
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DIVER : LARGE LANGUAGE MODEL DECODING
WITH SPAN-LEVEL MUTUAL INFORMATION VERIFI-
CATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have shown impressive capabilities in adapting
to various tasks when provided with task-specific instructions. However, LLMs
using standard decoding strategies often struggle with deviations from the inputs.
Intuitively, compliant LLM outputs should reflect the information present in the
input, which can be measured by point-wise mutual information (PMI) scores.
Therefore, we propose DIVER, a novel approach that enhances LLM Decoding
through span-level PMI VERification. During inference, DIVER first identifies
divergence steps that may lead to multiple candidate spans. Subsequently, it cal-
culates the PMI scores by assessing the log-likelihood gains of the input if the
candidate spans are generated. Finally, the optimal span is selected based on the
PMI re-ranked output distributions. We evaluate our method across various down-
stream tasks, and empirical results demonstrate that DIVER significantly outper-
forms existing decoding methods in both performance and versatility.

1 INTRODUCTION

x: 莉莉和玛丽认为这里非常安全。†

Lily

and

thought

Mary     went     it was safe here.

it was very safe here.

PMI (x | Lily thought ) = 0.3

PMI (x | Lily and )  = 0.09

Lily

and

(1) Locally Optimal Verification

(2) Subsequent Capsulation

Translate the Chinese sentence into English

Subsequent Tokens …

thought

LLMs

thought

Figure 1: The illustration about verification
based on the disparity of a single token may
lead to a locally optimal outcome.

The emergence of large language models (LLMs)
has significantly reformed the paradigms in natural
language processing (NLP) (Brown et al., 2020; Anil
et al., 2023; Touvron et al., 2023). With instruction-
tuning (Ouyang et al., 2022; Zhang et al., 2023b) or
in-context learning (ICL) (Brown et al., 2020; Dong
et al., 2022), LLMs yield impressive performance
on various downstream tasks. Despite the strong
versatility, LLMs pre-trained with unsupervised cor-
pora using language modeling as the training objec-
tive frequently generate content unfaithful to inputs
in particular downstream tasks (Bang et al., 2023;
Rawte et al., 2023; Guerreiro et al., 2023). For exam-
ple, in machine translation (MT), LLMs may gener-
ate irrelevant additional content or overlook impor-
tant parts of the original inputs (Zhang et al., 2023a).
Such issues would affect the outputs of LLMs, de-
creasing the reliability of deployment in practical
scenarios.

Intuitively, compliant LLM outputs should follow
instructions and accurately reflect the information
present in the source inputs. Therefore, a direct solu-
tion is to verify whether the candidate tokens at each
decoding step have a strong correlation with the in-
put, which can be measured by point-wise mutual information (PMI) (Church & Hanks, 1990) be-
tween the candidate token yi and the input x. However, when the input sequence x contains abundant
information, the disparity in the amount of information between yi and x is significant, making such

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

a verification less effective. As illustrated in Figure 11, verification with inadequate information
may bring a local optimum at the current decoding step, diverting from achieving globally optimal
results like (1). However, if the LLM generates and, thought can also appear in subsequent tokens
(subsequent encapsulation (2)), potentially leading to a better translation. We believe that effectively
addressing this concern entails harnessing sufficient information for PMI calculation, thus enhancing
the probability of obtaining a better output.

Based on the above consideration, we propose DIVER, enhancing LLMs Decoding via span-level
PMI VERification. Specifically, at the decoding step with multiple candidate tokens (divergence
point), LLMs generate several continuous spans started by these candidate tokens. Subsequently,
DIVER selects the continuous token span by concurrently assessing the probability at the divergence
point along with PMI scores between continuous spans and the input text. Specifically, through
equivalent transformation, PMI scores can be converted into the calculation of log-likelihood gains
of the input if the spans are generated. With the help of span-level PMI verification, DIVER can
encourage LLMs to generate accurate and coherent outputs.

We evaluate DIVER on various downstream tasks, including code generation, dialogue response
generation, element-constrained generation, knowledge question answering, machine translation,
text summarization as well as story generation. Compared to vanilla decoding methods such as
greedy decoding or nucleus sampling (Holtzman et al., 2020), and advanced contrastive decoding
strategies (Li et al., 2023; Shi et al., 2023), DIVER consistently achieves substantial performance
enhancements across multiple tasks, demonstrating its effectiveness and versatility.

2 BACKGROUND - LLM DECODING

In the era of LLMs, natural language tasks transition into open-ended language generation scenarios,
where inputs serve as part of prompts, driving LLMs to generate continuations in an auto-regressive
manner. Given the input x = {x1, x2, · · · , xn}, the output token yi is selected based on the proba-
bility conditioning on the preceding tokens.

yi ∼ log p(yi|y<i, x) (1)

The commonly used decoding method is greedy search or nucleus sampling. Specifically, greedy
search chooses the token with the largest probability according to the distribution at each decoding
step. Nucleus sampling, on the other hand, samples from the top-p percentile of the distribution,
thereby enhancing the diversity of the generated context. However, using either greedy search or
nucleus sampling may cause LLMs to generate outputs that are unfaithful to the inputs, resulting in
hallucination problems (Rawte et al., 2023; Ji et al., 2023; Huang et al., 2023b).

3 OUR METHOD

3.1 DIVER - DECODING WITH POINT-WISE MUTUAL INFORMATION VERIFICATION

To alleviate the unfaithful issue, we strengthen the correlation between the input x and the ongoing
generated token yi via point-wise mutual information (PMI). At decoding step i, yi is controlled
by the generated tokens y<i and influences the succeeding tokens y>i. Therefore, we argue that
the selection of yi should consider both the original output distribution and the overall PMI score
between x and y:

yi ∼ log p(yi|y<i, x) + PMI(y, x) (2)

Because y<i have already been generated, PMI(y, x) ∝ PMI(y≥i, x|y<i). PMI(y≥i, x|y<i) refers
to the PMI score between x and y≥i, conditioned on y<i. Thus, equation (2) can be rewritten as:

yi ∼ log p(yi|y<i, x) + PMI(y≥i, x|y<i) (3)

Regrettably, PMI(y≥i, x|y<i) can only be computed when the tokens are completely generated. It
will significantly increase the computational cost and decrease the inference speed. To avoid this

1The standard reference for the input x is Lily and Mary thought it was very safe here.
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x: 莉莉和玛丽认为这里非常安全。Translate the Chinese sentence into English

LLMs

Lily

Mary thought it

it was very

Lily

and

thought

Translate the English sentence 

into Chinese

Translate the English sentence 

into Chinese

Translate the English sentence 

into Chinese

DIVERGEN

CE POINT

∆ of INPUT

LIKELIHOOD

DYNAMIC

SPANs

𝑦𝑖 𝑦𝑖:𝑖+𝑘+1 log 𝑝(𝑥|𝑦𝑖:𝑖+𝑘+1, 𝑦<𝑖)

log 𝑝(𝑥|𝑦<𝑖)

log
𝑝(𝑥|𝑦𝑖:𝑖+𝑘+1, 𝑦<𝑖)

𝑝(𝑥|𝑦<𝑖)

11.71

21.56

𝑦<𝑖

Reference of  x: Lily and Mary 

thought it was very safe here.

① ② ③
SPAN 

SELECTON

④

Figure 2: An overview of DIVER. It first identifies the divergence points and generates several
candidate spans. Then, it computes the delta ∆ of the log-likelihood of input x (PMI scores) for the
distribution re-ranking. Finally, a token span is selected based on the re-ranked distribution.

issue, we request that the model generate the next k tokens, denoted as yi:i+k+1, rather than the
entire sequence for yi selection:

yi ∼ log p(yi|y<i, x) + PMI(yi:i+k+1, x|y<i) (4)

Given that yi determines subsequent tokens and yi:i+k+1 have already been generated for PMI cal-
culation, selecting a candidate span yi:i+k+1 instead of a single token yi can further reduce the
computational cost. This operation can achieve a balance between decoding quality and speed:

yi:i+k+1 ∼ log p(yi|y<i, x) + PMI(yi:i+k+1, x|y<i) (5)

Based on the definition of PMI, equation (5) can be written as:

yi:i+k+1 ∼ log p(yi|y<i, x)︸ ︷︷ ︸
vanilla distribution

+ log
p(x|yi:i+k+1, y<i)

p(x|y<i)︸ ︷︷ ︸
PMI verification

(6)

Specifically, the verification part can be viewed as the likelihood gains of the input when yi:i+k+1 is
decoded, which can be computed via backward teacher-forcing decoding2:

log
p(x|yi:i+k+1, y<i)

p(x|y<i)
= log

∏
t p(xt|y<i+k+1, x<t)∏

t p(xt|y<i, x<t)
=

∑
t

log
p(xt|y<i+k+1, x<t)

p(xt|y<i, x<t)
(7)

Therefore, the PMI enhanced span selection distribution q(yi:i+k+1|x, y<i) can be written as:

q(yi:i+k+1|x, y<i) = log p(yi|y<i, x) +
∑
t

log
p(xt|y<i+k+1, x<t)

p(xt|y<i, x<t)
(8)

3.2 DIVER FOR LLMS

Figure 2 illustrates the basic process of DIVER adapted for LLMs. Initially, DIVER identifies the DI-
VERGENCE POINT, where several potential candidate tokens may emerge at decoding steps. Once
identified, DIVER requests LLMs to generate DYNAMIC SPANs as candidates and calculates the
PMI scores. These scores are then used to re-rank the vanilla distributions for SPAN SELECTION.

2Several methods can be adopted for computing the backward log-likelihoods, such as using models fine-
tuned on data from y → x. However, for the sake of simplicity, we use the same LLM throughout this work
unless otherwise specified.

3
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DIVERGENCE POINT Considering that the tokens predicted with high confidence are typically
less prone to error (Guo et al., 2017; Zhu et al., 2023), we borrow the approach proposed in (Li et al.,
2023) to detect the positions that might lead to inaccurate decoding. Meanwhile, we truncate the
candidate set C(i) accordingly:

C(i) = {yi ∈ V|p(yi|y<i) ≥ γmax
w∈V

p(w|y<i)} (9)

where V is the vocabulary and γ is the hyper-parameter to control the truncating range.

For the decoding steps with multiple candidate tokens (|C(i)| > 1), LLMs are typically not confident
in the output distribution. All the top tokens can be suitable for the current step, and each token may
lead to a diverse sequence. Therefore, we request LLMs to continue generating k tokens, forming
several candidate spans.

DYNAMIC SPAN In practical experiments, we observe that various tasks exhibit sensitivity to the
span length k. To address this issue, we introduce an adaptive method for obtaining token spans
with dynamic lengths, tailored to specific examples.

For current divergence point i with C(i) as the candidate token set, LLMs generate succeeding tokens
after these candidates and obtain several spans {ym≥i|0 < m ≤ |C(i)|}. During generation, DIVER
records the risk step r, which could potentially be the divergence point (as defined in equation (9))
that first emerges within each candidate span. The risk set R is composed of the first-emerged risk
steps rm in different spans:

R = {rm|rm ← min{j||Cm(j)| > 1, j > i}, 0 < m ≤ |C(i)|}
where Cm(j) refers to the candidate token set at position j in m-th span.

Lily

and

thought it was very safe here

Mary thought it was safe

DIVER – RIGHT

DIVER – LEFT ℛ = {5 , 7 }

Figure 3: An example illustrates DYNAMIC SPAN acquirement. Bleu and green stars refers to the
first-emerged risk points in the two sequences.

Once all first-emerged risk steps in the candidate spans are recorded inR, DIVER pauses generation
and utilizes both the LEFT and RIGHT boundaries to calculate the dynamic span length k. Figure 3
shows a specific example of DYNAMIC SPAN acquirement. It should be noted that both the LEFT
and RIGHT boundaries can form dynamic spans for different examples. Specifically, DIVER-LEFT
ensures no omission of any risk point that could lead to divergence but may yield less informative
spans, while DIVER-RIGHT ensures sufficient information provision but may select spans containing
potential divergence points.

LEFT : k ← r − i− 1, r = minR
RIGHT : k ← r − i− 1, r = maxR

SPAN SELECTION After obtaining the DYNAMIC SPANs, DIVER calculates the conditional PMI
scores as defined in Equation (7). To achieve this, DIVER first uses a backward instruction, reversing
both the output tokens and the input x, as illustrated in Figure 2. It then collects and sums the delta
of log-likelihood for each token xt if the candidate token spans are generated, thereby obtaining the
PMI scores. Finally, these PMI scores are used to re-balance the distributions according to equation
(8). Based on these distributions, DIVER selects candidate spans using either a greedy search or
sampling, depending on the task properties.

yi:i+k+1 ∼
{

q(yi:i+k+1|x, y<i) if yi ∈ C(i),
−∞ otherwise.

After the span selection, DIVER continues decoding from the step i + k + 1, repeating the afore-
mentioned steps until it encounters the specified ending tokens.

4
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Task Dataset Evaluation Metrics
Code Generation MBPP (Austin et al., 2021) Pass@1
Machine Translation Flores-200 (Costa-jussà et al., 2022) BLEU, 100-TER, BLEURT

Text Summarization
CNN/DailyMail (Nallapati et al., 2016) ROUGE-1/2/L
SAMSum (Gliwa et al., 2019) ROUGE-1/2/L

World-Knowledge QA
Natural Qeustions (Kwiatkowski et al., 2019) EM, F1
Web Questions (Berant et al., 2013) EM, F1

EC Generation
E2E (Novikova et al., 2017) BLEU, ROUGE-L, NIST, CIDEr
CommonGen (Lin et al., 2020) BLEU, ROUGE-L, METEOR

Dialogue Response DailyDialogue (Li et al., 2017) BLEU-1, Distinct-1/2
Story Generation ROCStory (Mostafazadeh et al., 2016) BLEU-1, Distinct-1/4

Table 1: Datasets and evaluation metrics for various tasks.

Tasks Datasets
Basic Decoding Methods
Decoding Vanilla CD CAD DIVERL DIVERR

Dialogue Response Daily Dialogue Samping 16.69 16.61 17.43 17.46 18.37
Story Generation ROCStory Samping 37.56 37.78 38.28 37.93 38.54
Code Generation† MBPP Greedy 46.60 - 47.73 47.93 48.67

Translation

Flores-Fr-En Greedy 57.86 57.29 56.18 58.69 58.60
Flores-De-En Greedy 56.32 55.92 55.65 57.14 57.23
Flores-Bg-En Greedy 51.13 50.84 50.91 51.84 51.72
Flores-Zh-En Greedy 39.14 38.88 38.94 40.32 40.77
Flores-Ar-En Greedy 25.43 25.33 27.10 28.15 29.71

Summarization
CNN/DM Samping 27.69 27.53 28.14 28.57 28.58
SAMSum Greedy 28.87 28.32 29.49 29.78 29.82

Knowledge QA
NQ Greedy 30.51 30.24 29.00 31.16 31.36
WebQ Greedy 34.42 34.79 34.26 35.04 35.42

EC Generation
CommonGen Greedy 38.22 38.44 38.21 38.61 38.13
E2E Greedy 30.75 30.29 34.60 42.34 42.52

Table 2: Experimental results on various natural language processing tasks with LLaMA-2-7B-
Chat. The best scores for each dataset are boldfaced. † For code generation, we use Code-LLaMA-
Instruct-7B for experiments. Because 7B is the smallest model in Code-LLaMA-Family, the CD
result is blanked.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Task and Datasets To demonstrate the versatility of our method, we consider a wide range of
language generation tasks. Details are listed in Table 1.

Models We conduct main experiments with LLaMA-2 Family, including LLaMA-2-7B-Chat and
LLaMA-2-13B-Chat (Touvron et al., 2023). For specific tasks, like code generation, we respectively
use Code-LLaMA-7B-Instruct and Code-LLaMA-13B-Instruct (Roziere et al., 2023) for experi-
ments. To further evaluate the effectiveness of DIVER on other LLMs, we adopt Mistral-7B-Instruct
(Jiang et al., 2023), Gemma-7B-Instruct3, and LLaMA-3-8B-Instruct4.

Decoding Methods We compare our method with several existing baselines.

* Vanilla refers to using Greedy Search or Nucleus Sampling with top-p=0.90, depending on the
task properties.

3https://ai.google.dev/gemma
4https://github.com/meta-llama/llama3
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Tasks Datasets
Basic Decoding Methods
Decoding Vanilla CD CAD DIVERL DIVERR

Dialogue Response Daily Dialogue Samping 16.52 17.58 17.18 17.81 18.65
Story Generation ROCStory Samping 37.51 37.88 38.24 38.78 38.84
Code Generation† MBPP Greedy 54.33 51.93 53.67 55.27 55.47

Translation

Flores-Fr-En Greedy 59.58 59.41 59.85 59.83 60.32
Flores-De-En Greedy 59.07 58.40 58.92 59.04 59.16
Flores-Bg-En Greedy 54.24 53.69 54.56 54.43 54.82
Flores-Zh-En Greedy 41.75 40.91 42.04 42.44 42.69
Flores-Ar-En Greedy 30.27 29.37 32.68 32.69 34.15

Summarization
CNN/DM Samping 27.89 27.69 28.06 28.20 28.27
SAMSum Greedy 30.05 29.69 30.78 30.70 30.87

Knowledge QA
NQ Greedy 33.43 33.76 32.83 34.52 34.72
WebQ Greedy 37.75 37.62 37.70 38.35 38.42

EC Generation
CommonGen Greedy 40.31 40.14 40.21 41.48 41.29
E2E Greedy 34.57 35.24 39.08 42.33 48.87

Table 3: Experimental results on various natural language processing tasks with LLaMA-2-13B-
Chat. The best scores for each dataset are boldfaced. † For code generation, we use Code-LLaMA-
Instruct-13B for experiments and the CD experiment is performed by using Code-LLaMA-Instruct-
7B as the amateur model.

* CD (Li et al., 2023) is contrastive decoding, which selects tokens from the delta distribution
between LLMs with the corresponding weaker amateur models5. The truncating parameter γ for
CD is searched from [0.1, 0.3, 0.5, 0.7, 0.9].

yi ∼ p(yi|y<i, x)− pAMA(yi|y<i, x)

* CAD (Shi et al., 2023) is context-aware decoding, which makes the contrastive distribution by
removing the input x. The hyper-parameter α is set as 0.5 as recommended in their paper.

yi ∼ (1 + α) · p(yi|y<i, x)− α · p(yi|y<i)

* DIVERL and DIVERR are our methods, which respectively form the candidate spans by utiliz-
ing the LEFT and RIGHT points as boundaries. The hyper-parameter γ is set to 0.1 for machine
translation and 0.3 for other tasks. Analysis about γ is included in section 5.2 6.

Diver
35.94%

Greedy Search

15.62%
Beam Search

15.62%

Tie
32.81%

(a) Rate of the Most Faithful Translations

Diver
Greedy Search
Beam Search
Tie

0 20 40 60 80 100
Ratio

Diver vs. Base

Diver vs. CD

Diver vs. CAD

57.03%

62.5%

48.44%

23.44%

18.75%

25.78%

23.44%

18.75%

25.78%

(b) Win/Tie/Loss Rates of Diver vs. Other Methods on Faithfulness

win
tie
loss

Figure 4: Human judgments on (a) most faithful translation selection among decoding methods in
Flores Zh-En and (b) win/tie/loss rates of DIVER compared with other decoding methods in E2E.

5Unless otherwise specified, we employ Tiny-LLaMA-1.1B-Chat as the amateur model for CD experiments.
6It should be noted that CD, CAD, and DIVER are applied on top of basic decoding strategies, either greedy

search or nucleus sampling.
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4.2 EXPERIMENTAL RESULTS

The experimental results are shown in Table 2 and Table 3. Generally, the proposed DIVER achieves
the best performance across various downstream tasks. It is worth noting that DIVERR is slightly
better than DIVERL, demonstrating that the amount of information is more essential for verification.

Machine Translation For machine translation datasets, the findings reveal that contrastive de-
coding methods, represented by CD and CAD, fail to yield significant improvements compared to
vanilla greedy decoding. Conversely, DIVER consistently surpasses the baseline methods on both
7B or 13B models. Interestingly, the enhancements in performance for similar language pairs are
modest, such as Fr-En (+0.83) and De-En (+0.91). However, for distant language pairs like Zh-En
and Ar-En, the improvements are substantial, resulting in gains of 1.63 and 4.28 respectively. This
underscores the efficacy of the PMI verification strategy for enhancing translations from distant
languages to English, particularly those under-represented in LLaMA models.

Element-Constrained Generation For this task, DIVER also demonstrates its superiority over
other decoding strategies. For E2E, which aims to generate descriptions of restaurants based on
given properties, DIVER achieves significant improvements (+11.77 average scores on LLaMA-2-
7B-Chat) due to the relatively fixed nature of the references. In contrast, CommonGen requires
LLMs to generate logical sentences containing several concepts, with references that are more flex-
ible in expression compared to E2E. Although the improvements are not as significant as in E2E,
DIVER still enhances overall performance in CommonGen, achieving a 1.17 average score improve-
ment on LLaMA-2-13B-Chat.

World-Knowledge QA For the knowledge QA tasks, we employ in-context-learning (ICL)
prompts to constrain the output format, whose demonstration is randomly selected from the vali-
dation sets. DIVER further shows its great performance on the QA tasks. We suppose that the reason
behind this lies in that the verification boosts the right answer selection by reviewing the relations
between entities in questions and candidate answers.

Summarization, Dialogue Response and Story Generation These tasks typically allow for sig-
nificant flexibility in content generation. On one hand, DIVER can enhance the recall of generated
outputs by using PMI scores for re-ranking, which is suitable for text summarization. For exam-
ple, DIVERR achieves improvements of 0.95 and 0.82 in average ROUGE scores on SAMSum with
7B and 13B models, respectively. On the other hand, dialogue-response and story-generation tasks
emphasize precision and diversity in outputs. DIVER increases average BLEU and Distinct scores,
demonstrating its superiority in balancing precision and diversity in LLM decoding.

Code Generation We employ Code-LLaMA-Instruct to evaluate the effectiveness of DIVER on
code generation. As shown in Table 2 and Table 3, Pass@1 of DIVER outperforms existing methods,
respectively surpassing greedy search by 2.07 and 1.14 scores on 7B and 13B models. The results
demonstrate that using the test code cases (a part of inputs) for verification will boost the reliability
of code generation, resulting in more cases being passed.

LLaMA-2-Chat

Gemma-7B-Instruct

Mistral-7B-Instruct

LLaMA-3-Instruct
20
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50.4

Vanilla
Diver_Right

Figure 5: Performance improvements on
E2E achieved by using DIVERR with various
LLMs.

Performance on other LLMs We finally con-
ducted experiments on various LLMs using the E2E
dataset. As shown in Figure 5, DIVER obtains
consistently enhanced performance with different
LLMs. This demonstrates that DIVER is robust and
effective across various LLMs.

5 ANALYSIS

5.1 DIVER IMPROVES FAITHFULNESS

DIVER is proposed to address the hallucination
problem in LLMs, primarily focusing on enhancing
the faithfulness of generated outputs. To accurately
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assess the effectiveness of DIVER in this regard, we randomly selected 128 examples from the Flores
Zh-En (Machine Translation) and E2E (Table-to-Text) test sets for human evaluation.

For Flores Zh-En, we ask annotators to choose the translation that is most faithful to the input from
among the candidates produced by different decoding strategies, including greedy search, beam
search (Freitag & Al-Onaizan, 2017), and DIVER. As shown in Figure 4 (a), DIVER provides the
most faithful translations in 35.94% of the examples, outperforming both greedy search and beam
search. For E2E, we instruct annotators to compare the outputs generated by DIVER with those
produced by other decoding methods, judging which is more faithful. Figure 4 (b) indicates that
DIVER achieves high win rates (48.44% ∼ 62.50%) in most cases.

5.2 NUMBER OF DIVERGENCE POINTS, SPAN LENGTH AND HYPER-PARAMETER γ

Number of Divergence Points Figure 6 (a) illustrates the average number of divergence points
per example across various tasks. We observe that tasks with deterministic outputs, like code gen-
eration (MBPP) and translation (Flores Ar-En), typically have fewer divergence points. In contrast,
tasks with greater output variability, such as SAMSum and ROCStory, exhibit a higher number of
divergence points.

Span Length Figure 6 (b) illustrates the distribution of span lengths across various tasks. DIVER-
RIGHT employs adaptive methods to derive dynamic spans, resulting in varied span lengths. For
instance, in MBPP, span lengths exhibit a broader range from 0 to 60, with an average length of
14.9. Conversely, the span lengths in ROCStory and E2E are more tightly clustered between 0
and 20, with average lengths of approximately 4. This highlights DIVER’s capability to provide
spans of appropriate lengths for verification, consequently enhancing performance automatically.
DIVER-LEFT generates shorter spans but maintains similar patterns across various tasks, just like
DIVER-RIGHT. Thus, we do not elaborate further on DIVER-LEFT.

Influence of γ Figure 6 (c) shows the impact of γ on performance enhancements (subtracting the
baseline performances) across various tasks on development sets. The most significant improve-
ments are consistently observed when γ ≤ 0.3 across all tasks. However, subtle variations exist
among tasks. For Flores Ar-En and ROCStory, setting γ = 0.1 yields optimal results, whereas
for E2E, MBPP and SAMSum, γ = 0.3 proves most effective. Nevertheless, all values of γ lead
to improvements. The analysis underscores the recommendation to opt for γ ≤ 0.3 in practical
deployment.
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Figure 6: The analyses about the number of divergence points, length of dynamic spans, and the
influence of γ on development sets.

5.3 DECODING SPEED AND ACCELERATION

Decoding speed is the limitation of DIVER, which is hindered by the additional computation required
for verification steps. Table 4 shows the performance and speed of various decoding methods. Com-
pared to vanilla decoding methods such as greedy search or nucleus sampling, all recently proposed
techniques demonstrate slower speeds. CAD necessitates double computation at each decoding step,
making it the slowest among them. DIVER conducts verification at divergence points, maintaining
a better speed than CAD but still lagging behind vanilla decoding. Conversely, CD utilizes a smaller
model for contrastive decoding, resulting in faster speeds.
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Model Decoding Method E2E Flores Ar-En ROCStory SAMSum Speed (tokens/s)

7B

Vanilla 30.75 25.43 37.56 28.87 38.91 (1.00 ×)
CD - CONTRAST1.1B 30.29 25.33 37.78 28.32 33.08 (0.85 ×)
CAD 34.60 27.10 38.28 29.49 20.08 (0.51 ×)
DIVERR - VERIFY7B 42.52 28.15 38.54 29.82 24.49 (0.63 ×)
DIVERR - VERIFY1.1B 42.19 29.06 38.73 30.13 32.87 (0.84 ×)

13B

Vanilla 34.57 30.27 37.51 30.05 27.36 (1.00 ×)
CD - CONTRAST1.1B 35.24 29.37 37.88 29.69 23.85 (0.87 ×)
CAD 39.08 32.68 38.24 30.78 15.13 (0.55 ×)
DIVERR - VERIFY13B 48.87 34.15 38.84 30.87 16.69 (0.61 ×)
DIVERR - VERIFY1.1B 48.22 32.53 38.90 31.19 22.98 (0.84 ×)

Table 4: The comparison of performance and speed among different decoding methods with
LLaMA-2-7B-Chat.

Drawing inspiration from this, we also utilize Tiny-LLaMA-1.1B-Chat as the verification model
(DIVERR - VERIFY1.1B). Compared to DIVERR using the same model for verification, DIVERR -
VERIFY1.1B significantly boosts decoding speed. Interestingly, using small models for verification
only marginally decreases performance, sometimes even yielding better improvements, making it
conducive to practical deployment.

6 RELATED WORK

Recently, large language models (LLMs) have emerged as the predominant focus of research, pri-
marily owing to their capacity to adeptly tackle a wide range of natural language processing tasks
(Brown et al., 2020; Ouyang et al., 2022). Nonetheless, as LLMs are not tailored for specific down-
stream tasks, they often encounter challenges such as generating unfaithful outputs or factual in-
accuracies, a phenomenon commonly referred to as hallucination problems (Rawte et al., 2023; Ji
et al., 2023; Huang et al., 2023b).

Various decoding methods are proposed to mitigate this issue. To relieve the factual errors (Maynez
et al., 2020; Huang et al., 2023a), Li et al. (2023) propose contrastive decoding, employing the dif-
ference between the distributions of LLMs and the corresponding weaker model for token selection.
Chuang et al. (2024) calculate the token distribution contrasting the logits difference between the
last layer and a premature layer. Xu et al. (2024) adopt multiple LLMs for reliable inference.

Recent studies have endeavored to address the challenge of inconsistency by ensuring contextual
coherence during inference. van der Poel et al. (2022) and Shi et al. (2023) advocate adjusting the
output distribution by reducing reliance on prior context knowledge. In previous studies on attribute-
controlled text generation, Yang & Klein (2021) and Krause et al. (2021) employ Bayesian factor-
ization, requiring each predicted token to accurately predict associated attributes. This methodology
is further applied in LLM decoding, as demonstrated by (Tu et al., 2023).

Regrettably, the effectiveness of the aforementioned faithful decoding methods cannot be guaran-
teed for various tasks, particularly when the input x is information-rich. As discussed in section
A.2, the substantial variance in information content between x and the individual token yi poses
a challenge. DIVER tackles this issue by implementing adaptive token spans for PMI verification,
thereby enhancing LLM decoding both in the performance and versatility across different tasks.

7 CONCLUSION AND FUTURE WORK

In this work, we propose DIVER to enhance the large language model decoding through span-
level point-wise mutual information verification. Experimental results on various downstream tasks
demonstrate the effectiveness of our method. Extensive analyses reveal the characteristics of DIVER,
highlighting both its advantages and disadvantages, as well as the alleviation strategy. Future work
will focus on combining DIVER with speculative decoding (Stern et al., 2018; Xia et al., 2023;
Leviathan et al., 2023) to accelerate inference for LLMs.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

In this work, large language models are used to improve writing, mainly for text polishing and typo
correction.

A.2 WHY USE TOKEN SPANS FOR VERIFICATION

One of the primary innovations of this study lies in the utilization of token spans for PMI calcula-
tion. This section addresses the rationale behind our preference for spans over individual tokens in
verification.

E2E Zh-En MBPP ROCStory SAMSum
Vanilla 30.75 39.14 46.60 37.56 28.87
Beam Search 37.52 39.76 49.80 37.11 29.34
BAYESIAN (Tu et al., 2023) 39.95 39.33 46.20 38.16 28.73
DIVER-TOKEN 41.25 39.96 47.33 38.16 29.34
DIVERR 42.52 40.77 48.67 38.54 29.82

Table 5: The comparison of methods that employ a single token or token spans to perform verifica-
tion during decoding with LLaMA-2-7B-Chat.

Input name : The Punter | Type : pub | food : English | price : high | area : riverside | family
friendly : yes | near : Raja Indian Cuisine

Greedy The Punter is a riverside pub offering high-quality English food in a family-friendly
atmosphere.

CD The Punter is a riverside pub offering high-quality English food in a family-friendly
atmosphere, but it does not cater to families.

CAD The Punter is a riverside pub offering high-quality English food in a family-friendly
atmosphere.

BAYESIAN The Punter is a high-end English pub located on the riverside, offering a range of tradi-
tional dishes with a modern twist, and is family-friendly.

DIVER The Punter is a riverside pub serving high-priced English food, with family-friendly
atmosphere, located near Raja Indian Cuisine.

Table 6: An example (E2E) that illustrates DIVER maintaining the integrity of semantics with span-
level verification and thus avoiding the omission problem.

As illustrated in Table 5, the performance of DIVERR, which employs span-level verification, con-
sistently surpasses that of DIVER-TOKEN, which relies on single-token verification. This highlights
the significance of sufficient information in ensuring accurate PMI calculation, thereby impacting
the effectiveness of downstream tasks.

Furthermore, we conduct a comparative analysis between DIVERR, beam search, and the BAYESIAN
based decoding approach (Yang & Klein, 2021; Tu et al., 2023). Specifically, BAYESIAN is simi-
lar to DIVER-TOKEN, which also utilizes individual tokens for verification. The key differences
are: DIVER-TOKEN uses the delta of input likelihood for verification when decoding yi, while
BAYESIAN directly predicts the input likelihood; (2) DIVER-TOKEN operates at divergence points,
whereas BAYESIAN functions at each decoding step, similar to beam search. The results demon-
strate that, compared to beam search and BAYESIAN, DIVERR exhibits superior versatility, yielding
notable enhancements across multiple tasks.

Besides demonstrating superior performance, we use a specific example picked from E2E (table-to-
text) to illustrate how DIVER addresses the omission problem and thereby improves faithfulness. As
shown in Table 6, when given a sequence of table elements as the input, LLaMA-2-7B-Chat with
existing decoding strategies generates sentences that consistently ignore near: Raja Indian Cuisine.
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In contrast, DIVER, which employs token spans for verification, provides sufficient information
for span selection and successfully generates a sentence that includes this important element. This
underscores the importance of employing spans with adequate information for effective verification.

A.3 SUPPLEMENTARY EXPERIMENTS

We also conduct experiments on the instruction following task with the AlpacaEval (Dubois et al.,
2023) dataset. We measure the pairwise Win Rate against Text-Davinci-003 using GPT-47.

As shown in Table 7, we employ nuclear sampling as the baseline and compare its win rate to that
of DIVER. The results demonstrate that DIVER is not only effective for traditional NLP tasks but
also excels in instruction-following tasks (+7.45% for DIVERR), which are crucial in the research of
LLMs8.

Decoding Sampling DIVERL DIVERR

Win Rate 58.14% 63.11% 65.59%

Table 7: Win rate of LLaMA-2-7B-Chat generations using different decoding methods against Text-
Davinci-003.

A.4 INSTRUCTION TEMPLATE

The instruction templates for each dataset are listed in Table 8-16. In our method, DIVER employs
the same LLMs for PMI calculation, which need examples with backward instructions. The back-
ward examples are also included in the corresponding tables.

PROMPT FOR E2E
Main Components: [INPUT]
Write a Sentence to describe the Main Components. Sentence:
BACKWARD EXAMPLE FOR DIVER

Sentence: [INCOMPLETE_OUTPUT]
Extract the Main Components from the Sentence. Main Components: [INPUT]

Table 8: Instruction and backward example for E2E.

PROMPT FOR TRANSLATION (FLORES-200)
[SOURCE]: [INPUT]
Translate the [SOURCE] sentence into [TARGET] sentence. [TARGET]:
BACKWARD EXAMPLE FOR DIVER

[TARGET]: [INCOMPLETE_OUTPUT]
Translate the [TARGET] sentence into [SOURCE] sentence. [SOURCE]: [INPUT]

Table 9: Instruction and backward example for Flores-200. [SOURCE] and [TARGET] refer to
languages.

7gpt-4-0613 API is employed for the evaluation
8Honestly speaking, evaluating using GPT-4 is somewhat expensive for us. So, we only assessed the three

experiments listed in Table 7.
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PROMPT FOR CNN/DAILYMAIL

Article: [INPUT]
Summarize the Article in one Sentence. Sentence:
BACKWARD EXAMPLE FOR DIVER

Summary: [INCOMPLETE_OUTPUT]
Expand the Summary to an Article. Article: [INPUT]

Table 10: Instruction and backward example for CNN/DailyMail.

PROMPT FOR ROCSTORY

Four-Sentence-Story: [INPUT]
Write a Ending Sentence according to the given Four-Sentence-Story. Ending Sentence:
BACKWARD EXAMPLE FOR DIVER

Ending Sentence: [INCOMPLETE_OUTPUT]
Write a Four-Sentence-Story according to the given Ending Sentence. Four-Sentence-Story: [INPUT]

Table 11: Instruction and backward example for ROCStory.

PROMPT FOR MBPP
You are an expert Python programmer, and here is your task: [TASK_DESCRIPTION]
Your code should pass these tests:
[TEST_CASE_1]
[TEST_CASE_2]
[TEST_CASE_3]
Your code should start with a [PYTHON] tag and end with a [/PYTHON] tag.
[PYTHON]

BACKWARD EXAMPLE FOR DIVER

You are an expert that can understand Python programs. Give you codes that start with a [PYTHON]
tag and end with a [/PYTHON] tag.
[PYTHON]

[INCOMPLETE_OUTPUT]
[/PYTHON]

The above code should pass these tests:
[TEST_CASE_1]
[TEST_CASE_2]
[TEST_CASE_3]

Table 12: Instruction and backward example for MBPP.

PROMPT FOR COMMONGEN

Given several concepts (i.e., nouns or verbs), write a short and simple sentence that contains *all* the
required words. The sentence should describe a common scene in daily life, and the concepts should be
used in a natural way.
Concepts: [INPUT]
Sentence:
BACKWARD EXAMPLE FOR DIVER

Given a short and simple sentence, extract several concepts (i.e., nouns or verbs) from the sentence.
Sentence: [INCOMPLETE_OUTPUT]
Concepts: [INPUT]

Table 13: Instruction and backward example for CommonGen.
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PROMPT FOR ALPACAEVAL

[INPUT]
BACKWARD EXAMPLE FOR DIVER

[INCOMPLETE_OUTPUT]
Based on the response, the instruction can be: [INPUT]

Table 14: Instruction and backward example for AlpacaEval.

PROMPT FOR SAMSUM

Dialogue: [INPUT]
Summarize the Dialogue in one Sentence. Sentence:
BACKWARD EXAMPLE FOR DIVER

Summary: [INCOMPLETE_OUTPUT]
Expand the Summary to a Dialogue. Dialogue: [INPUT]

Table 15: Instruction and backward example for SAMSum.

PROMPT FOR NATURAL QUESTIONS & WEB QUESTIONS

Question: [Q1]Answer: [A1] | Question: [Q2]Answer: [A2] | · · · | Question: [Qk]Answer: [Ak]

| Question: [INPUT] Answer:
BACKWARD EXAMPLE FOR DIVER

Answer: [A1]Question: [Q1] | Answer: [A2]Question: [Q2] | · · · | Answer: [Ak]Question: [Qk]

| Answer: [INCOMPLETE_OUTPUT] Question: [INPUT]

Table 16: k-shot prompt and backward prompt for Natural Question and Web Questions. We
recommend using in-context-learning for unaligned models.
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