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ABSTRACT

In most pragmatic settings, data augmentation and regularization are essential,
and require hyperparameter search. Population based training (PBT) is an effec-
tive tool for efficiently finding them as well as schedules over hyperparameters. In
this paper, we compare existing PBT algorithms and contribute a new one: RO-
MUL, for RObust MULtistep search, which adapts its stepsize over the course
of training. We report competitive results with standard models on CIFAR (image
classification) as well as Penn Tree Bank (language modeling), which both depend
on heavy regularization. We also open-source hoptim, a PBT library agnostic
to the training framework, which is simple to use, reentrant, and provides good
defaults with ROMUL.

1 INTRODUCTION

Hyperparameter tuning is essential for good performance in most machine learning tasks, and poses
numerous challenges. First, optimal hyperparameter values can change over the course of training
(schedules), e.g. for learning rate, fine tuning phases, data augmentation. Hyperparameters values
are also rarely independent from each other (e.g. the magnitude of individual data augmentations
depends on the number of data augmentations applied), and the search space grows exponentially
with the number of hyperparameters. All of that search has to be performed within a computational
budget, and sometimes even within a wall-clock time budget (e.g. models that are frequently re-
trained on new data), requiring efficient parallelization. In practice, competitive existing methods
range from random search (Bergstra & Bengio, 2012) to more advanced methods (that aim at being
more compute-efficient) like sequential search (Bergstra et al., 2011; 2013; Li et al., 2018), popula-
tion based training (PBT, e.g. Jaderberg et al. (2017); Ho et al. (2019)) and search structured by the
space of the hyperparameters (Liu et al., 2018; Cubuk et al., 2019b).

A major drawback of advanced hyperparameter optimization methods is that they themselves require
attention from the user to reliably outperform random search. In this work, we empirically study the
different training dynamics of data augmentation and regularization hyperparameters across vision
and language modeling tasks, in particular for multistep (sequential) hyperparameter search. A
common failure mode (i) is due to hyperparameters that have a different effect on the validation
loss in the short and long terms, for instance using a smaller dropout often leads to faster but worse
convergence. Another common problem (ii) is that successful searches are constrained on adequate
“hyper-hyperparameters” (such as value ranges or the search policy used, which in current methods
are non-adaptative mutation steps). Our contributions can be summarized as follows:

• We present a robust algorithm for leveraging population based training for hyperparameter
search: ROMUL (RObust MULtistep) search, which addresses (i) and (ii). We empirically
study its benefits and limitations, and show that it provides good defaults that compare
favorably to existing methods.

• We open-source hoptim, a simple library for sequential hyperparameter search, that pro-
vides multiple optimizers (including ROMUL), as well as toy benchmarks showcasing hy-
perparameter optimization problems we identified empirically and standard datasets.
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2 HYPERPARAMETER OPTIMIZATION WITH POPULATION-BASED TRAINING

In this article, we refer to the family of algorithms that continuously tunes hyperparameters of a set of
models over the course of their training as “PBT algorithms” or “PBT optimizers”. Hyperparameter
optimization is thus a zero order optimization performed at a slower frequency than the (often first
order, e.g. SGD) optimization of the model. A PBT step happens typically after a fixed number of
epochs or updates of the model, often optimizing the loss from the validation set, continuing from
an already produced “parent” checkpoint, and producing and evaluating a new checkpoint. At every
PBT step, hyperparameters can be updated (mutated), incremented or decremented by some number
(step size), or sampled.

There are multiple aspects to consider when designing a PBT algorithm. Technical constraints:
how the optimization is distributed, with a centralized or decentralized algorithm, workers to run the
trainings, how failed workers are handled. They are solved in a unified manner in the experiments we
performed, by the hoptim library to implement and compare multiple algorithms. It is decoupled
from the scheduling of the jobs and designed to accommodate adding more workers to scale up the
training, or fewer when some are killed, for example through preemption or time-out on a shared
cluster. Optimization method: how the hyper-parameters are modified throughout the training, for
instance through mutations. Selection process: which individual of the population are kept, both in
term of hyper-parameters and state of the neural network (checkpoint). For those last two points,
some solutions are described below.

2.1 CHALLENGES

In order to have a clearer understanding of our proposed methods, we show below the main concerns
we have observed in PBT:

Anisotropy: by definition, the optimal value of the hyperparameters considered is unknown, and
oftentimes the range (or mutation scheme) provided to the algorithm is a loose estimate only. As
modifying two hyperparameters with the same step size can produce effects with very different
magnitudes, the user is required to to normalize the search space. But pre-tuning the hyperparameter
tuner itself can be cumbersome as dynamics evolve during training. Section 3.1 provides an example
based on the Rosenbrock function which illustrates this issue and highlights the interest of adaptative
mutations.

Checkpoint vs. hyperparameters: comparing individuals in the population is extremely hard as
improvements can be due to better hyperparameters, or better checkpoints (including potentially
better batches). Better performance through better checkpoints is an optimization phenomenon (e.g.
random restarts), that can bias the hyperparameter selection. We will detail this aspect in Section 4.2.

Short-term-long-term discordance: we observed empirically that hyperparameters which induce
better performance in the short term are not always optimal in the longer term. This is a challenge
that does not exist in classical static optimization, but is crucial for PBT since local minima are easy
to reach and pose a danger for greedy algorithms. An example of such a parameter is the learning
rate. Dropping the learning rate often induces a drop in the validation loss, even early in the training,
and increasing it has the opposite effect, causing greedy PBT algorithms to reduce it to the minimum
value too early, without being able to recover. We will detail this aspect in Section 4.1.

2.2 DIFFERENTIAL EVOLUTION AND ROMUL

Differential Evolution Storn & Price (1997) (DE) is a standard black-box optimization method, for
minimizing f : Rn → R. It operates on a population xi ∈ Rn for all i ∈ {1, ...,M}, M ≥ 4,
and indefinitely repeats the following steps for each individual xbase in the population to generate
another individual called mutated vector that could replace xbase if better:

1. given the best individual xbest which minimizes f in the population, as well as two randomly
selected ones xa and xb, compute the donor d, which will give part of its coefficients to
the mutated vector. In the current-to-best/1 scheme we use, these are the base coefficients
plus a term attracting to the best set of coefficients from the current population, and an
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additional random variation (a standard value for Fi is F1 = F2 = 0.8):

d = xbase + F1(x
best − xbase) + F2(x

b − xa) (1)

2. create the new mutated vector x̃base by randomly selecting each component j ∈ {1, ..., n}
of the base xbase or the donor d through the binary crossover operator: x̃base

j =

CHOICE(xbase
j , dj). This non-linear operation lets the optimization leave the vector span

of the population.

3. compute f(x̃base) and replace xbase by x̃base within the population if and only if f(x̃base) ≤
f(xbase).

This method is interesting as it is already based on a population and adapts well to parameters with
different dynamics while being simple and fully parallelizable. In particular, it does not rely on
mutation ranges or step sizes - Equation 1 samples new parameters close to the current population,
and as the population individuals go through selection this sampling is refined and becomes sharper
around optimal values. In practice, if a parameter’s bounds are too loose or wrong, DE will eventu-
ally adapt after iterations of selection by removing individuals too far from the optimal value, and
concentrate its computation budget on relevant values for this parameter.

In order to use it for PBT, the set of hyper-parameters is converted to a vector in Rn using never-
grad parametrization system (Rapin & Teytaud, 2018). However, this basic version of differential
evolution (also implemented in nevergrad) is not adapted to PBT. Indeed the training function f
changes with the checkpoint as we are updating the parameters (not the hyperparameters) with a
stochastic gradient from the task loss. The trend of f is therefore typically downwards during the
training, younger generations/later epochs tending to have a lower loss than their parents’, biasing
the hyperperameter selection process in favor of those of the children (later steps of SGD updates)
instead of in favor of better hyperparameters.

ROMUL We therefore propose an adaptation: a population of n individuals is trained, after finishing
their step, individuals are compared to the rest of the population. If they have one of the n/k best
loss (we use k = 2 throughout), the training continues without changing the hyperparameters,
otherwise, the hyperparameters are mutated. If the hyperparameters of an individual are mutated
m times in a row (we use m = 3 throughout), its checkpoint is killed and replaced by one of
the n/k best individuals. The values of k and m are hyperparameters, although we did not vary
them in any experiments: k = 2 allows to have, on average, one alternative (mutated) version to
each of the ones we keep training without hyperparameter change, and m = 3 proved to be robust
across our experiments, to select when to discard a checkpoint. If using lower m values, one should
consider increasing the number of epochs per PBT step to prevent culling checkpoints too early (see
Section 4.1 and 4.2).

The mutation scheme is adapted to fit this use case. In Eq. 1, xbase and xbest are both replaced by a
randomly selected set of hyperparameters xc and xd from the best n/2 individuals (“rand-to-rand/1”
scheme following (Storn & Price, 1997; Das & Suganthan, 2011) notations). Replacing xbase aims
at keeping the path through checkpoints unimodal, since keeping several modes with corresponding
checkpoints is unnecessary. Replacing xbest by any other ”good” (top 50%) set of hyperparame-
ters aims at avoiding early convergence, which we observed as one of the main problems during
trainings. This also avoids a strong bias by a good checkpoint (more on this in 4.2). To avoid du-
plication of hyperparameters, we opt for making F1 and F2 random vectors instead of using the
binary crossover non-linearity. In order to keep the initial scaling of DE, we chose F1[i] uniformly
distributed between 0 and 2F (we use the common value for F from vanilla DE: F = 0.8), and
F2[i] = 2F − F1[i], ∀i. This ensures that the sum F1[i] + F2[i] = 2F, ∀i, as in vanilla DE. With
� the elementwise multiplication, this yields d = xc + F1 � (xd − xc) + F2 � (xb − xa).

2.3 OTHER ALGORITHMS

In our experiments, we compare several algorithms briefly presented below. We aim to compare
how effective they can be for practical use-cases of hyperparameter tuning, where the user does not
want to tune the hyperparameters of its hyperparameter tuner, and desires meaningful defaults. The
only input they take are the number of parallel trainings, the range of hyperparameters, and a hint
for an initial value (e.g. the same value 0 for dropout values and data augmentation magnitudes).
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Initiator PBT: We reimplemented Initiator Based Evolution, presented in Li et al. (2019). New
hyper-parameters are sampled from parent hyper-parameters by adding/removing a mutation con-
stant (for instance dropoutChild = dropoutParent ± 0.1). A newly created checkpoint is com-
pared to a randomly sampled checkpoint in the population: if the latter is better, the new checkpoint
is discarded and the latter is forked with its hyperparameters - this ensures that only the best per-
forming models remain eventually, and allows it to run asynchronously. For each parameter, we
specify a range, and use (hi− lo)/30 as a mutation constant unless specified otherwise.

Truncation Selection: N models are trained in parallel. Regularly, theM worst performing models
are stopped and replaced with clones of the M bests, and hyperparameters are randomly pertur-
bated. This scheme was first introduced in Jaderberg et al. (2017). In our experiments, we use
M = N/4. For hyperparameter perturbation, we generalize the mutation scheme introduced in Ho
et al. (2019): each parameter is sampled uniformly in its range [lo, hi] with 20% probability, or incre-
mented by random.choice([-3, -2, -1, 0, 0, 1, 2, 3]) * (hi - lo) / 10
and then clipped to stay within [lo, hi].

ASHA: This is not a PBT algorithm, but a strong hyperparameter search algorithm that we compare
to. In the Asynchronous Successive Halving Algorithm (ASHA, Li et al. (2018)), hyperparameters
are sampled uniformly like in Random Search, but models are evaluated early and stopped if not in
the top 1/η percentile. For a given model, the first evaluation can happen after 1, η, η2, .. steps,
making this algorithm robust to hyperparameters whose optimal value does not perform well until
late in the training (Section 4.1). Unlike Initiator PBT or Truncation Selection, ASHA finds constant
values for hyperparameters rather than schedules. We set the reduction factor η to 3.

3 EXPERIMENTS

We ran experiments on a toy optimization problem (the Rosenbrock function), CIFAR, and Penn
Tree Bank, all with the same ROMUL hyperparameters to test its robustness. Each of these experi-
ments train in around 100 to 300 epochs, and we used 1 step per epoch, so that they all have similar
time scales.

3.1 EXAMPLE ON A TOY OPTIMIZATION PROBLEM

Current PBT mutation schemes have fixed steps and therefore do not automatically adapt to the land-
scape of the optimized function. This means that they are not well-suited for anisotropic problems,
which often arise in real life applications since some hyperparameters may be very important to tune
finely, while other do not require the same precision. To highlight this issue, we experiment below
on the Rosenbrock function: Ra,b(x, y) = (a− x)2 + b(y − x2)2

We will aim at minimizing R1,100 through the surrogate Râ,b̂, with â and b̂ two hyperparameters
handled with PBT. We initialize both parameters at 20 and bound them by -12.12 and 212.12 (using
integers would be a special case since actual a and b values are integers). This experiment can be
reproduced using the hoptim toolbox with the command: hop bench rosenbrock.

While standard PBT with random steps wastes mutations on â, DE is able to adapt its step-size to
large steps on â until getting close, then smaller steps on â to tune â and b̂ more finely. This is
visible in Fig. 1a with ROMUL values of â converging quickly to around 1. The mutations then
become sharper, while the ones for Initiator-PBT (small steps) are still too large and oscillate around
the optimal value. Arguably, the mutation step could have been even smaller, but that would have
slowed down the convergence, and these steps would be painful meta-parameters to tune at scale.
Initiator-PBT with larger steps and Truncation selection are not displayed in this figure because their
variations are too large.

The impact on the loss R̂ is then visible in Fig. 1b: Initiator PBT can’t decrease past 0.2 with large
steps, and 0.048 with smaller steps, since it is trapped trying to optimize â while DE is able to reach
better values. Fig. 1c and 1d show the trajectory of (x, y) for Truncation selection and ROMUL, with
the same number of training steps. Truncation selection is hampered by more random mutations.
On the other hand, ROMUL is able to reach a much lower value after exhibiting a more chaotic
behavior when it initially adapts to the scale of the problem. The trajectory for both versions of
Initiator-PBT can be found in Fig. 2 of the appendix. Initiator-PBT with large steps (Fig. 2a) moves
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(a) Rosenbrock parameter â with respect to the num-
ber of steps (optimal at 1). After≈50 steps, ROMUL’s
distribution for â gets sharper around 1, Initiator al-
ways uses an hardcoded mutation step size.

(b) Loss R1,100 with respect to the number of steps
(lower is better, minimum value is 0). ROMUL keeps
adapting and decreasing while other optimizers are
locked to higher levels depending on their step sizes.

(c) Truncation Selection PBT (minimum loss=0.14) (d) ROMUL (minimum loss=0.011)

Figure 1: Training on the Rosenbrock benchmark. ROMUL outperforms initiator and truncation
selection because it can adapt its step size. Bottom plots: Trajectories of 100 PBT training steps (16
jobs per step) on the Rosenbrock function with a = 1 and b = 100 (minimum at the red cross (1, 1),
trajectories go from blue to green)

very slowly to the minimum because of big extra oscillations. With smaller steps (Fig. 2b), it reaches
better values through a slow and non-direct path. Tab. 3 in the appendix provides quantitative results
by averaging over 20 runs, including a version of Initiator PBT in which updates are performed
through multiplications by 0.8 or 1.2. In particular, ROMUL performs statically better than all
over optimizers on this testbed (p < 1.1e − 5 with a two sample Welch’s t-test). In Fig. 3 in
Appendix, we also show the behavior with more variables by performing optimization on an average
of Rosenbrocks functions, each with independent a and b variable to be estimated by PBT. Overall
ROMUL performs consistently well across the board for a wide range of number of variables.

3.2 APPLICATION TO CIFAR (IMAGE CLASSIFICATION)

In this section, we compare various algorithms for tuning hyperparameters for image classification
on CIFAR (Krizhevsky et al., 2009). We reproduce the population based augmentation (PBA) setup
from (Ho et al., 2019) with their original implementation. Our algorithms train a Wide-ResNet-28-
10 model on Reduced CIFAR-10 (using 10%, i.e. 4000 images, of the training set for actual training,
and the remainder as a validation set), and optimize the same 60 hyperparameters as in Ho et al.
(2019): 2 magnitudes and 2 probabilities for each of the 15 possible data augmentations. For each
algorithm, we take the best model in the validation set at epoch 200, and use its hyperparameters
schedules to train another Wide-ResNet-28-10 model on CIFAR-10 and CIFAR-100 and finally
report test accuracies at epoch 200 in Table 1. Trainings can be reproduced with the hoptim
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package and its benchmarking counterpart hoptim benchmarks in the cifar folder. ROMUL
recovers most of the gains on CIFAR-10 (2.8% error vs. 2.6% for the SOTA and 3.9% for the
baseline), and is a bit further away on CIFAR-100 (17.1% vs. 16.7% for the SOTA and 18.8% for
the baseline). PBA, which yields state-of-the-art results on CIFAR, used Truncation selection PBT
introduced in (Jaderberg et al., 2017), which we implemented and compared to. We adopted all the
PBA hyperparameters and observe 2.7% on CIFAR-10 (ROMUL: 2.8%) and 17.7% on CIFAR-100
(ROMUL: 17.1%). The differences in the job and population management in hoptim may explain
the difference between our implementation and theirs, which is particularly marked on the training
set reduced CIFAR-10: 12.8% for their vs. 13.9% for our implementation.

Table 1: Classification error (lower is better) on CIFAR-10 and CIFAR-100 test sets for a Wide-
ResNet-28-10 (36M params). The algorithms run with 16 workers in parallel with the same compute
budget (except when stated otherwise) on reduced CIFAR-10. After that, the schedule found is used
for training the same model from scratch on CIFAR-10 and CIFAR-100

Algorithm Reduced CIFAR-10 (10%) CIFAR-10 CIFAR-100

Baseline: Wide-ResNet-28-10 n/a 3.9 18.8
RandAugment (Cubuk et al., 2019b) n/a 2.7 16.7
PBA (3 epochs/step) (Ho et al., 2019) 12.8 2.6 16.7

ASHA 14.7 2.8 17.6
ASHA (running for double the time) 14.1 2.7 17.2
Truncation Selection (PBA, ours) 13.9 2.7 17.7
Initiator PBT (Li et al. (2019), ours) 14.7 2.9 17.9
ROMUL 14.0 2.8 17.1

As PBA waits for more than 1 epoch/step to evaluate a set of hyperparameters, we compared 1
epoch/step and 3 epochs/step (their setting), as it could help thwarting short-term/long-term discrep-
ancy effects (see 4.1) and noise as explained above, but we could not identify a sufficiently generic
scheme for all applications. In general, this is part of the PBT hyperparameters that are tuned in
PBA, that we try to completely remove as hyperparameters in ROMUL, by being insensitive to it
(in this case it does not seem to affect Truncation Selection either). For this hyperparameter, the
constraint is to do PBT steps slow enough so that the number of updates is sufficiently large for the
model to adapt to new mutated hyperparameters, and high enough so that PBT has enough steps to
optimize the hyperparameters. In practice, trainings are long enough (regarding the number of SGD
updates of the model) for a wide range of PBT steps frequencies to work.

3.3 APPLICATION TO THE PENN TREEBANK DATASET (LANGUAGE MODELING)

We experiment with the TransformerXL model (Dai et al., 2019) on the PTB dataset (Marcus, 1993).
TranformerXL’s code is open-source and is the state-of-the-art for tranformer models on this dataset
when using proper regularization, making it an interesting challenge for PBT. It comes with several
dropout hyperparameters: we search for optimal values for five different dropout hyperparameters,
that we describe in Table 4 in appendix. They are all initialized to 0 with standard deviation of 0.1
for ROMUL (negative values are reflected to positive values), hence not at the baseline values.

Results are reported in Table 2. Trainings can be reproduced (up to random variance) with the
hoptim package and its benchmarking counterpart hoptim benchmarks in the ptb folder.
The baseline TransformerXL was obtained with the author’s code and is close to the one reported in
the initial paper. Noticeably, ASHA and Random Search (with a uniform prior) are not able to come
close to the baseline, with more than 4 points difference in both validation and test perplexity (PPL).
Truncation selection and Initiator PBT on the other hand are able to reach the baseline although they
were not able to excel it in test perplexity. Only ROMUL is able to reach (marginally) better results
than the reproduced baseline in test PPL with both 16 and 32 workers. A found dropout schedule
is displayed in the appendix (Fig. 4) and show dropouts rapidly increasing in the beginning and
stabilizing to different levels. Using 16 and 32 workers provided similar results up to noise for
ROMUL (in this very case, 32 workers does not actually perform better than with 16 workers).
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However, using 8 workers results in a notable drop in performance for all optimizers (Test PPL
ROMUL 56.39, TruncSel 57.98, Initiator 56.33).

Table 2: Perplexity (lower is better) on PTB for a Transformer-XL with 16 layers and 24M pa-
rameters, best validation PPL before iteration 175 and corresponding test PPL, given the resources
needed these values are not averaged, numbers excelling our training baseline are in bold.

Training workers Validation PPL Test PPL

TransformerXL SOTA (Dai et al. (2019)) 1 / 54.52
TransformerXL SOTA (our training, their code) 1 59.65 55.43

ASHA 16 63.20 58.35
Truncation Selection PBT 16 60.24 57.29
Initiator PBT 16 59.42 55.80
ROMUL PBT 16 57.83 55.16
Random Search 32 63.84 60.90
ASHA 32 64.31 61.63
Truncation Selection PBT 32 58.45 55.93
Initiator PBT 32 59.36 55.73
ROMUL PBT 32 58.63 55.28

4 DISCUSSION

4.1 SHORT TERM - LONG TERM DISCORDANCE

We have observed on PTB and other applications that some hyperparameters were never contributing
positively to the model’s performance in the short term (eg: 1 step) but could become better on a
longer term (eg: 5 steps or more), hence checkpoints need time to adapt to a new parameter set
(e.g.: building more redundancy). In an experiment on PTB, we used one epoch per step for half the
training and then modified it to 10 epochs per step. We observed that increasing one of the dropout
contributed negatively for small steps (1 epoch), but positively for long steps (10th epochs). This
is a major roadblock for PBT-based approaches since two models with different hyperparameters
can’t be straightforwardly compared at every step, but only after an unknown delay. This is partially
handled by being conservative on models to keep: keeping the best 50% unchanged in ROMUL, or
the random tournament scheme that allows bad models to continue in Initiator PBT when assigned an
even worse opponent. Fig. 5 in appendix shows such an example in another domain: a large dropout
seems very detrimental early on, but very beneficial in the longer term. While this is expected for
regularizations, we observe that a straightforward schedule increasing the dropout in steps (in red) is
not able to compensate this - we observed the same effect with a continuous schedule. This behavior
adds complexity to the task of PBT algorithms, because bad early choices can’t be compensated later.
Arguably, it can be due to interactions with the learning rate scheduler used and a more appropriate
schedule could help solve this issue (although it is not clear what such a schedule should be).

4.2 CHECKPOINTS VS HYPERPARAMETERS - SELECTION BIASES

For PBT optimizers, one critical question is how much of the loss difference between two indi-
viduals is caused by different hyperparameters, and how much about different checkpoints. Both
contributions are tightly entwined making it harder to identify which hyperparameters are best.

A naive initial option to counter this is to always start a PBT step from the best checkpoint in the
population. In our experiments this performed worse, at least because of the noise in the evaluation
metric, but also because of the short-term long-term discrepancy detailed above (Section 4.1). We
also expect that doing so could make optimizers less robust by getting trapped in local minima too
easily, or aggressively discarding more promising models in the longer term.

On the opposite side of the spectrum, we experimented with never culling checkpoints, effectively
performing n full trainings in parallel. Conceptually, keeping checkpoints is attractive since it should
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add robustness to the optimizer: selected hyperparameters have to work well for more than one par-
ticular checkpoint. Indeed, this way the performance can be attributed to actual parameter schedules
fitting different trainings, instead of being biased by checkpoints culling/random restarts. It also
adds more variability which could be beneficial especially with respect to the short-term long-term
discrepancy. That being said, we have neither observed significant improvement nor deterioration
when keeping checkpoints, as long as the mutation schemes were not biased towards the best set of
hyperparameters (e.g.: removing the xbest term in Eq. 1), because doing so can make all hyperpa-
rameters converge towards the best checkpoint, making the optimization process early converge to
values which are not necessarily adapted to other checkpoints.

Still, even with ROMUL’s loss-agnostic mutation scheme, some checkpoints were observed to fall
behind and waste resources if not culled, so we expect that a trade-off like the one we implemented
(killing checkpoints after 3 failed mutations in a row) is necessary.

Another source of selection bias is noise. While the trainings are well behaved in PTB because
the shuffling of the training set is synchronized by epoch, the trainings in CIFAR are much noisier
because of the randomness introduced by data augmentation and the very small training set size.
PBT optimizers based on more noise-robust blackbox optimization methods could be beneficial, but
it is not clear how to adapt them.

5 RELATED WORK

Several families of methods exist for tuning hyperparameters of neural networks. Methods closest
to grid search like random search (Bergstra & Bengio, 2012) and ASHA (Li et al., 2018) are based
on minimal constraints and can be parallelized extensively. Methods striving for more data-efficient
search (Bergstra et al., 2011; 2013; Feurer & Hutter, 2019) are more sequential in nature, requiring
convergence of some trainings before launching new ones. Population-based training approaches
(Jaderberg et al., 2017; Ho et al., 2019; Li et al., 2019) loosen the requirements of training different
models, as hyperparameters are changed on-the-fly during training, which also makes the search for
schedules easier and less structured, i.e. not based on a predefined function.

Recent advances in automatic discovery of data augmentation policies include Population Based
Augmentation (Ho et al., 2019) which we compared to in this paper (denoted Truncation Selection).
Another line of work on structuring the hyperparameter space for data augmentation policy search is
AutoAugment (Cubuk et al., 2019a), FastAutoAugment Lim et al. (2019) and RandAugment Cubuk
et al. (2019b), the later being faster and reaching top performance on CIFAR.

PBT is used successfully in reinforcement learning (Jaderberg et al., 2017), providing diversity in
self-play and progressive difficulty, so other experimental comparisons that we did include Initiator
PBT from (Li et al., 2019), which presented a generic PBT setup that inspired hoptim. For non-
PBT baselines we used random search (Bergstra & Bengio, 2012), and ASHA (Li et al., 2018),
which is an update on HyperBand (Li et al., 2017).

6 CONCLUSION

We introduced ROMUL, a robust PBT algorithm that we benchmarked on standard datasets with
multiple regularization and data augmentation hyperparameters. Its main strength comes from its
robustness to hyperparameters definitions by automatically adapting to the scale of each parame-
ter. Although it did not show better performance on CIFAR than PBA – that was tuned for this
benchmark – we demonstrated that it is more robust to domain changes. More importantly for the
practical use-cases, it constitutes a good default that does not require extensive tuning to work well.
We open-sourced its implementation as well as a simple and broadly compatible PBT library.

The main difficulties we observed for PBT-based optimizers came from short-term vs. long-term
effects: parameters can have a positive impact in the short term but a negative one in the longer
term which may not be rectifiable. Learning rate falls in this category, since decreasing it often
provides quick gains at the risk of being trapped in a local minimum. Studying how to deal with
such behaviors is in our opinion the main challenge of future work.
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A APPENDIX

A.1 ROSENBROCK EXPERIMENTS

(a) Initiator PBT (minimum loss=0.20) (b) Initiator PBT, small steps (minimum loss=0.048)

Figure 2: Trajectories of 100 Initiator PBT training steps (16 jobs per step) on the Rosenbrock
function with a = 1 and b = 100 (minimum at the red cross (1, 1), trajectories go from blue to
green)

Training mean (log10) std (log10)

Initiator (0.8/1.2 mult. steps) -1.18 0.045
Initiator (big steps) -0.707 0.069
Initiator (small steps) -0.992 0.143
ROMUL -2.101 0.678
Truncation Selection -0.834 0.327

Table 3: Final loss (in log10) mean and standard deviation for independent runs on the Rosenbrock
testbed, computed over 20 runs (two-sample Welsh’s test provides p < 1.1e − 5 when comparing
each algorithm with ROMUL).

Figure 3: Score on the multi-variate Rosenbrock benchmark (explained in 3.1) over 20 experiments
for each point. Lower is better, standard deviations are indicated. ROMUL performs well across the
board for a wide range of number of variables, being surpassed only by Truncated selection in some
regime (n ∈ J8 . . . 14K).
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Table 4: The dropouts from Transformer-XL that we tune through PBT.

dropouta applied to multi-head attention layers
dropoute to remove words from embedding layer
dropoutf applied to positionwise ff layers
dropouti for input embedding vectors
dropouto applied to the output (before the logit)

Figure 4: Dropout schedule of the best run of ROMUL 32 workers on PTB

A.2 LANGUAGE MODELING ON PENN TREE BANK

A.3 REGULARIZATION SCHEDULES ON WIKITEXT-103

Figure 5: Lower dropout values are better early, but are outperformed by more strongly regularized
models later (red, orange and blue lines) - here on wikitext103 with a 247M parameters language
model from Fan et al. (2019) (Adaptive Inputs + LayerDrop). PBT algorithms would tend to reduce
dropout aggressively early on: after that, even if the dropout is increased later, the performance
remains worse than training with a high dropout from the beginning (red line). Perhaps counterin-
tuitively, this hints against increasing regularization over the course of the training - in the opposite,
we observe that fine-tuning the model without dropout significatively improves test performance
(purple line reaches 17.98 test perplexity) compared to the baseline (green: 18.42 test perplexity)
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A.4 SLIDES FOR INTERNAL PRESENTATION

Training Parallelism Validation PPL Test PPL

TransformerXL SOTA 1 59.65 55.43

ASHA 16 63.20 58.35
Truncation Selection PBT 16 60.24 57.29
Initiator PBT 16 59.42 55.80
ROMUL PBT 16 57.83 55.16

Table 5: Perplexity (lower is better) on PTB for a Transformer-XL with 16 layers and 24M parame-
ters

Algorithm CIFAR-10 CIFAR-100

Baseline: Wide-ResNet-28-10 3.9 18.8
RandAugment (Cubuk et al., 2019b) 2.7 16.7
PBA (3 epochs/step) (Ho et al., 2019) 2.6 16.7

ASHA 2.8 17.6
Truncation Selection (PBA, ours) 2.7 17.7
Initiator PBT (Li et al. (2019), ours) 2.9 17.9
ROMUL 2.8 17.1

Table 6: Classification error (lower is better) on CIFAR-10 and CIFAR-100 test sets for a Wide-
ResNet-28-10 (36M params)
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