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Abstract
Motivated by real-life deployments of multi-
round federated analytics with secure aggregation,
we investigate the fundamental communication-
accuracy tradeoffs of the heavy hitter discovery
and approximate (open-domain) histogram prob-
lems under a linear sketching constraint. We pro-
pose efficient algorithms based on local subsam-
pling and invertible bloom look-up tables (IBLTs).
We also show that our algorithms are information-
theoretically optimal for a broad class of inter-
active schemes. The results show that the linear
sketching constraint does increase the communi-
cation cost for both tasks by introducing an extra
linear dependence on the number of users in a
round. Moreover, our results also establish a sepa-
ration between the communication cost for heavy
hitter discovery and approximate histogram in
the multi-round setting. The dependence on the
number of rounds R is at most logarithmic for
heavy hitter discovery whereas that of approxi-
mate histogram is Θ(

√
R). We also empirically

demonstrate our findings.

1. Motivation
Collecting and aggregating user data drives improvements in
the app and web ecosystems. For instance, learning popular
out-of-dictionary words can improve the auto-complete fea-
ture in a smart keyboard, and discovering malicious URLs
can enhance the security of a browser. However, sharing
user data directly with a service provider introduces several
privacy risks.

It is thus desirable to only make aggregated data avail-
able to the service provider, rather than directly sharing
(unanonymized) user data with them. This is typically
achieved via multi-party cryptographic primitives, such as
a secure vector summation protocol (Melis et al., 2016;
Bonawitz et al., 2017; Corrigan-Gibbs et al., 2020; Bell
et al., 2020). For instance, for closed domain histogram
applications, the users can first “one-hot” encode their data
into a vector of length d (the size of the domain) and then
participate in a secure vector summation protocol to make
the aggregate histogram (but never the individual user con-

tributions) available to the service provider.

Federated heavy hitters recovery. The abovementioned
solution requires Ω(d) communication. However, in many
real life applications the domain size is very large or even
unknown a priori. For example, the set of new URLs can be
represented via 8-bit character strings of length 100, and can
thus take d = 256100 values, which is clearly impossible
to support in practice. In such settings, linear1 sketching
is often used to reduce the communication load. For exam-
ple, Melis et al. use secure count-min sketch aggregation
for privacy preserving training of recommender systems,
and Corrigan-Gibbs & Boneh rely on count-min sketches
for gathering browser statistics, i.e. aggregate histogram
queries. Similarly, Hu et al. rely on secure aggregation of
variants of Flajolet-Martin sketches for distributed cardinal-
ity estimation. Boneh et al. uses sketching to reduce the cost
for distributed subset-histogram queries. In the work closest
to ours, Chen et al. show that count-sketches can be used
to recover the heavy hitter items (i.e. frequently appearing
items) while reducing the communication overhead. All
these protocols operate in the single-round setting.

Sketching in multi-round aggregation schemes. Even
though count-sketches are great step towards solving the
heavy hitters problem, this approach has only been analyzed
in the single round data aggregation setting. However, most
commonly deployed systems for federated analytics employ
multi-round schemes for data aggregation (Bonawitz et al.,
2019). This is primarily because (a) not all users are avail-
able around the same time, (b) the population may be very
large (in the billions of devices) and therefore the server
has to aggregate data over batches for bandwidth/compute
reasons, and (c) running the cryptographic secure vector
summation protocol has compute and communication costs
that are super linear in the number of users we are aggregat-
ing over (Bell et al., 2020; Bonawitz et al., 2017). Further,
count sketch based approaches have a decoding runtime
that is linear in d, which is infeasible in the open domain
setting, and improving it to log d involves blowing up the
communication cost by the same factor.

1Linearity is necessary because non-linear compres-
sion/sketching schemes would not work under the secure vector
summation primitive which only makes the sum of client-held
vectors available to the server.
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Our contributions. Our paper thus takes a principled
approach towards uncovering the fundamental accuracy-
communication tradeoffs of the heavy hitters recovery prob-
lem under the linearity constraints imposed by secure vector
summation protocols. Surprisingly, we show that count-
sketches are strictly sub-optimal for this application, and
we develop a novel provably optimal approach that com-
bines client-side (local) subsampling with inverse Bloom
lookup tables (IBLTs). Roughly speaking, we show (via
lower bounds) that in the R-round case, any approach that
solves an approximate histogram problem (with additive
error) will incur a

√
R factor penalty in the communication

cost, while our optimal approach incurs log(R). Hence,
even non-trivial modifications of count-sketches are strictly
sub-optimal.

We also empirically evaluate our proposed algorithms and
compare it with count-sketch baselines. Significant advan-
tage of our algorithm is observed, especially when R is
large. In the setting of Figure 2, to achieve an F1 score of
0.8, we see a 10x improvement in communication compared
to the baseline using Count-sketch.

Organization. We formally define the problem in Sec-
tion 2 and then discuss our results in Section 3. Due to page
limits, in the main, we focus on heavy hitter recovery in Sec-
tion 4 and present the experimental results in Section 5. In
the appendix, we present the detailed algorithms and their
practical modification in Appendix A, Appendix B, and
Appendix C. All proofs will be presented in the appendix.

2. Problem setup and preliminaries
We consider heavy hitter discovery in the distributed setting
with multi-round communication between the users and a
central server. Suppose users come in R rounds. In round
r ∈ [R], there are n users, denoted by the set Br. We
assume the sets are pairwise disjoint, i.e., ∀r 6= r′, Br ∩
B′r = ∅. Each user i ∈ Br contributes mi samples with a
contribution bound mi ≤ m from a finite domain X of size
d. Let hi denote the user’s local histogram where ∀x ∈ X ,
hi(x) is the number of times element x appeared in user i’s
local samples. By assumption, we have ‖hi‖1 = mi ≤ m.
Let h(r) be the aggregated histogram in round r, i.e., ∀x ∈
X : h(r)(x) =

∑
i∈Br hi(x).

The aggregated histogram across all R rounds is denoted by
h[R] where ∀x ∈ X : h[R](x) =

∑
r∈[R] h

(r)(x).

The total number of users is denoted by N :=nR. We will
focus on cases where d � Nm, i.e., the case where the
support is large and the data is sparse.

The goal of the server is to learn useful information about
the aggregated histogram h[R]. More precisely, we consider
the two tasks described below.

τ -heavy hitter (ApproxHH). For a given threshold τ , the
goal of τ -heavy hitter recovery on the entire data stream is
to return a set H such that with probability 1− β,

1. If h[R](x) ≥ τ , x ∈ H .
2. If h[R](x) ≤ τ/10, x /∈ H .

τ -approximate histogram (ApproxHist). The goal is to
return an approximate histogram ĥ[R] such that with proba-
bility 1− β,

∀x ∈ X ,
∣∣∣ĥ[R](x)− h[R](x)

∣∣∣ ≤ τ.
It can be seen that τ/3-approximate histogram is a harder
problem than τ -heavy hitter (HH) since an τ/3-approximate
histogram would imply a set of approximate heavy hitters
by returning H to be the list of elements with approximate
frequency more than τ − τ/2.

Efficient decoding. Since we consider cases where
d � Nm, we require efficient encoding (run by users)
and decoding (run by the server). More precisely,
the encoding/decoding time should be polynomial in
N,R, log d, log(1/β) and other parameters.

Per-user communication complexity. We focus on set-
tings where each user has limited uplink communication
capacity. In particular, each user must compress their lo-
cal histogram hi to a message of bit length `, denoted by
Yi. And the server must solve the above tasks based on
the received messages. The communication complexity of
each task is the smallest bit length such that there exists a
communication protocol to solve the task.

Distributed estimation with linear sketching (LinS-
ketch). A even more stringent communication model is
the linear summation model. In each round r, each user
i ∈ Br can only send a message Yi from a finite ring Gr
based on their local histogram and shared randomness U .
For all i ∈ Br, let

Yi = fi(hi, U).

Under the linear aggregation model, the server only ob-
serves Y (r) =

∑
i∈Br Yi, where the addition is the additive

operation in the ring Gr and by definition, Y (r) ∈ Gr.
The reason why we restrict ourselves to a finite ring is for
compatibility with cryptographic protocols for secure vec-
tor summation (Bonawitz et al., 2017; Bell et al., 2020),
which operate in over a finite space. These protocols en-
sure that any additional information observed by the server
beyond Y (r) can in fact be simulated given Y (r), under
standard cryptographic assumptions. As mentioned above,
we abstract away the specifics of the underlying protocol
and assume that the server observes exactly Y (r). For vec-
tor summation, it is convenient to think of Gr as Z`qr , i.e.
length-` vectors with integer entries mod qr (we might chose
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qr to be prime when we require division, e.g. in the IBLT
construction).

If the protocol is interactive, for i ∈ Br, Yi is allowed to
depend on Y (1), . . . , Y (r−1). In this case, each fi is a func-
tion of Y (1), . . . , Y (r−1). If the protocol is non-interactive,
fi’s must be fixed independently from previous messages.

The server then must recover heavy hitters (and their fre-
quencies) based on the transcript of the protocol, denoted
by

Π = (Y (1), . . . , Y (R), U).

3. Results and technique
We consider both approximate heavy hitter recovery and
approximate histogram estimation in the linear aggregation
model. We establish tight (up to logarithmic factors) com-
munication complexity for both tasks in the single-round
and multi-round settings. The results are summarized in Ta-
ble 1. Our results have the following interesting implications
on the communication complexity of these problems.

Linear aggregation increases the communication cost.
As shown in the table, under LinSketch, for both tasks,
the per-user communication would incur a linear depen-
dence on n, the number of users in each round. On the other
hand, without linear aggregation constraint, there won’t be
a linear dependence on n since each user can simply send
their m local samples losslessly using O(m log d) bits. The
result establishes the fundamental cost of linear aggregation
communication protocols for heavy hitter recovery.

Task Single-round R-round

τ -ApproxHH Θ̃
(
mn
τ

)
Θ̃
(
mn
τ

)
τ -ApproxHist Θ̃

(
mn
τ

)
Θ̃
(
mn ·min{

√
R
τ , 1}

)
Table 1. Per-user communication complexity with LinSketch. All
described bounds can be acheived by a non-interactive protocol
with efficient server runtime. All bounds cannot be improved up
to logarithmic factors under interactive protocols.

ApproxHist is harder than ApproxHH. A nature way to
obtain heavy hitters is to obtain an approximate histogram
and do proper thresholding to select the heavy elements.
Although in the single-round case, there is at most a loga-
rithmic gap between the communication complexity for the
two problems. In the R-round case, our result shows that
this is strictly sub-optimal. More precisely, the communi-
cation cost for τ -ApproxHH increases by a factor of

√
R

while that of ApproxHist depends at most logarithmically in
R. This implies a gap between the per-user communication

cost for τ -ApproxHist and τ -ApproxHH in the multi-round
case.

3.1. Our technique - IBLT with local subsampling

As discussed above, when solving the approximate heavy
hitter problem in the multi-round setting, algorithms that
rely on obtaining an approximate histogram and threshold-
ing won’t give the optimal communication complexity. In
the paper, we propose to use invertible bloom lookup tables
(IBLTs) (Goodrich & Mitzenmacher, 2011) and local sub-
sampling. At a high-level, IBLT is a bloom filter-type linear
data structure that supports efficient listing of the inserted
elements and their exact counts. The size of the table scales
linearly with the number of unique keys inserted. To reduce
the communication cost, we perform local threshold sam-
pling (Duffield et al., 2005a) on users’ local datasets. This
guarantees that the “light” elements will be discarded with
high probability and hence won’t take up the capacity of the
IBLT data structure. Compared to frequency-oracle based
approach, the noise introduced in our subsampling-based
approach for each item is proportional to its accumulative
count, which gives better estimates for elements with fre-
quencies near the threshold. For elements with counts way
above the threshold, the frequency estimate will have a
larger error but this won’t affect heavy hitter recovery since
only whether the count is above τ is crucial to our problem.
See detail of the algorithm in Appendix A.

4. Approximate heavy hitter under linear
aggregation

In this section, we study the approximate heavy hitter prob-
lem and show that the problem can be solved with per-user
communication complexity Õ

(
mn
τ log d

)
, stated in Theo-

rem 4.1.

A natural comparison to make is the heavy hitter recovery
algorithm obtained from getting a frequency oracle up to
accuracy Θ(τ). Since there are R rounds, the naive ap-
proach would require an accuracy of Θ(τ/R) in each round
and classic methods such as Count-min and Count-sketch
would require a per-user communication complexity of
Θ̃(mnR/τ). In the R-round case, our result improves upon
this by a factor of R. In fact, as we show in Theorem B.2,
any frequency oracle-based approach would require per-user
communication complexity of at least Ω(mn

√
R/τ). Our

result improves upon these and show that the dependence
on R is at most logarithmic.

Theorem 4.1. There exists a non-interactive linear sketch-
ing protocol with communication cost Õ

(
mn
τ

)
bits per

user, which solves the τ -approximate heavy hitter problem.
Moreover, the running time of the algorithm is Õ

(
mn
τ

)
.

The next theorem shows that the above communication
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complexity is minmax optimal up to logarithmic factors.
Theorem 4.2. For any τ and interactive algorithm A with
per-user communication cost o

(
mn
τ

)
, there exists a dataset

hi, i ∈ Br, r ∈ [R], such thatA cannot solve τ -heavy hitter
(HH) with success probability at least 2/3.

Due to space constraints, we present the detailed protocol
that achieves Theorem 4.1 in Appendix A and discuss the
proof of the lower bound Theorem 4.2 in Appendix I.1.

Below we give an overview of the two main components
used in the protocol: (i) a probabilistic data structure called
Invertible Bloom Look up Table (IBLT) introduced by
Goodrich & Mitzenmacher, and (ii) local subsampling. We
start by introducing IBLTs, starting from the more standard
Bloom filters.

IBLT: Bloom filters with efficient listing. Note that each
user’s local histogram hi can be viewed as a sequence of
key-value pairs (x, hi(x)). The Bloom filter data structure
is a standard linear data structure to representing a set of key-
value pairs with keys coming from a large domain. IBLT
is a version of Bloom filter that supports an efficient listing
operation – while preserving the other nice properties of
Bloom counting filters, namely linearity (and thus merge-
able by summation), and succintness (linear size in number
of indices it holds).

These properties are summarized in the following Lemma.
Lemma 4.3 ((Goodrich & Mitzenmacher, 2011)). Consider
a collection of local histograms (hi)i∈[n] over [d] such that
‖
∑
i∈[n] hi‖0 ≤ L0.

For any γ > 0, there exist local linear sketches {fi}i∈[n] of
length ` = Õ(γL0) and an O(`) time decoding procedure
Dec(·) such that

Dec(
∑
i∈[n]

fi(hi)) =
∑
i∈[n]

hi

succeeds except with probability at most O
(
L2−γ
0

)
.

For the purpose of this paper we can focus on the two main
operations supported by an IBLT instance B (see (Goodrich
& Mitzenmacher, 2011) for details on deletions and look-
ups): Insert(k, v), which inserts the pair (k, v) into
B, and ListEntries(), which enumerates the set of
key-value pairs in B. Note that fi(hi) in Lemma A.1
corresponds to the IBLT Bi resulting from inserting the
set {(x, hi(x)) | hi(x) > 0} into an empty IBLT. Also,
ListEntries() corresponds to Dec in Lemma A.1. Fi-
nally,

∑n
i fi(hi) corresponds to the encoding of the IBLT

resulting from inserting the set {(x,
∑n
i hi(x)) | ∃i ∈ [n] :

hi(x) > 0} into an empty IBLT. In other words, each client
i ∈ [n] computes local IBLT Bi := fi(hi), and the (se-
cure) aggregation of the Bi’s results in the global IBLT

B :=
∑n
i fi(hi). Further details on IBLT are stated in

Appendix H.

Reducing capacity via threshold sampling. Note that
the guarantee in Lemma A.1 relies on the number of unique
elements in

∑
i∈[n] hi, which can be at most mn in the

worst-case, leading to an O(mn) not matching our lower
bound in Lemma 4.2. For heavy hitter recovery, we re-
duce the communication cost by local subsampling. More
precisely, we use the threshold sampling algorithm from
(Duffield et al., 2005b), detailed in Algorithm 1 to achieve
the (optimal) dependency O(mn/τ).

5. Experiments
In this section, we empirically evaluate our proposed al-
gorithms (Algorithms 2 and 4) for the task of heavy hitter
recovery and compare it with baseline methods including (1)
Count-sketch based method; (2) IBLT-based method with-
out subsampling (Algorithm 2 with τ = 1). We measure
communication cost in units of words (denoted as C) and
each word unit is an int16 object (can be communicated with
2 bytes) in python and C++ for implementation purposes.

The data we use is simulated based on the ground-truth
distribution of strings in the Stackoverflow dataset in Ten-
sorflow Federated. Due to space constraints, we defer the
details of the data simulation and implementation of the
algorithms to Appendix D.

In Figure 1, we plot the F1 score comparison under different
communication costs when R = 30, τ = 50,M = 10000.
It can be seen that our proposed algorithms significantly
outperforms the Count-sketch method. Among the IBLT-
based methods, Subsampled IBLT with adaptive tuning is
performing the best. For non-interactive algorithms, sub-
sampled IBLT with fixed subsampling probability is better
compared to the unsampled counter part for a wide range of
small capacity.

Figure 1. F1 score comparison under different communication cost
(R = 30, τ = 50,M = 10000).

We list more comparisons in Appendix D.
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zocchi, S., McMahan, B., Overveldt, T. V., Petrou, D.,
Ramage, D., and Roselander, J. Towards federated learn-
ing at scale: System design. In MLSys. mlsys.org, 2019.

Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., and
Ishai, Y. Lightweight techniques for private heavy hitters.
In 2021 IEEE Symposium on Security and Privacy (SP),
pp. 762–776, 2021. doi: 10.1109/SP40001.2021.00048.

Braverman, M., Garg, A., Ma, T., Nguyen, H. L., and
Woodruff, D. P. Communication lower bounds for sta-
tistical estimation problems via a distributed data pro-
cessing inequality. In Proceedings of the forty-eighth
annual ACM symposium on Theory of Computing, pp.
1011–1020, 2016.

Charikar, M., Chen, K., and Farach-Colton, M. Finding fre-
quent items in data streams. In Automata, Languages and
Programming: 29th International Colloquium, ICALP
2002 Málaga, Spain, July 8–13, 2002 Proceedings 29, pp.
693–703. Springer, 2002.
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A. Approximate heavy hitter under linear aggregation
In this section, we present details about the approximate heavy hitter recovery protocol in Section 4. To recall, we study
the approximate heavy hitter problem and show that the problem can be solved with per-user communication complexity
Õ
(
mn
τ log d

)
, stated in Theorem 4.1.

Algorithm 1 Threshold sampling.
1: Input: h : local histogram. t ∈ R+ : threshold.
2: for x ∈ supp(h) do
3: if h(x) ≥ t, then
4: h′(x) = h(x).
5: else
6:

h′(x) =

{
t with prob h(x)

t ,

0 otherwise.

7: end if
8: end for
9: Return: h′.

At a high level, the protocol relies on two main components: (i) a probabilistic data structure called Invertible Bloom Look
up Table (IBLT) introduced by Goodrich & Mitzenmacher, and (ii) local subsampling. We start by introducing IBLTs,
starting from the more standard (counting) Bloom filters.

IBLT: Bloom filters with efficient listing. Note that each user’s local histogram hi can be viewed as a sequence of
key-value pairs (x, hi(x)). The Bloom filter data structure is a standard linear data structure to representing a set of
key-value pairs with keys coming from a large domain. IBLT is a version of Bloom filter that supports an efficient listing
operation – while preserving the other nice properties of Bloom counting filters, namely linearity (and thus mergeable by
summation), and succintness (linear size in number of indices it holds). These properties are summarized in the following
Lemma.

Lemma A.1 ((Goodrich & Mitzenmacher, 2011)). Consider a collection of local histograms (hi)i∈[n] over [d] such that
‖
∑
i∈[n] hi‖0 ≤ L0.

For any γ > 0, there exist local linear sketches {fi}i∈[n] of length ` = Õ(γL0) and an O(`) time decoding procedure
Dec(·) such that

Dec(
∑
i∈[n]

fi(hi)) =
∑
i∈[n]

hi

succeeds except with probability at most O
(
L2−γ
0

)
.

For the purpose of this paper we can focus on the two main operations supported by an IBLT instance B (see (Goodrich
& Mitzenmacher, 2011) for details on deletions and look-ups): Insert(k, v), which inserts the pair (k, v) into B, and
ListEntries(), which enumerates the set of key-value pairs in B. Note that fi(hi) in Lemma A.1 corresponds to the
IBLT Bi resulting from inserting the set {(x, hi(x)) | hi(x) > 0} into an empty IBLT. Also, ListEntries() corresponds
to Dec in Lemma A.1. Finally,

∑n
i fi(hi) corresponds to the encoding of the IBLT resulting from inserting the set

{(x,
∑n
i hi(x)) | ∃i ∈ [n] : hi(x) > 0} into an empty IBLT. In other words, each client i ∈ [n] computes local IBLT

Bi := fi(hi), and the (secure) aggregation of the Bi’s results in the global IBLT B :=
∑n
i fi(hi). Further details on IBLT

are stated in Appendix H.

Reducing capacity via threshold sampling. The second tool in our main protocol is threshold sampling. Note that the
guarantee in Lemma A.1 relies on the number of unique elements in

∑
i∈[n] hi, which can be at most mn in the worst-case,

leading to an O(mn) not matching our lower bound in Lemma 4.2. For heavy hitter recovery, we reduce the communication
cost by local subsampling. More precisely, we use the threshold sampling algorithm from (Duffield et al., 2005b), detailed
in Algorithm 1 to achieve the (optimal) dependency O(mn/τ).
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Algorithm 2 Subsampled IBLT with LinSketch.
1: Input: {hi}i∈Br,r∈[R] : local histograms; d : alphabet size; R : number of rounds; m : per-user contribution bound; n :

number of users per round; τ : threshold for heavy hitter recovery; β : failure probability.
2: Let t = max{τ/2, 1}, b = d10 log(4mnR

τβ )e and L0 = 20mnτ logR, γ = logR.
3: for r ∈ [R] do
4: for j ∈ [b] do
5: Each user i ∈ Br applies Algorithm 1 with threshold t in to their local histogram with fresh randomness to get

h′i,j .
6: Each user sends message Yi,j = fi,j(h

′
i,j) where fi,j’s are mappings from Lemma A.1 with parameter L0, γ and

fresh randomness.
7: Server observes

∑
i∈Br Yi,j and computes

ĥr,j = Dec(
∑
i∈Br

Yi,j).

If the decoding is not successful, we let ĥr,j be the all-zero vector.
8: end for
9: end for

10: for j ∈ [b] do
11: Server computes ĥ[R]

j =
∑
r∈[R] ĥr,j , and obtain list

Hj = {x ∈ [d] | ĥ[R]
j > 0}.

12: end for
13: Return:

H = {x |
∑
j∈[b]

1 {x ∈ Hj} ≥
b

2
}.

Next we present the protocol that achieves the desired communication complexity in Theorem 4.1, detailed in Algorithm 2.

The algorithm can be viewed as b:=d20 log(40mnR
τβ )e independent runs of a basic protocol, each of which returns a list Hi

of potential heavy hitters. And the repetition is to boost the error probability.

In each basic protocol, users first apply Algorithm 1 to subsample to the data, which reduces the number unique elements
while maintaining the heavy hitters upon aggregation. Then the user encodes their samples using IBLTs, whose aggregation
is then sent to the server to decode. Since the number of unique elements is reduced through subsampling, the decoding
of the aggregated IBLT will be successful with high probabiltiy, hence recovering the aggregation of subsampled local
histograms. The detailed proof of Theorem 4.1 is presented in Appendix F.

B. Approximate histogram under linear aggregation
In this section, we study the task of obtaining an approximate histogram in the multi-round linear aggregation model. The
first observation we make is that using Algorithm 2 with threshold τ , we are able to return a list H of heavy hitters such that
with high probability, the list contains all x’s with frequency more than τ and no tail elements. The approximate histogram
algorithm builds on this and further asks each user to send a linear sketching of the their unsampled local data alongside the
IBLT data structures in Algorithm 2. The server would then use the aggregation of these linear sketches as a frequency
oracle to estimate the frequency of elements in H .

The above protocol leads to near optimal performance in the single-round case. However, the R-round case is trickier since
the error will build up along all R rounds and the naive application of the sketching algorithm will lead to an error that
depends linearly in R. This can be solved by carefully choosing the dependence of hash functions in all R rounds and show
that the dependence on R can be reduced to

√
R. We further show that the

√
R dependence is in fact optimal by proving a

matching lower bound, stated in Theorem B.2.
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At a high-level, to improve the dependence on R, we use Count-sketches where the location hashes are fixed across rounds
while the sign hashes are generated with fresh randomness. The details of the algorithm are described in Algorithm 3.
The proof follows from the guarantee in Theorem 4.1 and standard analysis for the Count-sketch algorithm. We defer the
complete proof to Appendix G.

Theorem B.1. In the R-round setting, there exists a linear aggregation protocol with communication cost Õ
(
mn
√
R

τ

)
per

user, which solves the τ -approximate histogram problem. Moreover, the running time of the algorithm is Õ
(
mn
√
R

τ

)
.

Algorithm 3 R-round ApproxHist with LinSketch
1: Input: {hi}i∈Br,r∈[R] : local histograms; d : alphabet size; R : number of rounds; m : per-user contribution bound; n :

number of users per round; τ : error for approximate histogram; β : failure probability.
2: Let w = d 10mn

√
R

τ e and b = dlog
(

4mnR
τβ

)
e.

3: Get independent hash functions {gj : [d]→ [w]}j∈[w] and {sj,r : [d]→ {±1}}j∈[w],r∈[R].
4: for r ∈ [R] do
5: (In Parallel) Each user i ∈ Br implements the protocol in Algorithm 2 and sends messages Yi.
6: (In Parallel) User i ∈ Br encode j ∈ [b] and k ∈ [w],

Ti(j, k) =
∑
x

1 {gj(x) = k} sj,r(x) · hi(x).

7: end for
8: Server obtains a list H of heavy hitters from the the messages Yi’s.
9: Server obtains ∀r ∈ [r], Tr =

∑
i∈Br Ti and constructs ĥ, where ∀x ∈ H

ĥ(x) = Median

{∑
r∈[R]

Tr(j, gj(x)) · sj,r(x)}j∈[b]

,
and ∀x /∈ H, ĥ(x) = 0.

10: Return ĥ.

Lower bound for ApproxHist We prove the following lower bound on ApproxHist, which shows that the bound in
Theorem B.1 is tight up to logarithmic factors, establishing the seperation between the sample complexity for

Theorem B.2. For any τ and a R-round ApproxHistprotocol with per-user communication cost o
(
mn
√
R

τ

)
, there exists a

dataset {hi}i∈Br,r∈[R], such that the protocol cannot solve τ -approximate histogram with error probability at most 1/5.

C. Practical adaptive tuning for instance-specific bounds
In practical scenarios, the per-user communication cost ` is often determined by system constraints (e.g., delay tolerance,
bandwidth constraint) and the goal is to recovery heavy hitters with the small enough τ under a fixed communication cost
`max. While we have shown in Theorem 4.2, in the worst case, we can only reliably recover heavy hitters with frequency at
least Ω( mn`max

). However, since the successful decoding of IBLTs only requires the number of unique elements in a round to
be small, when users’ data is more favorable, it is possible to obtain better instance-specific bounds when the data is more
concentrated on “heavy” elements.

We give an adaptive tuning algorithm for the subsampling parameter, which can be implemented when interactivity is
allowed. The details of the algorithm are described in Algorithm 4. At a high level, our algorithm is based on an estimate for
‖
∑
i∈Br h

′
i‖0 where h′is are the subsampled histograms. When the decoding is successful, we can compute ‖

∑
i∈Br h

′
i‖0

exactly. When the decoding is not successful, we rely on an analysis based on the “core size” of a random graph (Molloy,
2005) to get an estimate of ‖

∑
i∈Br h

′
i‖0. Under the assumption that for a fixed subsampling parameter t, ‖

∑
i∈Br h

′
i‖0

will be relatively stable across rounds. We can then increase/decrease t based on past estimates of the data process.

We will empirically demonstrate the effectiveness of our tuning procedure. We leave proving rigorous guarantees on the
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adaptive tuning algorithm as an interesting future direction.

Algorithm 4 Adaptive subsampled IBLT
Input: Communication budget C, number of users n, user contribution bound m.

Update: a tuning function that updates the subsampling parameter based on past observations.
1: Set t0 = Θ

(
nB
C

)
.

2: for r = 0, 1, 2, . . . , R do
3: Each user i ∈ Br applies Algorithm 1 with threshold t in to their local histogram with fresh randomness to get h′i.
4: Each user sends message Yi = fi(h

′
i) where fi’s are mappings from Lemma A.1 with parameter L0, γ and fresh

randomness.
5: Server observes

∑
i∈Br Yi and computes

ĥr = Dec(
∑
i∈Br

Yi)

If the decoding is not successful, we let ĥr,j be the all-zero vector.
6: if The decoding is successful, then
7: Set ŝr = ‖ĥr‖0.
8: else
9: Get an estimate ŝr for ‖

∑
i∈Br h

′
i‖0 based on

∑
i∈Br Yi using Equation (3).

10: end if
11: Set

tr+1 = Update(tr, C, ŝr).

12: end for

D. Experiments
In this section, we empirically evaluate our proposed algorithms (Algorithms 2 and 4) for the task of heavy hitter recovery and
compare it with baseline methods including (1) Count-sketch based method; (2) IBLT-based method without subsampling
(Algorithm 2 with τ = 1). We measure communication cost in units of words (denoted as C) and each word unit is an int16
object (can be communicated with 2 bytes) in python and C + + for implementation purposes. We will mainly focus on
string data with characters from ROOT consisting of lower-case letters, digits and special symbols in {′ @ # − ; ∗ : . / }.
Below are the details of our implementation.

Count-median sketch. We useH hash functions, each with domain sizeW and the total communication cost isC = H ·W
words 2. In the R-round setting, for each round r, we loop over all x ∈ X and compute an estimate ĥr(x) and the recovered
heavy hitters are those with

∑
r ĥr(x) ≥ τ . Note that in the open-domain setting, d = |X | can be large and this decoding

procedure can be computationally infeasible. There are more computationally feasible variants including tree-based decoding
but these come at the cost of higher communication cost or lower utility. We stick to the described version in this work
and show that our proposed algorithms outperform this computationally expensive version. This advantage will be be even
larger for the more computationally feasible versions. We will mainly focus on small domain sizes (strings of length as most
3) to make the computation cost of count-sketch based methods feasible.

IBLT-based method. In our experiment, each IBLT data structure is of size 8L0, where L0 is the targeted capacity for
IBLT. We state more details about how the size is computed in Appendix H.

We consider fixed subsampling and adaptive subsampling. For fixed subsampling, when the max number of items in each
round is upper bounded by Mmax, we set the subsampling parameter in Algorithm 1, to be t = max{1,min{Mmax

L0
, τ2}}. In

practice, Mmax can be obtained by system parameters such as the number of users in a round and the maximum contribution
by a single user. Setting t ≤ τ/2 guarantees that the heavy hitters will be kept with high probability. And setting t = Mmax

L0

guarantees that with high probability, the decoding of IBLT in each round will succeed and the we can preserve more
information. We set b = 1 in our experiments, the estimated and the heavy hitters are defined as those with estimated
frequency at least τ . For the update rule, we use tr+1 = 0.5tr + 0.5tr × ŝr

C . We leave designing better update rules as

2In our experiments, mn will be between ∼ 1000 and ∼ 10, 000, and hence one word is enough to store an entry in the sketch.
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important future work.

Client data simulation. We take the ground-truth distribution of strings in the Stackoverflow dataset in Tensorflow
Federated and cut them to the first 3 characters in set ROOT. This is to make sure that the computation is feasible
for Count-median Sketch. And the data universe is of size d = 97336. In each round, we take Mr ∼ N (M,M/10)
i.i.d. samples from the this distribution and encode them using the algorithms mentioned above. In the experiment, we
assume all samples come from different users (m = 1). For Count-sketch, this won’t affect the performance. For IBLT with
threshold sampling, this will only increase the noise introduced in the sampling process. The metric we use is the F1 score
of real heavy hitters (heavy hitters with true cumulative frequency at least τ ) and the estimated heavy hitters.

We takeR ∈ {10, 30, 50, 100}, τ ∈ {10, 20, 50, 100, 200, 500},M ∈ {1000, 2000, 5000, 10000} andC ∈ {100, 200, 500,
1000, 2000, 5000, 8000, 10000, 20000, 30000, 40000, 50000}. And our proposed algorithms consistently outperforms the
sketching based method. Below we list a few plots and analyze their performance. For Count-median method, we take the
max F1 score over all H ∈ {5, 7, 9, 11} for each communication cost.

In Figure 2, we plot the F1 score comparison under different communication costs when R = 30, τ = 50,M = 10000.
It can be seen that our proposed algorithms significantly outperforms the Count-sketch method. Among the IBLT-based
methods, Subsampled IBLT with adaptive tuning is performing the best. For non-interactive algorithms, subsampled IBLT
with fixed subsampling probability is better compared to the unsampled counter part for a wide range of small capacity.

Figure 2. F1 score comparison under different communication cost (R = 30, τ = 50,M = 10000).

In Figure 3, we plot the F1 score comparison under different round numbers when C = 10000, τ = 200,M = 10000.
As we can see, the performance of Count-sketch decreases significantly when the number of rounds increase while the
performance of IBLT-based methods remains relatively flat, which is consistent with the theoretical results. The slight
increase in the F1 score when R increases might be due to the i.i.d. generating process of the data in each round. As R
increases, we get more information about the underlying distribution and this effect outweighs additional noise introduced
by multiple rounds. Better understanding of this effect is an interesting further direction.

In Figure 4, we further demonstrate our adaptive tuning method by showing that it is comparable with the best possible sub-
sampling parameter in a candidate set. More specifically, we run subsampled IBLT with t ∈ {1, 1.25, 2, 5, 10, 20, 50, 100}
for all communication costs. And the F1 score for SubsampledIBLT (best fixed) is defined as the best F1 score among these
candidates.

E. Related work
Linear dimensionality reduction techniques for frequency estimation and heavy hitter recovery has been widely studied
to reduce storage or communication cost, such as Count-sketch, Count-min sketch (Charikar et al., 2002; Cormode &
Muthukrishnan, 2005; Donoho, 2006; Minton & Price, 2014), and efficient decoding techniques have also been proposed
(Cormode & Muthukrishnan, 2006; Gilbert et al., 2010).

The closest to our work is the concurrent work of (Chen et al., 2022), which studies approximate histogram estimation under
linear sketching constraint in the single round case. The work also establishes gap between communication complexities
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Figure 3. F1 score comparison with different number of rounds (τ = 200,M = 10000, C = 10000).

Figure 4. F1 score comparison (adaptive vs best fixed probability) (τ = 200,M = 10000, C = 5000).

with/without Secure Aggregation. However, their result is in a more restricted setting of m = 1 and R = 1. Moreover, our
algorithm also has the advantage of being computationally efficient (runtime only depends logartihmically in d), which is
important for applications with large support but sparse data.

F. Proof of Theorem 4.1
Note that the algorithm can be viewed as b:=d20 log(40mnR

τβ )e independent runs of a basic protocol, each of which returns a
list Hi of potential heavy hitters.

The next lemma states the probabilities of heavy elements and tail elements falling in the list.
Lemma F.1. For all Hj defined in Algorithm 2, if h[R](x) ≥ τ ,

Pr (x ∈ Hj) ≥ 4/5.

Else if h[R](x) ≤ τ/10,

Pr (x ∈ Hj) ≤
2h[R](x)

τ
.

Before proving the lemma, we first show how Theorem 4.1 can be implied by Lemma F.1.

By Lemma F.1, for x with h[R](x) ≥ τ , we have

Pr (x ∈ H) ≥ Pr (Binom(b, 4/5) ≥ b/2) ≥ 1− βτ

40mnR
,



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Under review at ICML 2023

where the last inequality follows from standard concentration bounds for Binomial random variables (e.g., Chernoff bound
(Mitzenmacher & Upfal, 2017)).

Hence by union bound, we have for all x with h[R](x) > τ (at most mnR/τ such elements), we have

Pr
(
{x ∈ [d] | h[R](x) > τ} ⊂ H

)
≥ 1− β

40
.

For any x, with h[R](x) ≤ τ/10, by Lemma F.1, we have

Pr (x ∈ H) ≤ Pr

(
Binom

(
b,

2h[R](x)

τ

)
≥ b/2

)
≤ b

2

(
8e

5
· 2h[R](x)

τ

)b/2
,

where the last inequality follows from Binomial tail bound (See Lemma Lemma J.1 in the Appendix).

Hence by union bound we have

Pr
(
{x ∈ [d] | h[R](x) ≤ τ/10} ∩H = ∅

)
≤

∑
x:h[R](x)≤τ/10

b

2

(
eh[R](x)

τ

)b/2

≤ 20mnR

τ

b

2

(
8e

25

)b/2
(1)

≤ 20mnR

τ
e−

b
20 (2)

≤ β

2
.

Where Equation (1) follows from xb/2 + yb/2 ≤ (x+ y)b/2, and hence we can combine symbols to increase the sum of
tail probability and end up with at most 20mnR

τ symbols with frequencies at most τ/10. Equation (2) follows from the
inequality x(8e/25)x ≤ e−x/10.

By union bound, we get the guarantee claimed in Theorem 4.1.

Proof of Lemma F.1: The proof mainly consists of two parts. We will first show that local subsampling will keep each
heavy hitter with a high probability and each tail element with a low probability, stated in Lemma F.2. We will then show
that after local subsampling, the number of unique elements in each round will decrease so that the decoding in Algorithm 2
will succeed with high probability.

Lemma F.2. Let h
′[R]
j be the aggregation of locally subsampled histogram for run j, i.e.,

h
′[R]
j =

∑
r∈[R]

∑
i∈Br

hi,j .

Then if h[R](x) ≥ τ ,

Pr
(
h

′[R]
j (x) > 0

)
≥ 1− 1

e2
.

Else if h[R](x) ≤ τ/10,

Pr (x ∈ Hj) ≤
2h[R](x)

τ
.

Proof. When h[R](x) ≥ τ ,

Pr
(
h

′[R]
j (x) > 0

)
= 1−Πr∈[R],i∈Br min{1− 2hi,j(x)

τ
, 0} ≥ 1−Πr∈[R],i∈Bre

−
2hi,j(x)

τ = 1− e−
2h[R](x)

τ ≥ 1− 1

e2
.
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When h[R](x) ≤ τ/10

Pr
(
h

′[R]
j (x) > 0

)
= 1−Πr∈[R],i∈Br

(
1− 2hi,j(x)

τ

)
≤ 1−

1−
∑

r∈[R],i∈Br

2hi,j(x)

τ

 =
2h[R](x)

τ
.

The next lemma shows that with high probability, the number of elements in each round will decrease by almost a factor of
τ .

Lemma F.3. With probability at least 1− 1/32, we have

max
r∈[R]

{‖h′r‖0} = O
(mn
τ

logR
)
.

Proof. Since all rounds are independent, it would be enough to show that ∀i, with probability at least 1− 1/32R, we have

‖h′r‖0 = O
(mn
τ

logR
)
.

To see this, we have

Pr

(
‖h′r‖0 ≥

2mn

τ
logR

)
≤ Pr

(
Binom

(
mn,

1

τ

)
≥ 2mn

τ
logR

)
≤ R

32
,

where the first step follows from that the left hand side is maximized when all mn elements in hr are distinct.

Finally, it would be enough to show that when the condition in Lemma F.3 holds, the decoding of the aggregated IBLT will
succeed with high probability. This is true since by Lemma A.1 and union bound, we have

Pr
(
∀j, ĥ[R]

j = h
′[R]
j

)
≤ R · (mn

τ
logR)−γ ≤ 1/32.

Combining the above and Lemmas F.2 and F.3, we conclude the proof since 1/e2 + 1/32 + 1/32 ≤ 1/5.

G. Proof of Theorem B.1
In the proof, we will condition on the event that the list H obtained in Line 8 of Algorithm 3 is a τ approximate heavy hitter
set and hence setting x̂ = 0 for x /∈ H won’t introduce error larger than τ .

The rest of the proof follows similarly as the standard proof for Count-sketch. Since b = dlog
(

4mnR
τβ

)
e, it would be enough

to prove that ∀x ∈ X , with probability at least 2/3, we have

|
∑
r∈[R]

Tr(j, gj(x)) · sj,r(x)− h[R](x)| = O(τ).

Let

ĥj(x):=
∑
r∈[R]

Tr(j, gj(x)) · sj,r(x)

=
∑
r∈[R]

∑
x′

1 {gj(x′) = gj(x)} sj,r(x′)sj,r(x) · hi(x′)

=
∑
x′

1 {gj(x′) = gj(x)}
∑
r∈[R]

sj,r(x
′)sj,r(x) · hi(x′)
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Then we have E
[
ĥj(x) = h[R](x)

]
. Next we provide a bound on the variance. Let H10τ/

√
R be the set of elements with

frequency at least 10τ/
√
R, then we have |H10τ/

√
R| ≤

mn
√
R

10τ . Since w = d 10mn
√
R

τ e, we have with probability at least
5/6, ∑

x′∈H10τ/
√
R,x

′ 6=x

1 {gj(x′) = gj(x)} = 0.

Conditioned on this event, we have

E
[(
ĥj(x)− h[R](x)

)2]
= E


 ∑
x′ /∈H10τ/

√
R,x

′ 6=x

1 {gj(x′) = gj(x)}
∑
r∈[R]

sj,r(x
′)sj,r(x) · hi(x′)

2


≤
maxx′ /∈H10τ/

√
R
h[R](x)

∑
x′ /∈H10τ/

√
R
h[R](x)

w

≤ τ2.

Hence with probability at least 5/6, we have

E
[∣∣∣ĥj(x)− h[R](x)

∣∣∣] ≤ √6τ.

We conclude the proof by a union bound over the two events.

H. Additional details on IBLT
Intuition on ListEntries for IBLT. The intuition behind the IBLT construction is as follows: Start with an array B of
length ` containing 4-tuples of the form (0, 0, 0, 0). To insert pair (x, v) hash the tuple (x, x̃, v, 1) into k locations l1, . . . , lk
in B based on the key x, where x̃ := G(x) is a hash of x into a sufficiently large domain so that collision probability is
sufficiently unlikely.Then add, using component-wise sum, (x, x̃, v, 1) to the contents of B in all locations l1, . . . , lk. The
ListEntries/Dec operation corresponds to the result of the following procedure: (1) find an entry (xsum, x̃sum, vsum,
j) such that G(xsum/j) = x̃sum/j holds, (2) add (xsum/j, vsum) to the output, and (3) remove the pair (xsum/j, vsum)
by subtracting (xsum, x̃sum, vsum, j) from the entries l′1, . . . , l

′
k in the array B to which an insertion would add the tuple for

key xsum/j and get back to step (1). The process of listing entries a.k.a “peeling off” B. might terminate before the IBLT is
empty. This is the failure procedure in Lemma A.1, which corresponds to the natural procedure to find a 2-core in a random
graph.

Sketch size. The above intuition corresponds to the IBLT construction variant from (Goodrich & Mitzenmacher, 2011) that
can handle duplicates. It can be implemented with four length ` vectors with entries in [d],Im(G), [mn], [mn], respectively.
In terms of concrete parameters (see (Goodrich & Mitzenmacher, 2011) for details), k = 3, ` > 1.3L0, and G = Zp
with p = 231 − 1 give good performance, and require 1.3L0(32 + log2 d+ 2 log2(mn)) bits. For the experiment setting
considered in Section 5, this is will take at most 8L0 words.

Cardinality estimation from saturated IBLT. Lemma A.1 tells us that a tight bound L0 on the number of distinct non-zero
indices in the intended histogram, can save us space in an IBLT encoding. However, getting that bound wrong results
in a undecodable IBLT. While in the single round case all is lost, in the multi-round setting we leverage a property of
undecodable IBLTs that helps update our L0 bound for subsequent rounds after a failed round. This is the main ingredient
for our adaptive tuning heuristic presented in Section C.

Let B be an undecodable IBLT, and let S be the size of the undecoded graph of B. Also let ` be the size of B, and let N
the (unknown) number of distinct elements inserted in B (note that N corresponds to the correct bound L0 that enables
decoding). By (Molloy, 2005), we have the following relation: For large enough N , if S < `, we have

S

C
= 1− e−x(1 + x), (3)

where x is the greatest solution to
6N

C
=

2x

(1− e−x)2
.
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Hence we can have an estimate for N (and thus a correct choice for L0 in a subsequent round) based on S and C. As
mentioned above we leverage this fact in Section C.

I. Proof of lower bounds.
I.1. Proof of Theorem 4.2

We will focus on the case when R = 1 since the claimed bound doesn’t depend on R and we can assume there is no data in
other R− 1 rounds. To prove the lower bound, we simply the setting and assume that there are only τ users, each with mn

τ
elements. This can be done by grouping n

τ users together and transmit all their elements to one user. Any protocol on n
parties and be simulated by communication among the user groups and communication within each user group. Now since
we only consider communication among the user groups, the communication cost is smaller compared to the ungrouped
case, which suffices for lower bound purposes.

To further simplify things, we assume all elements come from [mn]. We consider the following cases.

• Case 0: Each user has a distjoint subset of size mn
τ from X .

• Case x: All T users contribute the same item x ∈ [mn] and all other elements are distinct.

Let Π0 be the view of the server and Πx be the view of the server in case x. By definition of secure aggregation, we have
Π0 ∈ G with |G| ≤ 2`. We will use the following lemma which follows from existing results on set disjointness (Bar-Yossef
et al., 2004; Jayram, 2009).

Lemma I.1. There exists constant C such that any protocol with ` ≤ C · mnτ will have

1

mn

∑
x∈[mn]

d2H(Π0,Πx) ≤ 1

20
. (4)

Given Lemma I.1, we have that there must exist at least mn2 elements (denoted by set S0) with

d2H(Π0,Πx) ≤ 1

10
,

and hence dTV (Π0,Πx) ≤
√

2d2H(Π0,Πx) ≤ 1/2 Let H(Π) be the output heavy hitter set when the server observes Π.
For x ∈ S0, we must have that the protocol will have Pr (x ∈ H(Πx)) ≥ 2/3. And hence,

Pr (x ∈ H(Π0)) ≥ Pr (x ∈ H(Πx))− dTV (Π0,Πx) =
1

6
.

Hence we have ∑
x∈S0

Pr (x ∈ H(Π0)) ≥ 1

6

mn

2
>
mn

12
.

However, we also have ∑
x∈S0

Pr (x ∈ H(Π0)) ≤
∑

x∈[mn]

Pr (x ∈ H(Π0)) ≤ 10mn

τ
+

1

3
,

where the last inequality follows from that with probability at least 2/3, H only contains any elements with frequency
more than τ/10. This leads to a contradiction when τ > 30 and mn > 8, which implies a Ω

(
mn
τ

)
lower bound on the

communication complexity.

I.2. Proof of Theorem B.2

Here we prove a stronger version of the lower bound where in each round r, the communication among users is not limited
but the users in Br must compress h(r) to an element Y (r) ∈ Gr with |Gr| ≤ 2`, which is observed by the server. And the
server will then obtain an approximate histogram ĥ[R] based on Π = (Y (1), . . . , Y (R), U). For a given τ , next we show that
any protocol with ` = mn

√
R

τ won’t solve τ -approximate heavy hitter with error probability at most 1/100. To simply the
proof, we assume R ≥ 400 without loss of generality.
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We consider histograms h(r),∀r ∈ [R] supported over the domain 10` and are generated i.i.d. from a distribution P . Let Z
be uniformly distributed over {±1}5`, and under distribution PZ , we have ∀r ∈ [R], i ∈ [5`],

h(r)(2i) =

{
mn
5` with prob 1

2 + 10√
R
Zi.

0 with prob 1
2 −

10√
R
Zi.

and
h(r)(2i− 1) = 1− h(r)(2i).

It can be check that ‖h(r)‖1 = mn with probability 1. We prove the theorem by contradiction. If the protocol solves
τ -approximate heavy hitter with error probability at most 1/5, let

Ẑi = 1

{
ĥ[R](2i) >

mnR

10`

}
.

We have

Pr
(
Ẑi 6= Zi

)
≤ Pr

(∣∣∣ĥ[R](2i)− h[R](2i)
∣∣∣ ≥ mn

√
R

`

)
+ Pr

(∣∣∣∣h[R](2i)− mnR

5`

(
1

2
+

1√
R
Zi

)∣∣∣∣ ≥ mn
√
R

`

)

≤ 1

5
+

1

25
=

6

25
.

Hence we have ∑
i∈[5`]

I(Zi; Π) ≥
∑
i∈[5`]

I(Zi; Ẑi) ≥
∑
i∈[5`]

(1−H(
5

26
)) ≥ 2`,

where H(p) is the Shannon entropy of a Bernoulli random variable with success probability 6/25.

However, by standard arguments on communication-limited estimation on product of Bernoulli random variables (e.g., in
(Braverman et al., 2016; Han et al., 2021; Acharya et al., 2020)), it can be shown that∑

i∈[5`]

I(Zi; Π) ≤ `,

which leads to a contradiction. This concludes the proof.

J. Binomial tail bound.
Lemma J.1. Let X ∼ Binom(n, p) be a binomial distribution, when n > 10 and p < 1/5, we have

Pr (X ≥ n/2) ≤ n+ 1

2

(
4ep

5

)n/2
.

Proof.

Pr (X ≥ n/2) =

n∑
i=b(n+1)/2c

Pr (X = i)

=

n∑
i=b(n+1)/2c

(
n

i

)
(1− p)n−ipi

≤ n+ 1

2

(
n

n/2

)
((1− p)p)n/2 (5)

≤ n+ 1

2
(2e)n/2

(
4p

5

)n/2
(6)

=
n+ 1

2

(
4ep

5

)n/2
,
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where Equation (5) follows from Pr (X = i) is monotonically decreasing when i ≥ n/2 and Equation (6) follows from
standard bounds on binomial coefficients.


