
$\leq \sum_{x:h^{[R]}(x)\leq \tau/10} \frac{b}{2} \left(\frac{eh^{[R]}(x)}{\tau}\right)^{b/2}$	
$\leq rac{20mnR}{ au}rac{b}{2}igg(rac{8e}{25}igg)^{b/2}$	(1)
$< \frac{20mnR}{a}e^{-\frac{b}{20}}$	(2)

$$\leq \frac{20mnR}{\tau}e^{-\frac{b}{20}}$$

$$\leq \frac{\beta}{2}.$$
(2)

Where Equation (1) follows from $x^{b/2} + y^{b/2} \le (x+y)^{b/2}$, and hence we can combine symbols to increase the sum of tail probability and end up with at most $\frac{20mnR}{\tau}$ symbols with frequencies at most $\tau/10$. Equation (2) follows from the inequality $x(8e/25)^x \le e^{-x/10}$.

693 By union bound, we get the guarantee claimed in Theorem 4.1.

Proof of Lemma F.1: The proof mainly consists of two parts. We will first show that local subsampling will keep each heavy hitter with a high probability and each tail element with a low probability, stated in Lemma F.2. We will then show that after local subsampling, the number of unique elements in each round will decrease so that the decoding in Algorithm 2 will succeed with high probability.

Lemma F.2. Let $h_i^{'[R]}$ be the aggregation of locally subsampled histogram for run j, i.e.,

$$h'_{j}^{[R]} = \sum_{r \in [R]} \sum_{i \in B_{r}} h_{i,j}.$$

Then if $h^{[R]}(x) \ge \tau$,

$$\Pr\left(h_{j}^{'[R]}(x) > 0\right) \ge 1 - \frac{1}{e^{2}}.$$

Else if $h^{[R]}(x) \leq \tau/10$,

$$\Pr\left(x \in H_j\right) \le \frac{2h^{[R]}(x)}{\tau}$$

Proof. When $h^{[R]}(x) \ge \tau$,

712
713
$$\Pr\left(h_{j}^{'[R]}(x) > 0\right) = 1 - \prod_{r \in [R], i \in B_{r}} \min\{1 - \frac{2h_{i,j}(x)}{\tau}, 0\} \ge 1 - \prod_{r \in [R], i \in B_{r}} e^{-\frac{2h_{i,j}(x)}{\tau}} = 1 - e^{-\frac{2h^{[R]}(x)}{\tau}} \ge 1 - \frac{1}{e^{2}}.$$

715 When $h^{[R]}(x) \le \tau/10$

$$\Pr\left(h_{j}^{'[R]}(x) > 0\right) = 1 - \prod_{r \in [R], i \in B_{r}} \left(1 - \frac{2h_{i,j}(x)}{\tau}\right) \le 1 - \left(1 - \sum_{r \in [R], i \in B_{r}} \frac{2h_{i,j}(x)}{\tau}\right) = \frac{2h^{[R]}(x)}{\tau}.$$

The next lemma shows that with high probability, the number of elements in each round will decrease by almost a factor of τ .

Lemma F.3. With probability at least 1 - 1/32, we have

$$\max_{r \in [R]} \{ \|h'_r\|_0 \} = O\left(\frac{mn}{\tau} \log R\right).$$

Proof. Since all rounds are independent, it would be enough to show that $\forall i$, with probability at least 1 - 1/32R, we have

$$\|h_r'\|_0 = O\left(\frac{mn}{\tau}\log R\right)$$

To see this, we have

$$\Pr\left(\|h_r'\|_0 \ge \frac{2mn}{\tau}\log R\right) \le \Pr\left(\operatorname{Binom}\left(mn, \frac{1}{\tau}\right) \ge \frac{2mn}{\tau}\log R\right) \le \frac{R}{32},$$

where the first step follows from that the left hand side is maximized when all mn elements in h_r are distinct.

Finally, it would be enough to show that when the condition in Lemma F.3 holds, the decoding of the aggregated IBLT will succeed with high probability. This is true since by Lemma A.1 and union bound, we have

$$\Pr\left(\forall j, \hat{h}_j^{[R]} = h_j^{'[R]}\right) \le R \cdot \left(\frac{mn}{\tau} \log R\right)^{-\gamma} \le 1/32.$$

Combining the above and Lemmas F.2 and F.3, we conclude the proof since $1/e^2 + 1/32 + 1/32 \le 1/5$. \Box

G. Proof of Theorem B.1

In the proof, we will condition on the event that the list H obtained in Line 8 of Algorithm 3 is a τ approximate heavy hitter set and hence setting $\hat{x} = 0$ for $x \notin H$ won't introduce error larger than τ .

The rest of the proof follows similarly as the standard proof for Count-sketch. Since $b = \lceil \log \left(\frac{4mnR}{\tau\beta}\right) \rceil$, it would be enough to prove that $\forall x \in \mathcal{X}$, with probability at least 2/3, we have

$$\sum_{r \in [R]} T_r(j, g_j(x)) \cdot s_{j,r}(x) - h^{[R]}(x)| = O(\tau).$$

Let

$$\hat{h}_{j}(x) := \sum_{r \in [R]} T_{r}(j, g_{j}(x)) \cdot s_{j,r}(x)$$

$$= \sum_{r \in [R]} \sum_{x'} \mathbb{1} \{g_{j}(x') = g_{j}(x)\} s_{j,r}(x') s_{j,r}(x) \cdot h_{i}(x')$$

$$= \sum_{r \in [R]} \mathbb{1} \{g_{j}(x') = g_{j}(x)\} \sum_{r \in [R]} s_{j,r}(x') s_{j,r}(x) \cdot h_{i}(x')$$

767
768
769
$$= \sum_{x'} \mathbb{1} \{ g_j(x') = g_j(x) \} \sum_{r \in [R]} s_{j,r}(x') s_{j,r}(x) \cdot h_i(x')$$
769

Then we have $\mathbb{E}\left[\hat{h}_j(x) = h^{[R]}(x)\right]$. Next we provide a bound on the variance. Let $H_{10\tau/\sqrt{R}}$ be the set of elements with frequency at least $10\tau/\sqrt{R}$, then we have $|H_{10\tau/\sqrt{R}}| \leq \frac{mn\sqrt{R}}{10\tau}$. Since $w = \lceil \frac{10mn\sqrt{R}}{\tau} \rceil$, we have with probability at least 5/6,

$$\sum_{x'\in H_{10\tau/\sqrt{R}}, x'\neq x} \mathbb{1}\left\{g_j(x') = g_j(x)\right\} = 0$$

Conditioned on this event, we have

$$\mathbb{E}\left[\left(\hat{h}_{j}(x)-h^{[R]}(x)\right)^{2}\right] = \mathbb{E}\left[\left(\sum_{x'\notin H_{10\tau/\sqrt{R}}, x'\neq x} \mathbb{1}\left\{g_{j}(x')=g_{j}(x)\right\}\sum_{r\in[R]}s_{j,r}(x')s_{j,r}(x)\cdot h_{i}(x')\right)^{2}\right]$$
$$\leq \frac{\max_{x'\notin H_{10\tau/\sqrt{R}}}h^{[R]}(x)\sum_{x'\notin H_{10\tau/\sqrt{R}}}h^{[R]}(x)}{w}$$
$$\leq \tau^{2}.$$

Hence with probability at least 5/6, we have

$$\mathbb{E}\left[\left|\hat{h}_j(x) - h^{[R]}(x)\right|\right] \le \sqrt{6}\tau.$$

We conclude the proof by a union bound over the two events.

H. Additional details on IBLT

794 Intuition on ListEntries for IBLT. The intuition behind the IBLT construction is as follows: Start with an array \mathcal{B} of 795 length ℓ containing 4-tuples of the form (0, 0, 0, 0). To insert pair (x, v) hash the tuple $(x, \tilde{x}, v, 1)$ into k locations l_1, \ldots, l_k 796 in \mathcal{B} based on the key x, where $\tilde{x} := G(x)$ is a hash of x into a sufficiently large domain so that collision probability is 797 sufficiently unlikely. Then add, using component-wise sum, $(x, \tilde{x}, v, 1)$ to the contents of \mathcal{B} in all locations l_1, \ldots, l_k . The 798 ListEntries/Dec operation corresponds to the result of the following procedure: (1) find an entry (x_{sum} , \tilde{x}_{sum} , v_{sum} , 799 *j*) such that $G(x_{sum}/j) = \tilde{x}_{sum}/j$ holds, (2) add $(x_{sum}/j, v_{sum})$ to the output, and (3) remove the pair $(x_{sum}/j, v_{sum})$ 800 by subtracting $(x_{sum}, \tilde{x}_{sum}, v_{sum}, j)$ from the entries l'_1, \ldots, l'_k in the array \mathcal{B} to which an insertion would add the tuple for 801 key x_{sum}/j and get back to step (1). The process of listing entries a.k.a "peeling off" \mathcal{B} . might terminate before the IBLT is 802 empty. This is the failure procedure in Lemma A.1, which corresponds to the natural procedure to find a 2-core in a random 803 graph. 804

Sketch size. The above intuition corresponds to the IBLT construction variant from (Goodrich & Mitzenmacher, 2011) that can handle duplicates. It can be implemented with four length ℓ vectors with entries in [d], Im(G), [mn], [mn], respectively. In terms of concrete parameters (see (Goodrich & Mitzenmacher, 2011) for details), k = 3, $\ell > 1.3L_0$, and $G = \mathbb{Z}_p$ with $p = 2^{31} - 1$ give good performance, and require $1.3L_0(32 + \log_2 d + 2\log_2(mn))$ bits. For the experiment setting considered in Section 5, this is will take at most $8L_0$ words.

Cardinality estimation from saturated IBLT. Lemma A.1 tells us that a tight bound L_0 on the number of distinct non-zero indices in the intended histogram, can save us space in an IBLT encoding. However, getting that bound wrong results in a undecodable IBLT. While in the single round case all is lost, in the multi-round setting we leverage a property of undecodable IBLTs that helps update our L_0 bound for subsequent rounds after a failed round. This is the main ingredient for our adaptive tuning heuristic presented in Section C.

Let \mathcal{B} be an undecodable IBLT, and let S be the size of the undecoded graph of \mathcal{B} . Also let ℓ be the size of \mathcal{B} , and let Nthe (unknown) number of distinct elements inserted in \mathcal{B} (note that N corresponds to the correct bound L_0 that enables decoding). By (Molloy, 2005), we have the following relation: For large enough N, if $S < \ell$, we have

$$\frac{S}{C} = 1 - e^{-x}(1+x),\tag{3}$$

where x is the greatest solution to

819 820 821

$$\frac{6N}{C} = \frac{2x}{(1 - e^{-x})^2}$$

Hence we can have an estimate for N (and thus a correct choice for L_0 in a subsequent round) based on S and C. As mentioned above we leverage this fact in Section C.

I. Proof of lower bounds.

I.1. Proof of Theorem 4.2

We will focus on the case when R = 1 since the claimed bound doesn't depend on R and we can assume there is no data in other R - 1 rounds. To prove the lower bound, we simply the setting and assume that there are only τ users, each with $\frac{mn}{\tau}$ elements. This can be done by grouping $\frac{n}{\tau}$ users together and transmit all their elements to one user. Any protocol on n parties and be simulated by communication among the user groups and communication within each user group. Now since we only consider communication among the user groups, the communication cost is smaller compared to the ungrouped case, which suffices for lower bound purposes.

To further simplify things, we assume all elements come from [mn]. We consider the following cases.

- Case 0: Each user has a distjoint subset of size $\frac{mn}{\tau}$ from \mathcal{X} .
- Case x: All T users contribute the same item $x \in [mn]$ and all other elements are distinct.

Let Π_0 be the view of the server and Π_x be the view of the server in case x. By definition of secure aggregation, we have $\Pi_0 \in G$ with $|G| \leq 2^{\ell}$. We will use the following lemma which follows from existing results on set disjointness (Bar-Yossef et al., 2004; Jayram, 2009).

Lemma I.1. There exists constant C such that any protocol with $\ell \leq C \cdot \frac{mn}{\tau}$ will have

$$\frac{1}{mn} \sum_{x \in [mn]} d_H^2(\Pi_0, \Pi_x) \le \frac{1}{20}.$$
(4)

Given Lemma I.1, we have that there must exist at least $\frac{mn}{2}$ elements (denoted by set S_0) with

$$d_H^2(\Pi_0,\Pi_x) \le \frac{1}{10},$$

and hence $d_{TV}(\Pi_0, \Pi_x) \le \sqrt{2d_H^2(\Pi_0, \Pi_x)} \le 1/2$ Let $H(\Pi)$ be the output heavy hitter set when the server observes Π . For $x \in S_0$, we must have that the protocol will have $\Pr(x \in H(\Pi_x)) \ge 2/3$. And hence,

$$\Pr(x \in H(\Pi_0)) \ge \Pr(x \in H(\Pi_x)) - d_{TV}(\Pi_0, \Pi_x) = \frac{1}{6}.$$

Hence we have

$$\sum_{x \in S_0} \Pr\left(x \in H(\Pi_0)\right) \ge \frac{1}{6} \frac{mn}{2} > \frac{mn}{12}.$$

However, we also have

$$\sum_{x \in S_0} \Pr\left(x \in H(\Pi_0)\right) \le \sum_{x \in [mn]} \Pr\left(x \in H(\Pi_0)\right) \le \frac{10mn}{\tau} + \frac{1}{3},$$

where the last inequality follows from that with probability at least 2/3, H only contains any elements with frequency more than $\tau/10$. This leads to a contradiction when $\tau > 30$ and mn > 8, which implies a $\Omega(\frac{mn}{\tau})$ lower bound on the communication complexity.

I.2. Proof of Theorem B.2

Here we prove a stronger version of the lower bound where in each round r, the communication among users is not limited but the users in B_r must compress $h^{(r)}$ to an element $Y^{(r)} \in G_r$ with $|G_r| \le 2^{\ell}$, which is observed by the server. And the server will then obtain an approximate histogram $\hat{h}^{[R]}$ based on $\Pi = (Y^{(1)}, \ldots, Y^{(R)}, U)$. For a given τ , next we show that any protocol with $\ell = \frac{mn\sqrt{R}}{\tau}$ won't solve τ -approximate heavy hitter with error probability at most 1/100. To simply the proof, we assume $R \ge 400$ without loss of generality.

We consider histograms $h^{(r)}, \forall r \in [R]$ supported over the domain 10ℓ and are generated *i.i.d.* from a distribution P. Let Zbe uniformly distributed over $\{\pm 1\}^{5\ell}$, and under distribution P_Z , we have $\forall r \in [R], i \in [5\ell]$,

$$h^{(r)}(2i) = \begin{cases} \frac{mn}{5\ell} & \text{with prob } \frac{1}{2} + \frac{10}{\sqrt{R}}Z_i.\\ 0 & \text{with prob } \frac{1}{2} - \frac{10}{\sqrt{R}}Z_i. \end{cases}$$

886 and

$$h^{(r)}(2i-1) = 1 - h^{(r)}(2i).$$

It can be check that $||h^{(r)}||_1 = mn$ with probability 1. We prove the theorem by contradiction. If the protocol solves τ -approximate heavy hitter with error probability at most 1/5, let

$$\hat{Z}_i = \mathbb{1}\left\{\hat{h}^{[R]}(2i) > \frac{mnR}{10\ell}\right\}.$$

We have

$$\begin{split} \Pr\left(\hat{Z}_i \neq Z_i\right) &\leq \Pr\left(\left|\hat{h}^{[R]}(2i) - h^{[R]}(2i)\right| \geq \frac{mn\sqrt{R}}{\ell}\right) + \Pr\left(\left|h^{[R]}(2i) - \frac{mnR}{5\ell}\left(\frac{1}{2} + \frac{1}{\sqrt{R}}Z_i\right)\right| \geq \frac{mn\sqrt{R}}{\ell}\right) \\ &\leq \frac{1}{5} + \frac{1}{25} = \frac{6}{25}. \end{split}$$

Hence we have

$$\sum_{i \in [5\ell]} I(Z_i; \Pi) \ge \sum_{i \in [5\ell]} I(Z_i; \hat{Z}_i) \ge \sum_{i \in [5\ell]} (1 - H(\frac{5}{26})) \ge 2\ell,$$

where H(p) is the Shannon entropy of a Bernoulli random variable with success probability 6/25.

However, by standard arguments on communication-limited estimation on product of Bernoulli random variables (*e.g.*, in (Braverman et al., 2016; Han et al., 2021; Acharya et al., 2020)), it can be shown that

$$\sum_{i \in [5\ell]} I(Z_i; \Pi) \le \ell,$$

which leads to a contradiction. This concludes the proof.

J. Binomial tail bound.

Lemma J.1. Let $X \sim \text{Binom}(n, p)$ be a binomial distribution, when n > 10 and p < 1/5, we have

$$\Pr(X \ge n/2) \le \frac{n+1}{2} \left(\frac{4ep}{5}\right)^{n/2}.$$

Proof.

$$\Pr(X \ge n/2) = \sum_{i=\lfloor (n+1)/2 \rfloor}^{n} \Pr(X = i)$$

$$= \sum_{i=\lfloor (n+1)/2 \rfloor}^{n} {\binom{n}{i}} (1-p)^{n-i} p^{i}$$

$$\le \frac{n+1}{2} {\binom{n}{n/2}} ((1-p)p)^{n/2}$$

$$\le \frac{n+1}{2} (2e)^{n/2} {\binom{4p}{r}}^{n/2}$$
(6)

930
931
932
933
934

$$\leq \frac{n+1}{2} (2e)^{n/2} \left(\frac{4p}{5}\right)$$

$$= \frac{n+1}{2} \left(\frac{4ep}{5}\right)^{n/2},$$

935	where Equation (5) follows from $\Pr(X = i)$ is monotonically decreasing when $i \ge n/2$ and Equation (6) follows from
936	standard bounds on binomial coefficients.
937	
938	
939	
940	
941	
942	
943	
944	
945	
946	
947	
948	
949	
950	
951	
952	
953	
954	
955	
956	
957	
958	
959	
960	
961	
962	
963	
964	
965	
966	
967	
968	
969	
970	
971	
972	
973	
974	
975	
976	
977	
978	
979	
980	
981	
982	
983	
984	
985	
986	
987	
988	
989	