
Under review as a conference paper at ICLR 2023

LABEL DISTRIBUTION LEARNING VIA IMPLICIT DIS-
TRIBUTION REPRESENTATION

ABSTRACT

In contrast to multi-label learning, label distribution learning characterizes the
polysemy of examples by a label distribution to represent richer semantics. In
the learning process of label distribution, the training data is collected mainly by
manual annotation or label enhancement algorithms to generate label distribution.
Unfortunately, the complexity of the manual annotation task or the inaccuracy of
the label enhancement algorithm leads to noise and uncertainty in the label dis-
tribution training set. To alleviate this problem, we introduce the implicit distri-
bution in the label distribution learning framework to characterize the uncertainty
of each label value. Specifically, we use deep implicit representation learning to
construct a label distribution matrix with Gaussian prior constraints, where each
row component corresponds to the distribution estimate of each label value, and
this row component is constrained by a prior Gaussian distribution to moderate
the noise and uncertainty interference of the label distribution dataset. Finally,
each row component of the label distribution matrix is transformed into a standard
label distribution form by using the self-attention algorithm. In addition, some
approaches with regularization characteristics are conducted in the training phase
to improve the performance of the model.

1 INTRODUCTION

Label distribution learning (LDL) (Geng (2016)) is a novel learning paradigm that characterizes
the polysemy of examples. In LDL, the relevance of each label to an example is given by an exact
numerical value between 0 and 1 (also known as description degree), and the description degree of
all labels forms a distribution to fully characterize the polysemy of an example. Compared with
traditional learning paradigms, LDL is a more generalizable and representational learning paradigm
that provides richer semantic information.
LDL has been successful in several application domains (Gao et al. (2018); Zhao et al. (2021); Chen
et al. (2021a); Si et al. (2022)). To obtain the label distribution for learning, there are mainly two
ways: one is expert labeling, but labeling is expensive and there is no objective labeling criterion,
and the resulting label distribution is highly subjective and ambiguous. The other is to convert
a multi-label dataset into a label distribution dataset through a label enhancement algorithm (Xu
et al. (2019; 2020); Zheng et al. (2021a); Zhao et al. (2022b)). However, label enhancement lacks
a reliable theory to ensure that the label distribution recovered from logical labels converges to
the true label distribution, because logical labels provide a very loose solution space for the label
distribution, making the solution less stable and less accurate.
In summary, the label distribution dataset used for training has a high probability of inaccuracy
and uncertainty, which significantly limits the performance of LDL algorithms. To characterize and
mitigate the uncertainty of the label distribution, we propose a novel LDL method based on the
implicit label distribution representation. Our work is inspired by recent work on implicit neural
representation in 2D image reconstruction (Sitzmann et al. (2020)). The key idea of implicit neural
representation is to represent an object as a function that maps a sequence of coordinates to the corre-
sponding signal, where the function is de-parameterized by a deep neural network. In this paper, we
start with a deep network to extract the latent features of input information. Then, the latent features
are looked up against the encoded coordinate matrix to generate a label distribution matrix (implicit
distribution representation). Finally, the label distribution matrix is computed by a self-attention
module to yield a standard label distribution. Note that the goal of the proposed implicit distribution
representation is to generate a label distribution matrix with Gaussian distribution constraints as a
customized representation pattern.

1

Under review as a conference paper at ICLR 2023

Figure 1: Our architecture. This fig-
ure shows the architecture of the pro-
posed deep implicit function, which
consists of two parts. The first part
starts with a latent feature predic-
tion stream (SNN with an MLP) that
learns the input information to predict
the feature maps. The second part
learns a label distribution matrix to
regress a label distribution.

To efficiently generate latent features around the coordinate, we design a deep spiking neural net-
work (Yamazaki et al. (2022)) with an MLP as an executor to extract latent features in the input
information. The architecture of the whole network consists of multiple layers of linear spiking
neurons, and the neurons of different layers conduct a shortcut between them. Notably, spiking
neural networks have two key properties that are different from the representation of artificial neu-
ral networks. First, a standard spiking neural network considers the time characteristics T (taking
the image as an example, the input tensor X ∈ RT×C×W×H .) at a multi-step inference mecha-
nism. Here, we create several pseudo-feature spaces on the native feature space by setting different
strategies with data augmentation (Ucar et al. (2021)). These pseudo-features and the native feature
are stacked in the time dimension T to achieve the multi-step inference mechanism. Second, the
representation capability of the spiking neural network is underpowered, since the output space is a
binarized sequence ({0 · · · 1}). Therefore, we place a standard MLP in the last layer of the spik-
ing neural network, which projects the features into the real number space. Our model saves about
30∼40% of energy consumption over ANNs with the same network structure on embedded devices
such as lynxi HP300, Raspberry Pi, or Apple smartphones (PyTorch 1.2 support M1 Mac).
The extraction of latent features provides material for the coordinates to generate the label distribu-
tion matrix. First, the initialized coordinate matrix (the size is L× 64, where L denotes the number
of labels, and 64 denotes features of the nodes) is reconstructed by using a GCN. Note that the fea-
tures of the nodes meet the Gaussian distribution since the deep network needs to reconstruct the
data from a fixed distribution. Then the coordinate matrix is repeated in N copies, and N denotes
the number of samples. Next, the coordinate matrix computes a label distribution matrix (the size is
N × L× 2L) in the latent feature space by looking up the table1. Each component of the label dis-
tribution matrix represents the distribution of each label value, and the components are constrained
by a priori Gaussian distributions. Finally, the label distribution matrix leverages a self-attention
mechanism to obtain the corresponding label distribution of the samples.
Yet, deep learning-based approaches are prone to overfitting manually extracted features. To allevi-
ate the problem, we propose some regularization approaches to boost the performance of the model,
and a new dataset based on the image comprehension task is released. Our contribution includes:
(i) For LDL, this is a novel method to obtain the label distribution of a sample through the implicit
distribution representation. (ii) Spiking neural network with an MLP is developed to save energy
consumption of mobile devices, and correlations between labels are deeply mined by a graph convo-
lutional network. (iii) To the best of our knowledge, we are the first to tackle the tabular LDL issue
by using deep learning. Facing the LDL task, some regularization techniques are designed to boost
the performance of the model and a new LDL dataset is released.

2 BACKGROUND AND MOTIVATION

Starting in 2016, LDL (Geng (2016)) is officially proposed as a novel learning paradigm that aims
to inscribe the polysemy of a sample through the degree of description. Then, from the viewpoint of
task kinds, LDL is categorized into two domains. 1) Addressing the uncertainty of application tasks
(Gao et al. (2017); Ren & Geng (2017); Gao et al. (2018); Chen et al. (2021a); Liu et al. (2021);
Zhao et al. (2021); Li et al. (2022); Si et al. (2022); Cao et al. (2022); Buisson et al. (2022)); 2)
Studying the characteristics of label distributions on customized datasets (Geng (2016); Zhao &
Zhou (2018); Ren et al. (2019b;a); Wang & Geng (2021); Jia et al. (2021a;b); Zhao et al. (2022a);
Tan et al. (2022)). However, the existing work overlooks the fact that task 2 also requires uncertainty
modeling for the label space. In this paper, we conduct uncertainty modeling on task 2 to boost
the learning ability of the LDL algorithm. From a technical viewpoint, our approach has three

1
https://pytorch.org/tutorials/intermediate/spatial_transformer_tutorial.html

2

https://pytorch.org/tutorials/intermediate/spatial_transformer_tutorial.html

Under review as a conference paper at ICLR 2023

distinct motivations for uncertainty estimation. (i) To avoid the limitations of explicit modeling on
the regression space, we introduce deep learning to handle task 2, where uncertainty is enforced
on the representation process (label distribution matrix). By modeling the label space, the label
distribution matrix provides a smoother estimation space as a feature map in the deep network. (ii)
Compared to existing work (Ren et al. (2019b); Jia et al. (2021a); Qian et al. (2022)) that considers
label correlation, we use GCN to deeply mine label correlation. (iii) Besides that, SNN started
to show amazing potential on regression tasks (Ahmadi et al. (2021); Patel et al. (2021); Kim &
Panda (2021); Lian et al. (2022); Yamazaki et al. (2022)), to enhance computational efficiency and
maintain modeling capabilities, thus introducing it to handle task 2. Overall, our approach tackles a
new problem, while the technical approach is the first of its kind.

3 PROPOSED METHOD
As shown in Figure 1, our architecture is a two-stage scheme, which is based on an implicit repre-
sentation approach. In the first stage (latent feature extraction), the raw features X are fed into the
encoder for encoding to construct a latent feature space Ff ∈ RL×H×W . In the second stage (label
distribution matrix learning), the coordinate tensor (coordinate matrix is reshaped after GCN)
Cr ∈ RL×L×2) is looked up in the latent feature space Ff to generate a label distribution matrix
M ∈ RL×2L, and finally a label distribution D is obtained by using self-attention algorithm. The
dimension 2 of the coordinate tensor comes from a weak assumption that the label relation exists in a
two-dimensional plane, such as the relative positions of “tree” and “sun” in an image. Furthermore,
some regularization terms are introduced to our model to boost its performance.
Latent Feature Extraction. Our model starts with a latent feature extraction task, which is based on
a spiking neural network. Spiking neural networks have a high potential value as a 3rd deep model
and are efficient and interpretable. In the LDL task, we develop a non-fixed Network Architecture
and a Network Implementation due to the diversity of LDL dataset formats.
Network Architecture: Our network consists of 17 layers of function units, which include 8 linear
units, 8 nonlinear units, and a transformation layer (including an MLP, a mean operator, and a
reshape operator). Essentially, this is a residual network and the transformation layer at the tail of
the network. Except for the first layer (the number of neurons is the dimensionality of the input
features), each linear unit contains 1024 neurons, followed closely by a ReLU non-linearity, and
the last layer is a reshape function to generate the feature space Ff . On datasets with a smaller
feature space X (e.g., Gene dataset has only 36 features), each linear layer includes 64 neurons. We
also attempted to use other activation functions than ReLU, such as PReLU, Swish, and Sigmoid,
but without any advantage. Besides, since the spiking network involves a time dimension, the time
dimension T is squeezed in the output space of the spiking network by using a mean operator. The
network’s tailgate should notice that the feature map is reshaped as Ff using a reshape operator and
the MLP (the number of neurons is L×W ×H .), where H and W are 32.
Network Implementations: The simplified residual network is implemented as an ANN in two
frameworks: PyTorch 1.12 (a standard deep network training library) and SpikingJelly 0.0.13 (a
library for deep learning applications that is part of the PyTorch ecosystem). The SpikingJelly
implementation can be run in spiking or non-spiking modes. To train the spiking network, we use an
ANN-SNN conversion training approach. The conversion is simple, we convert the trained model
on PyTorch with the help of an ann2snn.Converter (SpikingJelly) to obtain an SNN model. Note
that the conversion method defines six modes (max, 99.9%, 1.0\2, 1.0\3, 1.0\4, 1.0\5) to obtain
SNN with different accuracy, and in this paper, we chose 99.9%. The literature (Patel et al. (2021))
provides a theoretical basis for analyzing the conversion of ANN to SNN.
Learning Label Distribution Matrix. Inspired by confident learning (Northcutt et al. (2021)), we
develop a label distribution matrix with a Gaussian before estimating the uncertainty of the labels.
For the data distribution of each label value, we use a Gaussian distribution to delimit the distribution
rather than other multi-peaked distribution priors, and numerous kinds of literature have verified that
this approach can eliminate the uncertainty (Liu et al. (2021); Zheng et al. (2021b); Ghosh et al.
(2021); Li et al. (2022)). Note that since the label distribution values are in the range of 0 to 1, we
also constrain the vector after Gaussian sampling to be in the range of 0 to 1. Furthermore, to capture
the global correlation between labels to generate a standard label distribution, we employ a self-
attention mechanism to model the label distribution matrix. To obtain a label distribution matrixM,
we need a latent feature Ff from the SNN and a coordinate matrix Cb : GCN(Cr) (GCN denotes the
graph convolution network) that passes through the graph convolution network. Specifically, first,
we initialize a matrix of coordinates Cr ∈ RL×64 based on the functions (torch.randn) provided by

3

Under review as a conference paper at ICLR 2023

PyTorch. L denotes the number of nodes and 64 denotes that we assign one feature vector to each
node, with each feature vector sampled in a Gaussian distribution. To build a graph structure the
data needs information about the edges, where there is an edge with no direction between the nodes.
So far, we built the node with the edge information and have the ability to integrate it into a graph
to input into the GCN. Our GCN includes four graph convolution layers and four activation layers,
where the activation function uses ReLU. These four graph convolutions include 64, 128, 256, and
L × L × 2 neurons respectively. There is one key message to note, the output matrix Cb of the
GCN is filled (torch.repeat) with the same number of samples as the latent feature space Ff . Then,
we use Cb to look up the table in Ff to obtain a matrix by using flatten operations. The L label
distribution values include a 1 × 2L vector to form a label distribution matrixM. Each vector is
constrained by a designated Gaussian distribution M̄ with parameters whose mean is the value of
the label distribution and variance of 0.5. Finally, this matrix is squeezed by using a self-attention
algorithm (Vaswani et al. (2017)) to obtain the corresponding label distribution for the samples. For
self-attention algorithm, we treat each vector in the label distribution matrix as a token by using the
scaled dot product to obtain a global correlation matrix, and finally an MLP with Softmax to squeeze
the matrix for a standard label distribution. As shown in Figure 2, we extract the heat map calculated
by the self-attention algorithm, heat map of the model output before the self-attention algorithm and
the heat map of raw label space on Movie dataset. Overall, the label correlations of these heat maps
tend to be consistent.

(a) Raw label space (b) Self-attention algorithm (c) w/o Self-attention algorithm

Figure 2: This figure shows the label correlation on the Movie dataset.
Regularization Techniques. We propose two techniques (Linear Normalization Function, Data
Augmentation) to boost the performance of our model.

Linear Normalization Function: Currently, most existing LDL algorithms use Softmax to output
a vector in the tail of the model.

Softmax(dyii) =
ed

yi
i∑K

k=1 e
d
yk
k

, (1)

where dyii denotes a label value in the vector and K denotes the number of elements. Since the
complexity of exponential operations is much higher than linear operations, especially in the train-
ing phase of the model (e.g. Gamma correction (Ju et al. (2019))). Several algorithms (such as
cosFormer (Qin et al. (2022))) seek to replace exponential operations. Here, we develop a linear
function Lnf to replace Softmax to output a label distribution vector. Then predicted label distribu-
tion d̂i =

{
d̂y1i , d̂

y2
i , . . . , d̂

yc
i

}
can be obtained by:

Lnf(d̂yii) =
dyii + |Dmin|∑C

c=1(dycc + |Dmin|)
, (2)

where |Dmin| denotes the absolute value of the minimum of the predicted label distribution values.
Essentially, our method offsets the values of the label distribution to the positive domain of the x-
axis. We evaluate both Softmax and linear normalization function on 12 datasets, and our network
with the linear normalization function converges 2.1 × faster than the model with Softmax.

Data Augmentation: Most LDL datasets are difficult to augment the samples with expert knowl-
edge since the input features are extracted manually. To overcome this challenge, we introduce
a simple and data-agnostic data augmentation routine, termed mixup (Zhang et al. (2018)). In a
nutshell, mixup constructs virtual training examples:

x̃ = λxi + (1− λ)xj , where xi, xj are raw input vectors
ỹ = λdi + (1− λ)dj , where di,dj are label distribution vectors

(3)

4

Under review as a conference paper at ICLR 2023

(xi, yi) and (xj , yj) are two examples drawn at random from our training data, and λ ∈ [0, 1].
However, a deep network may still be over-fitted during the training phase, which leads to poor
generalization. We use the random masking scheme endowed on mixup, formally expressed as:

x̃ = λxi ∗mask + (1− λ)xj ∗mask, where xi, xj are raw input vectors
ỹ = Lnf(λdi + (1− λ)dj), where di,dj are label distribution vectors

(4)

the mask is a vector represented by 1 or 0. In this paper, a mask contains 80% of the scalar 1 and
the rest is 0. Moreover, to solidify the definition of the label distribution, we use Lnf to normalize
the synthesized label vectors. We also tried using other regularization schemes, such as random
cropping, and the results do not improve significantly.

Loss Function. We optimize the weights and biases of the proposed network by minimizing the L1,
KullbackLeibler (K-L) divergence, and regularization of the label distribution matrix on the training
set,

L =
1

N

N∑
i=1

∥∥∥d̂i − di

∥∥∥
1

+ λLkl(d̂i,di) + β

N∑
n=1

L∑
l=1

L2(Mnl,M̄nl), (5)

where N is the number of training samples, d̂i is the label distribution vector by our model, and
di is the corresponding ground truth. The weight λ of the loss term Lkl (K-L) is set to 0.01 in our
experiments. In addition, the weight β of the loss term (label distribution matrix) is set to 0.1 in our
experiments. Since it is difficult to capture useful information by encoding a small number of tokens,
encoding for sequences of long tokens can extract higher-order semantics, such as perceptual loss
(Johnson et al. (2016)). Therefor, we used the above-mentioned learning strategy on the datasets
with several labels less than 20. On the datasets with the number of labels greater than 20, we
used L1, K-L divergence, perceptual loss, and regularization of the label distribution matrix on the
training set,

L =
1

N

N∑
i=1

∥∥∥d̂i − di

∥∥∥
1

+ λ1Lkl(d̂i,di) + λ2Lp + β

N∑
n=1

L∑
l=1

L2(Mnl,M̄nl), (6)

we use MLPs as the pre-trained model for the perceptual loss function (Lp). The weight λ1, λ2, and
β are set to 0.01, 0.01, 0.08 in our experiments, respectively. These MLPs consist of three linear
layers with fixed neurons and three activation layers (ReLU), where the number of neurons is the
same as the number of labels, using Kaiming initialization (He et al. (2015)).

4 EXPERIMENTS

Algorithm Configurations. We conduct experiments on 12 datasets, the characteristics of the
datasets are reported in Table 5. Except for dataset wc-LDL, the configuration of all other datasets
is referenced to (Wang & Geng (2021)). This new release dataset (wc-LDL) has 500 watercolor im-
ages and corresponding label distribution (12 emotions). We develop the SNN with configurations
on different datasets also summarized in Table 5. To evaluate the performance of LDL models, we
use the six metrics proposed by (Geng (2016)), including Chebyshev distance ↓, Clark distance ↓,
Canberra distance ↓, KL divergence ↓, Cosine similarity ↑, and Intersection similarity ↑. LF and DA
denote the loss function and data augmentation method, respectively. ↓ represents the indicator’s
performance favoring low values and ↑ represents the indicator’s performance favoring high values.
L1,2:end denotes the number of neurons in the head layer and the rest of the layers of the SNN.
Experimental Setting. We conduct comparative experiments with five LDL algorithms (BFGS-
LLD (Geng (2016)), LDL-LRR (Jia et al. (2021a)), LDL-LCLR (Ren et al. (2019b)), LDLSF (Ren
et al. (2019a)) and LALOT (Zhao & Zhou (2018))) which also used data augmentation schemes
on 12 datasets. Furthermore, to validate the effectiveness of our proposed method, we design a
baseline model to be conducted on 12 datasets. For the baseline model (a-LDL), we drop the implicit
representation and use only a two-layer network with the label distribution matrix to learn a label
distribution. a-LDL without any additional regularization terms and data augmentation mechanisms
in the training stage. BFGS-LLD is based on a linear model, the loss function is K-L divergence, and
the optimization method is the quasi-Newton approach. LDL-LRR and LDL-LCLR both consider
label correlations in the learning process, with the former considering the order relationship of the
labels and the latter capturing global relationships between labels. For LDL-LRR, the parameters λ
and β are selected from 10{−6,−5,...,−2,−1} and 10{−3,−2,...,1,2}, respectively. For LDL-LCLR, the

5

Under review as a conference paper at ICLR 2023

parameters λ1, λ2, λ3, λ4 and k are set to 0.0001, 0.001, 0.001, 0.001 and 4, respectively. LDLSF
leverages label-specific features and common features simultaneously, whose parameters λ1, λ2 and
λ3 are selected from 10{−6,−5,...,−2,−1}, respectively, and ρ is set to 10−3. LALOT adopts optimal
transport distance as the loss function, the trade-off parameter C and the regularization coefficient λ
is set to 200 and 0.2, respectively. Our approach for experimental settings is reported in Table 6. It
is worth noting that Early stopping and Greed soup (Wortsman et al. (2022)) are also used on all the
datasets where the comparison algorithm is executed. Our method is marked as gray .

Dataset Algorithm Chebyshev ↓ Clark ↓ Canberra ↓ K-L ↓ Cosine ↑ Intersection ↑
Ours 0.0779 ± 0.0021 0.3980 ± 0.0051 0.7779 ± 0.0030 0.4040 ± 0.0020 0.9883 ± 0.0009 0.8778 ± 0.0014

a-LDL 0.0855 ± 0.0034 0.4667 ± 0.0052 0.8007 ± 0.0110 0.4455 ± 0.0033 0.9788 ± 0.0079 0.8705 ± 0.0079
LDL-LRR 0.1122 ± 0.0030 0.4772 ± 0.0036 0.8802 ± 0.0024 0.5533 ± 0.0049 0.9510 ± 0.0022 0.8555 ± 0.0047

LDL-LCLR 0.1057 ± 0.0019 1.0569 ± 0.0039 0.7890 ± 0.0039 0.5045 ± 0.0037 0.9668 ± 0.0049 0.8383 ± 0.0018
LDLSF 0.1009 ± 0.0038 0.4199 ± 0.0044 0.9008 ± 0.0015 0.5199 ± 0.0040 0.9779 ± 0.0018 0.8660 ± 0.0022
LALOT 0.0989 ± 0.0019 0.6689 ± 0.0019 0.8089 ± 0.0049 0.4778 ± 0.0018 0.9476 ± 0.0020 0.8700 ± 0.0033

wc-LDL

BFGS-LLD 0.1229 ± 0.0039 1.5657 ± 0.0021 0.7998 ± 0.0020 0.4998 ± 0.0051 0.9704 ± 0.0036 0.8611 ± 0.0016

Ours 0.0854 ± 0.0018 0.4008 ± 0.0030 0.7955 ± 0.0023 0.4100 ± 0.0012 0.9799 ± 0.0014 0.8809 ± 0.0015
a-LDL 0.0899 ± 0.0112 0.4189 ± 0.0123 0.8019 ± 0.0023 0.4131 ± 0.0012 0.9702 ± 0.0014 0.8702 ± 0.0015

LDL-LRR 0.1122 ± 0.0030 0.4772 ± 0.0036 0.8802 ± 0.0024 0.5533 ± 0.0049 0.9510 ± 0.0022 0.8555 ± 0.0047
LDL-LCLR 0.1057 ± 0.0019 1.0569 ± 0.0039 0.7890 ± 0.0039 0.5045 ± 0.0037 0.9668 ± 0.0049 0.8383 ± 0.0018

LDLSF 0.1123 ± 0.0038 0.4397 ± 0.0044 0.9212 ± 0.0015 0.5557 ± 0.0040 0.9779 ± 0.0018 0.8660 ± 0.0022
LALOT 0.0989 ± 0.0019 0.6689 ± 0.0019 0.8089 ± 0.0049 0.4778 ± 0.0018 0.9476 ± 0.0020 0.8700 ± 0.0033

SJAFFE

BFGS-LLD 0.1334 ± 0.0139 1.6648 ± 0.0023 0.7999 ± 0.0022 0.04778 ± 0.0051 0.9711 ± 0.0036 0.8655 ± 0.0116

Ours 0.0833 ± 0.0020 0.3994 ± 0.0010 0.7611 ± 0.0020 0.3650 ± 0.0014 0.9811 ± 0.0015 0.8900 ± 0.0017
a-LDL 0.0954 ± 0.0041 0.4099 ± 0.0010 0.7774 ± 0.0083 0.4557 ± 0.0014 0.9788 ± 0.0041 0.8754 ± 0.0010

LDL-LRR 0.1109 ± 0.0036 0.4477 ± 0.0039 0.8666 ± 0.0026 0.5344 ± 0.0028 0.9597 ± 0.0029 0.8592 ± 0.0033
LDL-LCLR 0.1100 ± 0.0025 0.9660 ± 0.0039 0.7897 ± 0.0033 0.5101 ± 0.0021 0.9677 ± 0.0056 0.8555 ± 0.0032

LDLSF 0.1117 ± 0.0048 0.4199 ± 0.0044 0.9013 ± 0.0015 0.5199 ± 0.0040 0.9780 ± 0.0029 0.8622 ± 0.0022
LALOT 0.0989 ± 0.0019 0.6689 ± 0.0019 0.8421 ± 0.0049 0.4776 ± 0.00168 0.9476 ± 0.0020 0.8700 ± 0.0033

SBU

BFGS-LLD 0.1119 ± 0.0030 1.4657 ± 0.0022 0.7700 ± 0.0025 0.04932 ± 0.0053 0.9753 ± 0.0036 0.8710 ± 0.0019

Ours 0.2998 ± 0.0020 2.3374 ± 0.0018 6.5163 ± 0.0018 0.8111 ± 0.0029 0.7890 ± 0.0049 0.5691 ± 0.0010
a-LDL 0.3111 ± 0.0046 2.3881 ± 0.0043 6.6189 ± 0.0066 0.8111 ± 0.0029 0.7516 ± 0.0049 0.5600 ± 0.0111

LDL-LRR 0.3889 ± 0.0111 3.1698 ± 0.0031 6.8777 ± 0.0025 0.8999 ± 0.0069 0.7044 ± 0.0077 0.5444 ± 0.0049
LDL-LCLR 0.3740 ± 0.0066 2.4986 ± 0.0066 6.8600 ± 0.0067 0.8559 ± 0.0039 0.7119 ± 0.0122 0.5119 ± 0.0081

LDLSF 0.3441 ± 0.0249 2.9884 ± 0.0055 6.6900 ± 0.0055 0.8391 ± 0.0044 0.7336 ± 0.0088 0.5660 ± 0.0041
LALOT 0.3129 ± 0.0152 2.3999 ± 0.0044 6.6666 ± 0.0078 0.8226 ± 0.0033 0.7390 ± 0.0100 0.5224 ± 0.0066

Scene

BFGS-LLD 0.3598 ± 0.0020 2.4998 ± 0.0033 6.7999 ± 0.0049 0.8400 ± 0.0033 0.7333 ± 0.0064 0.5199 ± 0.0055

Ours 0.0488 ± 0.0012 2.1029 ± 0.0259 14.0888 ± 0.0551 0.2335 ± 0.0044 0.8395 ± 0.0032 0.7984 ± 0.0066
a-LDL 0.0502 ± 0.0032 2.1777 ± 0.0211 14.1221 ± 0.0413 0.2443 ± 0.0045 0.8298 ± 0.0022 0.7889 ± 0.0063

LDL-LRR 0.0537 ± 0.0039 2.2887 ± 0.0860 14.3550 ± 0.0144 0.2559 ± 0.0077 0.8288 ± 0.0144 0.7789 ± 0.0040
LDL-LCLR 0.0511 ± 0.0022 2.2201 ± 0.0444 14.2101 ± 0.0510 0.2566 ± 0.0047 0.8302 ± 0.0012 0.7722 ± 0.0060

LDLSF 0.0513 ± 0.0030 2.2221± 0.0036 14.3667 ± 0.0265 0.2445 ± 0.0077 0.8320 ± 0.0010 0.7701 ± 0.0026
LALOT 0.0505 ± 0.0033 2.1989 ± 0.0194 14.1855 ± 0.0922 0.2443 ± 0.0088 0.8297 ± 0.0060 0.7888 ± 0.0013

Gene

BFGS-LLD 0.0578 ± 0.0066 2.3008 ± 0.0188 14.3559 ± 0.1556 0.2480 ± 0.0015 0.8300± 0.0049 0.7786 ± 0.0070

Ours 0.1089 ± 0.0018 0.5001 ± 0.0044 0.9722 ± 0.0040 0.0977 ± 0.0008 0.9485 ± 0.0061 0.8602 ± 0.0006
a-LDL 0.1121 ± 0.0023 0.5199 ± 0.0098 1.0549 ± 0.0043 0.1141 ± 0.0031 0.9477 ± 0.0063 0.8566 ± 0.0046

LDL-LRR 0.1135 ± 0.0009 0.5244± 0.0010 1.1551 ± 0.0061 0.1445 ± 0.0049 0.9510 ± 0.0022 0.8772 ± 0.0007
LDL-LCLR 0.1177 ± 0.0086 0.5345 ± 0.0040 1.1533 ± 0.0111 0.1559 ± 0.0030 0.9360 ± 0.0049 0.8222 ± 0.0011

LDLSF 0.1155 ± 0.0045 0.5339 ± 0.0062 1.1152± 0.0050 0.1540 ± 0.0041 0.9445 ± 0.0020 0.8551 ± 0.0044
LALOT 0.1221 ± 0.0110 0.5440 ± 0.0033 1.1110 ± 0.0040 0.1503 ± 0.0008 0.9477 ± 0.0022 0.8559 ± 0.0002

Movie

BFGS-LLD 0.1310 ± 0.0032 0.5230 ± 0.0022 1.1170 ± 0.0024 0.1595 ± 0.0155 0.9400 ± 0.0003 0.8491 ± 0.0018

Ours 0.3763 ± 0.0022 1.1560 ± 0.0102 2.0889 ± 0.0055 0.4880 ± 0.0023 0.7998 ± 0.0022 0.6703 ± 0.0033
a-LDL 0.3810 ± 0.0032 1.2998 ± 0.0143 2.1222 ± 0.0023 0.4889 ± 0.0099 0.7801 ± 0.0039 0.6610 ± 0.0066

LDL-LRR 0.3993 ± 0.0010 1.4990 ± 0.0166 2.1884 ± 0.0034 0.5246 ± 0.0006 0.7531 ± 0.0023 0.6334 ± 0.0077
LDL-LCLR 0.4040 ± 0.0082 1.2444 ± 0.0045 2.2000 ± 0.0009 0.4996 ± 0.0013 0.7760 ± 0.0079 0.6555 ± 0.0012

LDLSF 0.4159 ± 0.0055 1.3105 ± 0.0041 2.2155 ± 0.0076 0.5002 ± 0.0006 0.7552 ± 0.0004 0.6234 ± 0.0033
LALOT 0.3881 ± 0.0099 1.4883 ± 0.0012 2.1257 ± 0.0268 0.4990 ± 0.0008 0.7549 ± 0.0021 0.6620 ± 0.0053

M2B

BFGS-LLD 0.3811 ± 0.0044 1.3650 ± 0.0002 2.1992 ± 0.0095 0.4995 ± 0.0005 0.7699 ± 0.0040 0.6532 ± 0.0009

Ours 0.3895 ± 0.0021 1.2140 ± 0.0111 2.1995 ± 0.0095 0.4911 ± 0.0030 0.6990 ± 0.0002 0.6504 ± 0.0001
a-LDL 0.3992 ± 0.0022 1.2149 ± 0.0133 2.2002 ± 0.0022 0.4990 ± 0.0006 0.6800 ± 0.0032 0.6466 ± 0.0009

LDL-LRR 0.4159 ± 0.0010 1.6680 ± 0.0122 2.2006 ± 0.0039 0.5388 ± 0.0006 0.6531 ± 0.0023 0.5804 ± 0.0007
LDL-LCLR 0.4240 ± 0.0042 1.3444 ± 0.0055 2.2450± 0.0016 0.5131 ± 0.0022 0.6261 ± 0.0005 0.5500 ± 0.0012

LDLSF 0.4360 ± 0.0015 1.2185 ± 0.0022 2.2159 ± 0.0076 0.5120 ± 0.0006 0.6261 ± 0.0004 0.5534 ± 0.0030
LALOT 0.3999 ± 0.0009 1.4983 ± 0.0012 2.2207 ± 0.0158 0.4995 ± 0.0002 0.6549 ± 0.0020 0.6411 ± 0.0044

SCUT

BFGS-LLD 0.3992 ± 0.0055 1.5656 ± 0.0163 2.2832 ± 0.0080 0.4966 ± 0.0011 0.6491 ± 0.0040 0.6333 ± 0.0013

Ours 0.1251 ± 0.0002 1.1890 ± 0.0120 2.0980 ± 0.0223 0.1053 ± 0.0009 0.9643 ± 0.0015 0.8501 ± 0.0025
a-LDL 0.1272 ± 0.0023 1.1990 ± 0.0111 2.1008 ± 0.0244 0.1102 ± 0.0022 0.9600 ± 0.0033 0.8499 ± 0.0034

LDL-LRR 0.1313 ± 0.0031 1.2519 ± 0.0038 2.1992 ± 0.0095 0.1127 ± 0.0077 0.9533 ± 0.0021 0.8412 ± 0.0066
LDL-LCLR 0.1277 ± 0.0016 1.1969 ± 0.0039 2.1194 ± 0.0046 0.1135 ± 0.0006 0.9588 ± 0.0044 0.8483 ± 0.0014

LDLSF 0.1270 ± 0.0028 1.1909 ± 0.0164 2.1846 ± 0.0119 0.1193 ± 0.0041 0.9609 ± 0.0019 0.8460 ± 0.0007
LALOT 0.1306 ± 0.0022 1.1921 ± 0.0015 2.1111 ± 0.0171 0.1120 ± 0.0015 0.9430 ± 0.0019 0.8400 ± 0.0004

fbp5500

BFGS-LLD 0.1299 ± 0.0049 1.4655 ± 0.0041 2.1675 ± 0.0024 0.1135 ± 0.0055 0.9595 ± 0.0030 0.8419 ± 0.0018

Table 1: The performance of our proposed method with the comparison algorithms on 12 datasets.

Results and Discussion. We conduct 10 times 5-fold cross-validation on each dataset. The exper-
imental results are presented in the form of “mean±std” in Tables 1 and 7. Overall, our proposed
method outperforms other comparison algorithms in all evaluation metrics. Each comparison algo-

6

Under review as a conference paper at ICLR 2023

rithm employs some regularization techniques to expand the training sample as well as to prevent
overfitting, however, four main factors contribute to the competitive results of our approach. i):
Moderate noise, especially on the Gene dataset, due to the uncertainty that comes with manual an-
notation, our approach has a huge performance gain with the help of implicit distribution representa-
tion with Gaussian priors. ii): The ability to capture global features between labels with the help of
a self-attention mechanism. Also, a-LDL performs sub-optimally probably because the depth of the
model is insufficient. iii): The powerful representational capabilities of the deep network, especially
on image datasets, give us a huge advantage.

AS Algorithm Chebyshev ↓ Clark ↓ Canberra ↓ K-L ↓ Cosine ↑ Intersection ↑ Dataset

Ours 0.0488± 0.0012 2.1029± 0.0259 14.0888± 0.0551 0.2335± 0.0044 0.8395± 0.0032 0.7984± 0.0066(a) w/o Lp 0.0497± 0.0021 2.1664± 0.0177 14.2651± 0.0155 0.2488± 0.0071 0.8290± 0.074 0.7884± 0.0037 Gene

Ours 0.0779± 0.0021 0.3980± 0.0051 0.7779± 0.0030 0.04040± 0.0020 0.9883± 0.0009 0.8778± 0.0014
w/o PRT 0.0877± 0.0009 0.4008± 0.0043 0.7881± 0.0014 0.04223± 0.0010 0.9779± 0.0008 0.8699± 0.0012

SNN 0.0771± 0.0012 0.4006± 0.0047 0.7805± 0.0011 0.04118± 0.0016 0.9801± 0.0012 0.8664± 0.0029(b,c,d)

GNN 0.0804± 0.0033 0.4133± 0.0017 0.7968± 0.0020 0.04991± 0.0052 0.9705± 0.0036 0.8612± 0.0016

wc-LDL

Table 2: Ablation study (AS). Effectiveness of the loss functions and the modules on two datasets.
Quantitative results demonstrate the effectiveness of each module.
Ablation Study. To demonstrate the effectiveness of the loss function and the module of our model,
we conduct an ablation study involving the following four experiments: (a) w/o perceptual loss
function Lp: we remove the loss function on training Gene dataset, shown in Table 2. (b) w/o our
proposed regularization techniques (PRT): we remove the linear normalization function and the data
augmentation respectively on the training wc-LDL dataset, shown in Table 2. (c) The effectiveness
of SNN: we use standard MLPs to replace SNNs in the same network architecture, shown in Table 2.
(d) The effectiveness of GNN: for deep implicit function construction, we use standard MLPs to
replace GNNs, as shown in Table 2. (e) mixup with mask vs. mixup: we evaluate these two methods
on 12 data sets with our proposed model, and the results show that using mixup with mask improve
overall performance by 6% over using mixup. We conduct 10 times 5-fold cross-validation on the
dataset of the ablation experiment.

Potential of Model and Network. Our model can be extended to handle classification and semi-
supervised tasks. We conduct some experiment reports to show the potential of the public datasets.
In addition, there is a deep model (DLDL (Gao et al. (2017))) based on a label distribution learning
framework as a training scheme being performed on several classification tasks. Since DLDL does
not have an adapted network implementation on tabular data, to demonstrate the effectiveness of our
proposed method, our approach battles with the DLDL algorithm in the age estimation dataset.
(1) Facial expression recognition (Zhao et al. (2021)): To evaluate the effectiveness of the proposed
model, we conduct the experiments on the public in-the-wild facial expression datasets (RAF-DB,
CAER-S, AffectNet). For images on all the datasets, the face region is detected and aligned by using
Retinaface (Deng et al. (2020)). Then, the image is cropped to a fixed resolution (224 × 224) by bi-
linear interpolation. Our approach is pre-trained on the face recognition dataset MS-Celeb-1M, and
the 50-layer Residual Network is used as the backbone network. For our network, parameters were
optimized using the Adam optimizer with an initial learning rate of 0.01, a mini-batch size of 128,
and an epoch is 50. Notably, our network architecture uses a model (both input and output layers
are changed in the number of neurons and the rest are fixed) executed on the Gene dataset with a
single RTX GPU, and the loss function uses cross-entropy. We compared it with the current SOTA
model (Face2Exp) on three popular datasets. The recognition accuracy of Face2Exp in the three data
sets (RAF-DB, CAER-S, AffectNet) is 88.54%, 86.16%, and 64.23% respectively. The recognition
accuracy of our proposed model in three datasets is 88.52%, 86.36%, and 65.02% respectively.
Our algorithm achieves competitive results on most of the face recognition datasets. (2) MedM-
NIST Classification Decathlon (Yang et al. (2021)): We evaluate the algorithm’s performance on the
MedMNIST Classification Decathlon benchmark. The area under the ROC curve (AUC) and Accu-
racy (ACC) is used as the evaluation metrics. Our approach is pre-trained on the Gene dataset, the
18-layer Residual Network is adopted as the backbone network. Our model is trained for 100 epochs,
using a cross-entropy loss and an Adam optimizer with a batch size of 128 and an initial learning
rate of 1 × 10−3 The overall performance of the methods is reported in Table 3. Our model is pre-
trained during the training phase and thus achieves competitive performance on most of the datasets.
Literature (Yang et al. (2021)) includes the bibliography of the full comparison method. (3) CIFAR-
10, SVHN, CIFAR-100 (Hu et al. (2021)): Since our approach involves graph structure, it battles
with other SOTAs on the semi-supervised task. We use ResNet-28-2 as our backbone and Adam with

7

Under review as a conference paper at ICLR 2023

Methods PathMNIST ChestMNIST DermaMNIST OCTMNIST PneumoniaMNIST
AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

ResNet-18 (28) 0.972 0.844 0.706 0.947 0.899 0.721 0.951 0.758 0.957 0.843
ResNet-18 (224) 0.978 0.860 0.713 0.948 0.896 0.727 0.960 0.752 0.970 0.861
ResNet-50 (28) 0.979 0.864 0.692 0.947 0.886 0.710 0.939 0.745 0.949 0.857
ResNet-50 (224) 0.978 0.848 0.706 0.947 0.895 0.719 0.951 0.750 0.968 0.896

auto-sklearn 0.500 0.186 0.647 0.642 0.906 0.734 0.883 0.595 0.947 0.865
AutoKeras 0.979 0.864 0.715 0.939 0.921 0.756 0.956 0.736 0.970 0.918

Google AutoML Vision 0.982 0.811 0.718 0.947 0.925 0.766 0.965 0.732 0.993 0.941
Ours 0.985 0.864 0.722 0.948 0.929 0.765 0.969 0.756 0.992 0.943

Methods RetinaMNIST BreastMNIST OrganMNIST A OrganMNIST C OrganMNIST S
AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

ResNet-18 (28) 0.727 0.515 0.897 0.859 0.995 0.921 0.990 0.889 0.967 0.762
ResNet-18 (224) 0.721 0.543 0.915 0.878 0.997 0.931 0.991 0.907 0.974 0.777
ResNet-50 (28) 0.719 0.490 0.879 0.853 0.995 0.916 0.990 0.893 0.968 0.746
ResNet-50 (224) 0.717 0.555 0.863 0.833 0.997 0.931 0.992 0.898 0.970 0.770

auto-sklearn 0.694 0.525 0.848 0.808 0.797 0.563 0.898 0.676 0.855 0.601
AutoKeras 0.655 0.420 0.833 0.801 0.996 0.929 0.992 0.915 0.972 0.803

Google AutoML Vision 0.762 0.530 0.932 0.865 0.988 0.818 0.986 0.861 0.964 0.706
Ours 0.760 0.570 0.931 0.890 0.996 0.933 0.990 0.917 0.971 0.810

Table 3: Overall performance of MedMNIST in metrics of AUC and ACC, using ResNet-18 /
ResNet-50 with resolution 28 and 224, auto-sklearn , AutoKeras and Google AutoML Vision.

Methods CIFAR-10 SVHN CIFAR-100 Backbone1000 labels 4000 labels 1000 labels 4000 labels 10000 labels 15000 labels

VAT 81.36 88.95 94.02 95.80 77.54 81.55 WRN-28-8
MeanTeacher 82.68 89.64 96.25 96.61 72.68 79.62 WRN-28-8

MixMatch 92.25 93.76 96.73 97.11 71.69 79.13 WRN-28-8
ReMixMatch 94.27 94.86 97.17 97.58 76.97 80.99 WRN-28-8

FixMatch - 95.69 97.64 - 77.40 64.25 WRN-28-8
SimPLE 94.84 94.95 97.54 97.31 78.11 82.40 WRN-28-8

Ours 94.98 95.99 97.56 97.62 78.64 81.02 WRN-28-8

Table 4: CIFAR-10, CIFAR-100, and SVHN Top-1 test accuracy.

weight decay for optimization in all experiments. Our model is trained for 100 epochs, using a cross-
entropy loss with a batch size of 128 and an initial learning rate of 1×10−2 Early-stopping and data
augmentation (Mixup) are also adopted in the training phase. Two datasets (CIFAR-10, and SVHN)
are used for us to evaluate the performance of the algorithm. The overall performance of the methods
is reported in Table 4. Our model still selects MLPs pre-trained on the Gene dataset and performs
competitively on the semi-supervised task. Literature (Hu et al. (2021)) includes the bibliography of
the full comparison method. (4) Semi-supervised label distribution learning (Jia et al. (2021b)): To
evaluate the capability of our model, our proposed algorithm is compared to the SOTA model (PGE-
SLDL (Jia et al. (2021b))) in the Gene with a 50% missing rate. We conduct it 10 times on Gene
and average the 10 results as the final result. PGE-SLDL yield 0.0059±0.0008, 0.4298±0.0006,
4.3899±0.0005, 0.09788±0.0005, 0.8911±0.0008 and 0.8789±0.0007 respectively on the data
set with 6 evaluation metrics (Chebyshev↓, Clark↓, Canberra↓, K-L divergence↓, Intersection↑,
Cosine↑). Our method yield 0.0053±0.0012, 0.4112±0.0005, 4.2990±0.0008, 0.09661±0.0005,
0.9001±0.0012 and 0.8797±0.0008 respectively on the data set with corresponding 6 evaluation
metrics. Our method still shows competitiveness, where the model remains fixed, the learning rate
and the number of iterations are not changed, and the λ2 of Equation 6 is adjusted to 0.25. (5) Our
approach vs. DLDL (Age estimation (Gao et al. (2017))): Two age estimation datasets are used
in our experiments. The first is Morph (Ricanek & Tesafaye (2006)), which is one of the largest
publicly available age datasets. The second dataset is from the apparent age estimation competi-
tion, the first competition track of the ICCV ChaLearn LAP 2015 workshop (Escalera et al. (2015)).
We employ the DPM model to detect the main facial region. Then, the detected face is fed into a
cascaded convolution network to get the five facial key points, including the left/right eye centers,
nose tip, and left/right mouth corners. Finally, based on these facial points, we align the face to the
upright pose. The implementation details of our method with the preprocessing unit are referenced
in DLDL. We used MAE and ε-error to evaluate the performance of our model and the comparison
method, respectively. DLDL algorithm on Morph and ChaLearn with metrics MAE ↓ and ε-error
yields performance that is {2.42, 0.23; 3.51, 0.31}. Our algorithm achieves competitive results
({2.40, 0.20; 3.23, 0.27}).

Visualize of Label Distribution Matrix. We conduct an experiment to verify the validity of our
algorithm. We extract one sample (including features and labeled distributions) on Movie, and then

8

Under review as a conference paper at ICLR 2023

visualize the matrix of label distribution (5×10) learned by the network and the corresponding label
distribution. As shown in the Figure 3, we notice that the data distribution (means and variances)
of the label distribution vector (each row of the label distribution matrix) is consistent with the
corresponding label distribution.

(a) L1 of the matrix (b) L2 of the matrix (c) L3 of the matrix

(d) L4 of the matrix (e) L5 of the matrix (f) Label distribution

Figure 3: This figure shows the distribution of data for each vector of the label distribution matrix
and the corresponding label for this label distribution matrix.
5 APPLICATION AND ENERGY CONSUMPTION
We select the algorithm executed on Gene as the evaluation model. The evaluation model is con-
ducted on three platforms (lynxi HP300, Raspberry Pi, and Apple smartphones) to check the energy
consumption with the same number of iterations (the power is evaluated thanks to the adb script
(Dzhagaryan et al. (2016))). Specifically, our model is trained on Gene with the accuracy of float16.
Then, the baseline model (MLP replaces SNN and GNN) and our model run inference on a mobile
platform, each model executing 500 epochs with 32 batch sizes in the iteration. Experimental results
show that our algorithm saves 34.6%, 41.2%, and 40.8% energy compared to the baseline algorithm
on the three platforms, respectively.

6 RELATED WORKS
Label distribution Learning. Label distribution learning has attracted several attention as a new
learning paradigm. Label distribution learning comes from the scheme proposed by (Geng (2016))
to address the age estimation task. Since then a large number of approaches have been proposed,
such as low-rank hypothesis-based (Jia et al. (2019); Ren et al. (2019b)), metric-based (Gao et al.
(2018)), manifold-based (Wang & Geng (2021)), and label correlation-based (Teng & Jia (2021);
Qian et al. (2022)). Among them, some approaches are executed in computer vision (Chen et al.
(2021a)), and speech recognition (Si et al. (2022)) tasks to improve the performance of classifiers.
In this paper, we try to build a distribution of label distributions to moderate noise and uncertainty.

Implicit Neural Representations. In implicit neural representation, an object is usually represented
as a multi-layer perception (MLP) that maps coordinates to a signal. This idea has been widely
applied in modeling 3D object shapes (Lin et al. (2020); Kohli et al. (2020)), 3D surfaces of the
scene (Sitzmann et al. (2019); Yariv et al. (2020); Niemeyer et al. (2020); Jiang et al. (2020)), the
appearance of the 3D structure as well as the 2D image enhancement (Skorokhodov et al. (2021);
Chen et al. (2021b); Anokhin et al. (2021); Karras et al. (2021)). In this paper, we seek to explore
this technique to address the label distribution learning issue.

7 CONCLUSION
In this paper, we design an implicit distribution representation algorithm to moderate the uncertainty
of the label values, where the implicit function can be a good estimate of the continuous distribu-
tion space. Furthermore, Gaussian prior methods and self-attention mechanisms help the model
learn both local signals and global information of the label distribution matrix. Numerous experi-
ments have verified the effectiveness of our approach as well as the suitability of the regularization
technique. The application session demonstrates the high efficiency of our proposed model.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Mohsen Ahmadi, Abbas Sharifi, Shayan Hassantabar, and Saman Enayati. Qais-dsnn: tumor area
segmentation of mri image with optimized quantum matched-filter technique and deep spiking
neural network. BioMed Research International, 2021.

Ivan Anokhin, Kirill Demochkin, Taras Khakhulin, Gleb Sterkin, Victor Lempitsky, and Denis Ko-
rzhenkov. Image generators with conditionally-independent pixel synthesis. In CVPR, 2021.

Morgan Buisson, Pablo Alonso-Jiménez, and Dmitry Bogdanov. Ambiguity modeling with label
distribution learning for music classification. In ICASSP, 2022.

Zhiwen Cao, Dongfang Liu, Qifan Wang, and Yingjie Chen. Towards unbiased label distribution
learning for facial pose estimation using anisotropic spherical gaussian. In ECCV, 2022.

Jingying Chen, Chen Guo, Ruyi Xu, Kun Zhang, Zongkai Yang, and Honghai Liu. Toward children’s
empathy ability analysis: Joint facial expression recognition and intensity estimation using label
distribution learning. IEEE Transactions on Industrial Informatics, 2021a.

Yinbo Chen, Sifei Liu, and Xiaolong Wang. Learning continuous image representation with local
implicit image function. In CVPR, 2021b.

Jiankang Deng, Jia Guo, Evangelos Ververas, Irene Kotsia, and Stefanos Zafeiriou. Retinaface:
Single-shot multi-level face localisation in the wild. In CVPR, 2020.

Armen Dzhagaryan, Aleksandar Milenkovic, Mladen Milosevic, and Emil Jovanov. An environment
for automated measuring of energy consumed by android mobile devices. In PECCS, 2016.

Sergio Escalera, Junior Fabian, Pablo Pardo, Xavier Baró, Jordi Gonzalez, Hugo J Escalante, Dusan
Misevic, Ulrich Steiner, and Isabelle Guyon. Chalearn looking at people 2015: Apparent age and
cultural event recognition datasets and results. In ICCVW, 2015.

Bin-Bin Gao, Chao Xing, Chen-Wei Xie, Jianxin Wu, and Xin Geng. Deep label distribution learn-
ing with label ambiguity. IEEE TIP, 2017.

Bin-Bin Gao, Hong-Yu Zhou, Jianxin Wu, and Xin Geng. Age estimation using expectation of label
distribution learning. In IJCAI, 2018.

Xin Geng. Label distribution learning. IEEE TKDE, 2016.

Aishik Ghosh, Benjamin Nachman, and Daniel Whiteson. Uncertainty-aware machine learning for
high energy physics. Physical Review D, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In ICCV, 2015.

Zijian Hu, Zhengyu Yang, Xuefeng Hu, and Ram Nevatia. Simple: similar pseudo label exploitation
for semi-supervised classification. In CVPR, 2021.

Xiuyi Jia, Xiang Zheng, Weiwei Li, Changqing Zhang, and Zechao Li. Facial emotion distribution
learning by exploiting low-rank label correlations locally. In CVPR, 2019.

Xiuyi Jia, Xiaoxia Shen, Weiwei Li, Yunan Lu, and Jihua Zhu. Label distribution learning by
maintaining label ranking relation. IEEE TKDE, 2021a.

Xiuyi Jia, Tao Wen, Weiping Ding, Huaxiong Li, and Weiwei Li. Semi-supervised label distribution
learning via projection graph embedding. Information Sciences, 2021b.

Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang, Matthias Nießner, Thomas
Funkhouser, et al. Local implicit grid representations for 3D scenes. In CVPR, 2020.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
super-resolution. In ECCV, 2016.

Mingye Ju, Can Ding, Y Jay Guo, and Dengyin Zhang. Idgcp: Image dehazing based on gamma
correction prior. IEEE TIP, 2019.

10

Under review as a conference paper at ICLR 2023

Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, and
Timo Aila. Alias-free generative adversarial networks. In NeurIPS, 2021.

Youngeun Kim and Priyadarshini Panda. Optimizing deeper spiking neural networks for dynamic
vision sensing. Neural Networks, 2021.

Amit Kohli, Vincent Sitzmann, and Gordon Wetzstein. Inferring semantic information with 3D
neural scene representations. arXiv preprint arXiv:2003.12673, 2020.

Qiang Li, Jingjing Wang, Zhaoliang Yao, Yachun Li, Pengju Yang, Jingwei Yan, Chunmao Wang,
and Shiliang Pu. Unimodal-concentrated loss: Fully adaptive label distribution learning for ordi-
nal regression. In CVPR, 2022.

Shuang Lian, Qianhui Liu, Rui Yan, Gang Pan, and Huajin Tang. Training deep convolutional
spiking neural networks with spike probabilistic global pooling. Neural Computation, 2022.

Chen-Hsuan Lin, Chaoyang Wang, and Simon Lucey. SDF-SRN: Learning signed distance 3D
object reconstruction from static images. In NeurIPS, 2020.

Tingting Liu, Jixin Wang, Bing Yang, and Xuan Wang. Ngdnet: Nonuniform gaussian-label dis-
tribution learning for infrared head pose estimation and on-task behavior understanding in the
classroom. Neurocomputing, 2021.

Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. Differentiable volumet-
ric rendering: Learning implicit 3D representations without 3D supervision. In CVPR, 2020.

Curtis Northcutt, Lu Jiang, and Isaac Chuang. Confident learning: Estimating uncertainty in dataset
labels. Journal of Artificial Intelligence Research, 2021.

Kinjal Patel, Eric Hunsberger, Sean Batir, and Chris Eliasmith. A spiking neural network for image
segmentation. arXiv preprint arXiv:2106.08921, 2021.

Wenbin Qian, Yinsong Xiong, Jun Yang, and Wenhao Shu. Feature selection for label distribution
learning via feature similarity and label correlation. Information Sciences, 2022.

Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yunshen Wei, Baohong Lv, Junjie Yan, Lingpeng
Kong, and Yiran Zhong. cosformer: Rethinking softmax in attention. In ICLR, 2022.

Tingting Ren, Xiuyi Jia, Weiwei Li, Lei Chen, and Zechao Li. Label distribution learning with
label-specific features. In IJCAI, 2019a.

Tingting Ren, Xiuyi Jia, Weiwei Li, and Shu Zhao. Label distribution learning with label correlations
via low-rank approximation. In IJCAI, 2019b.

Yi Ren and Xin Geng. Sense beauty by label distribution learning. In IJCAI, 2017.

Karl Ricanek and Tamirat Tesafaye. Morph: A longitudinal image database of normal adult age-
progression. In FGR06, 2006.

Shijing Si, Jianzong Wang, Junqing Peng, and Jing Xiao. Towards speaker age estimation with label
distribution learning. In ICASSP, 2022.

Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. Scene representation networks: Con-
tinuous 3D-structure-aware neural scene representations. In NeurIPS, 2019.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. In NeurIPS, 2020.

Ivan Skorokhodov, Savva Ignatyev, and Mohamed Elhoseiny. Adversarial generation of continuous
images. In CVPR, 2021.

Chao Tan, Sheng Chen, Xin Geng, and Genlin Ji. A label distribution manifold learning algorithm.
PR, 2022.

11

Under review as a conference paper at ICLR 2023

Qifa Teng and Xiuyi Jia. Incomplete label distribution learning by exploiting global sample correla-
tion. In Multimedia Understanding with Less Labeling on Multimedia Understanding with Less
Labeling. 2021.

Talip Ucar, Ehsan Hajiramezanali, and Lindsay Edwards. Subtab: Subsetting features of tabular
data for self-supervised representation learning. In NeurIPS, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Jing Wang and Xin Geng. Label distribution learning by exploiting label distribution manifold.
IEEE TNNLS, 2021.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In ICML, 2022.

Ning Xu, Yun-Peng Liu, and Xin Geng. Label enhancement for label distribution learning. IEEE
TKDE, 2019.

Ning Xu, Jun Shu, Yun-Peng Liu, and Xin Geng. Variational label enhancement. In ICML, 2020.

Kashu Yamazaki, Viet-Khoa Vo-Ho, Darshan Bulsara, and Ngan Le. Spiking neural networks and
their applications: A review. Brain Sciences, 2022.

Jiancheng Yang, Rui Shi, and Bingbing Ni. Medmnist classification decathlon: A lightweight automl
benchmark for medical image analysis. In ISBI, 2021.

Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan Atzmon, Basri Ronen, and Yaron Lip-
man. Multiview neural surface reconstruction by disentangling geometry and appearance. 2020.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. Mixup: Beyond empiri-
cal risk minimization. In ICLR, 2018.

Peng Zhao and Zhi-Hua Zhou. Label distribution learning by optimal transport. In AAAI, 2018.

Xingyu Zhao, Yuexuan An, Ning Xu, and Xin Geng. Continuous label distribution learning. Pattern
Recognition, 2022a.

Xingyu Zhao, Yuexuan An, Ning Xu, and Xin Geng. Fusion label enhancement for multi-label
learning. In IJCAI, 2022b.

Zengqun Zhao, Qingshan Liu, and Feng Zhou. Robust lightweight facial expression recognition
network with label distribution training. In AAAI, 2021.

Qinghai Zheng, Jihua Zhu, Haoyu Tang, Xinyuan Liu, Zhongyu Li, and Huimin Lu. Generalized
label enhancement with sample correlations. IEEE TKDE, 2021a.

Rui Zheng, Shulin Zhang, Lei Liu, Yuhao Luo, and Mingzhai Sun. Uncertainty in bayesian deep
label distribution learning. Applied Soft Computing, 2021b.

12

Under review as a conference paper at ICLR 2023

8 APPENDIX

The appendix is supplemented with the parameter settings of the network and the performance of
all comparison algorithms on multiple data sets. Furthermore, we supplement the t-test in 12 data
sets to validate the stability of our method. Since there are many hyperparameters, we conduct a
parametric analysis on a Gene dataset.

ID Dataset Examples Features Labels Number of neurons of the SNN LF DA

1 wc-LDL 500 243 12 L1,2:end→ [243, 1024] Eq.5 !

2 SJAFFE 213 243 6 L1,2:end→ [243, 1024] Eq.5 !

3 SBU-3DFE 2500 243 6 L1,2:end→ [243, 1024] Eq.5 %

4 Scene 2000 294 9 L1,2:end→ [294, 1024] Eq.5 %

5 Gene 17892 36 68 L1,2:end→ [36, 64] Eq.6 %

6 Movie 7755 1869 5 L1,2:end→ [1869, 1024] Eq.5 %

7 M2B 1240 250 5 L1,2:end→ [256, 1024] Eq.5 !

8 SCUT 1500 300 5 L1,2:end→ [300, 1024] Eq.5 !

9 fbp5500 5500 512 5 L1,2:end→ [512, 1024] Eq.5 %

10 RAF-ML 4908 200 6 L1,2:end→ [200, 1024] Eq.5 %

11 Twitter 10040 200 8 L1,2:end→ [200, 1024] Eq.5 %

12 Flickr 11150 200 8 L1,2:end→ [200, 1024] Eq.5 %

Table 5: Statistics of the experimental datasets with models.

ID Dataset Batch size Epoch Learning rate Weight decay Early stopping Greed soup

1 wc-LDL 500 200 2× 10−3 1× 10−4 ! !

2 SJAFFE 213 200 2× 10−2 1× 10−4 ! !

3 SBU-3DFE 1000 200 1× 10−3 1× 10−4 ! !

4 Scene 1000 120 1× 10−3 1× 10−4 ! !

5 Gene 5000 150 2× 10−3 1× 10−4 ! !

6 Movie 2000 100 2× 10−3 1× 10−4 ! !

7 M2B 500 150 2× 10−3 1× 10−4 ! !

8 SCUT 500 150 1× 10−2 1× 10−4 ! !

9 fbp5500 1500 300 2× 10−2 1× 10−4 ! !

10 RAF-ML 2000 100 1× 10−3 1× 10−4 ! !

11 Twitter 5000 200 1× 10−3 1× 10−4 % %

12 Flickr 5000 200 1× 10−2 1× 10−4 ! !

Table 6: Training configuration of our model.

Dataset Algorithm Chebyshev ↓ Clark ↓ Canberra ↓ K-L ↓ Cosine ↑ Intersection ↑
Ours 0.1456 ± 0.0021 1.3651 ± 0.0441 2.6888 ± 0.0023 0.2017 ± 0.0012 0.9394 ± 0.0026 0.8247 ± 0.0077

a-LDL 0.1466 ± 0.0032 1.3858 ± 0.0441 2.6999 ± 0.0063 0.2112 ± 0.0025 0.9300 ± 0.0031 0.8199 ± 0.0075
LDL-LRR 0.1526 ± 0.0033 1.5651 ± 0.0111 2.7594 ± 0.0422 0.2449 ± 0.0007 0.9251 ± 0.0003 0.8141 ± 0.0044

LDL-LCLR 0.1515 ± 0.0022 1.592 ± 0.0117 2.7779 ± 0.0239 0.2244 ± 0.0030 0.9262 ± 0.0062 0.8189 ± 0.0098
LDLSF 0.1488 ± 0.0024 1.3889± 0.0086 2.7672 ± 0.0660 0.2302 ± 0.0044 0.9111 ± 0.0051 0.8117 ± 0.0022
LALOT 0.1479 ± 0.0010 1.3659 ± 0.0099 2.6956 ± 0.0144 0.2221 ± 0.0064 0.9311 ± 0.0021 0.8107 ± 0.0008

RAF-ML

BFGS-LLD 0.1499 ± 0.0009 1.6656± 0.0066 2.7101 ± 0.0211 0.2541 ± 0.0055 0.9204 ± 0.0023 0.8157 ± 0.0050
Ours 0.2777 ± 0.0021 2.2374 ± 0.0110 5.1163 ± 0.0018 0.5111 ± 0.0029 0.8807 ± 0.0049 0.7891 ± 0.0014

a-LDL 0.2985 ± 0.0011 2.3002 ± 0.0112 5.4444 ± 0.0065 0.5242 ± 0.0033 0.8554 ± 0.0046 0.7709 ± 0.0084
LDL-LRR 0.3129 ± 0.0021 3.2441 ± 0.0031 6.1454 ± 0.0023 0.6616 ± 0.0035 0.8002 ± 0.0042 0.7411 ± 0.0014

LDL-LCLR 0.2994 ± 0.0045 2.4900 ± 0.0012 6.9609 ± 0.0041 0.6056 ± 0.0031 0.7110 ± 0.0021 0.7110 ± 0.0088
LDLSF 0.3007 ± 0.0002 2.7887 ± 0.0057 5.6101 ± 0.0118 0.6396 ± 0.0022 0.7939 ± 0.0098 0.7660 ± 0.0007
LALOT 0.3133 ± 0.0021 2.3141 ± 0.0016 5.5336 ± 0.0241 0.5233 ± 0.0012 0.8595 ± 0.055 0.7214 ± 0.0049

Twitter

BFGS-LLD 0.3114 ± 0.0044 2.5511 ± 0.0028 5.7145 ± 0.0041 0.5461 ± 0.0153 0.8335 ± 0.0055 0.7744 ± 0.0020

Ours 0.2816 ± 0.0031 2.3356 ± 0.0097 5.2222 ± 0.0159 0.5314 ± 0.0033 0.8406 ± 0.0043 0.7741 ± 0.0025
a-LDL 0.2998 ± 0.0088 2.4388 ± 0.0089 5.3111 ± 0.0119 0.5729 ± 0.0067 0.8331 ± 0.0009 0.7500 ± 0.0033

LDL-LRR 0.3329 ± 0.0012 3.4400 ± 0.0174 6.3459 ± 0.0229 0.6516 ± 0.0031 0.8450 ± 0.0040 0.7399 ± 0.0037
LDL-LCLR 0.2970 ± 0.0009 2.4444 ± 0.0063 6.1600 ± 0.0041 0.6222 ± 0.0013 0.7919 ± 0.0029 0.7090 ± 0.0070

LDLSF 0.3301 ± 0.0009 2.8888 ± 0.0459 5.9152 ± 0.0121 0.6100 ± 0.0021 0.8139 ± 0.0098 0.7360 ± 0.0037
LALOT 0.3411 ± 0.0026 2.9140 ± 0.0019 5.3333 ± 0.0243 0.5737 ± 0.0012 0.8225 ± 0.020 0.7144 ± 0.0004

Flickr

BFGS-LLD 0.3200 ± 0.0041 2.7517 ± 0.0060 5.8149 ± 0.0048 0.5961 ± 0.0099 0.8131 ± 0.0011 0.7407 ± 0.0077

Table 7: The performance of our proposed method with the comparison algorithms on 12 datasets.

t-test on 12 datasets. We evaluate the range of p-values for the six metrics on 12 data sets.
Cheby.[1.65e − 105, 1.00e + 00], Clark[6.87e − 97, 1.99e − 02], Canbe.[9.75e − 99, 1.23e − 01],
KL[1.99e− 101, 1.23e− 01], Cosine[1.02e− 98, 2.99e− 01], and Inter.[5.03e− 112, 3.67e− 01]
According to the test results, the LDL methods have significantly different performance in terms of
each metric on all datasets except Gene (at a 0.05 significance level). The label distribution of Gene
tends to be uniformly distributed, which may result in the equal performance of the LDL approaches.

13

Under review as a conference paper at ICLR 2023

Parameter Sensitivity Analysis. Our method has three parameters, including the regularization
parameter λ1, λ2, and β. To analyze the sensitivity of λ1, λ2, and β, we run our method with three
sets ({0.001, 0.005, 0.01, 0.05, 0.1}, {0.001, 0.005, 0.01, 0.05, 0.1}, and {0.001, 0.005, 0.08, 0.02,
0.08}) on the Gene dataset (see Figure 4).

(a) λ1 (b) λ2 (c) β

Figure 4: This figure shows the sensitivity of parameters on the Gene dataset.

Formula Supplement.

(1) Scaled Dot-Product attention:

Attention(Q,K, V) = softmax(
QKT

√
dk

)V,

where
√
dk is the dimension of the key vector k and query vector q .

(2) ReLU:

ReLU(z) = max(0, z).

(3) L1 loss:

D∑
i=1

|xi − yi|.

(4) KL divergence:

KL(ŷ||y) =

M∑
c=1

ŷc log
ŷc
yc
.

(5) Perceptual loss:

L1(MLP(x),MLP(y)).

14

	Introduction
	Background and Motivation
	Proposed Method
	Experiments
	Application and Energy Consumption
	Related Works
	Conclusion
	Appendix

