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Abstract—We introduce a transformer-based method to asso-
ciate relevant tags to text passages or blocks such as categories
to pages of a website, marking sections in an article, or social
postings subject tagging. In contrast with traditional multi-label
formulations, the proposed approach uses semantic definitions
of the tags available during training, and the model outputs
a binary prediction of whether the described category applies
to a document or not. The transformer-based model learns the
semantics of the definition of a tag, and therefore works for
tags not seen during training. Performance on domain-specific
datasets can be further improved via transfer learning after fine-
tuning with relatively little additional labeled data required.

I. INTRODUCTION

Most modern websites, content management systems, and
other document storage systems allow blocks of text to be
“tagged” with categories or concepts that apply to the content
of the passage. This paper introduces a method that automat-
ically determines which tags are relevant to which pages, and
allows for adding additional tags without labeled examples.
Using the language and notation of graph theory, this becomes
an exercise in link prediction in bipartite graphs that allows
for adding nodes in either or both subsets (text blocks and
tags) [[1]. We are building the model for deployment in our
company’s centralized knowledge graph, where tags play a
crucial role in retrieving the most relevant information, and
both new content and categories are added frequently as we
ingest information from the variety of internal systems.

With sufficient domain-specific labelled examples and a
fixed set of tags, it is a simple matter to build a multi-label
classifier or multiple tag-specific classifiers to tag any existing
or new pages. In real life one of the challenges with this
standard approach is that it is common for the distribution
of the tags available for training to be heavily right-skewed
making it hard to learn how to correctly assign tags for which
there are few examples [2]], [3]]. As an example, ﬁgurem shows
the distributions of tags in the training data for the two datasets
we used for experiments in this paper.

Another challenge with the standard multi-label approach
occurs when a new, previously unseen tag is considered. A
multi-label model will need to be re-trained to accommodate
the new class and therefore require additional labeled examples
of pages, meaning the training data will grow and become
more cumbersome as new tags become relevant. To alleviate
the need for lots of domain-specific labeled data and to
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Fig. 1: Tag Distributions. Most tags are associated with
relatively few documents. For the Wikipedia dataset, the
overwhelming majority of tags have fewer than 5 instances
to train on, and in the PRM most tags have fewer than 200
training examples.

accommodate new tags without retraining, our method takes
advantage of the power and flexibility of modern transformer-
based models.



Our proposed tagging approach does not use the tags simply
as labels but also considers the semantics of the corresponding
definitions provided at training time. As far as we know this
is the first time that the problem of document tagging as
been approached this way using transformers. An approach has
been recently proposed for tagging sentences using a similar
architecture, however the work focuses on short passages or
sentences and the labels are defined by one or two tokens only
[4]]. Our approach is similar to that of extractive question an-
swering models, like those trained on the SQuAD dataset [5]],
where the labeled set contains question, document, answer-
span triplets (g, d, a). Inputting the question and document into
the model simultaneously allows tokens from each to attend
to the other and learn the semantics of asking a question. This
approach increases performance and allows for both unseen
questions and unseen documents to be used. Our approach
and goals are similar: we provide additional context to the
model to improve learning efficiency, learn the semantics of
tagging, and apply to unseen categories and passages. Further
discussion of the influence and motivation provided by current
QA and zero- and few-shot approaches is deferred to section

In summary, the main contributions of this work are:

1) We propose a text passage tagging framework that addresses
the practical limitation of standard multi-label classification
approaches in the presence of long-tailed label distributions
i.e many classes with few examples.

2) Our approach can predict unseen tags (zero-shot learning)
with high accuracy given that a sufficient semantic definition
of the tags are provided.

The rest of our paper is structured as follows: section [II| lays
out the notation and graph concepts used throughout the paper,
section [LII details the model structures we use, experiments
are covered in section section |V| covers background and
related work, and conclusions and ideas for future work are
detailed in section [VIl

II. NOTATION AND PROBLEM SETTING
A. Notation

We use notation from graph theory throughout the remainder
of the paper. Though we do not use any machinery from graph
theory, we find the notation helpful for several reasons: it is
expressive and succinct, it helps to emphasize our approach
to the problem as binary classification rather than multi-label,
and it highlights the easy integration and end application of
our proposed models into our corporate knowledge graph.

Let G be a bipartite directed graph with nodes N and edges
E. For e € F, let e;, and ¢; denote the head and tail of the
edge respectively. Let C,D C N,CND =0, CUD = N its
two components with e; € C' and e, € D for all e € F.

B. Tagging as Link Prediction

In our case, the nodes in C' consist of tags or categories
for content, and D consist of text content. For example
homeowners, condo, renters are the categories or
tags represented by nodes in C, and the text from web pages

about auto insurance, life insurance, liability coverage for
home policies are documents represented by nodes in D. We
say atagin C APPLIES TO a given piece of content from D.
The edges in E represent the APPLIES TO relationship, and
since no tags apply to other tags, or content to other content,
we have a bipartite graph.

Using the graph setup specified above, we seek to construct
a model to predict the links, or edges representing APPLIES
TO, between nodes in C' representing categories, and nodes in
D representing pages or documents. Hence, instead of learning
a multi-label classifier f(d) — [0, ..., d¢,] Where d. is 1 if
¢ APPLIES TO d and O otherwise, that predicts links to a
particular tag, we aim to learn f(c,d) — {0,1} that can be
used to determine APPLIES TO between any ¢ € C and
de D.

C. Deployment Considerations

One potential drawback to using a binary classifier rather
than traditional multi-label approach is speed; rather than
getting all predicted tag links for a given document in a single
call, we must run f(c;,d) — {0,1} for all ¢; € C. In most
applications, however, tags are not updated in real-time, so
getting inferences from the model can be batched and run
during off-hours. In our corporate knowledge graph application
we can simply perform inference when content is ingested, and
make updates - if necessary - overnight.

III. MODEL STRUCTURE

A. General Structure

We specify several models in [[II-B] [[TI-C} and [TI-D} all of
which differ only in the final few classification layers; they all
share a common structure for input data and majority of their
architecture. In this section we lay out the general structure of
the models and input data and provide further details of each
variant in the following subsections.

We use a transformer-based (specifically BERT [|6]) model,
with text from a tag node ¢ € C' as the first sequence, and text
from a content node d € D as the second sequence. Using the
special tokens as defined in [6]], that is:

[CLS] <c> [SEP] <d> [SEP] 1)

where ¢, are the tokens from the tag ¢ and jd; are the tokens
from the document d. The transformer model output is fed into
further layers (as specified in the remainder of this section) and
finally a classification head to predict whether there is an edge
e € F with e; = ¢ and ¢;, = d.

Modern BERT-like NLP models make extensive use of the
context in which a word is used, so rather than just using the
one or two-word tags from C as in [4]], we use a brief semantic
definition or description of the tag to provide additional
context. For example, instead of using “renter’s insurance”,
we might use “Insurance providing coverage for liability and
property losses stemming from renting a residence”. The input
into the model is then:

[CLS] <desc(c)> [SEP] <d> [SEP] 2)



where desc(c) denotes the tokens of the description of cate-
gory c € C.

While getting a description of each category ¢ € C is
additional data that must be gathered, it is only required
of the categories. Categories are generally much smaller in
number than documents, their descriptions can often be pulled
from a corporate glossary, and the addition of a description
can be enforced at the time a category is created in most
popular content management systems, which make collecting
and maintaining the additional data a low cost effort.

Since all inputs to the model are unstructured text, the
architecture allows us to add new tags and their descriptions
or content nodes to the graph and determine which APPLIES
TO relationships should be added, without requiring additional
labeled examples. In addition, by inspecting the attention
weights in the model, we can see where the model “learns” any
tag, even those not seen during training. While such findings
do not serve as proof of the method, they are invaluable in
a business context and serve as a great way to explain the
predictions and increase belief in the utility of the model.
Table [I| shows the top attention weights for the [CLS] token
of the fourth layer in BERT where the model learned the
important semantic parts of the tag. In both tables, neither
the description nor document were seen during training. The
following subsections detail the various final classification
layers we tested to make relationship predictions.

B. Document-level Model Structure (DM)

Our baseline and simplest architecture we tested, shown in
figure[2] was a standard binary classification head on top of the
BERT-based architecture specified in section We used
the short description of the category and truncated the docu-
ment (if necessary) so that the total number of input tokens
was 512 or fewer. The output from BERT corresponding to the
[CLS] token was used as input to a single feed-forward layer
with output dimension one and a sigmoid activation. Figure
shows a diagram of the document-level model structure.

Anecdotally, many documents start with an introduction or
overview that tend to capture the categories relevant to the
page well, and the results in show the strength of this
combination of architecture and input. However, due to the
truncation required, it does not capture information beyond the
beginning of a document. In longer documents, which tend to
have more relevant categories due to their length and therefore
require more information, truncation can lead to ignoring a
significant amount of context.

C. Paragraph-level Model Structure (PM)

To alleviate the issue of truncating documents and ignoring
information, we broke each input document into paragraphs
(p;) and derived paragraph-level targets from the page using
the assumption that if a tag applied to a page, it applied to
all paragraphs within. We trained paragraph-level classifier
using the same architecture as then during evaluation
ran each paragraph in a document through the model resulting
in a vector of predictions for each document. To make a
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Fig. 2: Document Model (DM)

document-level prediction, we simply took the maximum of
the paragraph predictions. By aggregating predictions to the
document level only at evaluation time we only require one
tag-paragraph pair at a time during training but can still take
advantage of all tokens in the document during evaluation.
Figure [3] shows a diagram of the paragraph model structure.

While this architecture does capture all information in the
document, the derived labels for any given paragraph might
not be accurate, and each section is treated independently and
therefore can not attend to tokens in other sections.
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Fig. 3: Paragraph Model (PM)

D. MIL Model Structure (MIL)

A model that attends to tokens in other sections of the same
document will have the benefit of using the entire context to
make predictions and eliminate the need for derived paragraph
labels. To do so, we used an architecture based on Multiple
Instance Learning, where bags (documents) are comprised of
multiple instances (paragraphs p;), and labels are only known
for a bag. For a given document, all tag-paragraph pairs
are run through the same architecture as The output
corresponding to the [CLS] token from each is stacked to
form a matrix, which is run through MIL pooling as in [7].



Token Index  Weight  Sequence Token Index  Weight  Sequence
[CLS] 0 0.219  desc [CLS] 0 0.198  desc
[SEP] 109 0.085  desc [SEP] 69 0.084  desc
[SEP] 511 0.071  doc [SEP] 504 0.067  doc
sport 16 0.024  desc soccer 10 0.020  desc
hoop 7 0.015  desc association 1 0.015  desc
basketball 1 0.010  desc rectangular 21 0.012  desc
rectangular 34 0.008  desc . 68 0.012  desc
defender 61 0.008  desc football 2 0.011  desc
team 15 0.007  desc football 8 0.007  desc
compete 37 0.006  desc the 70 0.006  doc
hoop 64 0.005  desc team 58 0.006  desc
teams 20 0.005  desc game 16 0.006  desc
mvp 404 0.004  doc opposition 43 0.006  desc
is 13 0.004  desc pitch 25 0.005  desc
the 60 0.004  desc opposing 54 0.005  desc
players 26 0.004  desc goals 64 0.005  desc

(a) basketball

(b) association football

TABLE I: Token-level attention weights for semantic definitions of basketball and association football paired
with a document about the Golden State Warriors. Sequence column indicates whether token is in description or document.

The architecture we employed for our experiments is presented
in figure [4}
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Fig. 4: Multiple instance learning model (MIL)

IV. DATA AND EXPERIMENTAL RESULTS
A. Datasets

1) Wikipedia Dataset: The first dataset we used for our
experiments is derived from Wikipedia; one of the strengths of
our proposed models is that labeled training data can easily be
generated automatically from publicly available data, without
human labeling required.

Articles in Wikipedia are tagged with relevant categories.
We use the first three sentences of the Wikipedia page corre-
sponding to the category, if it exists, as the tag description.
If no Wikipedia page for the category exists, it is omitted
from training. For example, a page about the Albert Einstein
might be tagged with the category physics so the first three
sentences of the Wikipedia page about physics is used for
<desc(physics)>.

Using the procedure outlined in the previous paragraph,
for each page d we generated triplets (<desc(ci)>,<d>,1

'For PM, MIL: (<desc(c;)>,<py>,1) paragraphs py, € d

where ¢ € T and |I| is the number of categories page d is
tagged with that have a corresponding Wikipedia page. With
the same procedure, we generated an equal number of triplets
(<desc(cj)>,<d>,0), where j € J with |J| = |I| and j ¢ I
using randomly selected categories different than those d was
tagged with. For the experiments in section we used a
partial dump of Simple English Wikipediﬁ with 4633 pages,
25458 paragraphs, and 6338 tags.

2) Proprietary Reference Manual Dataset: The second
dataset we used consists of a corporate product reference man-
ual (PRM), which contains documents about the products and
services a US-based insurance company offers. The PRM is
stored in a content management system (CMS), and organized
using tags and a tree/subtree system that associates can access
using a standard web interface. Each document was given
relevant tags by a human expert at the time it was authored
and placed in the CMS.

We note that in addition to running overnight as men-
tioned in section our model can be used at the time
of authoring a document. Figure [5] shows an interface which
suggests relevant predefined tags for a document based on
its contents; authors may add additional new tags as well.
The data collected through this process can further help refine
and improve the model, especially instances where the author
disagrees with the model’s suggestion.

To generate descriptions for each tag, the authors used the
internal corporate glossary and external web search to come
up with a two-to-three sentence definition of each. Creating
descriptions was manual, however, it took less than half a
day; we suspect volumes and timelines will be similar with
other companies and data sources. We then used a process
identical to the one used with the Wikipedia dataset to create
an equally balanced PRM dataset. There were 2055 pages,
40319 paragraphs and 42 tags. Note that pages of the PRM
are less structured than Wikipedia, with many single-sentence
paragraphs that provide relatively little context for paragraph-
based modeling.

Zhttps://dumps.wikimedia.org/simplewiki/
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B. Empirical results

Next we present three sets of experiments using models built
in Python with Pytorch [8] and the Transformers library [9].
In section [V-BT] we compare our proposed construction to a
multi-label classification approach to compare performance in
the presence of long-tailed label distributions. Next, in
we show results of our algorithm on unseen tags (zero-shot
learning). To end, we show in section [V-B3] how transfer
learning affects our zero-shot results.

1) Comparison to multi-label model (M-L): We benchmark
our models against a BERT for sequence classification Multi-
label model [9]] for both the Wikipedia and PRM datasets
using an (80%, 20%) train-test split of pages, (3706, 927)
and (1644, 411) respectively. As |C| increases, it becomes
increasingly difficult for multi-label models to perform well
and to appropriately measure their performance, especially
given skewed tag distributions mentioned in [ With 6338
and 42 unique tags in the Wikipedia and PRM datasets
respectively, these problems are pronounced, and our proposed
models outperform the base model by large margins as shown
in table [

Given the difficulty of training a multi-label model on such
so few examples, we also compare against a simple TF-IDF
model. Using the category description as a query, we compute
a TF-IDF score for each document in each training dataset.
Documents with score greater than the mean score are labeled
positive. We built the TF-IDF model with scikit-learn [10].

To measure performance in the multi-label setting, we
use percent true positives (PTP) (e.g. recall) given by
PTP = Predrp/Actualrp which captures the proportion of
correctly predicted positive labels for each document. Metrics
such as micro-averaging & macro-averaging, Hamming loss,
and exact match ratio often overstate performance with highly
sparse labels, as models tend to correctly classify a majority
of true negatives (by “always predicting 0”). As seen in table
our models have high accuracy in a balanced class binary
classification setting, indicating an extremely low frequency of

false positives, making PTP an appropriate metric on which
to compare multi-label performance.

To further understand how the models perform as the
number of tags per document increase, we break down the PTP
by number of tags associated with documents in the dataset.
For example, the PTP of all documents with two associated
tags is in sub-column 2 of PTP by Tag Count in table [l We
also average out the tag level average count positives and is
represented in column Avg PTP. Our models all achieve an
average PTP performance of greater than 92% on Wikipedia
compared with a baseline 14% and greater than a PTP of 74%
on the PRM dataset versus a baseline of 46%.

2) Binary Classifier Results (Zero-shot testing): To high-
light the ability of our proposed architectures to handle
zero-shot tags, we use an (80%, 20%) train-test split on
both Wikipedia and PRM datasets at the tag level such that
(Cirain N Ciest) = 0, (5071,1267) and (33,9) respectively.
Furthermore, we evaluate the performance of each model on
the test portion of both datasets; In-domain results are for
matching train-test datasets (e.g. both from Wikipedia) and
Out-domain results are for differing train-test datasets (e.g.
train from Wikipedia, test from PRM).

As a baseline, we compare our proposed models against
the task-aware representation of sentences (TARS) model
presented in [4]]. Notably, we are able to test the performance
of a pre-trained TARS model and our models trained on
Wikipedia by performing link prediction on the PRM dataset,
which is out-domain for both. Results are shown in table ??.

Table [[V] shows that all our proposed models are successful
on unseen in-domain tags and perform reasonably well even
on unseen out-domain tags. We note part of the performance
of our classifiers is likely due to the similarity between our
task and next sentence prediction used in training BERT [6].
We highlight the potential for models with our proposed MIL
architecture to achieve accuracy of 90% or 74% on domain-
specific data with limited (PRM-trained) or no (Wikipedia-
trained) labeled data respectively.



3) Transfer Learning Results: In order to test the effect
of transfer learning, we pre-trained all our models on the
Wikipedia dataset and fine-tuned them on the PRM. The
derived model is thus expected to perform well on both the
datasets. From table [V] we can see that the fine-tuned models
have better scores on both datasets than the models trained on
a single domain (table[[V). All testing is done in the same way
as in section so the reported metrics are an accurate
measure of zero-shot performance. We highlight that the PM
architecture with transfer learning achieves the highest overall
accuracy of any experiment on our proprietary PRM dataset
of 98%.

Dataset Model Avg PTP

Wikipedia TF-IDF 0.29
M-L 0.14
DM 0.97
PM 0.99
MIL 0.92

PRM TF-IDF  0.69
M-L 0.46
DM 0.76
PM 0.74
MIL 0.85

TABLE II: Multi-label results: Comparison of proposed architec-
tures with traditional multi-label (M-L) approach.

Model MAP@1 MAP@6 Recall F1

HuggingFace 0.20 0.17 0.15 0.13
Flair TARS 0.05 0.15 0.21 0.20
Our DM 0.58 0.60 0.98 0.72

TABLE III: Zero Shot Benchmark results: Comparison of Mean
Average Precision at K and F1 Sample metrics of our Zero Shot
model compared to HuggingFace and Flair TARS model on the PRM
dataset.

Dataset Model In-domain Out-domain
ACC AUC ACC AUC
Wikipedia DM 098 098 069 0.74
PM 098 098 062 0.65
MIL 095 095 074 0.74
PRM DM 076 0.80 0.79 0.80
PM 074 073 076  0.78
MIL 090 090 075 075

TABLE IV: Binary classifier (Zero-shot) results: Comparison of
accuracy and AUC for proposed architectures. For model trained on
Wikipedia, Out-domain is PRM and vice-versa.

C. Summary of results

Our experiments demonstrate the strength and flexibility of
a semantics-based approach to tagging, regardless of architec-
ture. The PM model outperforms all other variants for the large

Experiment Model PRM Wikipedia
ACC AUC ACC AUC
Wikipedia trained DM 098 098 098 098
model fine-tuned PM 098 098 099 0.99
on PRM MIL 095 092 073 072

TABLE V: Transfer learning results: Comparison of accuracy
and AUC for proposed architectures using transfer learning from
Wikipedia to PRM.

well-structured Wikipedia dataset. For unstructured datasets
like the PRM, our MIL model has the highest performance as
all sections of a page are pooled and attended to, helping to
overcome the limitations of low-context paragraphs. Transfer
learning shows excellent performance on proprietary data for
application in industry.

V. BACKGROUND AND RELATED WORK

Automatic tagging of text-based instances can be and is
often treated as a multi-label classification problem [/11]] which
have been explored in many contexts including, marketing
[12], medical documents [13]], and web pages [|14].

Recently proposed Question-Answering models [15]], [16]
can answer questions given some text-based context. To do
so, they predict locations of passages containing the answer
to a given question from the context. These models learn
appropriate embeddings for both the question and the context,
where language structure and semantics are taken into account.
Recent work has shown that attention-based architectures,
more specifically transformers achieve SOTA performance for
this task [6], [[17]. Our construction is similar to the one used
in QA models.

In recent years, Zero-shot learning (ZSL) has gained con-
siderable attention. In this setup, a learner is expected to
recognize testing examples from classes not previously seen
when training [18].

[4] take a similar QA-like “task-aware” approach to text
classification as our proposed model, and achieve excellent
performance on zero-shot tasks making it a fitting baseline to
compare against. As noted above, our model uses more context
by including a description of the tag, and handles longer
documents with the PM and MIL architectures. In addition
we outline the construction of a larger training dataset based
on Wikipedia, which can easily be expanded for even more
robust training.

In [19] a similar idea is proposed by using text-based
label definitions for the tagging problem zero-shot problem.
However, the algorithm requires a class taxonomy (which
don’t always exist) and uses BERT only for text representation.
In contrast, our construction is simpler and fundamentally
based on the self-attention mechanism provided by transformer
models.

In [20], the long-tailed class distributions problem often en-
countered in practice for multi-labeled problems is addressed.
However, the approach is based on a new proposed loss
function customized for computer vision problems.



VI. CONCLUSIONS AND FUTURE WORK

Large transformer-based language models like BERT have
greatly expanded the ways in which natural language pro-
cessing can be applied to problems in industry. Using the
flexibility and context awareness inherent in such models we
developed a open-ended text tagging model that not only
significantly outperforms standard multi-label approaches, but
works for unseen tags as well. We demonstrated the power
of our approach on two distinct datasets, and highlighted how
using a publicly available dataset and transfer learning allow
for highly-performant domain-specific models with limited
labeling required, including the zero-shot case. Given the ubig-
uity of places where tagging text is relevant, we believe our
approach can be successfully applied in a range of applications
to improve accuracy and minimize model maintenance needs.

As future work we are interested in exploring this construc-
tion in the framework of machine teaching [21]]. The goal
of machine teaching is to design the optimal training data to
drive the learning algorithm to a target model. In our case, the
goal would be to explore human-in-the-loop approaches where
the attention generated from the zero-shot model predictions
could be used by the human to refine and improve the label
definitions and in return the model could improve predictive
performance.
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