
ZERO GENERALIZATION ERROR THEOREM FOR RANDOM INTERPOLATORS VIA ALGEBRAIC GEOMETRY

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 We theoretically demonstrate that the generalization error of interpolators for
012 machine learning models under teacher-student settings becomes 0 once the number
013 of training samples exceeds a certain threshold. Understanding the high gen-
014 eralization ability of large-scale models such as deep neural networks (DNNs)
015 remains one of the central open problems in machine learning theory. While
016 recent theoretical studies have attributed this phenomenon to the implicit bias of
017 stochastic gradient descent (SGD) toward well-generalizing solutions, empirical
018 evidences indicate that it primarily stems from properties of the model itself.
019 Specifically, even randomly sampled interpolators—parameters that achieve zero
020 training error—have been observed to generalize effectively. In this study, under
021 a teacher–student framework, we prove that the generalization error of randomly
022 sampled interpolators becomes exactly zero once the number of training samples
023 exceeds a threshold determined by the geometric structure of the interpolator set in
024 parameter space. As a proof technique, we leverage tools from algebraic geometry
025 to mathematically characterize this geometric structure.

1 INTRODUCTION

030 Triggered by the success of deep neural networks, increasing attention has been paid to methods that
031 employ a large model and yet achieve excellent generalization performance while perfectly fitting
032 the training data (Simonyan & Zisserman, 2015; Zhang et al., 2017). Such learning models that
033 attain exact fit to the training set are referred to as *interpolators*. Explaining the performance of
034 these interpolators constitutes one of the central challenges in contemporary deep learning theory,
035 and several distinct lines of work have emerged to address this phenomenon (Neyshabur et al., 2015;
036 Bartlett et al., 2017; Golowich et al., 2018).

037 Among these lines of works trying to explain the generalization performance of interpolators, one of
038 the leading explanations has been the *implicit bias* induced by learning algorithms, typically stochastic
039 gradient descent (SGD) and its variants. This perspective posits that SGD guides parameters toward
040 generalizing solutions in parameter space, such as the minimum L^2 -norm solution (Yun et al., 2021).
041 Although this line of work has achieved notable progress, several challenges and limitations have
042 been identified. First, both theoretical and empirical studies have reported cases where implicit bias
043 does not necessarily enhance generalization (Dauber et al., 2020; Vyas et al., 2024; Farhang et al.,
044 2022). Second, most of the existing theoretical analyses are restricted to simplified settings, such
045 as linear models or two-layer neural networks, due to a fundamental difficulty in identifying the
046 solution for non-convex optimization problems (Gunasekar et al., 2017; Soudry et al., 2018; Arora
047 et al., 2019; Lyu & Li, 2020; Chizat & Bach, 2020; Vardi, 2023; Cattaneo et al., 2024).

048 In parallel, a growing body of recent work has emphasized that *model-based properties*, independent
049 of the algorithm’s implicit bias, can enhance the generalization performance of interpolators. In
050 particular, it is becoming increasingly evident that SGD behaves like a uniform sampling on a set of
051 interpolators. Valle-Pérez et al. (2019) empirically showed that SGD behaves similarly to uniform
052 sampling from the set of interpolators, which implies that the models generalize well due to a natural
053 bias of interpolators. This finding was further supported by Mingard et al. (2021) who corroborated
the similarity between SGD and uniform sampling over interpolators. Additionally, Chiang et al.
(2023) examined the generalization properties of both SGD-optimized parameters and randomly

054 sampled interpolators, demonstrating that the generalization ability of DNNs is largely independent
055 of the employed optimization algorithm.
056

057 An important challenge within this line of research on interpolators is to provide a theoretical
058 foundation for the empirical observation above. Specifically, we pose the following question:
059

060 *Can the strong generalization performance of interpolators be explained
061 by a model-based theory that does not rely on the implicit bias of algorithms?*

062 1.1 OUR RESULT 063

064 In this study, we develop a model-based theory and mathematically prove that an interpolator can
065 achieve zero-generalization error even with a limited amount of training data. Specifically, under
066 the teacher–student learning framework and a random interpolator, we demonstrate that the minimal
067 number of samples required to attain zero generalization error, what we term the *strong sample*
068 *complexity*, is finite and admits an explicit upper bound. In short, we have the following informal
069 statement:
070

Theorem 1 (Informal statement of Theorem 2). *The following holds with probability 1:*

$$071 \quad (Strong \ sample \ complexity) \\ 072 \quad \leq (Dimension \ of \ parameter \ space) - (Dimension \ of \ true \ parameter \ set) + 2. \\ 073$$

074 This result implies that even when the model becomes *large*, the strong sample complexity can
075 remain small provided that the dimension of the true parameter set is also large. This yields a purely
076 mathematical theory demonstrating that an interpolator can achieve sufficiently strong generalization
077 ability without reliance on any specific optimization algorithm.
078

079 Our analysis develops this theory by applying the concept of *real analytic sets*, originating in algebraic
080 geometry, to study the relationship between the geometric structure of the interpolator set and that of
081 the true parameter set. Specifically, real analytic sets describe the intersections of zero sets of analytic
082 functions in real space. This framework is crucial for determining the dimension of the interpolator
083 set, since interpolators are precisely characterized as the zeros of the loss function evaluated on the
084 training data.
085

We summarize our contributions as follow:

- 086 1. We develop a model-based theory for interpolators, thereby providing a theoretical justi-
087 fication for the empirical finding that generalization error can be explained solely by the
088 structure of the model.
089 2. Specifically, we theoretically demonstrate the strong sample complexity required for an
090 interpolator to achieve zero generalization error (Theorem 2). This phenomenon of attaining
091 zero generalization error under finite data is a discovery unique to interpolators.
092 3. Through several concrete examples, we uncover new insights, including cases where over-
093 parameterization does not affect sample complexity, and even instances where it reduces
094 sample complexity (Theorem 5, 6).
095 4. We introduce the new concept of real analytic sets from algebraic geometry into machine
096 learning theory, establishing a novel theoretical foundation.
097

098 1.2 RELATED WORKS 099

100 **Generalization ability of interpolators.** There are several works studying the generalization
101 ability of interpolators. Buzaglo et al. (2024) showed that in the teacher-student setting, the sample
102 complexity of quantized DNN does not explicitly depend on the number of parameters when the
103 parameter is randomly sampled from its interpolator set, using PAC-Bayes like analysis. While
104 they study the standard sample complexity, the number of data necessary for the generalization
105 error become less than ϵ , we study the number of data by which the generalization error becomes
106 exactly zero. Valle-Pérez et al. (2019) studied generalization error when the parameter is sampled
107 from a uniform distribution on the interpolator set. They showed that the PAC-Bayes generalization
108 bound guarantees the good generalization of such a predictor. Theisen et al. (2021) proved that a
109 large proportion of interpolators in two layer ReLU neural network have good generalization ability

108 in binary classification tasks. Yang et al. (2021) studied the uniform generalization bound on the
 109 interpolator of random feature models. They showed that as the number of features increases, the
 110 generalization error decreases. Belkin (2021) investigated the generalization ability of interpolators
 111 in kernel methods in over-parameterization. He showed that such interpolators exhibit an implicit
 112 bias toward simple functions, ensuring that the generalization error does not increase with over-
 113 parameterization.

114
 115 **Geometric structure of interpolator set.** Finally, we list several studies investigating the geometric
 116 landscape of the set of interpolators. Cooper (2021) clarified the relation between the number of
 117 training data and the dimension of the set of the interpolators. We use the similar analysis for
 118 deriving Theorem 2. We remark that while he studied the cases in which a noise exists in the data-
 119 generating process, our study is about noiseless cases. Fukumizu et al. (2019) studied the landscape
 120 of interpolator set by investigating three ways for a wider student network producing the same output
 121 as the teacher network, which is also similar to our analysis for deriving Theorem 5 and 6.

122 **1.3 NOTATION**
 123

124 For $n \in \mathbb{N}$, $[n]$ denotes $\{1, 2, \dots, n\}$. We denote the set of non-negative real numbers as $\mathbb{R}_{\geq 0}$ and non-
 125 negative integers as $\mathbb{Z}_{\geq 0}$. We denote the Euclidean norm as $\|\cdot\|$, and the ℓ^1 -norm as $\|\cdot\|_1$. For a set
 126 $S \subset \mathbb{R}^d$, the distance between the set S and a point $\omega \in \mathbb{R}^d$ is denoted $\|\omega - S\| = \inf\{\|\omega - s\| \mid s \in S\}$.
 127

128 **2 PRELIMINARIES**
 129

130 **2.1 REGRESSION PROBLEM WITH TEACHER-STUDENT SETTING**
 131

132 We formalize our problem setup, a regression problem with a teacher-student setting.
 133

134 **Data generating process.** We define the input space $\mathcal{X} \subset \mathbb{R}^m$ as an m -dimensional real analytic
 135 manifold (defined later in Section 3.2.1) and the output space \mathcal{Y} . The corresponding output $y \in \mathcal{Y}$
 136 for an input $x \in \mathcal{X}$ is generated by the *teacher model*, a function $f^*(\cdot; \theta^*) : \mathcal{X} \rightarrow \mathcal{Y}$, as

$$y = f^*(x; \theta^*), \quad (1)$$

137 where $\theta^* \in \mathbb{R}^{d^*}$ is a fixed d^* -dimensional parameter. Suppose that we observe n samples $\{(x_i, y_i)\}_{i=1}^n$,
 138 where $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$ and each x_i is drawn independently and identically according to a probability
 139 measure \mathcal{D} on \mathcal{X} , and y_i follows the teacher model (1) with given x_i . We note that this noiseless
 140 setting is common in theoretical works under the teacher-student framework, as in Tian (2017);
 141 Safran & Shamir (2018); Xu & Du (2023).
 142

143 **Regression problem.** Using the samples $\{(x_i, y_i)\}_{i=1}^n$, we consider training a model $f : \mathcal{X} \times \Theta \rightarrow \mathcal{Y}$
 144 called *student model*

$$f(x; \theta), \quad x \in \mathcal{X}, \theta \in \Theta,$$

145 where θ is an \mathbb{R}^{d_Θ} -valued parameter to be trained and $\Theta \subset \mathbb{R}^{d_\Theta}$ is a compact d_Θ -dimensional
 146 real analytic manifold. We focus on the regression problem and consider the squared loss function
 147 $\ell(y, y') = \frac{1}{2} \|y - y'\|^2$. Note that this setup can be extended to a general analytic loss
 148 function. We define a training error $L_n(\theta) := \frac{1}{n} \sum_{i=1}^n \ell(y_i, f(x_i; \theta))$ and a generalization error
 149 $L(\theta) := \mathbb{E}_{x \sim \mathcal{D}} [\ell(y, f(x; \theta))]$.
 150

151 **2.2 REAL ANALYTIC FUNCTION**
 152

153 We introduce an important concept for our analysis, a real analytic function.
 154

155 **Definition 1** (Real analytic function). A real analytic function is a function $f : U \rightarrow \mathbb{R}$, where U
 156 is an open subset of \mathbb{R}^d , such that for every point $\theta^{(0)} \in U$, the function f can be expressed as a
 157 convergent power series which converges in a neighborhood of $\theta^{(0)}$:
 158

$$f(\theta) = \sum_{j=0}^{\infty} \sum_{\alpha: \|\alpha\|_1=j} c_{\alpha} (\theta - \theta^{(0)})^{\alpha},$$

162 where $\theta = (\theta_1, \dots, \theta_d) \in U$ and $\alpha = (\alpha_1, \dots, \alpha_d) \in \mathbb{Z}_{\geq 0}^d$ is a multi-index of non-negative integers
163 by which we define $\theta^\alpha = \theta_1^{\alpha_1} \dots \theta_d^{\alpha_d}$. When the output of f is a vector, f is called a real analytic
164 function if each of its components is a real analytic function.
165

166 Throughout our analysis, we assume that the student model is a real analytic function with respect to
167 the parameter θ and the input data x .
168

Assumption 1 (Real Analytic Student Model). *We assume that $f(x; \theta)$ is a real analytic function
169 with respect to $\theta \in \Theta$ and $x \in \mathcal{X}$.*

170 A wide range of machine learning models satisfy this assumption: for example, a fully connected
171 deep neural network or attention mechanism whose activation function is analytic, such as sigmoid,
172 softmax, hyperbolic tangent, and so on.
173

174 3 INTERPOLATOR AND TEACHER-EQUIVALENT SET

175 We introduce key concepts that form the foundation of our analysis. The first is the predictor based
176 on a *random interpolator*, with particular emphasis on implementations using neural networks. The
177 second is a *teacher-equivalent set*, a notion that plays a central role in our generalization theory.
178

179 3.1 PREDICTOR WITH RANDOM INTERPOLATOR

180 We consider a predictor that interpolates the training data by sampling a parameter from a distribution
181 supported on the set of parameters that perfectly interpolates the training data.
182

183 In preparation, we consider an *interpolating parameter set* (IPS), satisfying zero training error, *i.e.*,

$$184 \widehat{\Theta}_n := \{\theta \in \Theta \mid L_n(\theta) = 0\} = \{\theta \in \Theta \mid \ell(y_i, f(x_i; \theta)) = 0, \forall i \in [n]\}.$$

185 Note that $\widehat{\Theta}_n$ is a random set from the random training sample of $\{(x_i, y_i)\}_{i=1}^n$.
186

187 Next, we consider randomly sampling a parameter θ from $\widehat{\Theta}_n$, following a distribution $\mathbb{P}(\theta \mid \widehat{\Theta}_n)$
188 that is absolutely continuous with respect to the uniform distribution on $\widehat{\Theta}_n$. We then consider a
189 predictor with the sampled parameter:
190

$$191 f(x; \widehat{\theta}_n), \quad \widehat{\theta}_n \sim \mathbb{P}(\cdot \mid \widehat{\Theta}_n).$$

192 This random predictor interpolates the training samples with probability 1, *i.e.*, $\mathbb{P}(L_n(\widehat{\theta}_n) = 0) = 1$.
193

194 3.2 TEACHER-EQUIVALENT SET (TES)

195 We define the notion of a teacher-equivalent set (TES). We say that a parameter $\theta \in \Theta$ of a student
196 model is *teacher-equivalent* when $f(x; \theta) = f^*(x; \theta^*)$ holds for every $x \in \mathcal{X}$. Then, the *teacher-
197 equivalent set* (TES) is a set of the teacher-equivalent parameters:
198

$$199 \bar{\Theta} := \{\theta \in \Theta \mid f(x; \theta) = f^*(x; \theta^*), \forall x \in \mathcal{X}\}.$$

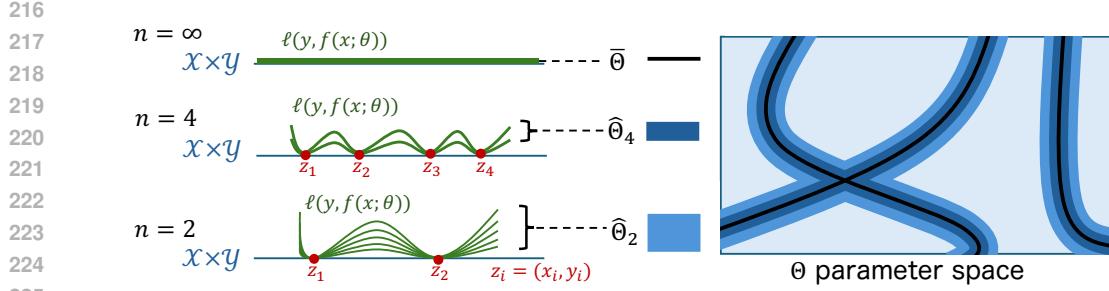
200 Intuitively, TES is the true parameter set, *i.e.*, the set of parameters of the student model that replicate
201 the teacher model. In contrast to the IPS $\widehat{\Theta}_n$, the TES $\bar{\Theta}$ is a non-random set.
202

203 In our analysis, we assume that the TES is not empty as a realizability assumption.
204

Assumption 2 (Realizability). *The TES $\bar{\Theta}$ is non-empty, *i.e.*, there exists a parameter $\theta^\circ \in \Theta$
205 satisfying $f^*(x; \theta^*) = f(x; \theta^\circ)$ for every $x \in \mathcal{X}$.*
206

207 This realizability assumption is natural for the teacher-student setup with smaller teachers (Tian,
208 2017; Safran & Shamir, 2018; Xu & Du, 2023). In fact, this assumption is satisfied in the case of
209 fully-connected deep neural networks, as is shown in Section 5.
210

211 The TES $\bar{\Theta}$ can be considered to be the population version of the IPS $\widehat{\Theta}_n$. Moreover, as the sample
212 size n diverges to infinity, a student model from $\widehat{\Theta}_n$ interpolates all possible data points in the
213 sample space $\mathcal{X} \times \mathcal{Y}$, causing $\widehat{\Theta}_n$ to asymptotically converge to $\bar{\Theta}$. Therefore, as n increases, $\widehat{\Theta}_n$
214 monotonically shrinks and approaches $\bar{\Theta}$. Indeed, we show that $\widehat{\Theta}_n \setminus \bar{\Theta}$ is a null set in the meaning
215 of Lebesgue measure on $\widehat{\Theta}_n$ in Section 4. Figure 1 illustrates this intuition.



3.2.1 DIMENSION OF TES

We define a dimension of the TES $\bar{\Theta}$. First, we define an analytic manifold and its dimension.

Definition 2 (Real Analytic manifold). A d' -dimensional real analytic manifold is a topological manifold $\Omega (\subset \mathbb{R}^d)$ equipped with a d' -dimensional local coordinate system $\{(U_i, \varphi_i)\}_i$ where U_i is an open subset of \mathbb{R}^d and $\varphi_i : U_i \rightarrow U'_i$ for an open subset U'_i of $\mathbb{R}^{d'}$ such that if $U_i \cap U_j \neq \emptyset$ holds, the transition maps $\varphi_j \circ \varphi_i^{-1} : \varphi_i(U_i \cap U_j) \rightarrow \varphi_j(U_i \cap U_j)$ are real analytic functions.

We remark that in the Euclidean space \mathbb{R}^d , all the open subsets are real analytic manifolds in the meaning of a standard topology and their dimensions correspond to d .

We now state the definition of the dimension of the TES.

Definition 3 (Dimension of TES). The dimension of the TES $\bar{\Theta}$, denoted as $d_{\bar{\Theta}}$, is defined as the maximum dimension of a real analytic manifold Ω contained in $\bar{\Theta}$.

Intuitively, the dimension of the TES is a number of unrestricted parameters. For example, in a model where a unique parameter $\theta' \in \Theta$ achieves teacher equivalence, such as a linear regression model, the dimension of the TES is 0 since the TES is a singleton.

4 GENERALIZATION ERROR ANALYSIS

We analyze the generalization error of a predictor with a random interpolator defined in Section 3.

4.1 MAIN THEOREM

We investigate the number of samples required for a predictor with a random interpolator to achieve zero generalization error. To facilitate the analysis, we define the important notion, the *strong sample complexity*, which quantifies the necessary sample size.

Definition 4 (Strong sample complexity for a random interpolator). For the sampled interpolator $\widehat{\theta}_n \sim \mathbb{P}(\cdot | \widehat{\Theta}_n)$, its strong sample complexity for the generalization error $L(\widehat{\theta}_n)$ is defined as

$$k(\widehat{\Theta}_n) := \min \left\{ n \in \mathbb{N} \mid \mathbb{P}(L(\widehat{\theta}_n) = 0 | \widehat{\Theta}_n) = 1 \right\}.$$

The strong sample complexity is the minimum number of data necessary for $\widehat{\theta}_n$ to achieve zero generalization error completely; in other words, by which almost all interpolators from $\widehat{\Theta}_n$ are teacher equivalent. This notion is a stronger version of the ordinary sample complexity, which is the sample size necessary to achieve the generalization error smaller than some positive value.

Before our main theorem, we put an assumption with regard to the distribution \mathcal{D} of the input data x .

270 **Assumption 3** (Data distribution). *The probability measure \mathcal{D} of an input x is absolutely continuous
271 with respect to that of a uniform distribution on \mathcal{X} .*
272

273 We now show our main result on the generalization error of a predictor with a random interpolator.
274 We provide its proof in Appendix B.

275 **Theorem 2** (Strong sample complexity: general case). *Suppose that Assumptions 1, 2, and 3 hold.
276 Then, the strong sample complexity for a random interpolator satisfies the following with probability
277 1 in terms of \mathcal{D} :*

278
$$k(\widehat{\Theta}_n) \leq d_\Theta - d_{\bar{\Theta}} + 1.$$

279

280 This theorem states that with no less than $d_\Theta - d_{\bar{\Theta}} + 1$ training samples, a predictor with a random
281 interpolator achieves zero generalization error with probability 1. This fact illustrates the view that
282 the strong sample complexity is determined by the dimension of the TES. We note that $d_{\bar{\Theta}}$ becomes
283 large when using practical machine learning models such as deep neural networks, although there
284 exist simple cases in which $\bar{\Theta}$ is a singleton and therefore $d_{\bar{\Theta}} = 0$ as discussed below. We will present
285 applications of Theorem 2 to deep neural networks, where $d_{\bar{\Theta}}$ becomes large and the resulting bound
286 is non-vacuous, in Section 5.

287 As a simple case, we consider a model in which a unique parameter $\theta' \in \Theta$ achieves teacher
288 equivalence. A typical example is a linear regression model where the covariance matrix of inputs
289 is non-degenerate. In this case, $d_{\bar{\Theta}}$ is a singleton set, meaning its dimension is zero and the upper
290 bound of strong sample complexity is $d_\Theta + 1$. This result is provided in the following corollary
291 without proof.

292 **Corollary 3.** *Consider the setup of Theorem 2. Further, suppose that $\bar{\Theta}$ is a singleton set. Then, the
293 strong sample complexity of $\widehat{\Theta}_n$ satisfies the following with probability 1 in terms of \mathcal{D} :*
294

295
$$k(\widehat{\Theta}_n) \leq d_\Theta + 1.$$

296

297 4.2 ANALYSIS FOR NEAR INTERPOLATOR CASE

299 For more practical scenarios, we consider the situation where a parameter is not an exact interpolator
300 but a near interpolator. For $\varepsilon > 0$, the ε -neighborhood of $\widehat{\Theta}_n$ is defined as $\widehat{\Theta}_{n,\varepsilon} := \{\theta \in \Theta \mid$
301 $\|\theta - \widehat{\Theta}_n\| \leq \varepsilon\}$. Then, we define a predictor with a random near interpolator as follows:

303
$$f(x; \widehat{\theta}_{n,\varepsilon}), \quad \widehat{\theta}_{n,\varepsilon} \sim \mathbb{P}(\cdot \mid \widehat{\Theta}_{n,\varepsilon}),$$

304 where $\mathbb{P}(\cdot \mid \widehat{\Theta}_{n,\varepsilon})$ the uniform distribution on $\widehat{\Theta}_{n,\varepsilon}$.
305

306 As a strong sample complexity of a predictor sampled according to $\mathbb{P}(\cdot \mid \widehat{\Theta}_{n,\varepsilon})$, we have the following
307 result immediately. We postpone its proof to Appendix C.

308 **Proposition 4** (The generalization error of the near interpolator). *Fix small $\varepsilon > 0$. Suppose that
309 Assumption 1, 2, and 3 hold. Moreover, we assume that there exists a universal constant $q > 0$
310 such that for every $x \in \mathcal{X}$, $f(x; \theta)$ is q -Lipschitz continuous in θ . If the number of data satisfies
311 $n \geq d_\Theta - d_{\bar{\Theta}} + 1$, then the following holds with probability at least $1 - O(\varepsilon)$ with respect to \mathcal{D} and
312 $\mathbb{P}(\cdot \mid \widehat{\Theta}_{n,\varepsilon})$:*
313

314
$$L(\widehat{\theta}_{n,\varepsilon}) \leq (q\varepsilon)^2.$$

315

316 The assumption of Lipschitz continuity is general in theoretical research in machine learning. It is
317 satisfied in most of the analytic functions including deep neural networks or convolutional neural
318 networks whose activation function is a sigmoidal function or transformers with a softmax function.

319 4.3 PROOF OUTLINE OF THEOREM 2 WITH REAL ANALYTIC SETS

321 We prove Theorem 2 by showing that $\widehat{\Theta}_n \setminus \bar{\Theta}$ becomes a null set with respect to the Lebesgue measure
322 on $\widehat{\Theta}_n$ when $n \geq d_\Theta - d_{\bar{\Theta}} + 1$. This is established by showing that the geometrical dimension of
323 $\widehat{\Theta}_n \setminus \bar{\Theta}$ becomes less than that of $\bar{\Theta}$, using tools from the theory of real analytic sets. Once this fact

is established, it follows that $\ell(y, f(x; \widehat{\theta}_n)) = 0$ for every $x \in X$ and for almost every $\widehat{\theta}_n \in \widehat{\Theta}_n$, which directly implies $\mathbb{E}[\ell(y, f(x; \widehat{\theta}_n))] = 0$.

In preparation, we introduce the key notion, a real analytic set. The IPS $\widehat{\Theta}_n$ and TES $\bar{\Theta}$ are obviously real analytic sets.

Definition 5 (Real analytic set). A set of zeros of real analytic functions is called a *real analytic set*; that is, for real analytic functions $f_1, \dots, f_n : \Theta \rightarrow \mathbb{R}$, a real analytic set is defined as

$$\{\theta \in \Theta \mid f_1(\theta) = 0, \dots, f_n(\theta) = 0\}.$$

We further define the dimension of a real analytic set, which is the most important concept in our analysis. Intuitively, the dimension of a real analytic set is a number of free parameters for making the function be zero. We note that from the definition, the dimension of a real analytic set is an integer.

Definition 6 (Dimension of real analytic set). The dimension of a real analytic set A is defined as the maximum d' such that A contains a real analytic manifold of dimension d' .

An important property of real analytic sets is that they can be treated locally in much the same way as algebraic varieties, i.e., sets defined as the common zeros of polynomials. This stems from the fact that an analytic function can be locally expressed as a convergent power series, that is, as a sum of polynomials. Moreover, analogous results from complex algebraic geometry have been established via the technique of complexification, developed by Whitney & Bruhat (1959). As a consequence, many results concerning algebraic varieties also hold for real analytic sets.

Among the most fundamental results concerning the dimensions of algebraic varieties is Krull's principal ideal theorem (Hartshorne, 1977). Informally, Krull's principal ideal theorem states that the dimension of the solution set of n polynomial equations decreases by n . For example, let $\theta = (\theta_1, \theta_2, \theta_3) \in \mathbb{R}^3$ and consider the solution set of two equations $\theta_1 + \theta_2 = 0$ and $\theta_2 \theta_3 = 0$. The resulting set is $\{(a, -a, 0) \mid a \in \mathbb{R}\} \cup \{(0, 0, a) \mid a \in \mathbb{R}\}$, which consists of two straight lines in \mathbb{R}^3 , and hence has dimension 1.

By applying arguments analogous to Krull's principal ideal theorem to real analytic sets, the dimension of $\widehat{\Theta}_n \setminus \bar{\Theta}$ becomes $d_{\Theta} - n$, since $\widehat{\Theta}_n$ is defined as a solution set of n equations. Moreover, because $\widehat{\Theta}_n \supset \bar{\Theta}$ and the dimension of $\bar{\Theta}$ is $d_{\bar{\Theta}}$, it follows that the dimension of $\widehat{\Theta}_n \setminus \bar{\Theta}$ is strictly smaller than that of $\bar{\Theta}$ whenever $n \geq d_{\Theta} - d_{\bar{\Theta}} + 1$. Consequently, $\widehat{\Theta}_n \setminus \bar{\Theta}$ becomes a null set with respect to the Lebesgue measure on $\widehat{\Theta}_n$, which establishes the theorem.

5 APPLICATION FOR PRACTICAL MODELS

We study the generalization error of the predictor with a random interpolator for specific models by applying Theorem 2. Specifically, we analyze the dimension $d_{\bar{\Theta}}$ of TES $\bar{\Theta}$ for each model and derive the upper bound of strong sample complexity.

5.1 DEEP LINEAR NEURAL NETWORK

We first study deep linear neural networks (DLNNs), whose activation is an identical mapping.

Teacher-Student Setup. The student model is an L -layer DLNN with parameters $w^{(\ell)} \in \mathcal{W}^{(\ell)}$ and $b^{(\ell)} \in \mathcal{B}^{(\ell)}$, where $\mathcal{W}^{(\ell)} \subset \mathbb{R}^{m_{\ell} \times m_{\ell-1}}$ and $\mathcal{B}^{(\ell)} \subset \mathbb{R}^{m_{\ell}}$ are sufficiently large compact sets for $\ell = 1, \dots, L$ as

$$f(x; \theta) = w^{(L)}(w^{(L-1)} \cdots (w^{(1)}x + b^{(1)}) \cdots + b^{(L-1)}) + b^{(L)}.$$

We denote $\theta = \{w^{(\ell)}, b^{(\ell)}\}_{\ell=1}^L$. We remark that m_0 is the input dimension and m_L is the output dimension of the network.

We consider that the teacher model is also a DLNN with L^* -layers and m_{ℓ}^* width for ℓ -th layer. Specifically, f^* is a DLNN with parameters $\theta^* = \{w^{(\ell)*}, b^{(\ell)*}\}_{\ell=1}^{L^*}$, where $w^{(\ell)*} \in \mathbb{R}^{m_{\ell}^* \times m_{\ell-1}^*}$ and $b^{(\ell)*} \in \mathbb{R}^{m_{\ell}^*}$. Suppose that the teacher model is smaller than the student model, that is, we have $L \geq L^*$, $m_{\ell} \geq m_{\ell}^*$ ($1 \leq \ell \leq L^* - 1$), and $m_{\ell} \geq m_{L^*-1}^*$ ($L^* \leq \ell \leq L - 1$).

378 **Results.** We study the strong sample complexity of the interpolator for DLNNs. This result is
 379 derived by constructing a subset of $\bar{\Theta}$ and calculating its dimension, as is proved in Appendix D.
 380

381 **Theorem 5.** *Let the dimension of the parameter of the teacher DLNN be d^* . Suppose that Assumption
 382 3 holds. Then the strong sample complexity of DLNN satisfies the following with probability 1 in
 383 terms of \mathcal{D} :*

$$384 \quad k(\bar{\Theta}_n) \leq d^* + 1.$$

385 This theorem shows that the strong sample complexity of the student network remains bounded by a
 386 constant, regardless of its size. Thus, to achieve good generalization, one may employ an arbitrarily
 387 large model without concern for its capacity, consistent with common practice in applied settings.
 388

389 **5.2 FULLY CONNECTED DEEP NEURAL NETWORK**

390 We study the learning problem with general fully connected deep neural networks (FCDNNs), whose
 391 activation is a general analytic function.
 393

394 **Teacher-Student Setup.** The student model we train is an L -layer FCDNN defined with parameters
 395 $w^{(\ell)} \in \mathcal{W}^{(\ell)}$ and $b^{(\ell)} \in \mathcal{B}^{(\ell)}$, where $\mathcal{W}^{(\ell)} \subset \mathbb{R}^{m_\ell \times m_{\ell-1}}$ and $\mathcal{B}^{(\ell)} \subset \mathbb{R}^{m_\ell}$ are sufficiently large
 396 compact sets for $\ell = 1, \dots, L$ as

$$397 \quad f(x; \theta) = w^{(L)} \sigma(w^{(L-1)} \cdots \sigma(w^{(1)}x + b^{(1)}) \cdots + b^{(L-1)}) + b^{(L)}.$$

399 We denote $\theta = \{w^{(\ell)}, b^{(\ell)}\}_{\ell=1}^L$. Here, σ denotes the analytic activation function.
 400

401 Similar to the previous section, we consider the teacher model as a FCDNN with parameters
 402 $\theta = \{w^{(\ell)*}, b^{(\ell)*}\}_{\ell=1}^{L*}$ for $w^{(\ell)*} \in \mathbb{R}^{m_\ell^* \times m_{\ell-1}^*}$ and $b^{(\ell)*} \in \mathbb{R}^{m_\ell^*}$ and with the same activation function
 403 σ as the student FCDNN. We assume that the width of student FCDNN is larger than or equal to that
 404 of the teacher FCDNN, that is, we have $L = L^*$ and $m_\ell \geq m_\ell^*$ ($1 \leq \ell \leq L^* - 1$).
 405

406 **Result.** We now present our result on the strong sample complexity of the interpolator for FCDNNs.
 407 In the same way as Theorem 5, this result is obtained by constructing a subset of $\bar{\Theta}$ and computing
 408 its dimension, with the detailed proof provided in Appendix E.
 409

410 **Theorem 6.** *Suppose that Assumption 3 holds. Then the strong sample complexity of FCDNN
 411 satisfies the following with probability 1 in terms of \mathcal{D} :*

$$412 \quad k(\bar{\Theta}_n) \leq \sum_{\ell=1}^L m_\ell^* (m_{\ell-1} + 1) + 1.$$

414 **6 EXPERIMENTS**

416 **6.1 NEAR INTERPOLATORS FOR FCDNN+TEACHER-STUDENT SETUP**

418 We experimentally investigate properties of near interpolators introduced in Section 4.2, under the
 419 same conditions as in Section 5.2, that is, both the student and teacher models are fully-connected
 420 deep neural networks (FCDNNs) for evaluating the strong sample complexity. We sample random
 421 near interpolators by *Guess and Check* (G&C) algorithm (Chiang et al. (2023), details are described
 422 in Appendix F.1) until the training loss falls below 0.01 for 1000 times, yielding 1000 random near
 423 interpolator samples. We employ G&C as the sampling algorithm for near interpolators, rather than
 424 stochastic gradient descent (SGD), since SGD may introduce a bias toward specific subregions of
 425 the interpolator set $\bar{\Theta}_n$ and thus fail to satisfy absolute continuity of $\mathbb{P}(\cdot \mid \bar{\Theta}_n)$ with respect to the
 426 uniform distribution. Additional details are provided in Appendix F.2.
 427

428 **Result.** Figure 2 reports the test losses of random interpolators for each network. Across all the
 429 three models, the theoretical upper bound of the strong sample complexity in Theorem 6 is consistent
 430 with the experimental results, suggesting that it provides a sufficient condition for the generalization
 431 of random interpolators. We remark that test losses does not go to exactly zero since we only sample
 the *near* interpolators (see Proposition 4).
 432

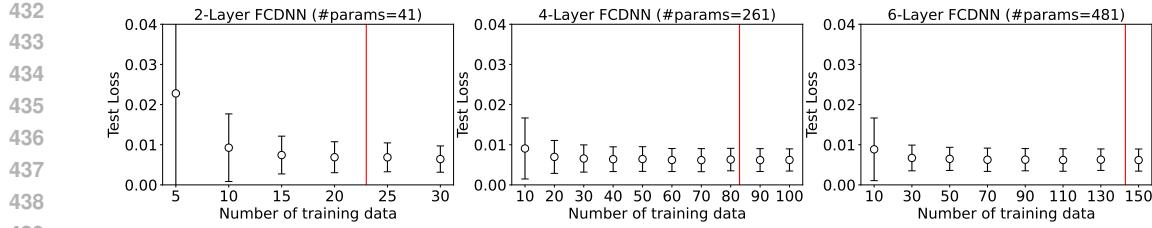


Figure 2: Test losses of random near interpolators on 2-layer FCDNN (left), 4-layer FCDNN (middle), and 6-layer FCDNN (right). The vertical axis represents the test loss, while the horizontal axis corresponds to the number of training data. The error bars indicate the standard deviation over 1000 trials for each training sample size. The red vertical line is the theoretical upper bound of the strong sample complexity in Theorem 6.

6.2 NEAR INTERPOLATORS FOR LARGE MODELS+MNIST

We study properties of near interpolators in a more practical setting than in Section 6.1, that is, we utilize LeNet (Lecun et al., 1998) and MNIST dataset (LeCun et al., 2010). We sample random near interpolators using the Xavier’s initialization (Glorot & Bengio, 2010) and the Adam optimizer with a batch size of 1024, running until the training loss on the full batch of the selected MNIST subset falls below 0.01. This procedure is repeated 2000 times, yielding 2000 random near interpolator samples. As noted in the previous section, the bias of SGD should in principle be avoided by employing the G&C algorithm; however, due to computational constraints, we approximate it by sampling with Adam. **Nevertheless, the experimental results obtained using the *pattern search* algorithm, which is an alternative procedure for generating random near interpolators without implicit bias, analogous to the G&C algorithm, presented in Appendix F.4, indicate that the findings remain largely consistent regardless of the choice of algorithm.**

To estimate the dimension $d_{\bar{\Theta}}$ of $\bar{\Theta}$, we approximately sample from $\bar{\Theta}$ by training LeNet on the full MNIST dataset using Adam with a batch size of 1024, until the full-batch training loss falls below 0.01. This process is repeated 30000 times, yielding 30000 approximate samples from $\bar{\Theta}$. Then, we estimated the dimension of the manifold on which this 30000 samples lie by using the scikit-dimension package (Bac et al., 2021). More details are described in Appendix F.3.

Result. Figure 3 reports the test losses of random near interpolators for LeNet on MNIST. The estimated upper bound, indicated by the red line, is consistent with the experimental results, since it provides a sufficient number of data for the generalization of random near interpolators. We remark that the test losses do not converge exactly to zero, since we only sample *near* interpolators (see Proposition 4).

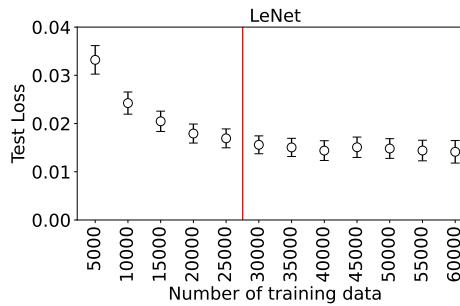


Figure 3: Test losses of random near interpolators on LeNet. The vertical axis represents the test loss, while the horizontal axis corresponds to the number of training data. The error bars indicate the standard deviation over 2000 trials for each training sample size. The red vertical line is the estimated upper bound of the strong sample complexity $d_{\Theta} - d_{\bar{\Theta}} + 1$.

486 **7 CONCLUSION**
487

488 This study investigates the generalization error of randomly sampled interpolators in general machine
489 learning models. Within the framework of a teacher–student regression problem, we show that the
490 generalization error of a randomly sampled interpolator becomes exactly zero once the number of
491 training samples exceeds a threshold determined by the dimension of the teacher-equivalence set
492 (TES). Moreover, we establish that for both deep linear neural networks and fully connected deep
493 neural networks, the strong sample complexity does not explicitly depend on the size of the network.
494

495 **LLM USAGE**
496

497 We utilized large language models (LLMs) for a translation aid to ensure natural and fluent academic
498 writing and to assist in debugging and resolving errors in our experimental code.
499

500 **IMPACT STATEMENT**
501

502 This paper presents work whose goal is to advance the field of Machine Learning. There are many
503 potential societal consequences of our work, none which we feel must be specifically highlighted
504 here.
505

506 **ETHICS STATEMENT**
507

509 This work is purely theoretical and does not involve experiments with human subjects, personal data,
510 or other sensitive information. Our aim is to contribute to the advancement of machine learning by
511 providing theoretical guidance that may help inform the design of more efficient model architectures.
512 We hope that these insights will have a positive impact on the future development of machine learning
513 technology.
514

515 **REPRODUCIBILITY STATEMENT**
516

517 All experimental settings are described in detail in Section 6 and Appendix F. To further support
518 reproducibility, we provide the full source code used to run these experiments as a supplementary
519 material.
520

521 **REFERENCES**
522

523 Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
524 factorization. In *Advances in Neural Information Processing Systems*, 2019.
525

526 Jonathan Bac, Evgeny M. Mirkes, Alexander N. Gorban, Ivan Tyukin, and Andrei Zinovyev. Scikit-
527 dimension: A python package for intrinsic dimension estimation. *Entropy*, 23(10), 2021. doi:
528 10.3390/e23101368.
529

530 Peter Bartlett, Dylan J. Foster, and Matus Telgarsky. Spectrally-normalized margin bounds for neural
531 networks. In *Advances in Neural Information Processing Systems*, 2017.

532 Mikhail Belkin. Fit without fear: remarkable mathematical phenomena of deep learning through the
533 prism of interpolation. *Acta Numerica*, 30:203–248, 2021. doi: 10.1017/S0962492921000039.
534

535 Gon Buzaglo, Itamar Harel, Mor Shpigel Nacson, Alon Brutzkus, Nathan Srebro, and Daniel Soudry.
536 How uniform random weights induce non-uniform bias: Typical interpolating neural networks
537 generalize with narrow teachers. In *International Conference on Machine Learning*, 2024.
538

539 Matias D. Cattaneo, Jason M. Klusowski, and Boris Shigida. On the implicit bias of adam. In
 International Conference on Machine Learning, 2024.

540 Pingyeh Chiang, Renkun Ni, David Yu Miller, Arpit Bansal, Jonas Geiping, Micah Goldblum,
541 and Tom Goldstein. Loss landscapes are all you need: Neural network generalization can be
542 explained without the implicit bias of gradient descent. In *International Conference on Learning
543 Representations*, 2023.

544 Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks
545 trained with the logistic loss. In *Conference On Learning Theory*, 2020.

546 Yaim Cooper. Global minima of overparameterized neural networks. *SIAM Journal on Mathematics
547 of Data Science*, 3(2):676–691, 2021.

548 Assaf Dauber, Meir Feder, Tomer Koren, and Roi Livni. Can implicit bias explain generalization?
549 stochastic convex optimization as a case study. In *Advances in Neural Information Processing
550 Systems*, 2020.

551 Alexander R. Farhang, Jeremy Bernstein, Kushal Tirumala, Yang Liu, and Yisong Yue. Investigating
552 generalization by controlling normalized margin. In *International Conference on Machine
553 Learning*, 2022.

554 Herbert Federer. *Geometric Measure Theory*. Classics in Mathematics. Springer Berlin, Heidelberg,
555 1996.

556 Kenji Fukumizu, Shoichiro Yamaguchi, Yoh ichi Mototake, and Mirai Tanaka. Semi-flat minima
557 and saddle points by embedding neural networks to overparameterization. In *Advances in Neural
558 Information Processing Systems*, 2019.

559 Keinosuke Fukunaga and David R. Olsen. An algorithm for finding intrinsic dimensionality of data.
560 *IEEE Transactions on Computers*, C-20:176–183, 1971.

561 Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
562 networks. In *International Conference on Artificial Intelligence and Statistics*, 2010.

563 Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample complexity of
564 neural networks. In *Conference On Learning Theory*, 2018.

565 Francesco Guaraldo, Patrizia Macri, and Alessandro Tancredi. *Topics on Real Analytic Spaces*.
566 Advanced Lectures in Mathematics. Vieweg+Teubner Verlag Wiesbaden, 1986.

567 Suriya Gunasekar, Blake Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nathan Srebro.
568 Implicit regularization in matrix factorization. In *Advances in Neural Information Processing
569 Systems*, 2017.

570 Robert M. Hardt. Stratification of real analytic mappings and images. *Inventiones mathematicae*, 28
571 (2):193–208, 1975.

572 Robin Hartshorne. *Algebraic Geometry*. Graduate Texts in Mathematics. Springer New York, NY,
573 1977.

574 Steven G. Krantz and Harold R. Parks. *A Primer of Real Analytic Functions*. A Series of Advanced
575 Textbooks in Mathematics. Birkhäuser, 1992.

576 Yann Lecun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
577 document recognition. *Proceedings of the IEEE*, 86:2278–2324, 1998.

578 Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. *ATT Labs [Online]*,
579 2010.

580 Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks.
581 In *International Conference on Learning Representations*, 2020.

582 Chris Mingard, Guillermo Valle-Pérez, Joar Skalse, and Ard A. Louis. Is sgd a bayesian sampler?
583 well, almost. *The Journal of Machine Learning Research*, 22(1):3579–3642, 2021.

584 Raghavan Narasimhan. *Introduction to the Theory of Analytic Spaces*. Lecture Notes in Mathematics.
585 Springer Berlin, Heidelberg, 1966.

594 Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neural
595 networks. In *Conference on Learning Theory*, 2015.
596

597 Curtis G. Northcutt, Lu Jiang, and Isaac L. Chuang. Confident learning: Estimating uncertainty in
598 dataset labels. *arXiv preprint arXiv:1911.00068*, 2020.

599 Itay Safran and Ohad Shamir. Spurious local minima are common in two-layer relu neural networks.
600 In *International Conference on Machine Learning*, 2018.
601

602 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
603 recognition. In *International Conference on Learning Representations*, 2015.

604 Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, and Nathan Srebro. The implicit bias of gradient
605 descent on separable data. In *International Conference on Learning Representations*, 2018.
606

607 Ryan Theisen, Jason M. Klusowski, and Michael W. Mahoney. Good classifiers are abundant in the
608 interpolating regime. In *International Conference on Artificial Intelligence and Statistics*, 2021.

609 Yuandong Tian. An analytical formula of population gradient for two-layered relu network and its
610 applications in convergence and critical point analysis. In *International Conference on Machine
611 Learning*, 2017.

612 Guillermo Valle-Pérez, Chico Q. Camargo, and Ard A. Louis. Deep learning generalizes because
613 the parameter-function map is biased towards simple functions. In *International Conference on
614 Learning Representations*, 2019.

615 Gal Vardi. On the implicit bias in deep-learning algorithms. *Communications of the ACM*, 66(6):
616 86–93, 2023.

617 Nikhil Vyas, Depen Morwani, Rosie Zhao, Gal Kaplun, Sham M. Kakade, and Boaz Barak. Beyond
618 implicit bias: The insignificance of sgd noise in online learning. In *International Conference on
619 Machine Learning*, 2024.

620 Hassler Whitney and François Bruhat. Quelques propriétés fondamentales des ensembles
621 analytiques-réels. *Commentarii Mathematici Helvetici*, 33:132–160, 1959.

622 Weihang Xu and Simon S. Du. Over-parameterization exponentially slows down gradient descent
623 for learning a single neuron. In *Conference on Learning Theory*, 2023.

624 Zitong Yang, Yu Bai, and Song Mei. Exact gap between generalization error and uniform convergence
625 in random feature models. In *International Conference on Machine Learning*, 2021.

626 Chulhee Yun, Shankar Krishnan, and Hossein Mobahi. A unifying view on implicit bias in training
627 linear neural networks. In *International Conference on Learning Representations*, 2021.

628 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
629 deep learning requires rethinking generalization. In *International Conference on Learning
630 Representations*, 2017.

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 **A BASIC CONCEPTS OF REAL ANALYTIC SETS**
649

650 We introduce basic concepts and results in real analytic sets. Consistently with the main contents,
651 let $\Theta \subset \mathbb{R}^{d_\Theta}$ be a compact real analytic manifold.
652

653 **A.1 IRREDUCIBLE SETS**
654

655 First, we see the property of irreducible sets. We define the irreducibility of a real analytic set as
656 follows.
657

658 **Definition 7** (Irreducibility). A real analytic set X is called *irreducible* if it is not the union of two
659 strictly smaller real analytic sets.
660

661 We show two important theorems about the irreducible sets.
662

663 **Theorem 7** (Proposition 11, Whitney & Bruhat (1959)). *For a real analytic set X , there uniquely*
664 *exists a locally finite family $\{S_\lambda\}_{\lambda \in \Lambda}$ of irreducible real analytic subsets of X such that $X = \bigcup_\lambda S_\lambda$*
665 *and $S_\lambda \not\subset S_\mu$ for $\lambda, \mu \in \Lambda$ with $\lambda \neq \mu$.*
666

667 **Theorem 8** (Corollary, Section 8, Whitney & Bruhat (1959)). *An irreducible real analytic set*
668 *contains no proper real analytic subset of its same dimension.*
669

670 From Theorem 7, we can show the following immediately.
671

672 **Proposition 9.** *A real analytic set X defined on a compact space Θ can be decomposed into a finite*
673 *number of irreducible real analytic sets.*
674

675 *Proof.* From Theorem 8, there exists a locally finite family of irreducible real analytic sets $\{S_\lambda\}_\lambda$
676 such that $X = \bigcup_\lambda S_\lambda$ holds. Since X is a closed subset of Θ , X is also compact. Therefore, since
677 $\{S_\lambda\}_\lambda$ is locally finite cover and X is compact, we can choose a finite number of subsets from $\{S_\lambda\}_\lambda$
678 covering X . These subsets are the desired irreducible real analytic sets. \square
679

680 **A.2 REGULARITY**
681

682 Second, we introduce the notion of regularity. We consider a real analytic set $X \subset \Theta$ and define
683 $d := \dim(X)$.
684

685 **Definition 8** (Analytic isomorphism). Two sets $X_1, X_2 \in \mathbb{R}^d$ are said to be analytically isomorphic
686 if there exists an analytic isomorphic function from X_1 to X_2 .
687

688 We define the regularity of a point in a real analytic set as follows. This definition follows Guaraldo
689 et al. (1986).
690

691 **Definition 9** (Regularity of a point). For a fixed point $x \in X$, x is said to be regular if there exists an
692 open neighborhood U of x such that U is analytically isomorphic to some open set V in \mathbb{R}^d .
693

694 In other words, the neighborhood of x can be locally regarded as an open set in \mathbb{R}^d .
695

696 As an important property of regular points, we show the following theorem.
697

698 **Theorem 10** (Theorem 1, Chapter III, Narasimhan (1966)). *The set of regular points in X is dense*
699 *in X .*
700

701 **B PROOF OF THEOREM 2**
702

703 *Proof.* First, we show that, regardless of the choice of x_1, \dots, x_n , the dimension of $\widehat{\Theta}_{n+1} \setminus \widehat{\Theta}$ becomes
704 less than that of $\widehat{\Theta}_n \setminus \widehat{\Theta}$ by probability 1, in terms of the probabilistic choice of x_{n+1} . Second, we
705 show that the dimension of $\widehat{\Theta}_n \setminus \widehat{\Theta}$ becomes at least $n - 1$ less than that of $\widehat{\Theta}_1 \setminus \widehat{\Theta}$ with probability
706 1, in terms of the probabilistic choice of x_1, \dots, x_n . Finally, we complete the proof by characterizing
707 the properties of $\widehat{\theta}_n$ sampled from $\widehat{\Theta}_n$.
708

702 **Step0: The dimension of $\widehat{\Theta}_1$ becomes one less than that of Θ .** Before proceeding to the main part
 703 of the proof, we first establish a straightforward preliminary result: the dimension of $\widehat{\Theta}_1$ is $d_\Theta - 1$.
 704 This follows from a standard result of analytic sets, like Lojaciewicz's Structure Theorem (Krantz
 705 & Parks, 1992), which states that an analytic set defined on \mathbb{R}^{d_Θ} can be decomposed into $d_\Theta - 1, \dots$,
 706 and 1-dimensional manifolds.
 707

708 **Step1: The dimension of $\widehat{\Theta}_{n+1}$ becomes less than that of $\widehat{\Theta}_n$ with probability 1.** We prove this
 709 by using the knowledge of analytic varieties as we see in section A. As we show in Proposition 9,
 710 $\widehat{\Theta}_n$ ($n \geq 1$) can be decomposed into a finite number of irreducible real analytic sets. We define a
 711 sequence of irreducible real analytic sets

$$T_{n,1}, \dots, T_{n,k} \subset \widehat{\Theta}_n$$

714 such that they are not included in $\bar{\Theta}$. If it does not hold, $\bar{\Theta} = \widehat{\Theta}_n$ holds, and the proof is completed,
 715 so we assume their existence. Choose one arbitrarily from the sequence of sets and denote it by T .
 716 Let the dimension of T be d_T . d_T may vary depends on the choice of $T_{n,i}$, but it does not affect the
 717 following proof.

718 We prepare some useful notion of sets. We denote

$$X_T := \{x \in X \mid \{\theta \in \widehat{\Theta}_n \mid \ell(f^*(x; \theta^*), f(x; \theta)) = 0\} \supset T\}.$$

721 Furthermore, we fix a regular point $\theta' \in T$ and define

$$X_{\theta'} := \{x \in X \mid \ell(f^*(x; \theta^*), f(x; \theta')) = 0\}.$$

724 Since $\ell(f^*(x; \theta^*), f(x; \theta')) = 0$ holds for any $x \in X_T$, we have $X_T \subset X_{\theta'}$. In addition, $X_{\theta'}$ is a
 725 real analytic set with respect to x since X is a subset of \mathbb{R}^m and $X_{\theta'}$ is a set of zeros of real analytic
 726 functions with respect to x .

727 We show that the dimension of X_T is less than m , which is the dimension of X , and its Lebesgue
 728 measure on X is equal to 0. To this aim, we assume that the dimension of $X_{\theta'}$ is m and prove that
 729 it is a conflict. As we see in Theorem 10, the set of regular points in T is dense. Hence, we can
 730 choose one of the regular points of T and its open neighborhood $U \subset T$. From the regularity, U can
 731 be regarded as an open set \widehat{U} in \mathbb{R}^{d_T} . In the same way, we can choose a regular point in $X_{\theta'}$, and its
 732 neighborhood V can be identified with an open set $\widehat{X}_{\theta'}$ in \mathbb{R}^m . Hence, we have

$$\ell(f^*(x; \theta^*), f(x; \theta)) = 0, \forall x \in \widehat{X}_{\theta'}, \forall \theta \in \widehat{U}.$$

735 So, the identity theorem shows that $\ell(y, f(x; \theta))$ is equal to 0 for every $x \in \mathbb{R}^m$ and $\theta \in \mathbb{R}^{d_T}$.
 736 However, it means that T is included in $\bar{\Theta}$, so it is a conflict to the assumption to the definition of T .
 737 Hence, the dimension of $X_{\theta'}$ is less than m . Since $X_T \subset X_{\theta'}$ holds, the dimension of X_T is also less
 738 than m . So the Lebesgue measure of X_T on X is 0.

739 We define an independent variable x_{n+1} generated from the distribution \mathcal{D} . Since \mathcal{D} is absolutely
 740 continuous to a uniform distribution on X , we have from the discussions above,

$$\{\theta \in \widehat{\Theta}_n \mid \ell(f^*(x_{n+1}; \theta^*), f(x_{n+1}; \theta)) = 0\} \cap T_{n,i} \subseteq T_{n,i}$$

744 with probability 1 for every $i = 1, \dots, k$. Since $\{\theta \in \widehat{\Theta}_n \mid \ell(f^*(x_{n+1}; \theta^*), f(x_{n+1}; \theta)) = 0\}$ is a real
 745 analytic set and $T_{n,i}$ is irreducible, the dimension of $\{\theta \in \widehat{\Theta}_n \mid \ell(f^*(x_{n+1}; \theta^*), f(x_{n+1}; \theta)) = 0\}$ is
 746 less than that of $T_{n,i}$ from Theorem 8. Since this holds for all the components $T_{n,i}$ of $\widehat{\Theta}_n$ and

$$\begin{aligned} \widehat{\Theta}_{n+1} \setminus \bar{\Theta} &= (\widehat{\Theta}_n \cap \{\theta \in \widehat{\Theta}_n \mid \ell(f^*(x_{n+1}; \theta^*), f(x_{n+1}; \theta)) = 0\}) \setminus \bar{\Theta} \\ &= \bigcup_{i=1}^k (\{\theta \in \widehat{\Theta}_n \mid \ell(f^*(x_{n+1}; \theta^*), f(x_{n+1}; \theta)) = 0\} \cap T_{n,i}) \setminus \bar{\Theta}, \text{ and} \\ \widehat{\Theta}_n \setminus \bar{\Theta} &= \bigcup_{i=1}^k T_{n,i} \setminus \bar{\Theta} \end{aligned}$$

755 hold, the dimension of $\widehat{\Theta}_{n+1} \setminus \bar{\Theta}$ is less than that of $\widehat{\Theta}_n \setminus \bar{\Theta}$ with probability 1.

756 **Step2: The dimension of $\widehat{\Theta}_n$ becomes at least $n - 1$ less than that of $\widehat{\Theta}_1$ with probability 1.**
757 We denote by $\widehat{\Theta}(x_1, \dots, x_n)$ the zero set determined by x_1, \dots, x_n , and define the event that the
758 dimension of $\widehat{\Theta}(x_1, \dots, x_n, x_{n+1})$ is less than that of $\widehat{\Theta}(x_1, \dots, x_n)$ as $A(x_1, \dots, x_{n+1})$. What we aim
759 to show is that, when x_1, \dots, x_n are i.i.d. generated random variables from \mathcal{D} ,

$$761 \quad \mathbb{P}(A(x_1, \dots, x_{n+1}) \cap A(x_1, \dots, x_n) \cap \dots \cap A(x_1, x_2)) = 1.$$

763 From step1, the probability of a random variable x_2 causing an event $A(x'_1, x_2)$ under given that
764 $x_1 = x'_1$ for a fixed x'_1 is given by

$$765 \quad \mathbb{P}(A(x'_1, x_2) \mid x'_1) = 1$$

766 for any $x'_1 \in \mathcal{X}$. Therefore, we have for i.i.d. random variables $x_1, x_2 \sim \mathcal{D}$,

$$768 \quad \mathbb{P}(A(x_1, x_2)) = \int_{x'_1 \in \mathcal{X}} \mathbb{P}(A(x'_1, x_2) \mid x'_1) \cdot d\mathbb{P}(x'_1) = 1, \quad (2)$$

771 where $\mathbb{P}(A(x'_1, x_2) \mid x'_1)$ denotes the probability measure of the event where $A(x'_1, x_2)$ occurs under
772 given that $x_1 = x'_1$ and $d\mathbb{P}(x'_1)$ denotes the probability measure of the event where $x_1 = x'_1$ holds for
773 a fixed $x'_1 \in \mathcal{X}$.

774 Next, observe that for i.i.d. random variables $x_1, x_2, x_3 \sim \mathcal{D}$,

$$776 \quad \begin{aligned} \mathbb{P}\left(\overline{A(x_1, x_2, x_3) \cap A(x_1, x_2)}\right) &= \mathbb{P}\left(\overline{A(x_1, x_2, x_3)} \cup \overline{A(x_1, x_2)}\right) \\ 777 &\leq \mathbb{P}\left(\overline{A(x_1, x_2, x_3)}\right) + \mathbb{P}\left(\overline{A(x_1, x_2)}\right) \\ 778 &= \mathbb{P}\left(\overline{A(x_1, x_2, x_3)}\right) \end{aligned} \quad (3)$$

782 holds from (2). Moreover, we have

$$784 \quad \mathbb{P}\left(\overline{A(x_1, x_2, x_3)}\right) = \int_{x'_1, x'_2 \in \mathcal{X}} \mathbb{P}\left(\overline{A(x'_1, x'_2, x_3)} \mid x'_1, x'_2\right) \cdot d\mathbb{P}(x'_1, x'_2),$$

786 where $\mathbb{P}\left(\overline{A(x'_1, x'_2, x_3)} \mid x'_1, x'_2\right)$ denotes a probability measure of the event where $A(x'_1, x'_2, x_3)$ does
787 not occur under given that $x_1 = x'_1, x_2 = x'_2$ and $d\mathbb{P}(x'_1, x'_2)$ denotes the probability measure of the
788 event where $x_1 = x'_1$ and $x_2 = x'_2$ occur for fixed $x'_1, x'_2 \in \mathcal{X}$. Since $\mathbb{P}(A(x'_1, x'_2, x_3) \mid x'_1, x'_2) = 1$ holds
789 for any $x'_1, x'_2 \in \mathcal{X}$ from step1, we have

$$792 \quad \int_{x'_1, x'_2 \in \mathcal{X}} \mathbb{P}\left(\overline{A(x'_1, x'_2, x_3)} \mid x'_1, x'_2\right) \cdot d\mathbb{P}(x'_1, x'_2) = 0 \cdot 1 = 0$$

794 and therefore, we have from (3),

$$796 \quad \mathbb{P}(A(x_1, x_2, x_3) \cap A(x_1, x_2)) = 1.$$

797 By continuing this argument inductively, we obtain

$$799 \quad \mathbb{P}(A(x_1, \dots, x_{n+1}) \cap A(x_1, \dots, x_n) \cap \dots \cap A(x_1, x_2)) = 1$$

801 as desired.

803 **Step3: The properties of $\widehat{\theta}_n$ sampled from $\widehat{\Theta}_n$.** From step0 and step2, when $n \geq d_\Theta - d_{\widehat{\Theta}} + 1$,
804 the dimension of $\widehat{\Theta}_n \setminus \widehat{\Theta}$ is less than that of $\widehat{\Theta}$ and therefore, less than that of $\widehat{\Theta}_n$. As a consequence,
805 the Lebesgue measure of $\widehat{\Theta}_n \setminus \widehat{\Theta}$ on $\widehat{\Theta}_n$ corresponds to 0. Since $\mathbb{P}(\cdot | \widehat{\Theta}_n)$ is absolutely continuous to
806 the uniform distribution on $\widehat{\Theta}_n$, if we sample $\widehat{\theta}_n \sim \mathbb{P}(\cdot | \widehat{\Theta}_n)$, we have

$$808 \quad \widehat{\theta}_n \in \widehat{\Theta}$$

809 with probability 1, which completes the proof. \square

810 **C PROOF OF PROPOSITION 4**

811 **C.1 THE ASYMPTOTIC FORM OF THE VOLUME OF A NEIGHBORHOOD**

814 In the proof, we utilize a theory developed by Federer (1996) with regard to the asymptotic form of
 815 the volume of an ε -neighborhood of a manifold. For completeness of the paper, we present basic
 816 concepts of this theory in this section.

817 First, we present a notion of Minkowski content, which defines an asymptotic form of the volume of
 818 an ε -neighborhood for small ε .

819 **Definition 10** (Minkowski content). Let A be a Lebesgue measurable set in \mathbb{R}^n and $\text{Vol}(A)$ be its
 820 Lebesgue measure on \mathbb{R}^n . If there exists the following value for $S \subset \mathbb{R}^n$, we call it m -dimensional
 821 Minkowski content and denote it as $\mathcal{M}^m(S)$:

$$822 \quad \lim_{\varepsilon \rightarrow 0^+} \frac{\text{Vol}(\{x \mid \|x - S\| \leq \varepsilon\})}{\alpha(n-m)\varepsilon^{n-m}},$$

825 where $\alpha(m)$ is the Lebesgue measure of a unit sphere in \mathbb{R}^m .

826 **Definition 11** (Rectifiable). Let S be a subset of a metric space X and m be a positive integer. Then
 827 S is called m -rectifiable if and only if there exists a Lipschitzian function mapping some bounded
 828 subset of \mathbb{R}^m onto S .

829 From the definition, an m -dimensional smooth compact manifold in \mathbb{R}^n is m -rectifiable.

831 **Definition 12** (Hausdorff measure). Let X be a metric space with distance ρ and S be a Carathéodory-
 832 measurable set in it. We consider a δ -covering $\{U_i^\delta\}$ of S as

$$833 \quad S \supset \bigcup_{i=1}^{\infty} U_i^\delta, \text{diam}(U_i^\delta) \leq \delta,$$

836 where $\text{diam}(U_i^\delta) := \sup_{x,y \in U_i^\delta} \rho(x,y)$. We define

$$838 \quad \mathcal{H}_\delta^m(S) := \inf_{\{U_i^\delta\}} \sum_{i=1}^{\infty} \text{diam}(U_i^\delta)^m.$$

839 Then we call the following value *m -dimensional Hausdorff measure* of S .

$$840 \quad \mathcal{H}^m(S) := \lim_{\delta \rightarrow 0} \mathcal{H}_\delta^m(S).$$

844 We note that while the Hausdorff measure is not necessarily a finite value, when S is an m -dimensional
 845 smooth compact manifold in \mathbb{R}^n , the m -dimensional Hausdorff measure of it becomes a positive finite
 846 value (see section 3.2.46 in Federer (1996) for instance).

847 We now present the main result necessary for the proof of Proposition 4.

849 **Theorem 11** (Theorem 3.2.39 (Federer, 1996)). *If S is a closed m -rectifiable subset of \mathbb{R}^n , then we
 850 have*

$$851 \quad \mathcal{M}^m(S) = \mathcal{H}^m(S).$$

852 From this theorem, the following holds immediately.

853 **Corollary 12.** *For small ε , we have an asymptotic form for the Lebesgue measure of an ε -
 854 neighborhood of an m -dimensional smooth compact manifold with boundary S in \mathbb{R}^n as*

$$856 \quad \text{Vol}(\{x \mid \|x - S\| \leq \varepsilon\}) = \alpha(n-m)\varepsilon^{n-m}\mathcal{H}^m(S) + o(\varepsilon^{n-m}).$$

858 **C.2 PROOF OF PROPOSITION 4**

860 *Proof.* From now, we denote the ε -neighborhood of a set $A \subset \Theta$ as

$$861 \quad A_\varepsilon := \{\theta \in \Theta \mid \|\theta - A\| \leq \varepsilon\}$$

863 and the Lebesgue measure of A on Θ as $\text{Vol}(A)$. We also denote the dimension of A as $\dim(A)$. **We**
 864 prove this theorem by showing the following two steps:

864 1. The sampled $\widehat{\theta}_{n,\varepsilon}$ lies in the ε -neighborhood of $\bar{\Theta}$ with high probability $1 - O(\varepsilon)$.
 865
 866 2. If $\widehat{\theta}_{n,\varepsilon}$ is sampled from this neighborhood, then the generalization error becomes no more
 867 than $(q\varepsilon)^2$.
 868

869 First, we evaluate the probability of sampling $\widehat{\theta}_{n,\varepsilon}$ from the ε -neighborhood of $\bar{\Theta}$. Since we sample
 870 $\widehat{\theta}_{n,\varepsilon}$ from $\widehat{\Theta}_{n,\varepsilon}$ uniformly, this probability is written as
 871

$$872 \quad \text{Vol}(\bar{\Theta}_\varepsilon)/\text{Vol}(\widehat{\Theta}_{n,\varepsilon}).$$

873 We can decompose as
 874

$$875 \quad \text{Vol}(\widehat{\Theta}_{n,\varepsilon}) \leq \text{Vol}(\bar{\Theta}_\varepsilon) + \text{Vol}((\widehat{\Theta}_n \setminus \bar{\Theta})_\varepsilon) \quad (4)$$

876 since $\widehat{\Theta}_{n,\varepsilon} \subset \bar{\Theta}_\varepsilon \cup (\widehat{\Theta}_n \setminus \bar{\Theta})_\varepsilon$ naturally holds. Since $\bar{\Theta}$ contains a $\dim(\bar{\Theta})$ -dimensional analytic
 877 manifold, Corollary 12 shows that there exists a positive constant c_1 such that
 878

$$879 \quad \text{Vol}(\bar{\Theta}_\varepsilon) \geq c_1 \varepsilon^{\dim(\Theta) - \dim(\bar{\Theta})} + o(\varepsilon^{\dim(\Theta) - \dim(\bar{\Theta})}). \quad (5)$$

880 Next, observe that $\widehat{\Theta}_n \setminus \bar{\Theta}$ is a semi-analytic set, which is a parameter set defined by equations and
 881 inequalities of analytic functions. By Section 3 in Hardt (1975), a semi-analytic set defined on
 882 a compact parameter set is decomposed into a finite number of smooth manifolds. Hence, if we
 883 decompose $\widehat{\Theta}_n \setminus \bar{\Theta}$ into smooth manifolds $\widehat{\Theta}_n \setminus \bar{\Theta} = Z^1 \cup \dots \cup Z^k$, we have
 884

$$885 \quad \text{Vol}((\widehat{\Theta}_n \setminus \bar{\Theta})_\varepsilon) \leq \sum_{i=1}^k \text{Vol}(Z_\varepsilon^i).$$

886 Since each Z^i has a dimension of no more than $\dim(\widehat{\Theta}_n \setminus \bar{\Theta})$, we have from Corollary 12,
 887

$$888 \quad \text{Vol}((\widehat{\Theta}_n \setminus \bar{\Theta})_\varepsilon) \leq c_2 \varepsilon^{\dim(\Theta) - \dim(\widehat{\Theta}_n \setminus \bar{\Theta})} + o(\varepsilon^{\dim(\Theta) - \dim(\widehat{\Theta}_n \setminus \bar{\Theta})}) \quad (6)$$

889 for a positive constant c_2 .
 890

891 From the proof of Theorem 2, we have
 892

$$893 \quad \dim(\widehat{\Theta}_n \setminus \bar{\Theta}) \leq \dim(\bar{\Theta}) - 1. \quad (7)$$

894 Combining (4), (5), (6) and (7), we have
 895

$$896 \quad \text{Vol}(\bar{\Theta}_\varepsilon)/\text{Vol}(\widehat{\Theta}_{n,\varepsilon}) = 1 - O(\varepsilon).$$

897 From the discussion above, $\widehat{\theta}_{n,\varepsilon}$ sampled from $\widehat{\Theta}_{n,\varepsilon}$ is in $\bar{\Theta}_\varepsilon$ with probability $1 - O(\varepsilon)$.
 898

899 Second, we evaluate the generalization error when we sample $\widehat{\theta}_{n,\varepsilon}$ from $\bar{\Theta}_\varepsilon$. Since $f(x; \theta)$ is
 900 q -Lipschitz continuous with respect to θ for every $x \in \mathcal{X}$, we have for some $\bar{\theta} \in \bar{\Theta}$,

$$\begin{aligned} 901 \quad L(\widehat{\theta}_{n,\varepsilon}) &= \mathbb{E}_{x \sim \mathcal{D}} \left[\frac{1}{2} \left\| f(x; \widehat{\theta}_{n,\varepsilon}) - f^*(x; \theta^*) \right\|^2 \right] \\ 902 \\ 903 \quad &= \mathbb{E}_{x \sim \mathcal{D}} \left[\frac{1}{2} \left\| (f(x; \widehat{\theta}_{n,\varepsilon}) - f(x; \bar{\theta})) + (f(x; \bar{\theta}) - f^*(x; \theta^*)) \right\|^2 \right] \\ 904 \\ 905 \quad &\leq \mathbb{E}_{x \sim \mathcal{D}} \left[\left\| f(x; \widehat{\theta}_{n,\varepsilon}) - f(x; \bar{\theta}) \right\|^2 \right] + \mathbb{E}_{x \sim \mathcal{D}} \left[\left\| f(x; \bar{\theta}) - f^*(x; \theta^*) \right\|^2 \right] \\ 906 \\ 907 \quad &\leq (q \|\widehat{\theta}_{n,\varepsilon} - \bar{\theta}\|)^2 + 0 \\ 908 \\ 909 \quad &\leq (q\varepsilon)^2, \end{aligned}$$

910 which completes the proof. \square
 911

918 D PROOF OF THEOREM 5

920 Obviously, the loss function of DLNN satisfies Assumption 1 because the linear transformation is
 921 analytic.

922 Therefore, by Theorem 2, we only have to study the lower bound of $d_{\bar{\Theta}}$. We prove by the following
 923 step:

925 1. Construct the subset $\bar{\Theta}'$ of TES $\bar{\Theta}$.
 926 2. Count the number of free parameters of $\bar{\Theta}'$ and it is the lower bound of the dimension $d_{\bar{\Theta}}$
 927 of $\bar{\Theta}$.

929 First, we define a subset $\bar{\Theta}'$ of Θ as follows.
 930

931 **Definition 13** (Subset $\bar{\Theta}'$ of Θ). We denote arbitrary matrices or vectors as \mathcal{M} and arbitrary regular
 932 matrices as \mathcal{R} . $\bar{\Theta}'$ is the subset of Θ which satisfies the following condition. Superscripts represent
 933 the layer index and subscripts are for the purpose of distinction.

934 1. For the parameter of first layer,

936 $w^{(1)} = \begin{pmatrix} w^{(1)*} \\ \mathcal{M}_1^{(1)} \end{pmatrix}, b^{(1)} = \begin{pmatrix} b^{(1)*} \\ \mathcal{M}_2^{(1)} \end{pmatrix}.$
 937

939 2. For the parameter of ℓ -th layer ($2 \leq \ell \leq L^* - 1$),
 940

941 $w^{(\ell)} = \begin{pmatrix} w^{(\ell)*} & \mathcal{M}_1^{(\ell)} \\ \mathcal{M}_2^{(\ell)} & \mathcal{M}_3^{(\ell)} \end{pmatrix}, b^{(\ell)} = \begin{pmatrix} b^{(\ell)*} \\ \mathcal{M}_4^{(\ell)} \end{pmatrix}.$
 942

944 3. For the parameter of ℓ -th layer ($L^* \leq \ell \leq L - 1$),
 945

946 $w^{(\ell)} = \begin{pmatrix} \mathcal{R}^{(\ell)} & \mathcal{M}_1^{(\ell)} \\ \mathcal{M}_2^{(\ell)} & \mathcal{M}_3^{(\ell)} \end{pmatrix}, b^{(\ell)} = \begin{pmatrix} \mathcal{M}_4^{(\ell)} \\ \mathcal{M}_5^{(\ell)} \end{pmatrix},$
 947

949 where $\mathcal{R}^{(\ell)} \in \mathbb{R}^{m_{L^*-1}^* \times m_{L^*-1}^*}$.
 950

951 4. For the parameter of L -th layer,

952 $w^{(L)} = \begin{pmatrix} w^{(L)*} P^{-1} & \mathcal{M}_1^{(L)} \end{pmatrix}, b^{(L)} = b^{(L)*} - q^{(L)},$
 953

955 where $P = \mathcal{R}^{(L-1)} \dots \mathcal{R}^{(L^*)}$ and $q^{(L)}$ is a term determined by other parameters.
 956

957 Now we proceed to the proof of the first step.

958 **Lemma 13.** $\bar{\Theta}'$ is a subset of $\bar{\Theta}$.

959 *Proof.* We only have to prove that the output of the student network whose parameter is in $\bar{\Theta}'$ is the
 960 same as that of the teacher network. We denote the output of ℓ -th layer of the teacher network as
 961 $h^{(\ell)*} (\in \mathbb{R}^{m_\ell^*})$ and the output in the redundant width of ℓ -th layer as $r^{(\ell)}$.
 962

963 The output of first layer of the student network is
 964

965 $\begin{pmatrix} w^{(1)*} x \\ \mathcal{M}_1^{(1)} x \end{pmatrix} + \begin{pmatrix} b^{(1)*} \\ \mathcal{M}_2^{(1)} \end{pmatrix} = \begin{pmatrix} w^{(1)*} x + b^{(1)*} \\ \mathcal{M}_1^{(1)} x + \mathcal{M}_2^{(1)} \end{pmatrix} = \begin{pmatrix} h^{(1)*} \\ r^{(1)} \end{pmatrix}.$
 966

968 The output of second layer of the student network is
 969

970 $\begin{pmatrix} w^{(2)*} h^{(1)*} + \mathcal{M}_1^{(2)} r^{(1)} \\ \mathcal{M}_2^{(2)} h^{(1)*} + \mathcal{M}_3^{(2)} r^{(1)} \end{pmatrix} + \begin{pmatrix} b^{(2)*} \\ \mathcal{M}_4^{(2)} \end{pmatrix} = \begin{pmatrix} h^{(2)*} + \mathcal{M}_1^{(2)} r^{(1)} \\ r^{(2)} \end{pmatrix}.$
 971

972 By continuing the same discussion, we can show that the output of $(L^* - 1)$ -th layer can be written
 973 as $\binom{h^{(L^*-1)*} + q^{(L^*-1)}}{r^{(L^*-1)}}$, where we write the redundant term as q .
 974

975 The output of L^* -th layer of the student network is

$$977 \begin{pmatrix} \mathcal{R}^{(L^*)} \left(h^{(L^*-1)*} + q^{(L^*-1)} \right) + \mathcal{M}_1^{(L^*)} r^{(L^*-1)} \\ 978 \mathcal{M}_2^{(L^*)} \left(h^{(L^*-1)*} + q^{(L^*-1)} \right) + \mathcal{M}_3^{(L^*)} r^{(L^*-1)} \end{pmatrix} + \begin{pmatrix} \mathcal{M}_4^{(L^*)} \\ \mathcal{M}_5^{(L^*)} \end{pmatrix} = \begin{pmatrix} \mathcal{R}^{(L^*)} h^{(L^*-1)*} + q^{(L^*)} \\ r^{(L^*)} \end{pmatrix}. \\ 979 \\ 980$$

981 The output of $(L^* + 1)$ -th layer of the student network is

$$982 \begin{pmatrix} \mathcal{R}^{(L^*+1)} \left(\mathcal{R}^{(L^*)} h^{(L^*-1)*} + q^{(L^*)} \right) + \mathcal{M}_1^{(L^*+1)} r^{(L^*)} \\ 983 \mathcal{M}_2^{(L^*+1)} \left(\mathcal{R}^{(L^*)} h^{(L^*-1)*} + q^{(L^*)} \right) + \mathcal{M}_3^{(L^*+1)} r^{(L^*)} \end{pmatrix} + \begin{pmatrix} \mathcal{M}_4^{(L^*+1)} \\ \mathcal{M}_5^{(L^*+1)} \end{pmatrix} \\ 984 = \begin{pmatrix} \mathcal{R}^{(L^*+1)} \mathcal{R}^{(L^*)} h^{(L^*-1)*} + q^{(L^*+1)} \\ r^{(L^*+1)} \end{pmatrix}. \\ 985 \\ 986$$

987 By continuing the same discussion, we can show that the output of $(L - 1)$ -th layer is

$$988 \begin{pmatrix} \mathcal{R}^{(L-1)} \dots \mathcal{R}^{(L^*)} h^{(L^*-1)*} + q^{(L-1)} \\ r^{(L-1)} \end{pmatrix} = \begin{pmatrix} Ph^{(L^*-1)*} + q^{(L-1)} \\ r^{(L-1)} \end{pmatrix}. \\ 989 \\ 990$$

991 Hence, the output of the last layer is

$$992 \begin{aligned} 993 w^{(L^*)*} P^{-1} (Ph^{(L^*-1)*} + q^{(L-1)}) + \mathcal{M}_1^{(L)} r^{(L-1)} + b^{(L^*)*} - q^{(L)} \\ 994 = h^{(L^*)*} + w^{(L^*)*} P^{-1} q^{(L-1)} + \mathcal{M}_1^{(L)} r^{(L-1)} - q^{(L)}. \end{aligned} \\ 995 \\ 996$$

997 So, if we set $q^{(L)} = w^{(L^*)*} P^{-1} q^{(L-1)} + \mathcal{M}_1^{(L)} r^{(L-1)}$, the output is the same as that of teacher
 998 network. \square
 999

1000 We proceed to the proof of the second step.

1001 **Lemma 14.** *The lower bound of the dimension of $\bar{\Theta}$ is $d_{\Theta} - d^*$.*

1002 *Proof.* From Lemma 13, $\bar{\Theta}$ contains $\bar{\Theta}'$. The number of the free element of the parameter in $\bar{\Theta}'$ is
 1003 the number of elements expressed by \mathcal{M} and \mathcal{R} , so it is $d_{\Theta} - d^*$. Hence, $\bar{\Theta}$ contains a $(d_{\Theta} - d^*)$ -
 1004 dimensional hyper cube and its internal. A $(d_{\Theta} - d^*)$ -dimensional hyper cube and its internal contain
 1005 a hyper sphere and its internal, which is an analytic manifold whose dimension is $d_{\Theta} - d^*$. So the
 1006 maximum dimension of analytic manifolds contained in $\bar{\Theta}$ is at least $d_{\Theta} - d^*$, which completes the
 1007 proof. \square
 1008

1009 E PROOF OF THEOREM 6

1010 The loss function of FCDNN satisfies Assumption 1 since the linear transformation and the activation
 1011 function is analytic. We prove in the same way as Theorem 5.

1012 **Definition 14** (Subset $\bar{\Theta}'$ of Θ). Let us denote arbitrary matrices or vectors as \mathcal{M} . $\bar{\Theta}'$ is the subset
 1013 of Θ which satisfies the following condition. Superscripts represent the layer index and subscripts
 1014 are for the purpose of distinction.

1015 1. For the parameter of first layer,

$$1016 \begin{pmatrix} w^{(1)*} \\ \mathcal{M}_1^{(1)} \end{pmatrix}, b^{(1)} = \begin{pmatrix} b^{(1)*} \\ \mathcal{M}_2^{(1)} \end{pmatrix}. \\ 1017 \\ 1018$$

1019 2. For the parameter of ℓ -th layer ($2 \leq \ell \leq L - 1$),

$$1020 \begin{pmatrix} w^{(\ell)*} & 0 \\ \mathcal{M}_1^{(\ell)} & \mathcal{M}_2^{(\ell)} \end{pmatrix}, b^{(\ell)} = \begin{pmatrix} b^{(\ell)*} \\ \mathcal{M}_3^{(\ell)} \end{pmatrix}. \\ 1021 \\ 1022$$

1026 3. For the parameter of L -th layer,

$$1028 \quad w^{(L)} = \begin{pmatrix} w^{(L^*)*} & 0 \end{pmatrix}, b^{(L)} = b^{(L^*)*}.$$

1030 Now we proceed to the proof of the first step.

1031 **Lemma 15.** $\bar{\Theta}'$ is a subset of $\bar{\Theta}$.

1034 *Proof.* We only have to prove that the output of the student network whose parameter is in $\bar{\Theta}'$ is
1035 the same as that of the teacher network. We denote the **pre-activation** in ℓ -th layer of the teacher
1036 network as $h^{(\ell)*} (\in \mathbb{R}^{m_\ell^*})$ and the **pre-activation** in the redundant width of the student network in
1037 ℓ -th layer as $r^{(\ell)}$.

1038 The pre-activation in the first layer of the student network is

$$1040 \quad \begin{pmatrix} w^{(1)*}x \\ \mathcal{M}_1^{(1)}x \end{pmatrix} + \begin{pmatrix} b^{(1)*} \\ \mathcal{M}_2^{(1)} \end{pmatrix} = \begin{pmatrix} w^{(1)*}x + b^{(1)*} \\ \mathcal{M}_1^{(1)}x + \mathcal{M}_2^{(1)} \end{pmatrix} = \begin{pmatrix} h^{(1)*} \\ r^{(1)} \end{pmatrix}.$$

1043 The pre-activation in the second layer of the student network is

$$1044 \quad \begin{pmatrix} w^{(2)*}\sigma(h^{(1)*}) + 0\sigma(r^{(1)}) \\ \mathcal{M}_1^{(2)}\sigma(h^{(1)*}) + \mathcal{M}_2^{(2)}\sigma(r^{(1)}) \end{pmatrix} + \begin{pmatrix} b^{(2)*} \\ \mathcal{M}_3^{(2)} \end{pmatrix} = \begin{pmatrix} h^{(2)*} \\ r^{(2)} \end{pmatrix}.$$

1047 By continuing the same discussion, we can show that the pre-activation of $(L-1)$ -th layer can be
1048 written as $\begin{pmatrix} h^{(L-1)*} \\ r^{(L-1)} \end{pmatrix}$.

1051 Hence, the output of the last layer is

$$1053 \quad w^{(L)*}\sigma(h^{(L-1)*}) + 0\sigma(r^{(L-1)}) + b^{(L)*} = h^{(L)*},$$

1054 which is the same as the output of the teacher network. \square

1056 We proceed to the proof of the second step.

1058 **Lemma 16.** The lower bound of the dimension of $\bar{\Theta}$ is $d_\Theta - \sum_{\ell=1}^L m_\ell^*(m_{\ell-1} + 1)$.

1060 *Proof.* From Lemma 15, $\bar{\Theta}$ contains $\bar{\Theta}'$. The number of the free element of the parameter in $\bar{\Theta}'$ is the
1061 number of elements expressed by \mathcal{M} , so it is $\sum_{\ell=1}^L (m_\ell - m_\ell^*)(m_{\ell-1} + 1) = d_\Theta - \sum_{\ell=1}^L m_\ell^*(m_{\ell-1} + 1)$.
1062 Hence, $\bar{\Theta}$ contains a $(d_\Theta - \sum_{\ell=1}^L m_\ell^*(m_{\ell-1} + 1))$ -dimensional hyper cube and its internal. A $(d_\Theta -$
1063 $\sum_{\ell=1}^L m_\ell^*(m_{\ell-1} + 1))$ -dimensional hyper cube and its internal contain a hyper sphere and its internal,
1064 which is an analytic manifold of dimension $d_\Theta - \sum_{\ell=1}^L m_\ell^*(m_{\ell-1} + 1)$. So the maximum dimension of
1065 analytic manifolds contained in $\bar{\Theta}$ is at least $d_\Theta - \sum_{\ell=1}^L m_\ell^*(m_{\ell-1} + 1)$, which completes the proof. \square

1067 F DETAILS OF EXPERIMENTS

1069 F.1 GUESS AND CHECK ALGORITHM FOR SAMPLING RANDOM NEAR INTERPOLATORS

1071 To obtain a predictor with a random near interpolator, we can utilize the Guess & Check (G&C)
1072 algorithm by Chiang et al. (2023), which provides a practical implementation to sample random near
1073 interpolators. Specifically, the G&C algorithm is operated by the following procedure:

- 1075 1. Fix a sufficiently small $\varepsilon > 0$.
- 1076 2. Sample a parameter θ according to the uniform distribution on Θ , without considering the
1077 training set.
- 1078 3. For the sampled parameter θ , evaluate the training loss $L_n(\theta)$ using the training set
1079 $\{(x_i, y_i)\}_{i=1}^n$.
- 1079 4. If $L_n(\theta) \leq \varepsilon$ holds, return θ ; otherwise, go back to 2.

1080
1081 **Algorithm 1:** Pattern Search Algorithm
1082 **Input:** Initial point θ_0 , step size $\alpha_0 > 0$, stopping threshold ε
1083 **Output:** Approximate solution θ_k
1084 Set $k \leftarrow 0$;
1085 **while** $L_n(\theta_k) > \varepsilon$ **do**
1086 Compute trial points $\theta_k + \alpha_k \theta_{k,i(k)}$ or $\theta_k - \alpha_k \theta_{k,i(k)}$, where $i(k) \in \{1, \dots, d_\Theta\}$ is
1087 randomly chosen and $\theta_{k,i(k)}$ denotes the $i(k)$ -th parameter of θ_k ;
1088 **if** there exists $i(k) \in \{1, \dots, d_\Theta\}$ s.t. $L_n(\theta_k + \alpha_k \theta_{k,i(k)}) < L_n(\theta_k)$ **then**
1089 $\theta_{k+1} \leftarrow \theta_k + \alpha_k \theta_{k,i(k)}$;
1090 $\alpha_{k+1} \leftarrow \alpha_k$;
1091 **else if** there exists $i(k) \in \{1, \dots, d_\Theta\}$ s.t. $L_n(\theta_k - \alpha_k \theta_{k,i(k)}) < L_n(\theta_k)$ **then**
1092 $\theta_{k+1} \leftarrow \theta_k - \alpha_k \theta_{k,i(k)}$;
1093 $\alpha_{k+1} \leftarrow \alpha_k$;
1094 **else**
1095 $\theta_{k+1} \leftarrow \theta_k$;
1096 $\alpha_{k+1} \leftarrow \gamma_{\text{dec}} \alpha_k$;
1097 $k \leftarrow k + 1$;

1098
1099
1100 **F.2 DETAILS OF SECTION 6.1**

1101 Below, we provide an outline of the setup. We consider a regression problem and adopt the mean
1102 squared error as the loss function. The input data x is 2-dimensional vector and is generated according
1103 to the uniform distribution on $[-1, 1]^2$. The output data y is a scalar output of a teacher FCDNN,
1104 which is a randomly initialized FCDNN by Xavier’s uniform initialization (Glorot & Bengio, 2010)
1105 with hidden layers consisting of 5 units. The student FCDNN to be trained is a FCDNN with the same
1106 number of layers as the teacher and with hidden layers consisting of 10 units. The activation function
1107 is the hyperbolic tangent (\tanh) in both the teacher and student FCDNNs. To sample random near
1108 interpolators, we run the G&C algorithm presented in the previous section $\varepsilon = 0.01$ and Xavier’s
1109 uniform initialization. We then compute the test loss using 2000 samples randomly generated from
1110 the teacher FCDNN. This procedure is repeated 1000 times for each training sample size. We conduct
1111 experiments with networks consisting of 2, 4, and 6 layers, respectively.

1112
1113 **F.3 DETAILS OF SECTION 6.2**

1114 We adapted a cross entropy loss for the loss function. We set the learning rate of Adam as 0.001
1115 and other hyper-parameters as the default value of PyTorch. We estimate the dimension of $\bar{\Theta}$ by
1116 utilizing IPCA algorithm (Fukunaga & Olsen, 1971), implemented by the scikit-dimension package
1117 (Bac et al., 2021). We compute the test loss on the MNIST test split. In order to reproduce the
1118 teacher–student setting on MNIST dataset, we remove about 9 % of ambiguous data from the test
1119 split of MNIST by utilizing the cleanlab package (Northcutt et al., 2020).

1120
1121 **F.4 EXPERIMENT BY PATTERN SEARCH**
1122

1123 The pattern search algorithm serves as an alternative procedure for generating random near interpolators
1124 without implicit bias, analogous to the G&C algorithm. Specifically, the algorithm perturbs the
1125 parameter in a random direction and then evaluates whether this perturbation decreases the objective
1126 function. If the update results in a decrease, the new parameter is accepted; otherwise, the parameter
1127 is reverted to its original value. Furthermore, if none of the attempted updates yield a decrease,
1128 we reduce the step size accordingly. A more detailed description of the procedure is provided in
1129 Algorithm 1.

1130 We describe the details of our experimental setup. Because this algorithm is computationally
1131 expensive, we restrict the MNIST dataset to samples whose labels are 0 or 1. We employ a 2-layer
1132 FCDNN with a hidden-layer width of 10 and the softplus activation function. The loss function is
1133 the cross-entropy loss. The model parameters are initialized using Xavier’s uniform initialization,
1134 and the step size is initialized as 1.0. We set the stopping threshold to $\varepsilon = 0.01$.

1134 To estimate the dimension $d_{\bar{\Theta}}$ of $\bar{\Theta}$, we approximately sample from $\bar{\Theta}$ by training the 2-layer FCDNN
1135 on all MNIST samples labeled 0 or 1 using the pattern search algorithm. This procedure is repeated
1136 10000 times, producing 10000 approximate samples from $\bar{\Theta}$. We then estimate the dimension
1137 of the manifold on which these samples lie by applying the IPCA algorithm implemented in the
1138 scikit-dimension package (Bac et al., 2021).

1139 Next, we generate 1000 random near interpolators using the pattern search algorithm, varying the
1140 number of training samples across 1000, 2000, 3000, 4000, 5000, 6000, and 7000, and compute their
1141 test loss on the MNIST test split.

1142 The results are presented in Figure 4. The estimated upper bound is consistent with the empirical
1143 findings, as it provides a sufficient number of samples for the generalization of random near
1144 interpolators.

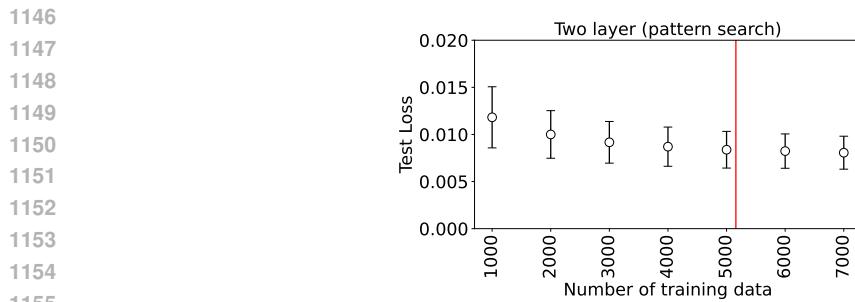


Figure 4: Test losses of random near interpolators on 2-layer FCDNN. The vertical axis represents the test loss, while the horizontal axis corresponds to the number of training data. The error bars indicate the standard deviation over 1000 trials for each training sample size. The red vertical line is the estimated upper bound of the strong sample complexity $d_{\Theta} - d_{\bar{\Theta}} + 1$.