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Abstract

We theoretically demonstrate that the generalization error of interpolators for ma-
chine learning models under teacher-student settings becomes 0 once the number
of training samples exceeds a certain threshold. Understanding the high gen-
eralization ability of large-scale models such as deep neural networks (DNNs)
remains one of the central open problems in machine learning theory. While
recent theoretical studies have attributed this phenomenon to the implicit bias of
stochastic gradient descent (SGD) toward well-generalizing solutions, empirical
evidences indicate that it primarily stems from properties of the model itself.
Specifically, even randomly sampled interpolators—parameters that achieve zero
training error—have been observed to generalize effectively. In this study, under
a teacher–student framework, we prove that the generalization error of randomly
sampled interpolators becomes exactly zero once the number of training samples
exceeds a threshold determined by the geometric structure of the interpolator set in
parameter space. As a proof technique, we leverage tools from algebraic geometry
to mathematically characterize this geometric structure.

1 Introduction

Triggered by the success of deep neural networks, increasing attention has been paid to methods that
employ a large model and yet achieve excellent generalization performance while perfectly fitting
the training data (Simonyan & Zisserman, 2015; Zhang et al., 2017). Such learning models that
attain exact fit to the training set are referred to as interpolators. Explaining the performance of
these interpolators constitutes one of the central challenges in contemporary deep learning theory,
and several distinct lines of work have emerged to address this phenomenon (Neyshabur et al., 2015;
Bartlett et al., 2017; Golowich et al., 2018).

Among these lines of works trying to explain the generalization performance of interpolators, one of
the leading explanations has been the implicit bias induced by learning algorithms, typically stochastic
gradient descent (SGD) and its variants. This perspective posits that SGD guides parameters toward
generalizing solutions in parameter space, such as the minimum 𝐿2-norm solution (Yun et al., 2021).
Although this line of work has achieved notable progress, several challenges and limitations have
been identified. First, both theoretical and empirical studies have reported cases where implicit bias
does not necessarily enhance generalization (Dauber et al., 2020; Vyas et al., 2024; Farhang et al.,
2022). Second, most of the existing theoretical analyses are restricted to simplified settings, such
as linear models or two-layer neural networks, due to a fundamental difficulty in identifying the
solution for non-convex optimization problems (Gunasekar et al., 2017; Soudry et al., 2018; Arora
et al., 2019; Lyu & Li, 2020; Chizat & Bach, 2020; Vardi, 2023; Cattaneo et al., 2024).

In parallel, a growing body of recent work has emphasized that model-based properties, independent
of the algorithm’s implicit bias, can enhance the generalization performance of interpolators. In
particular, it is becoming increasingly evident that SGD behaves like a uniform sampling on a set of
interpolators. Valle-Pérez et al. (2019) empirically showed that SGD behaves similarly to uniform
sampling from the set of interpolators, which implies that the models generalize well due to a natural
bias of interpolators. This finding was further supported by Mingard et al. (2021) who corroborated
the similarity between SGD and uniform sampling over interpolators. Additionally, Chiang et al.
(2023) examined the generalization properties of both SGD-optimized parameters and randomly
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sampled interpolators, demonstrating that the generalization ability of DNNs is largely independent
of the employed optimization algorithm.

An important challenge within this line of research on interpolators is to provide a theoretical
foundation for the empirical observation above. Specifically, we pose the following question:

Can the strong generalization performance of interpolators be explained
by a model-based theory that does not rely on the implicit bias of algorithms?

1.1 Our Result

In this study, we develop a model-based theory and mathematically prove that an interpolator can
achieve zero-generalization error even with a limited amount of training data. Specifically, under
the teacher–student learning framework and a random interpolator, we demonstrate that the minimal
number of samples required to attain zero generalization error, what we term the strong sample
complexity, is finite and admits an explicit upper bound. In short, we have the following informal
statement:
Theorem 1 (Informal statement of Theorem 2). The following holds with probability 1:

(Strong sample complexity)
≤ (Dimension of parameter space) − (Dimension of true parameter set) + 2.

This result implies that even when the model becomes large, the strong sample complexity can
remain small provided that the dimension of the true parameter set is also large. This yields a purely
mathematical theory demonstrating that an interpolator can achieve sufficiently strong generalization
ability without reliance on any specific optimization algorithm.

Our analysis develops this theory by applying the concept of real analytic sets, originating in algebraic
geometry, to study the relationship between the geometric structure of the interpolator set and that of
the true parameter set. Specifically, real analytic sets describe the intersections of zero sets of analytic
functions in real space. This framework is crucial for determining the dimension of the interpolator
set, since interpolators are precisely characterized as the zeros of the loss function evaluated on the
training data.

We summarize our contributions as follow:

1. We develop a model-based theory for interpolators, thereby providing a theoretical justi-
fication for the empirical finding that generalization error can be explained solely by the
structure of the model.

2. Specifically, we theoretically demonstrate the strong sample complexity required for an
interpolator to achieve zero generalization error (Theorem 2). This phenomenon of attaining
zero generalization error under finite data is a discovery unique to interpolators.

3. Through several concrete examples, we uncover new insights, including cases where over-
parameterization does not affect sample complexity, and even instances where it reduces
sample complexity (Theorem 5, 6).

4. We introduce the new concept of real analytic sets from algebraic geometry into machine
learning theory, establishing a novel theoretical foundation.

1.2 Related Works

Generalization ability of interpolators. There are several works studying the generalization
ability of interpolators. Buzaglo et al. (2024) showed that in the teacher-student setting, the sample
complexity of quantized DNN does not explicitly depend on the number of parameters when the
parameter is randomly sampled from its interpolator set, using PAC-Bayes like analysis. While
they study the standard sample complexity, the number of data necessary for the generalization
error become less than 𝜖 , we study the number of data by which the generalization error becomes
exactly zero. Valle-Pérez et al. (2019) studied generalization error when the parameter is sampled
from a uniform distribution on the interpolator set. They showed that the PAC-Bayes generalization
bound guarantees the good generalization of such a predictor. Theisen et al. (2021) proved that a
large proportion of interpolators in two layer ReLU neural network have good generalization ability
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in binary classification tasks. Yang et al. (2021) studied the uniform generalization bound on the
interpolator of random feature models. They showed that as the number of features increases, the
generalization error decreases. Belkin (2021) investigated the generalization ability of interpolators
in kernel methods in over-parameterization. He showed that such interpolators exhibit an implicit
bias toward simple functions, ensuring that the generalization error does not increase with over-
parameterization.

Geometric structure of interpolator set. Finally, we list several studies investigating the geometric
landscape of the set of interpolators. Cooper (2021) clarified the relation between the number of
training data and the dimension of the set of the interpolators. We use the similar analysis for
deriving Theorem 2. We remark that while he studied the cases in which a noise exists in the data-
generating process, our study is about noiseless cases. Fukumizu et al. (2019) studied the landscape
of interpolator set by investigating three ways for a wider student network producing the same output
as the teacher network, which is also similar to our analysis for deriving Theorem 5 and 6.

1.3 Notation

For 𝑛 ∈ N, [𝑛] denotes {1, 2, ..., 𝑛}. We denote the set of non-negative real numbers as R≥0 and non-
negative integers as Z≥0. We denote the Euclidean norm as ∥·∥, and the ℓ1-norm as ∥ · ∥1. For a set
𝑆 ⊂ R𝑑 , the distance between the set 𝑆 and a point𝜔 ∈ R𝑑 is denoted ∥𝜔 − 𝑆∥ = inf{∥𝜔 − 𝑠∥ | 𝑠 ∈ 𝑆}.

2 Preliminaries

2.1 Regression Problem with Teacher-Student Setting

We formalize our problem setup, a regression problem with a teacher-student setting.

Data generating process. We define the input space X ⊂ R𝑚 as an 𝑚-dimensional real analytic
manifold (defined later in Section 3.2.1) and the output space Y. The corresponding output 𝑦 ∈ Y
for an input 𝑥 ∈ X is generated by the teacher model, a function 𝑓 ∗ (·; 𝜃∗) : X → Y, as

𝑦 = 𝑓 ∗ (𝑥; 𝜃∗), (1)

where 𝜃∗ ∈ R𝑑∗ is a fixed 𝑑∗-dimensional parameter. Suppose that we observe 𝑛 samples {(𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1,
where (𝑥𝑖 , 𝑦𝑖) ∈ X×Y and each 𝑥𝑖 is drawn independently and identically according to a probability
measure D on X, and 𝑦𝑖 follows the teacher model (1) with given 𝑥𝑖 . We note that this noiseless
setting is common in theoretical works under the teacher-student framework, as in Tian (2017);
Safran & Shamir (2018); Xu & Du (2023).

Regression problem. Using the samples {(𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1, we consider training a model 𝑓 : X×Θ→ Y
called student model

𝑓 (𝑥; 𝜃), 𝑥 ∈ X, 𝜃 ∈ Θ,

where 𝜃 is an R𝑑Θ -valued parameter to be trained and Θ ⊂ R𝑑Θ is a compact 𝑑Θ-dimensional
real analytic manifold. We focus on the regression problem and consider the squared loss func-
tion ℓ(𝑦, 𝑦′) = 1

2 ∥𝑦 − 𝑦′∥2. Note that this setup can be extended to a general analytic loss
function. We define a training error 𝐿𝑛 (𝜃) := 1

𝑛

∑𝑛
𝑖=1 ℓ(𝑦𝑖 , 𝑓 (𝑥𝑖; 𝜃)) and a generalization error

𝐿 (𝜃) := E𝑥∼D [ℓ(𝑦, 𝑓 (𝑥; 𝜃))].

2.2 Real Analytic Function

We introduce an important concept for our analysis, a real analytic function.
Definition 1 (Real analytic function). A real analytic function is a function 𝑓 : 𝑈 → R, where 𝑈

is an open subset of R𝑑 , such that for every point 𝜃 (0) ∈ 𝑈, the function 𝑓 can be expressed as a
convergent power series which converges in a neighborhood of 𝜃 (0) :

𝑓 (𝜃) =
∞∑︁
𝑗=0

∑︁
𝛼:∥𝛼∥1= 𝑗

𝑐𝛼 (𝜃 − 𝜃 (0) )𝛼,
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where 𝜃 = (𝜃1, · · · , 𝜃𝑑) ∈ 𝑈 and 𝛼 = (𝛼1, · · · , 𝛼𝑑) ∈ Z𝑑
≥0 is a multi-index of non-negative integers

by which we define 𝜃𝛼 = 𝜃
𝛼1
1 · · · 𝜃

𝛼𝑑

𝑑
. When the output of 𝑓 is a vector, 𝑓 is called a real analytic

function if each of its components is a real analytic function.

Throughout our analysis, we assume that the student model is a real analytic function with respect to
the parameter 𝜃 and the input data 𝑥.
Assumption 1 (Real Analytic Student Model). We assume that 𝑓 (𝑥; 𝜃) is a real analytic function
with respect to 𝜃 ∈ Θ and 𝑥 ∈ X.

A wide range of machine learning models satisfy this assumption: for example, a fully connected
deep neural network or attention mechanism whose activation function is analytic, such as sigmoid,
softmax, hyperbolic tangent, and so on.

3 Interpolator and Teacher-Equivalent Set

We introduce key concepts that form the foundation of our analysis. The first is the predictor based
on a random interpolator, with particular emphasis on implementations using neural networks. The
second is a teacher-equivalent set, a notion that plays a central role in our generalization theory.

3.1 Predictor with Random Interpolator

We consider a predictor that interpolates the training data by sampling a parameter from a distribution
supported on the set of parameters that perfectly interpolates the training data.

In preparation, we consider an interpolating parameter set (IPS), satisfying zero training error, i.e.,
Θ̂𝑛 := {𝜃 ∈ Θ | 𝐿𝑛 (𝜃) = 0} = {𝜃 ∈ Θ | ℓ(𝑦𝑖 , 𝑓 (𝑥𝑖; 𝜃)) = 0,∀𝑖 ∈ [𝑛]}.

Note that Θ̂𝑛 is a random set from the random training sample of {(𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1.

Next, we consider randomly sampling a parameter 𝜃 from Θ̂𝑛, following a distribution P(𝜃 | Θ̂𝑛)
that is absolutely continuous with respect to the uniform distribution on Θ̂𝑛. We then consider a
predictor with the sampled parameter:

𝑓 (𝑥; 𝜃̂𝑛), 𝜃̂𝑛 ∼ P(· | Θ̂𝑛).
This random predictor interpolates the training samples with probability 1, i.e., P(𝐿𝑛 (𝜃̂𝑛) = 0) = 1.

3.2 Teacher-Equivalent Set (TES)

We define the notion of a teacher-equivalent set (TES). We say that a parameter 𝜃 ∈ Θ of a student
model is teacher-equivalent when 𝑓 (𝑥; 𝜃) = 𝑓 ∗ (𝑥; 𝜃∗) holds for every 𝑥 ∈ X. Then, the teacher-
equivalent set (TES) is a set of the teacher-equivalent parameters:

Θ̄ := {𝜃 ∈ Θ | 𝑓 (𝑥; 𝜃) = 𝑓 ∗ (𝑥; 𝜃∗),∀𝑥 ∈ X}.
Intuitively, TES is the true parameter set, i.e., the set of parameters of the student model that replicate
the teacher model. In contrast to the IPS Θ̂𝑛, the TES Θ̄ is a non-random set.

In our analysis, we assume that the TES is not empty as a realizability assumption.
Assumption 2 (Realizability). The TES Θ̄ is non-empty, i.e., there exists a parameter 𝜃◦ ∈ Θ

satisfying 𝑓 ∗ (𝑥; 𝜃∗) = 𝑓 (𝑥; 𝜃◦) for every 𝑥 ∈ X.

This realizability assumption is natural for the teacher-student setup with smaller teachers (Tian,
2017; Safran & Shamir, 2018; Xu & Du, 2023). In fact, this assumption is satisfied in the case of
fully-connected deep neural networks, as is shown in Section 5.

The TES Θ̄ can be considered to be the population version of the IPS Θ̂𝑛. Moreover, as the sample
size 𝑛 diverges to infinity, a student model from Θ̂𝑛 interpolates all possible data points in the
sample space X × Y, causing Θ̂𝑛 to asymptotically converge to Θ̄. Therefore, as 𝑛 increases, Θ̂𝑛

monotonically shrinks and approaches Θ̄. Indeed, we show that Θ̂𝑛 \ Θ̄ is a null set in the meaning
of Lebesgue measure on Θ̂𝑛 in Section 4. Figure 1 illustrates this intuition.
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ℓ(𝑦, 𝑓(𝑥; 𝜃))
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Θ parameter space𝑧% = (𝑥%, 𝑦%)

Figure 1: Illustration of the IPS Θ̂𝑛 approaches the TES Θ̄. As 𝑛 increases, fewer parameters 𝜃

achieve the interpolator, i.e. ℓ(𝑦𝑖 , 𝑓 (𝑥𝑖; 𝜃)) = 0,∀𝑖 = 1, ..., 𝑛, causing Θ̂𝑛 to converge to Θ̄. Note that
while Θ̂𝑛 and Θ̄ are plotted on the same plane in the right panel, Θ̂𝑛 is actually higher dimensional
than Θ̄.

3.2.1 Dimension of TES

We define a dimension of the TES Θ̄. First, we define an analytic manifold and its dimension.
Definition 2 (Real Analytic manifold). A 𝑑′-dimensional real analytic manifold is a topological
manifold Ω (⊂ R𝑑) equipped with a 𝑑′-dimensional local coordinate system {(𝑈𝑖 , 𝜑𝑖)}𝑖 where 𝑈𝑖 is
an open subset of R𝑑 and 𝜑𝑖 : 𝑈𝑖 → 𝑈′

𝑖
for an open subset 𝑈′

𝑖
of R𝑑′ such that if 𝑈𝑖 ∩𝑈 𝑗 ≠ ∅ holds,

the transition maps 𝜑 𝑗 ◦ 𝜑𝑖
−1 : 𝜑𝑖 (𝑈𝑖 ∩𝑈 𝑗 ) → 𝜑 𝑗 (𝑈𝑖 ∩𝑈 𝑗 ) are real analytic functions.

We remark that in the Euclidean space R𝑑 , all the open subsets are real analytic manifolds in the
meaning of a standard topology and their dimensions correspond to 𝑑.

We now state the definition of the dimension of the TES.
Definition 3 (Dimension of TES). The dimension of the TES Θ̄, denoted as 𝑑Θ̄, is defined as the
maximum dimension of a real analytic manifold Ω contained in Θ̄.

Intuitively, the dimension of the TES is a number of unrestricted parameters. For example, in a
model where a unique parameter 𝜃′ ∈ Θ achieves teacher equivalence, such as a linear regression
model, the dimension of the TES is 0 since the TES is a singleton.

4 Generalization Error Analysis

We analyze the generalization error of a predictor with a random interpolator defined in Section 3.

4.1 Main Theorem

We investigate the number of samples required for a predictor with a random interpolator to achieve
zero generalization error. To facilitate the analysis, we define the important notion, the strong sample
complexity, which quantifies the necessary sample size.
Definition 4 (Strong sample complexity for a random interpolator). For the sampled interpolator
𝜃̂𝑛 ∼ P(· | Θ̂𝑛), its strong sample complexity for the generalization error 𝐿 (𝜃̂𝑛) is defined as

𝑘 (Θ̂𝑛) := min
{
𝑛 ∈ N | P(𝐿 (𝜃̂𝑛) = 0 | Θ̂𝑛) = 1

}
.

The strong sample complexity is the minimum number of data necessary for 𝜃̂𝑛 to achieve zero
generalization error completely; in other words, by which almost all interpolators from Θ̂𝑛 are
teacher equivalent. This notion is a stronger version of the ordinary sample complexity, which is the
sample size necessary to achieve the generalization error smaller than some positive value.

Before our main theorem, we put an assumption with regard to the distributionD of the input data 𝑥.
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Assumption 3 (Data distribution). The probability measureD of an input 𝑥 is absolutely continuous
with respect to that of a uniform distribution on X.

We now show our main result on the generalization error of a predictor with a random interpolator.
We provide its proof in Appendix B.
Theorem 2 (Strong sample complexity: general case). Suppose that Assumptions 1, 2, and 3 hold.
Then, the strong sample complexity for a random interpolator satisfies the following with probability
1 in terms of D:

𝑘 (Θ̂𝑛) ≤ 𝑑Θ − 𝑑Θ̄ + 1.

This theorem states that with no less than 𝑑Θ − 𝑑Θ̄ + 1 training samples, a predictor with a random
interpolator achieves zero generalization error with probability 1. This fact illustrates the view that
the strong sample complexity is determined by the dimension of the TES. We note that 𝑑Θ̄ becomes
large when using practical machine learning models such as deep neural networks, although there
exist simple cases in which Θ̄ is a singleton and therefore 𝑑Θ̄ = 0 as discussed below. We will present
applications of Theorem 2 to deep neural networks, where 𝑑Θ̄ becomes large and the resulting bound
is non-vacuous, in Section 5.

As a simple case, we consider a model in which a unique parameter 𝜃′ ∈ Θ achieves teacher
equivalence. A typical example is a linear regression model where the covariance matrix of inputs
is non-degenerate. In this case, 𝑑Θ̄ is a singleton set, meaning its dimension is zero and the upper
bound of strong sample complexity is 𝑑Θ + 1. This result is provided in the following corollary
without proof.
Corollary 3. Consider the setup of Theorem 2. Further, suppose that Θ̄ is a singleton set. Then, the
strong sample complexity of Θ̂𝑛 satisfies the following with probability 1 in terms of D:

𝑘 (Θ̂𝑛) ≤ 𝑑Θ + 1.

4.2 Analysis for Near Interpolator Case

For more practical scenarios, we consider the situation where a parameter is not an exact interpolator
but a near interpolator. For 𝜀 > 0, the 𝜀-neighborhood of Θ̂𝑛 is defined as Θ̂𝑛,𝜀 := {𝜃 ∈ Θ |
∥𝜃 − Θ̂𝑛∥ ≤ 𝜀}. Then, we define a predictor with a random near interpolator as follows:

𝑓 (𝑥; 𝜃̂𝑛,𝜀), 𝜃̂𝑛,𝜀 ∼ P (· | Θ̂𝑛,𝜀),

where P (· | Θ̂𝑛,𝜀) the uniform distribution on Θ̂𝑛,𝜀 .

As a strong sample complexity of a predictor sampled according to P(· | Θ̂𝑛,𝜀), we have the following
result immediately. We postpone its proof to Appendix C.
Proposition 4 (The generalization error of the near interpolator). Fix small 𝜀 > 0. Suppose that
Assumption 1, 2, and 3 hold. Moreover, we assume that there exists a universal constant 𝑞 > 0
such that for every 𝑥 ∈ X, 𝑓 (𝑥; 𝜃) is 𝑞-Lipschitz continuous in 𝜃. If the number of data satisfies
𝑛 ≥ 𝑑Θ − 𝑑Θ̄ + 1, then the following holds with probability at least 1 − 𝑂 (𝜀) with respect to D and
P(· | Θ̂𝑛,𝜀):

𝐿 (𝜃̂𝑛,𝜀) ≤ (𝑞𝜀)2.

The assumption of Lipschitz continuity is general in theoretical research in machine learning. It is
satisfied in most of the analytic functions including deep neural networks or convolutional neural
networks whose activation function is a sigmoidal function or transformers with a softmax function.

4.3 Proof Outline of Theorem 2 with Real Analytic Sets

We prove Theorem 2 by showing that Θ̂𝑛 \Θ̄ becomes a null set with respect to the Lebesgue measure
on Θ̂𝑛 when 𝑛 ≥ 𝑑Θ − 𝑑Θ̄ + 1. This is established by showing that the geometrical dimension of
Θ̂𝑛 \ Θ̄ becomes less than that of Θ̄, using tools from the theory of real analytic sets. Once this fact
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is established, it follows that ℓ(𝑦, 𝑓 (𝑥; 𝜃̂𝑛)) = 0 for every 𝑥 ∈ X and for almost every 𝜃̂𝑛 ∈ Θ̂𝑛, which
directly implies E[ℓ(𝑦, 𝑓 (𝑥; 𝜃̂𝑛))] = 0.

In preparation, we introduce the key notion, a real analytic set. The IPS Θ̂𝑛 and TES Θ̄ are obviously
real analytic sets.
Definition 5 (Real analytic set). A set of zeros of real analytic functions is called a real analytic set;
that is, for real analytic functions 𝑓1, · · · 𝑓𝑛 : Θ→ R, a real analytic set is defined as

{𝜃 ∈ Θ | 𝑓1 (𝜃) = 0, · · · , 𝑓𝑛 (𝜃) = 0}.

We further define the dimension of a real analytic set, which is the most important concept in our
analysis. Intuitively, the dimension of a real analytic set is a number of free parameters for making
the function be zero. We note that from the definition, the dimension of a real analytic set is an
integer.
Definition 6 (Dimension of real analytic set). The dimension of a real analytic set 𝐴 is defined as
the maximum 𝑑′ such that 𝐴 contains a real analytic manifold of dimension 𝑑′.

An important property of real analytic sets is that they can be treated locally in much the same way as
algebraic varieties, i.e., sets defined as the common zeros of polynomials. This stems from the fact
that an analytic function can be locally expressed as a convergent power series, that is, as a sum of
polynomials. Moreover, analogous results from complex algebraic geometry have been established
via the technique of complexification, developed by Whitney & Bruhat (1959). As a consequence,
many results concerning algebraic varieties also hold for real analytic sets.

Among the most fundamental results concerning the dimensions of algebraic varieties is Krull’s
principal ideal theorem (Hartshorne, 1977). Informally, Krull’s principal ideal theorem states that
the dimension of the solution set of 𝑛 polynomial equations decreases by 𝑛. For example, let
𝜃 = (𝜃1, 𝜃2, 𝜃3) ∈ R3 and consider the solution set of two equations 𝜃1 + 𝜃2 = 0 and 𝜃2𝜃3 = 0. The
resulting set is {(𝑎,−𝑎, 0) | 𝑎 ∈ R} ∪ {(0, 0, 𝑎) | 𝑎 ∈ R}, which consists of two straight lines in R3,
and hence has dimension 1.

By applying arguments analogous to Krull’s principal ideal theorem to real analytic sets, the dimen-
sion of Θ̂𝑛 \ Θ̄ becomes 𝑑Θ − 𝑛, since Θ̂𝑛 is defined as a solution set of 𝑛 equations. Moreover,
because Θ̂𝑛 ⊃ Θ̄ and the dimension of Θ̄ is 𝑑Θ̄, it follows that the dimension of Θ̂𝑛 \ Θ̄ is strictly
smaller than that of Θ̄ whenever 𝑛 ≥ 𝑑Θ − 𝑑Θ̄ + 1. Consequently, Θ̂𝑛 \ Θ̄ becomes a null set with
respect to the Lebesgue measure on Θ̂𝑛, which establishes the theorem.

5 Application for practical models

We study the generalization error of the predictor with a random interpolator for specific models by
applying Theorem 2. Specifically, we analyze the dimension 𝑑Θ̄ of TES Θ̄ for each model and derive
the upper bound of strong sample complexity.

5.1 Deep Linear Neural Network

We first study deep linear neural networks (DLNNs), whose activation is an identical mapping.

Teacher-Student Setup. The student model is an 𝐿-layer DLNN with parameters 𝑤 (ℓ ) ∈ W (ℓ )

and 𝑏 (ℓ ) ∈ B (ℓ ) , whereW (ℓ ) ⊂ R𝑚ℓ×𝑚ℓ−1 and B (ℓ ) ⊂ R𝑚ℓ are sufficiently large compact sets for
ℓ = 1, ..., 𝐿 as

𝑓 (𝑥; 𝜃) = 𝑤 (𝐿) (𝑤 (𝐿−1) · · · (𝑤 (1)𝑥 + 𝑏 (1) ) · · · + 𝑏 (𝐿−1) ) + 𝑏 (𝐿) .
We denote 𝜃 = {𝑤 (ℓ ) , 𝑏 (ℓ ) }𝐿

ℓ=1. We remark that 𝑚0 is the input dimension and 𝑚𝐿 is the output
dimension of the network.

We consider that the teacher model is also a DLNN with 𝐿∗-layers and 𝑚∗
ℓ

width for ℓ-th layer.
Specifically, 𝑓 ∗ is a DLNN with parameters 𝜃∗ = {𝑤 (ℓ ) ∗, 𝑏 (ℓ ) ∗}𝐿∗

ℓ=1, where 𝑤 (ℓ )
∗ ∈ R𝑚∗

ℓ
×𝑚∗

ℓ−1 and
𝑏 (ℓ )

∗ ∈ R𝑚∗
ℓ . Suppose that the teacher model is smaller than the student model, that is, we have

𝐿 ≥ 𝐿∗, 𝑚ℓ ≥ 𝑚∗
ℓ
(1 ≤ ℓ ≤ 𝐿∗ − 1), and 𝑚ℓ ≥ 𝑚∗

𝐿∗−1 (𝐿
∗ ≤ ℓ ≤ 𝐿 − 1).
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Results. We study the strong sample complexity of the interpolator for DLNNs. This result is
derived by constructing a subset of Θ̄ and calculating its dimension, as is proved in Appendix D.
Theorem 5. Let the dimension of the parameter of the teacher DLNN be 𝑑∗. Suppose that Assumption
3 holds. Then the strong sample complexity of DLNN satisfies the following with probability 1 in
terms of D:

𝑘 (Θ̂𝑛) ≤ 𝑑∗ + 1.

This theorem shows that the strong sample complexity of the student network remains bounded by a
constant, regardless of its size. Thus, to achieve good generalization, one may employ an arbitrarily
large model without concern for its capacity, consistent with common practice in applied settings.

5.2 Fully Connected Deep Neural Network

We study the learning problem with general fully connected deep neural networks (FCDNNs), whose
activation is a general analytic function.

Teacher-Student Setup. The student model we train is an 𝐿-layer FCDNN defined with parameters
𝑤 (ℓ ) ∈ W (ℓ ) and 𝑏 (ℓ ) ∈ B (ℓ ) , where W (ℓ ) ⊂ R𝑚ℓ×𝑚ℓ−1 and B (ℓ ) ⊂ R𝑚ℓ are sufficiently large
compact sets for ℓ = 1, ..., 𝐿 as

𝑓 (𝑥; 𝜃) = 𝑤 (𝐿)𝜎(𝑤 (𝐿−1) · · ·𝜎(𝑤 (1)𝑥 + 𝑏 (1) ) · · · + 𝑏 (𝐿−1) ) + 𝑏 (𝐿) .

We denote 𝜃 = {𝑤 (ℓ ) , 𝑏 (ℓ ) }𝐿
ℓ=1. Here, 𝜎 denotes the analytic activation function.

Similar to the previous section, we consider the teacher model as a FCDNN with parameters
𝜃 = {𝑤 (ℓ ) ∗, 𝑏 (ℓ ) ∗}𝐿∗

ℓ=1 for 𝑤 (ℓ ) ∗ ∈ R𝑚∗
ℓ
×𝑚∗

ℓ−1 and 𝑏 (ℓ )
∗ ∈ R𝑚∗

ℓ and with the same activation function
𝜎 as the student FCDNN. We assume that the width of student FCDNN is larger than or equal to that
of the teacher FCDNN, that is, we have 𝐿 = 𝐿∗ and 𝑚ℓ ≥ 𝑚∗

ℓ
(1 ≤ ℓ ≤ 𝐿∗ − 1).

Result. We now present our result on the strong sample complexity of the interpolator for FCDNNs.
In the same way as Theorem 5, this result is obtained by constructing a subset of Θ̄ and computing
its dimension, with the detailed proof provided in Appendix E.
Theorem 6. Suppose that Assumption 3 holds. Then the strong sample complexity of FCDNN
satisfies the following with probability 1 in terms of D:

𝑘 (Θ̂𝑛) ≤
𝐿∑︁

ℓ=1
𝑚∗ℓ (𝑚ℓ−1 + 1) + 1.

6 Experiments

6.1 Near Interpolators for FCDNN+Teacher-Student Setup

We experimentally investigate properties of near interpolators introduced in Section 4.2, under the
same conditions as in Section 5.2, that is, both the student and teacher models are fully-connected
deep neural networks (FCDNNs) for evaluating the strong sample complexity. We sample random
near interpolators by Guess and Check (G&C) algorithm (Chiang et al. (2023), details are described
in Appendix F.1) until the training loss falls below 0.01 for 1000 times, yielding 1000 random near
interpolator samples. We employ G&C as the sampling algorithm for near interpolators, rather than
stochastic gradient descent (SGD), since SGD may introduce a bias toward specific subregions of
the interpolator set Θ̂𝑛 and thus fail to satisfy absolute continuity of P(· | Θ̂𝑛) with respect to the
uniform distribution. Additional details are provided in Appendix F.2.

Result. Figure 2 reports the test losses of random interpolators for each network. Across all the
three models, the theoretical upper bound of the strong sample complexity in Theorem 6 is consistent
with the experimental results, suggesting that it provides a sufficient condition for the generalization
of random interpolators. We remark that test losses does not go to exactly zero since we only sample
the near interpolators (see Proposition 4).
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Figure 2: Test losses of random near interpolators on 2-layer FCDNN (left), 4-layer FCDNN
(middle), and 6-layer FCDNN (right). The vertical axis represents the test loss, while the horizontal
axis corresponds to the number of training data. The error bars indicate the standard deviation over
1000 trials for each training sample size. The red vertical line is the theoretical upper bound of the
strong sample complexity in Theorem 6.

6.2 Near Interpolators for Large Models+MNIST

We study properties of near interpolators in a more practical setting than in Section 6.1, that is, we
utilize LeNet (Lecun et al., 1998) and MNIST dataset (LeCun et al., 2010). We sample random near
interpolators using the Xavier’s initialization (Glorot & Bengio, 2010) and the Adam optimizer with a
batch size of 1024, running until the training loss on the full batch of the selected MNIST subset falls
below 0.01. This procedure is repeated 2000 times, yielding 2000 random near interpolator samples.
As noted in the previous section, the bias of SGD should in principle be avoided by employing the
G&C algorithm; however, due to computational constraints, we approximate it by sampling with
Adam. Nevertheless, the experimental results obtained using the pattern search algorithm, which is
an alternative procedure for generating random near interpolators without implicit bias, analogous to
the G&C algorithm, presented in Appendix F.4, indicate that the findings remain largely consistent
regardless of the choice of algorithm.

To estimate the dimension 𝑑Θ̄ of Θ̄, we approximately sample from Θ̄ by training LeNet on the
full MNIST dataset using Adam with a batch size of 1024, until the full-batch training loss falls
below 0.01. This process is repeated 30000 times, yielding 30000 approximate samples from Θ̄.
Then, we estimated the dimension of the manifold on which this 30000 samples lie by using the
scikit-dimension package (Bac et al., 2021). More details are described in Appendix F.3.

Result. Figure 3 reports the test losses of random near interpolators for LeNet on MNIST. The
estimated upper bound, indicated by the red line, is consistent with the experimental results, since it
provides a sufficient number of data for the generalization of random near interpolators. We remark
that the test losses do not converge exactly to zero, since we only sample near interpolators (see
Proposition 4).
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Figure 3: Test losses of random near interpolators on LeNet. The vertical axis represents the test
loss, while the horizontal axis corresponds to the number of training data. The error bars indicate
the standard deviation over 2000 trials for each training sample size. The red vertical line is the
estimated upper bound of the strong sample complexity 𝑑Θ − 𝑑Θ̄ + 1.
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7 Conclusion

This study investigates the generalization error of randomly sampled interpolators in general machine
learning models. Within the framework of a teacher–student regression problem, we show that the
generalization error of a randomly sampled interpolator becomes exactly zero once the number of
training samples exceeds a threshold determined by the dimension of the teacher-equivalence set
(TES). Moreover, we establish that for both deep linear neural networks and fully connected deep
neural networks, the strong sample complexity does not explicitly depend on the size of the network.

LLM usage

We utilized large language models (LLMs) for a translation aid to ensure natural and fluent academic
writing and to assist in debugging and resolving errors in our experimental code.

Impact Statement

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none which we feel must be specifically highlighted
here.

Ethics Statement

This work is purely theoretical and does not involve experiments with human subjects, personal data,
or other sensitive information. Our aim is to contribute to the advancement of machine learning by
providing theoretical guidance that may help inform the design of more efficient model architectures.
We hope that these insights will have a positive impact on the future development of machine learning
technology.

Reproducibility Statement

All experimental settings are described in detail in Section 6 and Appendix F. To further support
reproducibility, we provide the full source code used to run these experiments as a supplementary
material.
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A Basic Concepts of Real Analytic Sets

We introduce basic concepts and results in real analytic sets. Consistently with the main contents,
let Θ ⊂ R𝑑Θ be a compact real analytic manifold.

A.1 Irreducible sets

First, we see the property of irreducible sets. We define the irreducibility of a real analytic set as
follows.
Definition 7 (Irreducibility). A real analytic set 𝑋 is called irreducible if it is not the union of two
strictly smaller real analytic sets.

We show two important theorems about the irreducible sets.
Theorem 7 (Proposition 11, Whitney & Bruhat (1959)). For a real analytic set 𝑋 , there uniquely
exists a locally finite family {𝑆𝜆}𝜆∈Λ of irreducible real analytic subsets of 𝑋 such that 𝑋 =

⋃
𝜆 𝑆𝜆

and 𝑆𝜆 ⊄ 𝑆𝜇 for 𝜆, 𝜇 ∈ Λ with 𝜆 ≠ 𝜇.
Theorem 8 (Corollary, Section 8, Whitney & Bruhat (1959)). An irreducible real analytic set
contains no proper real analytic subset of its same dimension.

From Theorem 7, we can show the following immediately.
Proposition 9. A real analytic set 𝑋 defined on a compact space Θ can be decomposed into a finite
number of irreducible real analytic sets.

Proof. From Theorem 8, there exists a locally finite family of irreducible real analytic sets {𝑆𝜆}𝜆
such that 𝑋 =

⋃
𝜆 𝑆𝜆 holds. Since 𝑋 is a closed subset of Θ, 𝑋 is also compact. Therefore, since

{𝑆𝜆}𝜆 is locally finite cover and 𝑋 is compact,, we can choose a finite number of subsets from {𝑆𝜆}𝜆
covering 𝑋 . These subsets are the desired irreducible real analytic sets. □

A.2 Regularity

Second, we introduce the notion of regularity. We consider a real analytic set 𝑋 ⊂ Θ and define
𝑑 := dim(𝑋).
Definition 8 (Analytic isomorphism). Two sets 𝑋1, 𝑋2 ∈ R𝑑 are said to be analytically isomorphic
if there exists an analytic isomorphic function from 𝑋1 to 𝑋2.

We define the regularity of a point in a real analytic set as follows. This definition follows Guaraldo
et al. (1986).
Definition 9 (Regularity of a point). For a fixed point 𝑥 ∈ 𝑋 , 𝑥 is said to be regular if there exists an
open neighborhood 𝑈 of 𝑥 such that 𝑈 is analytically isomorphic to some open set 𝑉 in R𝑑 .

In other words, the neighborhood of 𝑥 can be locally regarded as an open set in R𝑑 .

As an important property of regular points, we show the following theorem.
Theorem 10 (Theorem 1, Chapter III, Narasimhan (1966)). The set of regular points in 𝑋 is dense
in 𝑋 .

B Proof of Theorem 2

Proof. First, we show that, regardless of the choice of 𝑥1, ..., 𝑥𝑛, the dimension of Θ̂𝑛+1 \ Θ̄ becomes
less than that of Θ̂𝑛 \ Θ̄ by probability 1, in terms of the probabilistic choice of 𝑥𝑛+1. Second, we
show that the dimension of Θ̂𝑛 \ Θ̄ becomes at least 𝑛 − 1 less than that of Θ̂1 \ Θ̄ with probability
1, in terms of the probabilistic choice of 𝑥1, ..., 𝑥𝑛. Finally, we complete the proof by characterizing
the properties of 𝜃̂𝑛 sampled from Θ̂𝑛.
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Step0: The dimension of Θ̂1 becomes one less than that of Θ. Before proceeding to the main part
of the proof, we first establish a straightforward preliminary result: the dimension of Θ̂1 is 𝑑Θ − 1.
This follows from a standard result of analytic sets, like Lojaciewicz’s Structure Theorem (Krantz
& Parks, 1992), which states that an analytic set defined on R𝑑Θ can be decomposed into 𝑑Θ − 1, ...,
and 1-dimensional manifolds.

Step1: The dimension of Θ̂𝑛+1 becomes less than that of Θ̂𝑛 with probability 1. We prove this
by using the knowledge of analytic varieties as we see in section A. As we show in Proposition 9,
Θ̂𝑛 (𝑛 ≥ 1) can be decomposed into a finite number of irreducible real analytic sets. We define a
sequence of irreducible real analytic sets

𝑇𝑛,1, ..., 𝑇𝑛,𝑘 ⊂ Θ̂𝑛

such that they are not included in Θ̄. If it does not hold, Θ̄ = Θ̂𝑛 holds, and the proof is completed,
so we assume their existence. Choose one arbitrarily from the sequence of sets and denote it by 𝑇 .
Let the dimension of 𝑇 be 𝑑𝑇 . 𝑑𝑇 may vary depends on the choice of 𝑇𝑛,𝑖 , but it does not affect the
following proof.

We prepare some useful notion of sets. We denote

X𝑇 := {𝑥 ∈ X|{𝜃 ∈ Θ̂𝑛 | ℓ( 𝑓 ∗ (𝑥; 𝜃∗), 𝑓 (𝑥; 𝜃)) = 0} ⊃ 𝑇}.
Furthermore, we fix a regular point 𝜃′ ∈ 𝑇 and define

X𝜃 ′ := {𝑥 ∈ X | ℓ( 𝑓 ∗ (𝑥; 𝜃∗), 𝑓 (𝑥; 𝜃′)) = 0}.
Since ℓ( 𝑓 ∗ (𝑥; 𝜃∗), 𝑓 (𝑥; 𝜃′)) = 0 holds for any 𝑥 ∈ X𝑇 , we have X𝑇 ⊂ X𝜃 ′ . In addition, X𝜃 ′ is a
real analytic set with respect to 𝑥 since X is a subset of R𝑚 and X𝜃 ′ is a set of zeros of real analytic
functions with respect to 𝑥.

We show that the dimension of X𝑇 is less than 𝑚, which is the dimension of X, and its Lebesgue
measure on X is equal to 0. To this aim, we assume that the dimension of X𝜃 ′ is 𝑚 and prove that
it is a conflict. As we see in Theorem 10, the set of regular points in 𝑇 is dense. Hence, we can
choose one of the regular points of 𝑇 and its open neighborhood 𝑈 ⊂ 𝑇 . From the regularity, 𝑈 can
be regarded as an open set 𝑈 in R𝑑𝑇 . In the same way, we can choose a regular point in X𝜃 ′ , and its
neighborhood 𝑉 can be identified with an open set X̂𝜃 ′ in R𝑚. Hence, we have

ℓ( 𝑓 ∗ (𝑥; 𝜃∗), 𝑓 (𝑥; 𝜃)) = 0, ∀𝑥 ∈ X̂𝜃 ′ , ∀𝜃 ∈ 𝑈.

So, the identity theorem shows that ℓ(𝑦, 𝑓 (𝑥; 𝜃)) is equal to 0 for every 𝑥 ∈ R𝑚 and 𝜃 ∈ R𝑑𝑇 .
However, it means that 𝑇 is included in Θ̄, so it is a conflict to the assumption to the definition of 𝑇 .
Hence, the dimension of X𝜃 ′ is less than 𝑚. Since X𝑇 ⊂ X𝜃 ′ holds, the dimension of X𝑇 is also less
than 𝑚. So the Lebesgue measure of X𝑇 on X is 0.

We define an independent variable 𝑥𝑛+1 generated from the distribution D. Since D is absolutely
continuous to a uniform distribution on X, we have from the discussions above,

{𝜃 ∈ Θ̂𝑛 | ℓ( 𝑓 ∗ (𝑥𝑛+1; 𝜃∗), 𝑓 (𝑥𝑛+1; 𝜃)) = 0} ∩ 𝑇𝑛,𝑖 ⊊ 𝑇𝑛,𝑖

with probability 1 for every 𝑖 = 1, ..., 𝑘 . Since {𝜃 ∈ Θ̂𝑛 | ℓ( 𝑓 ∗ (𝑥𝑛+1; 𝜃∗), 𝑓 (𝑥𝑛+1; 𝜃)) = 0} is a real
analytic set and 𝑇𝑛,𝑖 is irreducible, the dimension of {𝜃 ∈ Θ̂𝑛 | ℓ( 𝑓 ∗ (𝑥𝑛+1; 𝜃∗), 𝑓 (𝑥𝑛+1; 𝜃)) = 0} is
less than that of 𝑇𝑛,𝑖 from Theorem 8. Since this holds for all the components 𝑇𝑛,𝑖 of Θ̂𝑛 and

Θ̂𝑛+1 \ Θ̄ =(Θ̂𝑛 ∩ {𝜃 ∈ Θ̂𝑛 | ℓ( 𝑓 ∗ (𝑥𝑛+1; 𝜃∗), 𝑓 (𝑥𝑛+1; 𝜃)) = 0}) \ Θ̄

=

𝑘⋃
𝑖=1
({𝜃 ∈ Θ̂𝑛 | ℓ( 𝑓 ∗ (𝑥𝑛+1; 𝜃∗), 𝑓 (𝑥𝑛+1; 𝜃)) = 0} ∩ 𝑇𝑛,𝑖) \ Θ̄, and

Θ̂𝑛 \ Θ̄ =

𝑘⋃
𝑖=1

𝑇𝑛,𝑖 \ Θ̄

hold, the dimension of Θ̂𝑛+1 \ Θ̄ is less than that of Θ̂𝑛 \ Θ̄ with probability 1.
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Step2: The dimension of Θ̂𝑛 becomes at least 𝑛 − 1 less than that of Θ̂1 with probability 1.
We denote by Θ̂(𝑥1, . . . , 𝑥𝑛) the zero set determined by 𝑥1, . . . , 𝑥𝑛, and define the event that the
dimension of Θ̂(𝑥1, . . . , 𝑥𝑛, 𝑥𝑛+1) is less than that of Θ̂(𝑥1, . . . , 𝑥𝑛) as 𝐴(𝑥1, ..., 𝑥𝑛+1). What we aim
to show is that, when 𝑥1, . . . , 𝑥𝑛 are i.i.d. generated random variables from D,

P(𝐴(𝑥1, ..., 𝑥𝑛+1) ∩ 𝐴(𝑥1, ..., 𝑥𝑛) ∩ · · · ∩ 𝐴(𝑥1, 𝑥2)) = 1.

From step1, the probability of a random variable 𝑥2 causing an event 𝐴(𝑥′1, 𝑥2) under given that
𝑥1 = 𝑥′1 for a fixed 𝑥′1 is given by

P(𝐴(𝑥′1, 𝑥2) | 𝑥′1) = 1

for any 𝑥′1 ∈ X. Therefore, we have for i.i.d. random variables 𝑥1, 𝑥2 ∼ D,

P(𝐴(𝑥1, 𝑥2)) =
∫
𝑥′1∈X

P(𝐴(𝑥′1, 𝑥2) | 𝑥′1) · dP(𝑥
′
1) = 1, (2)

where P(𝐴(𝑥′1, 𝑥2) | 𝑥′1) denotes the probability measure of the event where 𝐴(𝑥′1, 𝑥2) occurs under
given that 𝑥1 = 𝑥′1 and dP(𝑥′1) denotes the probability measure of the event where 𝑥1 = 𝑥′1 holds for
a fixed 𝑥′1 ∈ X.

Next, observe that for i.i.d. random variables 𝑥1, 𝑥2, 𝑥3 ∼ D,

P
(
𝐴(𝑥1, 𝑥2, 𝑥3) ∩ 𝐴(𝑥1, 𝑥2)

)
=P

(
𝐴(𝑥1, 𝑥2, 𝑥3) ∪ 𝐴(𝑥1, 𝑥2)

)
≤P

(
𝐴(𝑥1, 𝑥2, 𝑥3)

)
+ P

(
𝐴(𝑥1, 𝑥2)

)
=P

(
𝐴(𝑥1, 𝑥2, 𝑥3)

)
(3)

holds from (2). Moreover, we have

P
(
𝐴(𝑥1, 𝑥2, 𝑥3)

)
=

∫
𝑥′1 ,𝑥

′
2∈X

P
(
𝐴(𝑥′1, 𝑥

′
2, 𝑥3) | 𝑥′1, 𝑥

′
2

)
· dP(𝑥′1, 𝑥

′
2),

where P
(
𝐴(𝑥′1, 𝑥

′
2, 𝑥3) | 𝑥′1, 𝑥

′
2

)
denotes a probability measure of the event where 𝐴(𝑥′1, 𝑥

′
2, 𝑥3) does

not occur under given that 𝑥1 = 𝑥′1, 𝑥2 = 𝑥′2 and dP(𝑥′1, 𝑥
′
2) denotes the probability measure of the

event where 𝑥1 = 𝑥′1 and 𝑥2 = 𝑥′2 occur for fixed 𝑥′1, 𝑥
′
2 ∈ X. Since P(𝐴(𝑥′1, 𝑥

′
2, 𝑥3) | 𝑥′1, 𝑥

′
2) = 1 holds

for any 𝑥′1, 𝑥
′
2 ∈ X from step1, we have∫

𝑥′1 ,𝑥
′
2∈X

P
(
𝐴(𝑥′1, 𝑥

′
2, 𝑥3) | 𝑥′1, 𝑥

′
2

)
· dP(𝑥′1, 𝑥

′
2) = 0 · 1 = 0

and therefore, we have from (3),

P(𝐴(𝑥1, 𝑥2, 𝑥3) ∩ 𝐴(𝑥1, 𝑥2)) = 1.

By continuing this argument inductively, we obtain

P(𝐴(𝑥1, ..., 𝑥𝑛+1) ∩ 𝐴(𝑥1, ..., 𝑥𝑛) ∩ · · · ∩ 𝐴(𝑥1, 𝑥2)) = 1

as desired.

Step3: The properties of 𝜃̂𝑛 sampled from Θ̂𝑛. From step0 and step2, when 𝑛 ≥ 𝑑Θ − 𝑑Θ̄ + 1,
the dimension of Θ̂𝑛 \ Θ̄ is less than that of Θ̄ and therefore, less than that of Θ̂𝑛. As a consequence,
the Lebesgue measure of Θ̂𝑛 \ Θ̄ on Θ̂𝑛 corresponds to 0. Since P(·|Θ̂𝑛) is absolutely continuous to
the uniform distribution on Θ̂𝑛, if we sample 𝜃̂𝑛 ∼ P(·|Θ̂𝑛), we have

𝜃̂𝑛 ∈ Θ̄

with probability 1, which completes the proof. □
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C Proof of Proposition 4

C.1 The asymptotic form of the volume of a neighborhood

In the proof, we utilize a theory developed by Federer (1996) with regard to the asymptotic form of
the volume of an 𝜀-neighborhood of a manifold. For completeness of the paper, we present basic
concepts of this theory in this section.

First, we present a notion of Minkowski content, which defines an asymptotic form of the volume of
an 𝜀-neighborhood for small 𝜀.
Definition 10 (Minkowski content). Let 𝐴 be a Lebesgue measurable set in R𝑛 and Vol(𝐴) be its
Lebesgue measure on R𝑛. If there exists the following value for 𝑆 ⊂ R𝑛, we call it 𝑚-dimensional
Minkowski content and denote it asM𝑚 (𝑆):

lim
𝜀→0+

Vol({𝑥 | ∥𝑥 − 𝑆∥ ≤ 𝜀})
𝛼(𝑛 − 𝑚)𝜀𝑛−𝑚 ,

where 𝛼(𝑚) is the Lebesgue measure of a unit sphere in R𝑚.
Definition 11 (Rectifiable). Let 𝑆 be a subset of a metric space 𝑋 and 𝑚 be a positive integer. Then
𝑆 is called 𝑚-rectifiable if and only if there exists a Lipschitzian function mapping some bounded
subset of R𝑚 onto 𝑆.

From the definition, an 𝑚-dimensional smooth compact manifold in R𝑛 is 𝑚-rectifiable.
Definition 12 (Hausdorff measure). Let 𝑋 be a metric space with distance 𝜌 and 𝑆 be a Carathéodory-
measurable set in it. We consider a 𝛿-covering {𝑈 𝛿

𝑖
} of 𝑆 as

𝑆 ⊃
∞⋃
𝑖=1

𝑈 𝛿
𝑖 , diam(𝑈 𝛿

𝑖 ) ≤ 𝛿,

where diam(𝑈 𝛿
𝑖
) := sup𝑥,𝑦∈𝑈 𝛿

𝑖
𝜌(𝑥, 𝑦). We define

H𝑚
𝛿 (𝑆) := inf

{𝑈 𝛿
𝑖
}

∞∑︁
𝑖=1

diam(𝑈 𝛿
𝑖 )𝑚.

Then we call the following value 𝑚-dimensional Hausdorff measure of 𝑆.
H𝑚 (𝑆) := lim

𝛿→0
H𝑚

𝛿 (𝑆).

We note that while the Hausdorff measure is not necessarily a finite value, when 𝑆 is an𝑚-dimensional
smooth compact manifold inR𝑛, the 𝑚-dimensional Hausdorff measure of it becomes a positive finite
value (see section 3.2.46 in Federer (1996) for instance).

We now present the main result necessary for the proof of Proposition 4.
Theorem 11 (Theorem 3.2.39 (Federer, 1996)). If 𝑆 is a closed 𝑚-rectifiable subset of R𝑛, then we
have

M𝑚 (𝑆) = H𝑚 (𝑆).

From this theorem, the following holds immediately.
Corollary 12. For small 𝜀, we have an asymptotic form for the Lebesgue measure of an 𝜀-
neighborhood of an 𝑚-dimensional smooth compact manifold with boundary 𝑆 in R𝑛 as

Vol({𝑥 | ∥𝑥 − 𝑆∥ ≤ 𝜀}) = 𝛼(𝑛 − 𝑚)𝜀𝑛−𝑚H𝑚 (𝑆) + 𝑜(𝜀𝑛−𝑚).

C.2 Proof of Proposition 4

Proof. From now, we denote the 𝜀-neighborhood of a set 𝐴 ⊂ Θ as
𝐴𝜀 := {𝜃 ∈ Θ | ∥𝜃 − 𝐴∥ ≤ 𝜀}

and the Lebesgue measure of 𝐴 on Θ as Vol(𝐴). We also denote the dimension of 𝐴 as dim(𝐴). We
prove this theorem by showing the following two steps:

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

1. The sampled 𝜃̂𝑛,𝜀 lies in the 𝜀-neighborhood of Θ̄ with high probability 1 −𝑂 (𝜀).

2. If 𝜃̂𝑛,𝜀 is sampled from this neighborhood, then the generalization error becomes no more
than (𝑞𝜀)2.

First, we evaluate the probability of sampling 𝜃̂𝑛,𝜀 from the 𝜀-neighborhood of Θ̄. Since we sample
𝜃̂𝑛,𝜀 from Θ̂𝑛,𝜀 uniformly, this probability is written as

Vol(Θ̄𝜀)/Vol(Θ̂𝑛,𝜀).

We can decompose as

Vol(Θ̂𝑛,𝜀) ≤ Vol(Θ̄𝜀) + Vol((Θ̂𝑛 \ Θ̄)𝜀) (4)

since Θ̂𝑛,𝜀 ⊂ Θ̄𝜀 ∪ (Θ̂𝑛 \ Θ̄)𝜀 naturally holds. Since Θ̄ contains a dim(Θ̄)-dimensional analytic
manifold, Corollary 12 shows that there exists a positive constant 𝑐1 such that

Vol(Θ̄𝜀) ≥ 𝑐1𝜀
dim(Θ)−dim(Θ̄) + 𝑜(𝜀dim(Θ)−dim(Θ̄) ). (5)

Next, observe that Θ̂𝑛 \ Θ̄ is a semi-analytic set, which is a parameter set defined by equations and
inequalities of analytic functions. By Section 3 in Hardt (1975), a semi-analytic set defined on
a compact parameter set is decomposed into a finite number of smooth manifolds. Hence, if we
decompose Θ̂𝑛 \ Θ̄ into smooth manifolds Θ̂𝑛 \ Θ̄ = 𝑍1 ∪ · · · ∪ 𝑍 𝑘 , we have

Vol((Θ̂𝑛 \ Θ̄)𝜀) ≤
𝑘∑︁
𝑖=1

Vol(𝑍 𝑖
𝜀).

Since each 𝑍 𝑖 has a dimension of no more than dim(Θ̂𝑛 \ Θ̄), we have from Corollary 12,

Vol((Θ̂𝑛 \ Θ̄)𝜀) ≤ 𝑐2𝜀
dim(Θ)−dim(Θ̂𝑛\Θ̄) + 𝑜(𝜀dim(Θ)−dim(Θ̂𝑛\Θ̄) ) (6)

for a positive constant 𝑐2.

From the proof of Theorem 2, we have

dim(Θ̂𝑛 \ Θ̄) ≤ dim(Θ̄) − 1. (7)

Combining (4), (5), (6) and (7), we have

Vol(Θ̄𝜀)/Vol(Θ̂𝑛,𝜀) = 1 −𝑂 (𝜀).

From the discussion above, 𝜃̂𝑛,𝜀 sampled from Θ̂𝑛,𝜀 is in Θ̄𝜀 with probability 1 −𝑂 (𝜀).

Second, we evaluate the generalization error when we sample 𝜃̂𝑛,𝜀 from Θ̄𝜀 . Since 𝑓 (𝑥; 𝜃) is
𝑞-Lipschitz continuous with respect to 𝜃 for every 𝑥 ∈ X, we have for some 𝜃 ∈ Θ̄,

𝐿 (𝜃̂𝑛,𝜀) =E𝑥∼D

[
1
2




 𝑓 (𝑥; 𝜃̂𝑛,𝜀) − 𝑓 ∗ (𝑥; 𝜃∗)



2

]
=E𝑥∼D

[
1
2




( 𝑓 (𝑥; 𝜃̂𝑛,𝜀) − 𝑓 (𝑥; 𝜃)) + ( 𝑓 (𝑥; 𝜃) − 𝑓 ∗ (𝑥; 𝜃∗))



2

]
≤E𝑥∼D

[


 𝑓 (𝑥; 𝜃̂𝑛,𝜀) − 𝑓 (𝑥; 𝜃)



2

]
+ E𝑥∼D

[

 𝑓 (𝑥; 𝜃) − 𝑓 ∗ (𝑥; 𝜃∗)


2

]
≤(𝑞∥𝜃̂𝑛,𝜀 − 𝜃∥)2 + 0
≤(𝑞𝜀)2,

which completes the proof. □
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D Proof of Theorem 5

Obviously, the loss function of DLNN satisfies Assumption 1 because the linear transformation is
analytic.

Therefore, by Theorem 2, we only have to study the lower bound of 𝑑Θ̄. We prove by the following
step:

1. Construct the subset Θ̄′ of TES Θ̄.
2. Count the number of free parameters of Θ̄′ and it is the lower bound of the dimension 𝑑Θ̄

of Θ̄.

First, we define a subset Θ̄′ of Θ as follows.
Definition 13 (Subset Θ̄′ of Θ). We denote arbitrary matrices or vectors asM and arbitrary regular
matrices as R. Θ̄′ is the subset of Θ which satisfies the following condition. Superscripts represent
the layer index and subscripts are for the purpose of distinction.

1. For the parameter of first layer,

𝑤 (1) =

(
𝑤 (1)

∗

M (1)
1

)
, 𝑏 (1) =

(
𝑏 (1)

∗

M (1)
2

)
.

2. For the parameter of ℓ-th layer (2 ≤ ℓ ≤ 𝐿∗ − 1),

𝑤 (ℓ ) =

(
𝑤 (ℓ )

∗ M (ℓ )
1

M (ℓ )
2 M (ℓ )

3

)
, 𝑏 (ℓ ) =

(
𝑏 (ℓ )

∗

M (ℓ )
4

)
.

3. For the parameter of ℓ-th layer (𝐿∗ ≤ ℓ ≤ 𝐿 − 1),

𝑤 (ℓ ) =

(
R (ℓ ) M (ℓ )

1
M (ℓ )

2 M (ℓ )
3

)
, 𝑏 (ℓ ) =

(
M (ℓ )

4
M (ℓ )

5

)
,

where R (ℓ ) ∈ R𝑚∗
𝐿∗−1×𝑚

∗
𝐿∗−1 .

4. For the parameter of 𝐿-th layer,

𝑤 (𝐿) =
(
𝑤 (𝐿

∗ ) ∗𝑃−1 M (𝐿)
1

)
, 𝑏 (𝐿) = 𝑏 (𝐿

∗ ) ∗ − 𝑞 (𝐿) ,

where 𝑃 = R (𝐿−1) · · · R (𝐿∗ ) and 𝑞 (𝐿) is a term determined by other parameters.

Now we proceed to the proof of the first step.
Lemma 13. Θ̄′ is a subset of Θ̄.

Proof. We only have to prove that the output of the student network whose parameter is in Θ̄′ is the
same as that of the teacher network. We denote the output of ℓ-th layer of the teacher network as
ℎ (ℓ )

∗ (∈ R𝑚∗
ℓ ) and the output in the redundant width of ℓ-th layer as 𝑟 (ℓ ) .

The output of first layer of the student network is(
𝑤 (1)

∗
𝑥

M (1)
1 𝑥

)
+

(
𝑏 (1)

∗

M (1)
2

)
=

(
𝑤 (1)

∗
𝑥 + 𝑏 (1) ∗

M (1)
1 𝑥 +M (1)

2

)
=

(
ℎ (1)

∗

𝑟 (1)

)
.

The output of second layer of the student network is(
𝑤 (2)

∗
ℎ (1)

∗ +M (2)
1 𝑟 (1)

M (2)
2 ℎ (1)

∗ +M (2)
3 𝑟 (1)

)
+

(
𝑏 (2)

∗

M (2)
4

)
=

(
ℎ (2)

∗ +M (2)
1 𝑟 (1)

𝑟 (2)

)
.
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By continuing the same discussion, we can show that the output of (𝐿∗ − 1)-th layer can be written

as
(
ℎ (𝐿

∗−1) ∗ + 𝑞 (𝐿∗−1)

𝑟 (𝐿
∗−1)

)
, where we write the redundant term as 𝑞.

The output of 𝐿∗-th layer of the student network is

©­«
R (𝐿∗ )

(
ℎ (𝐿

∗−1) ∗ + 𝑞 (𝐿∗−1)
)
+M (𝐿∗ )

1 𝑟 (𝐿
∗−1)

M (𝐿∗ )
2

(
ℎ (𝐿

∗−1) ∗ + 𝑞 (𝐿∗−1)
)
+M (𝐿∗ )

3 𝑟 (𝐿
∗−1)

ª®¬ +
(
M (𝐿∗ )

4
M (𝐿∗ )

5

)
=

(
R (𝐿∗ )ℎ (𝐿∗−1) ∗ + 𝑞 (𝐿∗ )

𝑟 (𝐿
∗ )

)
.

The output of (𝐿∗ + 1)-th layer of the student network is

©­«
R (𝐿∗+1)

(
R (𝐿∗ )ℎ (𝐿∗−1) ∗ + 𝑞 (𝐿∗ )

)
+M (𝐿∗+1)

1 𝑟 (𝐿
∗ )

M (𝐿∗+1)
2

(
R (𝐿∗ )ℎ (𝐿∗−1) ∗ + 𝑞 (𝐿∗ )

)
+M (𝐿∗+1)

3 𝑟 (𝐿
∗ )
ª®¬ +

(
M (𝐿∗+1)

4
M (𝐿∗+1)

5

)
=

(
R (𝐿∗+1)R (𝐿∗ )ℎ (𝐿∗−1) ∗ + 𝑞 (𝐿∗+1)

𝑟 (𝐿
∗+1)

)
.

By continuing the same discussion, we can show that the output of (𝐿 − 1)-th layer is(
R (𝐿−1) · · · R (𝐿∗ )ℎ (𝐿∗−1) ∗ + 𝑞 (𝐿−1)

𝑟 (𝐿−1)

)
=

(
𝑃ℎ (𝐿

∗−1) ∗ + 𝑞 (𝐿−1)

𝑟 (𝐿−1)

)
.

Hence, the output of the last layer is

𝑤 (𝐿
∗ ) ∗𝑃−1 (𝑃ℎ (𝐿∗−1) ∗ + 𝑞 (𝐿−1) ) +M (𝐿)

1 𝑟 (𝐿−1) + 𝑏 (𝐿∗ ) ∗ − 𝑞 (𝐿)

=ℎ (𝐿
∗ ) ∗ + 𝑤 (𝐿∗ ) ∗𝑃−1𝑞 (𝐿−1) +M (𝐿)

1 𝑟 (𝐿−1) − 𝑞 (𝐿) .

So, if we set 𝑞 (𝐿) = 𝑤 (𝐿
∗ ) ∗𝑃−1𝑞 (𝐿−1) + M (𝐿)

1 𝑟 (𝐿−1) , the output is the same as that of teacher
network. □

We proceed to the proof of the second step.
Lemma 14. The lower bound of the dimension of Θ̄ is 𝑑Θ − 𝑑∗.

Proof. From Lemma 13, Θ̄ contains Θ̄′. The number of the free element of the parameter in Θ̄′ is
the number of elements expressed byM and R, so it is 𝑑Θ − 𝑑∗. Hence, Θ̄ contains a (𝑑Θ − 𝑑∗)-
dimensional hyper cube and its internal. A (𝑑Θ−𝑑∗)-dimensional hyper cube and its internal contain
a hyper sphere and its internal, which is an analytic manifold whose dimension is 𝑑Θ − 𝑑∗. So the
maximum dimension of analytic manifolds contained in Θ̄ is at least 𝑑Θ − 𝑑∗, which completes the
proof. □

E Proof of Theorem 6

The loss function of FCDNN satisfies Assumption 1 since the linear transformation and the activation
function is analytic. We prove in the same way as Theorem 5.
Definition 14 (Subset Θ̄′ of Θ). Let us denote arbitrary matrices or vectors asM. Θ̄′ is the subset
of Θ which satisfies the following condition. Superscripts represent the layer index and subscripts
are for the purpose of distinction.

1. For the parameter of first layer,

𝑤 (1) =

(
𝑤 (1)

∗

M (1)
1

)
, 𝑏 (1) =

(
𝑏 (1)

∗

M (1)
2

)
.

2. For the parameter of ℓ-th layer (2 ≤ ℓ ≤ 𝐿 − 1),

𝑤 (ℓ ) =

(
𝑤 (ℓ )

∗ 0
M (ℓ )

1 M (ℓ )
2

)
, 𝑏 (ℓ ) =

(
𝑏 (ℓ )

∗

M (ℓ )
3

)
.
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3. For the parameter of 𝐿-th layer,

𝑤 (𝐿) =
(
𝑤 (𝐿

∗ ) ∗ 0
)
, 𝑏 (𝐿) = 𝑏 (𝐿

∗ ) ∗.

Now we proceed to the proof of the first step.
Lemma 15. Θ̄′ is a subset of Θ̄.

Proof. We only have to prove that the output of the student network whose parameter is in Θ̄′ is
the same as that of the teacher network. We denote the pre-activation in ℓ-th layer of the teacher
network as ℎ (ℓ )

∗ (∈ R𝑚∗
ℓ ) and the pre-activation in the redundant width of the student network in

ℓ-th layer as 𝑟 (ℓ ) .

The pre-activation in the first layer of the student network is(
𝑤 (1)

∗
𝑥

M (1)
1 𝑥

)
+

(
𝑏 (1)

∗

M (1)
2

)
=

(
𝑤 (1)

∗
𝑥 + 𝑏 (1) ∗

M (1)
1 𝑥 +M (1)

2

)
=

(
ℎ (1)

∗

𝑟 (1)

)
.

The pre-activation in the second layer of the student network is(
𝑤 (2)

∗
𝜎(ℎ (1) ∗) + 0𝜎(𝑟 (1) )

M (2)
1 𝜎(ℎ (1) ∗) +M (2)

2 𝜎(𝑟 (1) )

)
+

(
𝑏 (2)

∗

M (2)
3

)
=

(
ℎ (2)

∗

𝑟 (2)

)
.

By continuing the same discussion, we can show that the pre-activation of (𝐿 − 1)-th layer can be

written as
(
ℎ (𝐿−1) ∗

𝑟 (𝐿−1)

)
.

Hence, the output of the last layer is

𝑤 (𝐿)
∗
𝜎(ℎ (𝐿−1) ∗) + 0𝜎(𝑟 (𝐿−1) ) + 𝑏 (𝐿) ∗ = ℎ (𝐿)

∗
,

which is the same as the output of the teacher network. □

We proceed to the proof of the second step.
Lemma 16. The lower bound of the dimension of Θ̄ is 𝑑Θ −

∑𝐿
ℓ=1 𝑚

∗
ℓ
(𝑚ℓ−1 + 1).

Proof. From Lemma 15, Θ̄ contains Θ̄′. The number of the free element of the parameter in Θ̄′ is the
number of elements expressed byM, so it is

∑𝐿
ℓ=1 (𝑚ℓ −𝑚∗ℓ) (𝑚ℓ−1 + 1) = 𝑑Θ −

∑𝐿
ℓ=1 𝑚

∗
ℓ
(𝑚ℓ−1 + 1).

Hence, Θ̄ contains a (𝑑Θ −
∑𝐿

ℓ=1 𝑚
∗
ℓ
(𝑚ℓ−1 + 1))-dimensional hyper cube and its internal. A (𝑑Θ −∑𝐿

ℓ=1 𝑚
∗
ℓ
(𝑚ℓ−1 + 1))-dimensional hyper cube and its internal contain a hyper sphere and its internal,

which is an analytic manifold of dimension 𝑑Θ −
∑𝐿

ℓ=1 𝑚
∗
ℓ
(𝑚ℓ−1 +1). So the maximum dimension of

analytic manifolds contained in Θ̄ is at least 𝑑Θ−
∑𝐿

ℓ=1 𝑚
∗
ℓ
(𝑚ℓ−1+1), which completes the proof. □

F Details of Experiments

F.1 Guess and Check algorithm for Sampling Random Near Interpolators

To obtain a predictor with a random near interpolator, we can utilize the Guess & Check (G&C)
algorithm by Chiang et al. (2023), which provides a practical implementation to sample random near
interpolators. Specifically, the G&C algorithm is operated by the following procedure:

1. Fix a sufficiently small 𝜀 > 0.
2. Sample a parameter 𝜃 according to the uniform distribution on Θ, without considering the

training set.
3. For the sampled parameter 𝜃, evaluate the training loss 𝐿𝑛 (𝜃) using the training set
{(𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1.

4. If 𝐿𝑛 (𝜃) ≤ 𝜀 holds, return 𝜃; otherwise, go back to 2.
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Algorithm 1: Pattern Search Algorithm
Input: Initial point 𝜃0, step size 𝛼0 > 0, stopping threshold 𝜀

Output: Approximate solution 𝜃𝑘
Set 𝑘 ← 0;
while 𝐿𝑛 (𝜃𝑘) > 𝜀 do

Compute trial points 𝜃𝑘 + 𝛼𝑘𝜃𝑘,𝑖 (𝑘 ) or 𝜃𝑘 − 𝛼𝑘𝜃𝑘,𝑖 (𝑘 ) , where 𝑖(𝑘) ∈ {1, · · · , 𝑑Θ} is
randomly chosen and 𝜃𝑘,𝑖 (𝑘 ) denotes the 𝑖(𝑘)-th parameter of 𝜃𝑘 ;

if there exists 𝑖(𝑘) ∈ {1, · · · , 𝑑Θ} s.t. 𝐿𝑛 (𝜃𝑘 + 𝛼𝑘𝜃𝑘,𝑖 (𝑘 ) ) < 𝐿𝑛 (𝜃𝑘) then
𝜃𝑘+1 ← 𝜃𝑘 + 𝛼𝑘𝜃𝑘,𝑖 (𝑘 ) ;
𝛼𝑘+1 ← 𝛼𝑘 ;

else if there exists 𝑖(𝑘) ∈ {1, · · · , 𝑑Θ} s.t. 𝐿𝑛 (𝜃𝑘 − 𝛼𝑘𝜃𝑘,𝑖 (𝑘 ) ) < 𝐿𝑛 (𝜃𝑘) then
𝜃𝑘+1 ← 𝜃𝑘 − 𝛼𝑘𝜃𝑘,𝑖 (𝑘 ) ;
𝛼𝑘+1 ← 𝛼𝑘 ;

else
𝜃𝑘+1 ← 𝜃𝑘 ;
𝛼𝑘+1 ← 𝛾dec 𝛼𝑘 ;

𝑘 ← 𝑘 + 1;

F.2 Details of Section 6.1

Below, we provide an outline of the setup. We consider a regression problem and adopt the mean
squared error as the loss function. The input data 𝑥 is 2-dimensional vector and is generated according
to the uniform distribution on [−1, 1]2. The output data 𝑦 is a scalar output of a teacher FCDNN,
which is a randomly initialized FCDNN by Xavier’s uniform initialization (Glorot & Bengio, 2010)
with hidden layers consisting of 5 units. The student FCDNN to be trained is a FCDNN with the same
number of layers as the teacher and with hidden layers consisting of 10 units. The activation function
is the hyperbolic tangent (tanh) in both the teacher and student FCDNNs. To sample random near
interpolators, we run the G&C algorithm presented in the previous section 𝜀 = 0.01 and Xavier’s
uniform initialization. We then compute the test loss using 2000 samples randomly generated from
the teacher FCDNN. This procedure is repeated 1000 times for each training sample size. We conduct
experiments with networks consisting of 2, 4, and 6 layers, respectively.

F.3 Details of Section 6.2

We adapted a cross entropy loss for the loss function. We set the learning rate of Adam as 0.001
and other hyper-parameters as the default value of PyTorch. We estimate the dimension of Θ̄ by
utilizing lPCA algorithm (Fukunaga & Olsen, 1971), implemented by the scikit-dimension package
(Bac et al., 2021). We compute the test loss on the MNIST test split. In order to reproduce the
teacher–student setting on MNIST dataset, we remove about 9 % of ambiguous data from the test
split of MNIST by utilizing the cleanlab package (Northcutt et al., 2020).

F.4 Experiment by pattern search

The pattern search algorithm serves as an alternative procedure for generating random near interpola-
tors without implicit bias, analogous to the G&C algorithm. Specifically, the algorithm perturbs the
parameter in a random direction and then evaluates whether this perturbation decreases the objective
function. If the update results in a decrease, the new parameter is accepted; otherwise, the parameter
is reverted to its original value. Furthermore, if none of the attempted updates yield a decrease,
we reduce the step size accordingly. A more detailed description of the procedure is provided in
Algorithm 1.

We describe the details of our experimental setup. Because this algorithm is computationally
expensive, we restrict the MNIST dataset to samples whose labels are 0 or 1. We employ a 2-layer
FCDNN with a hidden-layer width of 10 and the softplus activation function. The loss function is
the cross-entropy loss. The model parameters are initialized using Xavier’s uniform initialization,
and the step size is initialized as 1.0. We set the stopping threshold to 𝜀 = 0.01.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

To estimate the dimension 𝑑Θ̄ of Θ̄, we approximately sample from Θ̄ by training the 2-layer FCDNN
on all MNIST samples labeled 0 or 1 using the pattern search algorithm. This procedure is repeated
10000 times, producing 10000 approximate samples from Θ̄. We then estimate the dimension
of the manifold on which these samples lie by applying the lPCA algorithm implemented in the
scikit-dimension package (Bac et al., 2021).

Next, we generate 1000 random near interpolators using the pattern search algorithm, varying the
number of training samples across 1000, 2000, 3000, 4000, 5000, 6000, and 7000, and compute their
test loss on the MNIST test split.

The results are presented in Figure 4. The estimated upper bound is consistent with the empiri-
cal findings, as it provides a sufficient number of samples for the generalization of random near
interpolators.
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Figure 4: Test losses of random near interpolators on 2-layer FCDNN. The vertical axis represents
the test loss, while the horizontal axis corresponds to the number of training data. The error bars
indicate the standard deviation over 1000 trials for each training sample size. The red vertical line is
the estimated upper bound of the strong sample complexity 𝑑Θ − 𝑑Θ̄ + 1.
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