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ABSTRACT

Collaborative perception (CP) is a promising method for safe connected and au-
tonomous driving, which enables multiple connected and autonomous vehicles
(CAVs) to share sensing information with each other to enhance perception per-
formance. For example, occluded objects can be detected, and the sensing range
can be extended. However, compared with single-agent perception, the open-
ness of a CP system makes it more vulnerable to malicious agents and attack-
ers, who can inject malicious information to mislead the perception of an ego
CAV, resulting in severe risks for the safety of autonomous driving systems. To
mitigate the vulnerability of CP systems, we first propose a new paradigm for
malicious agent detection that effectively identifies malicious agents at the fea-
ture level without requiring verification of final perception results, significantly
reducing computational overhead. Building on this paradigm, we introduce CP-
GuardBench, the first comprehensive dataset provided to train and evaluate vari-
ous malicious agent detection methods for CP systems. Furthermore, we develop
a robust defense method called CP-Guard+, which enhances the margin between
the representations of benign and malicious features through a carefully designed
mixed contrastive training strategy. Finally, we conduct extensive experiments on
both CP-GuardBench and V2X-Sim, and the results demonstrate the superiority
of CP-Guard+.

1 INTRODUCTION

The development of collaborative perception (CP) has been driven by the increasing demand for
accurate and reliable perception in autonomous driving systems (Chen et al., 2019b;a; Li et al.,
2022; Hu et al., 2024d;a; 2023; Fang et al., Aug. 2024; Xu et al., 2022). Single-agent perception
systems, which rely solely on the onboard sensors of a single CAV, are restricted by limited sensing
range and occlusion. On the contrary, CP systems incorporate multiple CAVs to collaboratively
capture their surrounding environments. Specifically, The CAVs in a CP system can be divided
into two categories: the ego CAV and helping CAVs. The helping CAVs send complementary
sensing information (most methods send intermediate features) to the ego CAV, and the ego CAV
then leverages this complementary information to enhance its perception performance (Balkus et al.,
2022; Han et al., 2023; Hu et al., 2024c; Wang et al., 2020). For example, the ego CAV can detect
occluded objects and extend the sensing range after fusing the received information.

Despite the many advantages of CP outlined above, it also has several crucial drawbacks. Com-
pared to single-agent perception systems, CP is more vulnerable to security threats and easier to be
attacked, since it requires receiving and fusing information from other CAVs, which expands the at-
tack surface. In particular, malicious agents can directly send intermediate features with adversarial
perturbations to fool the ego CAV or a man-in-the-middle who can capture the intermediate feature
maps and manipulate them. Figure 1a illustrates the vulnerability of CP to malicious agents. In ad-
dition, several attack methods have been designed to fool CP. For example, Tu et al. (Tu et al., 2021)
developed a method to generate indistinguishable adversarial perturbations to attack the multi-agent
communication in CP, which can severely degrade the perception performance.

The inability of the ego CAV to accurately detect and eliminate malicious agents from its collabora-
tion network poses significant risks to CP, potentially resulting in compromised perception outcomes

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) Threats in Collaborative Perception (b) Paradigm Comparison

Figure 1: (a) Illustration of the threats of malicious agent in collaborative perception. Malicious
CAVs could send intricately crafted adversarial messages to an ego CAV, which will mislead it to
generate false positive perception outputs. (b) Comparison between the proposed CP-Guard+
with the traditional hypothesize-and-verify malicious agent detection methods. Hypothesize-
and-verify involves multiple rounds of malicious agent detection iterations at the output level, and re-
quires the generation of multiple hypothetical outputs for verification, incurring high computational
overhead. In contrast, CP-Guard+ directly outputs robust CP results with intermediate feature-level
detection, significantly reducing the computational overhead.

and catastrophic consequences. For instance, the ego CAV might misinterpret traffic light statuses or
fail to detect objects ahead of the road, resulting in severe traffic accidents or even fatalities. Hence,
it is crucial to develop a defense mechanism for CP that is resilient to attacks from malicious agents
and capable of eliminating them from its collaboration network.

To address the security threats in CP, some previous works have investigated the defense mecha-
nisms against malicious agents. For example, Li et al. (Li et al., 2023) leveraged random sample
consensus (RANSAC) to sample a subset of collaborators and calculate the intersection of union
(IoU) of the bounding boxes to verify whether there is any malicious agent among the collabo-
ration network. Zhao et al. (Zhao et al., 2024) designed a match loss and a reconstruction loss
as statistics to measure the consensus between the ego CAV and the collaborators. In addition, our
previous work, CP-Guard, which is currently under review, defends against malicious agents by iter-
atively checking the anomaly of the collaborative segmentation results from different collaborators.
However, these methods all follow a hypothesize-and-verify paradigm, which requires generating
multiple hypothetical perception results and verifying the consistency between the ego CAV and the
collaborators. This process is computation-intensive and time-consuming, which hinders its scala-
bility. This limitation prompts us to explore a new paradigm:

Is it feasible to detect malicious agents directly at the feature level?

As illustrated in Figure 1b, the new paradigm shifts the focus to feature-level detection, eliminating
the need to generate multiple hypothetical perception results. This direct approach can significantly
reduce the computational overhead, thereby enhancing the efficiency of malicious agent detection in
CP systems.

Although this idea is concise and appealing, there are still some challenges in realizing it. Firstly,
to detect malicious agents at the feature level, we need to train a deep neural network (DNN) model
on a large-scale dataset to help it learn the features of benign and malicious agents. However, there
is a lack of a benchmark dataset for feature-level malicious agent detection in CP systems. The ex-
isting datasets for CP, such as V2X-Sim (Li et al., 2022) and OPV2V (Xu et al., 2022), contain only
benign agents and do not include malicious agents. Therefore, it is difficult to train a robust DNN
model for malicious agent detection in CP systems without a well-annotated dataset. Secondly, in
CP scenarios, the environments are highly dynamic and complex, making it unrealizable to directly
use a classifier to classify the received intermediate features for detecting malicious agents. This is
because dynamic environments will cause a high false-positive rate (FPR). Additionally, the adver-
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sarial perturbations are indistinguishable at the feature level, and the feature distribution of malicious
agents and benign agents are highly similar. These factors make it difficult to train a robust model
to distinguish malicious agents from benign agents.

To address the aforementioned challenges, we first generate a new dataset, CP-GuardBench, which
is the first dataset for malicious agent detection in CP systems. Then, we propose CP-Guard+, a
robust malicious agent detection method for CP systems. CP-Guard+ can effectively detect mali-
cious agents at the feature level without verifying the final perception results, significantly reducing
computational overhead and enhancing defense efficiency. Moreover, we design a mixed contrastive
training strategy to tackle the stealthy challenges and further enhance the robustness.

In summary, we investigate the malicious agent detection problem in CP systems and propose
a brand new paradigm, feature-level malicious agent detection. Additionally, we construct CP-
GuardBench, the first benchmark for malicious agent detection in CP systems. Furthermore, we
propose CP-Guard+, a robust malicious agent detection method with high robustness and computa-
tional efficiency. Finally, we conduct extensive experiments on CP-GuardBench and V2X-Sim, and
the results demonstrate the superiority of our CP-Guard+.

2 PRELIMINARIES

2.1 FORMULATION OF COLLABORATIVE PERCEPTION

In this section, we formulate collaborative perception and give the pipeline of our CP system. Specif-
ically, Let XN denote the set of N CAVs in the CP system. CAVs in X can be divided into two
categories: the ego CAV and helping CAVs. The ego CAV is the one that needs to perceive its
surrounding environment, while helping CAVs are the ones that send their complementary sensing
information to the ego CAV to help it enhance its perception performance. Thus, each CAV can be
an ego one and helping one, depending on its role in a perception process. We assume that each
CAV is equipped with a feature encoder fencoder(·), a feature aggregator faggregator(·), and a feature
decoder fdecoder(·). For the i-th CAV in the set X , the raw observation is denoted as Oi (such as
camera images and LiDAR point clouds), and the final perception results are denoted as Yi. The
CP pipeline of the i-th CAV can be described as follows.

1. Observation Encoding: Each CAV encodes its raw observation Oj into an initial feature
map Fj = fencoder(Oj), where j ∈ XN .

2. Intermediate Feature Transmission: Helping CAVs transmit their intermediate features to
the ego CAV: Fj→i = Γj→i(Fj), j ∈ XN , j 6= i, where Γj→i(·) denotes a transmitter
that conveys the j-th CAV’s intermediate feature Fj to the ego CAV, while performing a
spatial transformation. Fj→i is the spatially aligned feature in the i-th CAV’s coordinate.

3. Feature Aggregation: The ego CAV receives all the intermediate features and fuses them
into a unified observational feature Ffused = faggregator(F0→i, {Fj→i}j 6=i, j∈XN ).

4. Perception Decoding: Finally, the ego CAV decodes the unified observational feature
Ffused into the final perception results Y = fdecoder(Ffused).

2.2 ADVERSARIAL THREAT MODEL

Our focus is on the intermediate-fusion collaboration scheme, where an attacker introduces de-
signed adversarial perturbations on the intermediate features to subtly mislead the perception of the
ego CAV. Since the attacker installs the perception model locally to participate in the collaborative
system, we assume they have white-box access to the model parameters. The attack procedure can
be formulated as follows.

Fk = fencoder(Ok), k ∈ XN , (1)

Fδk = Fk + δ, (2)

Fδk→i = Γk→i(F
δ
k), k ∈ XN , k 6= i, (3)

Fδfused = faggregator(F0→i,F
δ
k→i, {Fδj→i}j 6=i, j∈XN ), (4)

Yδ = fdecoder(F
δ
fused), (5)
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Figure 2: Automatic Data Generation and Annotation Pipeline. We first train a robust LiDAR
collaborative object detector. Then, we discard the detection head and decoder, and only keep the
backbone as the intermediate feature generator. The data generation pipeline is shown in (a), (b),
and (c), where (a) is the intermediate feature generation, (b) is the attack implementation, and (c) is
the pair generation and saving.

where k-th agent is malicious, and δ denotes the adversarial perturbation generated by the attacker.
i-th agent is the ego CAV. In addition, the attacker’s objective is to optimize the adversarial pertur-
bation δ to maximize the loss function of the ego CAV. The optimization problem can be formulated
as follows.

arg max
δ

L(Yδ,Ygt), s.t. ‖δ‖ ≤ ∆ (6)

where L(·) denotes the loss function, Yδ is the attacked CP results obtained from Eq. 5, and Ygt

is the ground truth. Pertubation δ is constrained by ‖δ‖ ≤ ∆ to ensure its stealth to avoid being
detected. Moreover, as for the physical sensor attacks, such as LiDAR or GPS spoofing, we do not
consider them in this study, as these are general threats to CAVs, and our focus is on vulnerabilities
specific to CP. Furthermore, we assume that the attacker cannot bypass cryptographic protections,
thereby preserving the security of communication channels between vehicles.

3 CP-GUARDBENCH

To facilitate feature-level malicious agent detection in CP systems, we propose to develop CP-
GuardBench, the first benchmark for malicious agent detection in CP systems. It provides a com-
prehensive dataset for training and evaluating malicious agent detection methods. In this section, we
will introduce the details of CP-GuardBench, including the automatic data generation and annotation
pipeline in Section 3.1, and the data visualization and statistics in Section 3.2.

3.1 AUTOMATIC DATA GENERATION AND ANNOTATION

We build CP-GuardBench based on one of the most widely used datasets in the CP field, V2X-Sim
(Li et al., 2022), which is a comprehensive simulated multi-agent perception dataset for V2X-aided
autonomous driving. In this section, we introduce the automatic data generation and annotation
pipeline of CP-GuardBench. The pipeline is shown in Figure 2. It consists of three steps: 1) inter-
mediate feature generation, 2) attack implementation, and 3) pair generation and saving.

Specifically, we firstly train a robust LiDAR collaborative object detector, which consists of a con-
volutional backbone, a convolutional decoder, and a prediction head for classification and regression
(Luo et al., 2018). As for the fusion method, we adopt mean fusion method to fuse the intermediate
features from different collaborators. Subsequently, the backbone is retained for extracting interme-
diate features, which are then transmitted and utilized by an ego CAV as supplementary information.

Secondly, the attacks are implemented and applied to the intermediate features. The detection head
and decoder are then frozen to generate the attacked detection results and optimize the adversarial
perturbations. As shown in Figure 2, several iterations are required to optimize the perturbations, and
the loss function differs for different attack types. In our CP-GuardBench, we consider five types of
attacks, including Projected Gradient Descent (PGD) (Madry et al., 2018), Carini & Wagner (C&W)
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Figure 3: Visualization and Statistics of CP-GuardBench. (a), (b), (c) and (d) are visualization,
which visualize the normal intermediate features and the adversarial examples perturbed by different
malicious agents. We can see the adversarial examples are almost identical to the normal examples,
which indicates the challenges in detecting malicious agents. (e), (f), (g) and (h) are the statistics
of CP-GuardBench, including the number of collaborators, attack ratio and attack types.

attack (Carlini & Wagner, 2017), Basic Iterative Method (BIM) (Kurakin et al., 2017), Guassian
Noise Perturbation (GN), and Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015). The
implementation details can be found in the Appendix C.

In the generation of attack data, we randomly choose one of the attacks above and generate the
corresponding attack data in each iteration. Finally, the perturbed features will be annotated with
the corresponding attack type and saved for later use.

3.2 DATA VISUALIZATION AND STATISTICS

We visualize the samples of the generated data in Figures 3 (a), (b), (c) and (d). We observe that
the attacks are so stealthy that it is very hard to see the difference with the naked eye, which poses a
great challenge to address the malicious agent detection.

To construct CP-GuardBench, we randomly sample 9000 frames from V2X-Sim and generate 42200
feature-label pairs. The data is then split into training, validation, and test sets with a ratio of 8:1:1.
The data statistics are shown in Figures 3 (e), (f), and (g). Figure 3 (e) illustrates the distribution
of the number of collaborators, which is the number of agents that collaboratively perceive the
environments. The number of collaborators ranges from 3 to 6, with the most common scenario
being 4 collaborators, accounting for 46.0% of the total data. 5 and 6 collaborators are also common,
accounting for 29.9% and 19.5% of the total data, respectively. Regarding the distribution of attack
types, as depicted in Figure 3 (f), we observe that the attack types are evenly distributed, with each
type accounting for approximately 20% of the total data. This is due to the random selection of one
attack type in each iteration. Figure 3 (g) illustrates the attack ratio, which represents the ratio of the
number of attackers to the total number of agents in a collaboration network. The maximum attack
ratio exceeds 0.3, the minimum is 0, and the average attack ratio is 0.18.

4 CP-GUARD+

4.1 RESIDUAL LATENT FEATURE LEARNING

As discussed in Section 1, the detection of malicious agents in CP scenarios at the feature level is a
challenging task due to the highly dynamic nature of the environments. This dynamism leads to non-
stationary data distributions with significant noise. If a model is directly used to detect malicious
agents, it may not always accurately estimate the latent distribution, particularly when the input is
too noisy to perform effective dimension reduction. For instance, object detectors often have feature
maps that include complex information from both the foreground objects and the noisy background
before aggregation.
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Figure 4: Illustration of the Mixed Contrastive Training. In each iteration, we generate a batch
of pairs and the features of benign agents and malicious agents are projected to one-dimensional
vectors. After the mixed contrastive training, the features of benign agents and malicious agents
are regularized to respectively cluster to a compact space and reduce the overlap between the two
spaces.

To address this challenge, we propose a residual latent feature learning mechanism, which means
we do not learn the features of the benign or malicious agents’ intermediate feature maps directly.
Instead, we learn the residual features of the collaborator’s feature maps with respect to the ego
agent’s feature maps. This way, the model can focus on the differences between the benign and
malicious agents’ feature maps.

This mechanism is also inspired by the idea that the collaborators’ intermediate feature maps will
achieve a consensus rather than a conflict against the ego CAV’s intermediate feature maps. In other
words, we can learn the residual latent feature between a CAV and its corresponding collaborators
to check the consensus between them.

Specifically, consider the collaborators’ intermediate feature maps {Fj→i}j 6=i, j∈XN and the ego
CAV’s intermediate feature maps Fi. We can obtain the residual latent feature by

Fres
j→i = Fi − Fj→i. (7)

Then, we can leverage the residual latent feature to detect malicious agents by modeling the detection
problem as a binary classification task. A binary classifier fclassifier(x; θ) is trained on the residual
latent feature to distinguish between benign (labeled 0) and malicious (labeled 1) agents. The model
is optimized using the cross-entropy loss, as defined below.

Lres = − 1

N

N∑
i=1

(yi log(pi) + (1− yi) log(1− pi)) , (8)

where N is the number of samples, yi is the ground truth label, pi is the predicted probability, and θ
is the classifier’s parameters that need to be optimized.

4.2 MIXED CONTRASTIVE TRAINING

The attacker can generate adversarial perturbations that are indistinguishable from the benign fea-
tures, and the feature distribution of malicious agents and benign agents is highly similar, which
makes it difficult to train a robust model to distinguish malicious agents from benign agents. To
address this challenge, we propose a mixed contrastive training strategy to enhance the robustness
of the model. The idea is to regularize the benign and malicious features of these data to respectively
cluster to a compact space regardless of their distributions while reducing the clusters’ overlap. This
is crucial. If we use traditional training strategies, the model might fail to project the residual latent
features with class-specific cohesion and separation that is independent of the distribution, which
can lead to ambiguous predictions and increased sensitivity to distribution shifts.

Specifically, consider the benign and malicious intermediate feature maps, Fj→i and Fδk→i, which
have been transmitted and spatially aligned with the ego CAV. We can obtain the residual latent
feature by Eq. 7, Fres

j→i and Fres,δ
k→i , respectively. After that, we use a multi-layer perceptron (MLP)

to project the residual latent features into one-dimensional vectors {Vi}i=0,1,...,N .
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Then, we enhance the distinctiveness of these features by ensuring that they are closely grouped
within the same class and well separated from different classes, regardless of their distribution.
Here, we leverage the InfoNCE (Chen et al., 2020) objective to impose such regularization. Denote
(Vm,Vn) as a pair of features, which is a positive pair if they are from the same class (both benign
or malicious) and a negative pair otherwise.

` (Vm,Vn) = − log
exp (Vm � Vn/τ)∑N

o=1,o6=m I (Vm,Vo) · exp (Vm � Vo/τ)
(9)

where I(Vm,Vo) is an indicator function that returns one or zero for positive and negative pairs,
respectively. τ is a temperature parameter and � denotes the cosine similarity, where Vm � Vn =
V>

mVn
‖Vm‖‖Vn‖ . The final objective function is the average of ` over all positive pairs.

Lctrs =
1

C(N, 2)

N∑
m=1

N∑
n=m+1

(1− F(Vm,Vn)) · ` (Vm,Vn) (10)

where C(N, 2) =
(
N
2

)
= N !

2!(N−2)! . During training, we use the combination of Eq. 10 and Eq. 8 to
optimize the model:

Lmixed = Lres + α · Lctrs (11)
where α is a hyperparameter to balance the two losses. By doing so, the first term Lres quantifies
the difference between the true distribution and the predicted distribution from the model, thereby
penalizing the confidence in wrong predictions. More importantly, as shown in Figure 4, the second
term Lctrs regularizes the features of benign agents and malicious agents to cluster into compact
spaces and reduces the overlap between the two spaces, which is important for the model to learn the
residual latent features with class-specific cohesion and separation. This strategy makes the model
more robust to the distribution overlap and yield better performance on malicious agent detection.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Dataset and Baselines. In our experiments, we consider two datasets: CP-GuardBench and V2X-
Sim (Li et al., 2022). We designate CAV #1 as the ego CAV and randomly select adversarial col-
laborators from the remaining CAVs. Additionally, we use ROBOSAC (Li et al., 2023) and MADE
(Zhao et al., 2024) as baselines, which are two state-of-the-art CP defense methods based on the
hypothesize-and-verify paradigm.

Attack Settings. We assess different CP defense methods targeted at five attacks: PGD attack
(Madry et al., 2018), C&W attack (Carlini & Wagner, 2017), BIM attack (Kurakin et al., 2017),
FGSM attack (Goodfellow et al., 2015), and GN attack. We set different perturbation sizes ∆ ∈
{0.1, 0.25, 0.5, 0.75, 1.0}. The number of malicious attackers varies in {0, 1, 2} and all the attackers
are randomly assigned from the collaborators, where 0 attacker indicates an upper-bound case. For
PGD, BIM and C&W attacks, the number of iteration steps is 15 and the step size is 0.1.

Implementation Details. The CP-Guard+ system is implemented using PyTorch, and we utilize the
object detector described in Section 3.1. For each agent, the local LiDAR point cloud data is first
encoded into 32 × 32 bird’s eye view (BEV) feature maps with 256 channels prior to communica-
tion. For our CP-Guard+, we use ResNet-50 (He et al., 2016) as the backbone, and the training is
performed for 50 epochs with batch size 10 and learning rate 1 × 10−3. Our experiments are con-
ducted on a server with 2 Intel(R) Xeon(R) Silver 4410Y CPUs (2.0GHz), 4 NVIDIA RTX A5000
GPUs, and 512 GB DDR4 RAM. For mixed contrastive training, we utilize the output of the fully
connected layers preceding the final output layer in the backbone to form a one-dimensional feature
vector for each agent, the dimension of which is 2048.

Evaluation Metrics. We use a variety of metrics to evaluate the performance of our CP-Guard+
model. For malicious agent detection on our CP-GuardBench dataset, we consider Accuracy, True
Positive Rate (TPR), False Positive Rate (FPR), Precision, and F1 Score. For CP defense on the
V2X-Sim dataset, we use metrics including average precision (AP) at IoU=0.5 and IoU=0.7. Ad-
ditionally, to assess the computation efficiency of different CP defense methods, we introduce the
metric frames-per-second (FPS). The definition of the metrics are provided in Table 3 in Appendix.
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Table 1: Performance Evaluation of CP-Guard+ on CP-GuardBench. We report the average
accuracy, true positive rate (TPR), false positive rate (FPR), precision, and F1 score of CP-Guard+
on CP-GuardBench with different attack methods and perturbation budgets ∆ = 0.25, 0.5, 0.75, 1.0.

Metrics ∆ = 0.25 ∆ = 0.5
Accuracy ↑ TPR ↓ FPR ↓ Precision ↑ F1 Score ↑ Accuracy ↑ TPR ↑ FPR ↓ Precision ↑ F1 Score ↑

PGD 98.77 100.00 1.54 94.19 97.01 98.83 100.00 1.46 94.52 97.18
BIM 98.90 100.00 1.37 94.81 97.33 98.90 100.00 1.37 94.79 97.32
C&W 98.60 99.30 1.58 94.02 96.59 97.96 100.00 2.56 90.38 95.19
FGSM 91.64 64.41 1.46 91.79 75.70 97.53 93.22 1.37 94.50 93.86
GN 90.95 60.34 1.29 92.23 72.95 97.19 92.12 1.54 93.73 92.92
Average 95.78 84.81 1.44 93.43 87.93 98.08 97.07 1.66 93.45 95.29

Metrics ∆ = 0.75 ∆ = 1.0
Accuracy ↑ TPR ↑ FPR ↓ Precision ↑ F1 Score ↑ Accuracy ↑ TPR ↑ FPR ↓ Precision ↑ F1 Score ↑

PGD 98.83 100.00 1.46 94.55 97.20 98.60 100.00 1.75 93.50 96.64
BIM 98.90 100.00 1.37 94.81 97.33 98.66 100.00 1.67 93.73 96.76
C&W 97.30 100.00 3.41 88.46 93.88 96.43 100.00 4.42 84.34 91.50
FGSM 98.63 98.63 1.37 94.75 96.66 98.83 100.00 1.46 94.48 97.16
GN 98.49 98.27 1.45 94.35 96.27 98.90 99.96 1.28 95.08 97.32
Average 98.43 99.38 1.81 93.38 96,27 98.53 99.93 1.82 93.20 96.43

Table 2: Comparative results of CP-Guard+ on V2X-Sim Dataset. We report the AP@0.5 and
AP@0.7 with different perturbation budgets ∆ and number of malicious agents Nmal.

Method ∆ = 0.25, Nmal = 1 ∆ = 0.5, Nmal = 1 ∆ = 0.25, Nmal = 2 ∆ = 0.5, Nmal = 2
AP@0.5 AP@0.7 AP@0.5 AP@0.7 AP@0.5 AP@0.7 AP@0.5 AP@0.7

Upper-bound 79.94 78.40 79.94 78.40 79.94 78.40 79.94 78.40
MADE (against PGD attack) 64.63 45.22 64.81 44.89 62.45 43.49 63.04 43.77
MADE (against C&W attack) 65.26 45.24 64.74 45.65 63.41 44.28 62.86 42.93
MADE (against BIM attack) 66.11 45.94 65.51 45.47 64.36 43.89 63.56 44.09
MADE Average 65.33 45.47 65.02 45.34 63.41 43.89 63.15 43.60
ROBOSAC (against PGD attack) 62.13 42.90 63.67 43.79 59.01 40.03 59.97 40.44
ROBOSAC (against C&W attack) 61.83 42.01 62.47 42.80 59.39 39.94 59.83 39.82
ROBOSAC (against BIM attack) 62.69 43.80 63.78 43.66 59.10 39.74 59.29 39.89
ROBOSAC Average 62.21 42.90 63.31 43.42 59.37 39.90 59.70 40.05
CP-Guard+ (against PGD attack) 72.89 71.45 69.50 68.56 69.50 67.92 66.09 64.82
CP-Guard+ (against C&W attack) 69.41 66.86 60.64 55.41 64.17 61.73 58.54 53.15
CP-Guard+ (against BIM attack) 73.35 71.46 66.83 66.05 70.91 69.11 66.30 64.62
CP-Guard+ Average 71.88 69.92 65.66 63.34 68.19 66.25 63.64 60.86
No Defense (PGD attack) 29.73 28.47 11.35 11.17 12.69 12.42 1.69 1.65
No Defense (C&W attack) 19.03 16.58 4.69 3.78 19.03 16.58 0.71 0.58
No Defense (BIM attack) 26.69 25.71 10.05 9.89 11.59 11.38 1.37 1.33
No Defense Average 25.15 23.59 8.70 8.28 14.44 13.46 1.27 1.19

5.2 QUANTITATIVE RESULTS

Performance Evaluation of CP-Guard+. We test our CP-Guard+ model on the CP-GuardBench
dataset under various attack methods and perturbation budgets (∆), as shown in Table 1. The metrics
considered include Accuracy, True Positive Rate (TPR), False Positive Rate (FPR), Precision, and
F1 Score. For a perturbation budget of ∆ = 0.25, CP-Guard+ achieves high accuracy across all
attack methods, with PGD, BIM, and C&W attacks showing accuracy above 98%. FGSM and
GN attacks result in relatively lower accuracy, around 91.64% and 90.95%, respectively. This is
reasonable since these two attacks are weaker than other attacks and do not cause severe damage
to the model unless there is a large perturbation. As the perturbation budget increases to ∆ = 0.5,
the model maintains high performance, with an average accuracy of 98.08% and a TPR of 97.07%.
For higher perturbation budgets (∆ = 0.75 and ∆ = 1.0), the model continues to perform well,
achieving an average accuracy of 98.43% and 98.53%, respectively. Notably, the TPR remains high
across all perturbation budgets, indicating the model’s robustness in detecting true positives. The
FPR remains low, further demonstrating the model’s effectiveness in minimizing false positives.
Overall, CP-Guard+ exhibits strong performance and resilience against various attack methods and
perturbation levels, maintaining high accuracy, precision, and F1 scores.

Performance Comparison with Other Defenses. We further compare AP@0.5 and AP@0.7 of
our CP-Guard+ with other CP defense methods on the V2X-Sim dataset, including MADE (Zhao
et al., 2024) and ROBOSAC (Li et al., 2023). As depicted in Table 2, when there is no defense
against CP attacks, there is a significant drop in AP@0.5/0.7 compared to the upper-bound case.
Moreover, increasing either the number of malicious agents or the perturbation level can lead to a
further decline in AP. In contrast, taking measures to recognize malicious agents in advance can
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Figure 5: (a) FPS performance comparison between CP-Guard+ with and other baselines. (b)
Cosine disctance between the intermediate features of the malicious agent and the benign agent.
(c) Abalation study on the effectiveness of the mixed contrastive training. ‘w/o’ means the
CP-Guard+ without the mixed contrastive training. ‘w/’ means the CP-Guard+ with the mixed con-
trastive training.

Figure 6: ROC curve of CP-Guard+ on CP-GuardBench.

effectively prevent CP performance degradation, with our CP-Guard+ showing the highest scores.
For attacks with ∆ = 0.25 and Nmal = 1, our CP-Guard+ achieves an average of 71.88% AP@0.5
and 69.92% AP@0.7 against three attacks, which are 186.81% and 196.40% higher than the no-
defense case, respectively. Compared to MADE, CP-Guard+ achieves 10.03% and 53.77% higher
AP@0.5 and AP@0.7, respectively. For ROBOSAC, our CP-Guard+ achieves 15.54% and 62.98%
higher AP@0.5 and AP@0.7, respectively. These results highlight the superiority of our CP-Guard+
over existing CP defense methods. Additionally, as the number of malicious agents increases and
the perturbation budget grows, our CP-Guard+ still maintains the highest scores, despite a slight
performance degradation. For example, when ∆ = 0.5 and Nmal = 2, our CP-Guard+ achieves
63.64% AP@0.5 and 60.86% AP@0.7, which are 6.70% and 51.73% higher than ROBOSAC, and
0.76% and 39.66% higher than MADE, respectively. These results demonstrate the robustness of
our CP-Guard+ against malicious agents in CP systems, and show the superiority of our CP-Guard+
over existing CP defense methods.

FPS Comparison. We compare the FPS performance of CP-Guard+ with MADE and ROBOSAC,
as shown in Figure 5 (a). The median FPS values for MADE, ROBOSAC, and CP-Guard+ are
56.86, 20.76, and 70.36, respectively. CP-Guard+ achieves a 23.74% higher FPS than MADE and a
238.92% increase over ROBOSAC, representing a significant improvement. These results highlight
the high computational efficiency of our CP-Guard+.

5.3 ABLATION STUDY

The Effect of Mixed Contrastive Training. In this section, we evaluate the impact of mixed con-
trastive training on the performance of CP-Guard+. As shown in Figure 5 (c), we compare the
performance of CP-Guard+ with and without this training strategy. The results demonstrate a signif-
icant performance improvement with mixed contrastive training. Specifically, Accuracy increases
from 90.23% to 98.08%, TPR from 84.12% to 97.07%, Precision from 73.17% to 93.45%, and F1
score from 77.69% to 95.29%, with an average improvement of 19.06%. Additionally, Figure 5 (b)
visualizes the cosine distance between intermediate features of malicious and benign agents. As
training progresses, the cosine distance between negative pairs (benign and malicious features) in-
creases, while the distance between positive pairs (benign-benign or malicious-malicious features)
decreases. This indicates that mixed contrastive training effectively regularizes feature distribution,
bringing positive pairs closer and separating negative pairs, as shown in Figure 4(b), thus enhancing
the model’s ability to differentiate between malicious and benign agents.
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Figure 7: Visualization and Qualitative Results. We visualize the results of the CP systems with
and without defense by CP-Guard+. The red bounding boxes represent the predicted outcomes,
while the green ones denote the ground truth.

The Impact of Perturbation Budget. To assess the effect of perturbation budget on CP-Guard+
performance, we plot ROC curves for CP-Guard+ on CP-GuardBench with varying perturbation
budgets ∆ (0.1, 0.25, 0.5, 0.75, and 1.0), as depicted in Figure 6. The results show that when
∆ = 0.1, the area under the curve (AUC1) is 0.94, and as ∆ increases, the AUC also increases.
Specifically, when ∆ reaches 0.5, AUC approaches 1, and at ∆ = 1.0, AUC nearly saturates at 1.
This suggests that CP-Guard+ is more resilient to larger perturbation budgets, which is expected
since larger perturbation budgets make malicious agents more discernible. This phenomenon is also
evident in Table 1. For instance, when ∆ = 0.25, CP-Guard+ achieves an average accuracy of
95.78%, which increases to 98.53% at ∆ = 1.0. Overall, CP-Guard+ demonstrates robust perfor-
mance across various perturbation budgets.

5.4 QUALITATIVE RESULTS

We visualize the results of the CP system with a malicious agent and the defense mechanism, CP-
Guard+, as depicted in Figure 7. The red bounding boxes represent the predicted outcomes, while
the green ones denote the ground truth. In the top row, which displays results without defense,
malicious agents successfully blend into the crowd and mislead perception results, resulting in nu-
merous false positive predictions. This significantly impacts the performance of CP systems and
poses substantial security risks. Conversely, the bottom row showcases results with CP-Guard+.
Here, malicious agents are effectively detected and eliminated, significantly reducing false positive
predictions and increasing the true positive rate. These visualizations further confirm the effective-
ness of CP-Guard+.

6 CONCLUSION

In this paper, we have proposed a new paradigm for malicious agent detection in CP systems, which
directly detects malicious agents at the feature level without generating multiple hypothetical results
but with significantly reduced system complexity and computation cost. We have also constructed
a new benchmark, CP-GuardBench, for malicious agent detection in CP systems, which is the first
benchmark in this field. Furthermore, we have developed CP-Guard+, a resilient method for detect-
ing malicious agents in CP systems, which is capable of identifying malicious agents at the feature
level without the need to verify the final perception results. Additionally, we have carefully de-
signed a mixed contrastive training strategy to further fortify the resilience of CP-Guard+. Finally,
we have conducted comprehensive experiments on V2X-Sim and our CP-GuardBench. The results
have demonstrated the effectiveness and efficiency of CP-Guard+ in detecting malicious agents in
CP systems.

1A higher AUC indicates better model performance.
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A RELATED WORK

A.1 COLLABORATIVE PERCEPTION

Collaborative Perception (CP) significantly extends the field-of-view (FoV) for individual agents,
thereby enhancing the comprehensiveness and accuracy of perception outcomes (Han et al., 2023;
Hu et al., 2024b). In CP systems, CAVs utilize various fusion methods tailored at distinct stages
of data processing. Early fusion at the raw data level and late fusion at the output level often re-
sult in either high communication loads or increased perceptual noise. Conversely, intermediate
fusion, which involves the transmission of intermediate features among CAVs, achieves an optimal
balance by minimizing communication overhead while maximizing perceptual accuracy. Based on
intermediate-level collaboration, recent progress in CP have addressed a wide array of challenges,
including communication overhead (Fang et al., Aug. 2024; Tao et al., 2024), robustness (Lu et al.,
2023), system heterogeneity (Lu et al., 2024), and domain generalization (Hu et al., 2023). Ro-
bustness, in particular, has become a pivotal area of focus, tackling issues such as communication
disruptions (Ren et al., 2024), pose noise correction (Lu et al., 2023), and system latency (Lei et al.,
2022). Despite comprehensive research, the vulnerability of these systems to malicious attacks has
not been adequately addressed. In this paper, we delve into the robustness of CP systems, specifi-
cally considering the impact of malicious agents, and propose strategies to enhance system security
and integrity.

A.2 ADVERSARIAL COLLABORATIVE PERCEPTION

Adversarial attacks on single-vehicle perception systems typically utilize methods such as GPS
spoofing (Li et al., 2021), LiDAR spoofing (Hallyburton et al., 2022), and deploying physically
realizable adversarial objects (Tu et al., 2020). However, in multi-vehicle collaborative perception,
adversarial strategies differ markedly across collaboration stages. For early-stage collaborative per-
ception, Zhang et al. (Zhang et al., 2024) have identified attacks that involve object spoofing and
removal, exploiting vulnerabilities through simulated object presence or absence and advanced re-
construction of LiDAR point clouds. Conversely, late-stage collaboration, which mainly involves
sharing object locations (Schiegg et al., 2020), offers adversaries opportunities to manipulate these
data points. Attacks at the intermediate stage are more complex, typically requiring white-box ac-
cess to perception models. Such access allows attackers to precisely manipulate system outputs,
though these systems are generally less vulnerable to simple black-box strategies like ray-casting
due to the protective nature of benign feature maps that diminish the impact of these attacks. Pio-
neering work by Tu et al. (Tu et al., 2021) introduced untargeted adversarial attacks aimed at gener-
ating inaccurate detection bounding boxes by altering feature maps in intermediate-fusion systems.
Building on this, Zhang et al.(Zhang et al., 2024) have enhanced these techniques by incorporating
perturbation initialization and feature map masking, enabling more realistic and targeted attacks in
real-time scenarios. Our research focuses on identifying and mitigating adversarial threats within
the intermediate-level collaborative perception framework to bolster system resilience against these
sophisticated attacks.

A.3 DEFENSIVE COLLABORATIVE PERCEPTION

To enhance the resilience of intermediate-level CP against adversarial threats, contemporary re-
search has primarily focused on the detection of malicious agents at the output level. Li et al. (Li
et al., 2023) developed the Robust Collaborative Sampling Consensus (ROBOSAC) method that se-
lects a random subset of collaborators for consensus verification. Additionally, Zhao et al. (Zhao
et al., 2024) introduced match loss and reconstruction loss as metrics to assess consensus between
an ego CAV and its collaborators’ perception results for the detection of malicious agents. Further-
more, Zhang et al. (Zhang et al., 2024) utilized occupancy maps to identify inconsistencies between
an ego CAV and other collaborators. In addition, our previous work, CP-Guard, which is currently
under review, leverages the collaborative bird’s eye view (BEV) segmentation results to iteratively
check the normality from different collaborators to defend against malicious agents. However, these
approaches adhere to a hypothesize-and-verify workflow, necessitating the generation of hypotheti-
cal perception outcomes and subsequent verification of their consistency with those of collaborators.
This methodology is notably time-consuming and resource-intensive, hindering the system scalabil-
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Table 3: Definitions of Evaluation Metrics

Metric Definition Range

Accuracy (TP + TN) / (TP + TN + FP + FN) [0, 1]

True Positive Rate (TPR) TP / (TP + FN) [0, 1]

False Positive Rate (FPR) FP / (FP + TN) [0, 1]

Precision TP / (TP + FP) [0, 1]

F1 Score 2TP / (2TP + FP + FN) [0, 1]

Area Under the Curve (AUC) Integral area of plotting TPR vs FPR [0, 1]

AP@0.5 Average Precision at IoU=0.5 [0, 1]

AP@0.7 Average Precision at IoU=0.7 [0, 1]

Frame Per Second (FPS) Number of frames processed / Time (s) [0,∞)

ity. In this paper, we have proposed a novel approach that shifts the focus to detecting malicious
agents at the feature level, thus circumventing the need to verify final perception results.

B DETAILS OF EVALUATION METRICS

In our experiments, we use Accuracy, True Positive Rate (TPR), False Positive Rate (FPR), Preci-
sion, F1 Score, AP@0.5, AP@0.7, and Frame Per Second (FPS) to evaluate the performance of our
CP-Guard+. The definitions of these metrics are shown in Table 3.

C IMPLEMENTATION OF ATTACKS

We introduce five types of attacks in our paper, including Projected Gradient Descent (PGD), Carini
& Wagner (C&W) attack, Basic Iterative Method (BIM), Fast Gradient Sign Method (FGSM), and
Guassian Noise Perturbation (GN). The details of these attacks are as follows:

1. Projected Gradient Descent (PGD): PGD is similar to BIM but with an additional random
initialization step. The mathematical formulation for PGD is as follows:

F0
k = Fk + Uniform(−∆,∆) (12)

Ft+1
k = Π∆{Ftk + α · sign(∇Ft

k
L(Ftk,y))} (13)

where t is the iteration index, α is the step size, ε is the maximum perturbation allowed,
Π∆ is the projection operation that ensures the perturbation is within the ∆-ball of Fk.
The process is repeated for a fixed number of iterations T . In our implementation, we set
T = 15 and α = 0.1.

2. Carini & Wagner (C&W) attack: The C&W attack aims to find the smallest perturbation δ
that can cause misclassification. It can be formulated as an optimization problem:

min
δ
‖δ‖p + c · f(Fk + δ) (14)

where ‖ · ‖p is the Lp norm, c > 0 is a constant, and f is an objective function that
encourages misclassification:

f(F′k) = max(max
i6=t

Z(F′k)i − Z(F′k)t,−κ) (15)

Here, Z(F′k) is the logit output of the model, t is the target class, and κ is a confidence
parameter.

3. Basic Iterative Method (BIM):
Ft+1
k = Clip∆{Ftk + α · sign(∇Ft

k
L(Ftk,y))} (16)

where t is the iteration index, α is the step size, ∆ is the maximum perturbation allowed,
Clip∆ is a function that clips the values to be within the ∆-neighborhood of the original
features Fk, and F0

k = Fk. The process is repeated for a fixed number of iterations or until
a stopping criterion is met.
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4. Fast Gradient Sign Method (FGSM): FGSM generates adversarial examples by perturbing
the input in the direction of the gradient of the loss function with respect to the input. Given
the intermediate features Fk, the mathematical formulation of FGSM is as follows:

Fadv
k = Fk + ∆ · sign(∇Fk

L(Fk,y)) (17)

where Fadv
k is the adversarial example, ∆ is the perturbation magnitude, L is the loss func-

tion, and y is the true label. The sign(·) function takes the sign of the gradient, ensuring
that the perturbation is in the direction that maximizes the loss.

5. Guassian Noise Perturbation (GN): This attack suits the scenario where an attacker has no
information about the victim’s model. It means that the attacker can only launch black-box
attacks. In this attack, the attacker generates Gaussian noise δGN and perturbs the original
features Fk.
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