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Abstract
Reinforcement Learning (RL) is one of the prevailing ap-
proaches to optimize long-term user engagement in Recom-
mendation Systems (RS). However, the well-known explo-
ration strategies of RL (e.g., the ε-greedy strategy) encourage
agents to interact and explore the environment freely, which
may recommend unpleasant items to the users frequently, vi-
olating their preferences and making them lose confidence
in the RS platform. To avoid such irrelevant and unpleasant
recommendations, we propose a novel safe RL approach to
maximize accumulated long-term reward under the safety guar-
antee. Our contributions are three-fold. Firstly, we introduce a
novel training scheme with two value functions to maximize
the accumulated long-term reward under the safety constraint.
Secondly, we theoretically show that our methods are able
to converge and maintain safety with a high probability dur-
ing the training process. Thirdly, we implement two practical
methods, including a Simhash-based method as well as a re-
laxation method for large-scale environments. Experiments on
immediate recommendation, sequential recommendations, as
well as safe gridworld reveal that our methods outperform the
state-of-the-arts dramatically.

1 Introduction
Recommendation Systems (RS) assist people to seek prod-
ucts or news they prefer efficiently (Ricci, Rokach, and
Shapira 2011). With a focus on optimizing the long-term
feedback (e.g., click-through rate and conversion rate (Elahi,
Ricci, and Rubens 2016)), the online training scheme based
Reinforcement Learning (RL) has demonstrated impressive
performance in various long-term user engagement environ-
ments (Zhao et al. 2019; Zou et al. 2019; Zhao et al. 2018a;
Shani, Heckerman, and Brafman 2005; Chen et al. 2019c,a).

However, due to the nature of RL, i.e., trial and error,
standard RL methods interact and explore freely within en-
vironments to learn an (near) optimal policy. However, this
scheme incurs a key challenge in the RS scenarios. That is,
under the online training scheme, free exploration will recom-
mend irrelevant items to users, making them lose confidence
in the RS platform and causing damage to both the RS plat-
form and the users. For example, assuming the RS agent is
interacting with a vegetarian, if it always recommends meat
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to that user, he will be annoyed and leave. Therefore, it is
indispensable to introduce a strategy to avoid unsafe actions.

A straight-forward approach is to mask all the unsafe ac-
tions. Like our previous example, for a vegetarian user, he
may not be angry if the agent avoids recommending meat
items. However, for an unknown user, it is not an easy task to
know which items should be masked in advance if the agent
knows nothing about the user. We also notice that two impor-
tant properties in RS (Ricci, Rokach, and Shapira 2011): 1)
users can tolerate bad items if they are not recommended too
many times and 2) some users’ behaviors can be inferred by
the behavior of similar users. Therefore, we aim to design a
learning-based method to guarantee safety by finding which
actions should be masked through interacting with different
users.

Safe RL is a promising method to prevent unsafe explo-
ration. These approaches can be categorized into two types:
model-free methods and model-based (safe state) methods.
For the former, the environments are modeled as Constrained
Markov Decision Processes (CMDP) with the constraint that
the expected accumulative cost cannot exceed some pre-
defined constant and CMDP is solved by RL based optimiza-
tion methods (e.g., the Lagrangian multipliers policy/value
iteration) (Yu et al. 2019; Achiam et al. 2017; Chow et al.
2017). For the latter, the constraint is based on states (the
agent must be in a safe state), and uncertainty modeling meth-
ods (e.g., the Gaussian process or the Lyapunov function) are
leveraged to estimate the transition function with uncertainty
for the next states (Polymenakos, Abate, and Roberts 2019;
Berkenkamp et al. 2017).

However, neither of these methods are appropriate for
the RS scenarios. For model-based methods, they focus on
state safety, e.g., whether the quadrotor hurts when com-
mitting actions to a certain state (Berkenkamp et al. 2017).
Differently, in real-world RS, an agent is allowed to commit
few unsafe actions so long as the value of the accumulated
cost is not lower than a given threshold and thus the safety
of the trajectory rather than safety of a state is defined as
the safety criteria. Besides, these methods have large time
complexity (Berkenkamp, Schoellig, and Krause 2016), be-
ing computationally infeasible for large-scale environments
like sequential RS. For model-free methods, although these



methods model the environment with CMDP, suiting the RS
scenarios well, most of them still suffer from unsafety during
the training process, i.e., safety may only be approximately
guaranteed after a sufficient long learning period (Cheng
et al. 2019). As a result, users may leave in advance before
they find the safe strategies. Therefore, designing a training
scheme that both consider safety for the trajectory and avoid
unsafe actions as many times as possible during the entire
training process is necessary.

In this paper, to optimize the long-term user engagement
with the safety constraint, we propose the Safe Coupled Deep
Q Network (SC-DQN). Our main contributions are as fol-
lows. Firstly, we explore a novel safe RL approach containing
two value functions to maximize the accumulated long-term
reward under the safety constraint. Secondly, we theoretically
show the convergence and safety properties of our methods
with mild assumptions in both tabular case and specified
function space. Thirdly, for large-scale environments, we im-
plement two practical deep learning based RL approaches
to accelerate training and reducing the overestimated bias,
including a Simhash-based method and a relaxation method.
Experiments on immediate recommendation, sequential in-
teractive recommendations (or sequential recommendations
for short), and safe gridworlds reveal that our methods out-
perform the state-of-the-arts dramatically.

2 Related Works
Our work is related to safe RL as well as RL based RS. Safe
RL aims to avoid choosing actions that may be dangerous.
Previous studies can be mainly categorised into two tracks:
model-based ones and model-free ones. For the former, the
main idea is to learn the dynamics of the environments
to avoid actions which cause unsafe states (Berkenkamp
et al. 2017; Turchetta, Berkenkamp, and Krause 2016; Poly-
menakos, Abate, and Roberts 2019; Akifumi Wachi 2020).
However, these approaches are computationally expensive
to learn when the environment is complicated (e.g., the state
space is large). Moreover, the definition of safety in model-
based RL may not suit RS well as we mentioned above. For
the model-free methods, one of the primarily used model-free
approaches is Lagrangian multiplier based methods, which
convert the optimization problem (e.g., linear programming)
into the Lagrangian multipliers form (Yu et al. 2019; Achiam
et al. 2017; Chow et al. 2017). However, most of these meth-
ods do not guarantee safety during the learning procedure.
Another approach is the Lyapunov-based methods, which
construct the Lyapunov functions to guarantee global safety
of a behavior policy by solving a Linear Program (LP) at ev-
ery step. However, this method is computationally expensive
since it needs to solve LP at each step (Chow et al. 2018).
Different from the methods mentioned above, our method is
approximately safe with high probability during the whole
training process.

The main ideas of RL-based RS regard RS as (partially
observable) MDP and apply RL and its variants to find the op-
timal strategies with interactions (Zou et al. 2019; Zhao et al.
2018a; Shani, Heckerman, and Brafman 2005; Chen et al.
2019c,a). However, as we mentioned above, due to ignoring
the safety, these methods might recommend irrelevant item to

harm an RS system in the long run. An alternative approach
to address the challenge is the off-policy training (training
from logged data) (Zhao et al. 2018b; Chen et al. 2019b; Xin
et al. 2020), focusing on training the agents only with log
data. Unfortunately, these off-policy training schemes suffer
from high variance problems seriously (Munos et al. 2016).
An approach similar to our method is Reward Constrained
Recommendation (RCR), intending to model the RS through
CMDP (Zhang et al. 2019). However, they focus on the con-
straint of the natural language feedback. Moreover, like other
RL methods, RCR is also not a safe method during the train-
ing stage. To our best knowledge, we are the first to introduce
safe RL into the RS, considering finding the optimal strategy
under the safety constraint during the training process.

3 Problem Formulation
This section gives an example to discuss why safety is cru-
cial in RS, and formally describes the Constrained Markov
Decision Process (CMDP) for the RS with the accumulated
cost function.

3.1 An Example for Safe Recommendation
Taking the sequential recommendation as an example, as
shown in Fig. 1, the RS agent first receives a user’s profile
and browsing history, and selects an item from the item list
(one out of three in this example). The user will give feedback
(click, view or leave) to the agent according to the recom-
mended item. This process will repeat until the user leaves the
platform or the agent has recommended all the items, which
can be formulated as a Markov Decision Process (MDP).
Also, notice that if the agent recommends irrelevant items too
many times (like the peaked cap in Fig. 1), the user may lose
interest and leave the platform. Therefore, it motivates us to
add safety constraint into the model to avoid recommending
irrelevant items (unsafe actions) too many times as CMDP.

3.2 Constrained Markov Decision Process for RS
Formally, a feed stream (the interaction between RS and
user) can be formulated as an MDP, defined by a tuple
M = 〈S,A,R, P, γ〉, where state s ∈ S is the user in-
formation (including but not limited to the user profile and
user browsing history), action a ∈ A is the item recom-
mended by the RS in the t-th interaction , R : S ×A×S →
[0, Rmax] is the reward function (e.g., reward is positive
when user clicks an item. Rmax is the highest reward value),
P : S ×A× S → [0, 1] is the transition function which indi-
cates the probability of meeting the next state s′ after taking
action at in state st and γ is the discount rate. The objective
ofM is to find a policy π that maximizes the accumulated re-
ward Jπ = maxEπ

{∑T
t=0 γ

trt|s0 = s
}

. We introduce the
safety constraint into MDP as the CMDP, i.e., we augment the
tupleM with cost set C and further define the expected cost
in terms of policy π under state s: Jπ = Eπ

{∑T
t=0 γ̄

tct|s
}

,

where ct : S × A → [Cmin, Cmax] is the cost function1

1The cost is always negative in this paper, i.e., Cmax ≤ 0. The
more risk action the agent takes, the lower the cost value is.



Figure 1: The framework of SC-DQN in sequential recommendation. In each time step t, the input of the Q and Q networks
include the user profile (user features), the historical information (browsing history), as well as the item features. The output
contains the values and the safe values of each item. The recommended item is selected according to π and the user gives
feedback to the agent.

(e.g., cost is negative when user views without purchasing
or the user leaves the platform). at step t and γ̄ ∈ (0, 1) is
the discount rate for the cost2. Similar to (Chow et al. 2018;
Yu et al. 2019), the safe policy set can be formulated as
Ωsafe = {π|Jπ(s0) ≥ ε}, where s0 is the initial state, and
the unsafe set is defined as Ωunsafe = Ω/Ωsafe, where Ω is the
policy space.

4 Safe Coupled Q-Learning
This section discusses the idea of Safe Coupled Q-Learning.
We first introduce the safe strategy and the safe coupled value
iteration to obtain the near-optimal safe strategy. Then, to
further reduce unsafe exploration, we design the safe coupled
deep Q-Learning to make decision based on similar states. Fi-
nally, we introduce the bias elimination technique to prevent
unsafe strategies during the training process.

4.1 Safe Strategy
We start with the main idea of the standard Q-learning (Sut-
ton and Barto 2018): the policy is designed to choose the
action that induces the highest Q-value: arg maxaQ(si, a)
in state si. Obviously, the standard Q-learning may choose
an unsafe action. Intuitively, if there exists a stepwise oracle
function mapping each action a to the expected accumulated
cost under π: Jπ, the agent can easily mask these actions
to guarantee safety. Based on this idea, we define Qπ(s, a)

as an approximation of Jπ3 and since Eπ
{∑T

t=0 γ̄
tct

}
≈

2It is possible to set γ̄ = 1 under the assumption of proper and
stationary policies (Assumptions 7.2.1 in (Bertsekas 2015)) and
with a little abuse of the notations, we hereinafter use γ to replace γ̄
if the statement is clear.

3We omit the superscript π and variables s, a for Q(s, a) and
Q(s, a) if the statement is clear.

Eπ
{
C̃ +Q

}
, when Q is accurate enough, C̃ + Q ≥ ε

can be used as the approximated safety criteria, where
C̃ =

∑t̂
t=0 γ

tct is the accumulated cost at time step t̂. Then,
we set the policy as π̃(a|si) := arg maxa∈ÃQ(si, a), where
Ã(si) = {a|C̃ +Q(si, a) ≥ ε} . Assuming Q > 0 (this can
be easily done by reward shaping), we can further simplify the
policy as π̃(a|si) = arg maxa[Q(si, a)1(C̃+Q(si, a) ≥ ε)],
where 1(·) is an indicator function to select the actions that
avoid unsafety. Specially, when ∀a,1(C̃+Q(si, a) ≥ ε) = 0,
the policy will randomly choose an action since all the actions
are unsafe.

4.2 Safe Coupled Value Iteration
Previous section proposes a possible safe strategy method
under the assumption thatQ andQ are (near-) optimal. In this
subsection, we focus on how to get the near-optimalQ andQ.
Following the Value Iteration (VI) technique, we implement
the Bellman equation approaches (Sutton and Barto 2018) to
both Q and Q. That is, for Q, the Bellman operator T is:

T Q(s, a) := r(s, a) + γEs′∼P (·|s,a)

[
V π̃(s′)

]
, (1)

where V (s′) = maxa′ Q (s′, a′) [1(C̃+Q(s′, a) ≥ ε)]. Sim-
ilarly, the Bellman operator T for Q can be formulated as:

T Q(s, a) := c(s, a)+γEs′∼P (·|s,a)

[∑
a
P
Q

a′s′Q (s′, a′))
]
,

(2)
where P

Q

a′s′ := P (a′ | s′, Q) is the probability of taking
each action a′ at state s′ under Q (e.g., it can be defined

by the Boltzmann distribution P
Q

a′s′ := eQ(s′,a′)∑
b e

Q(s′,b) ). Eq. (2)

helps to guarantee convergence because π̃ depends on both
Q and Q (details can be found in Appendix B). Based on the



two Bellman equations, we can update Q and Q iteratively,
i.e.,Qk+1(s, a) = T Qk(s, a) andQk+1(s, a) = T Qk(s, a),
where k is the number of iterations. Since this approach relies
on the VI technique, we name it as the Safe Coupled Value
Iteration (SCVI).

4.3 Safe Coupled Deep Q Network
However, SCVI suffers various challenges in real-world ap-
plications. Similar to all the tabular RL methods, when the
state space is large, storing the complete Q-tabular is memory-
consuming. Moreover, SCVI can still be unsafe because up-
date the tabular requires committing actions among almost
all the trajectories, including unsafe trajectories. To address
the challenge, we abstract the states together to reduce the
space memory and mitigate the meeting time of unsafe states,
since similar states which are mapped together share similar
safety property.

A straightforward way to carry out this abstraction is to
learn to abstract the environment and make decisions end
to end (the Neural Network (NN) based methods) (Gelada
et al. 2019), named as the Safe Coupled Deep Q Network
(SC-DQN). Different from the widely adopted NN structure
which uses the raw matrix of the environment as input (Mnih
et al. 2015), the input of NN in RS needs the embedding
framework since it includes various discrete and continuous
features. Following (He et al. 2017), we map the features into
the continuous (embedding) states.

The loss functions of Q and Q are designed following
the similar Temporal Difference (TD) loss technique in deep
Q-learning (Mnih et al. 2015):

L = Es,a,s′∼D [Q(s, a; θ)− r(s, a)− γQ (s′, π̃(s′); θ)]
2
,

L = Es,a,s′∼D

[
Q(s, a; θ)− c(s, a)− γQ (s′, π̃(s′); θ)

]2
.
(3)

where θ and θ are trainable parameters,D is the replay buffer,
L and L are the loss functions for Q(s, a; θ) and Q(s, a; θ)

respectively4. Now, Qh and Qh can be trained jointly.

4.4 Eliminating the bias
Despite the fact that SC-DQN can alleviate the occurrence of
unsafe strategies, it is still hard to guarantee Qh is close to
Q∗ during the whole training process. That is, assuming Qh

and Q∗ are far from each other, the π̃ induced by Qh is also
biased, and thus the trajectories generated by π̃ cannot guar-
antee safety any longer. This bias problem seriously affects
the safety guarantee in SC-DQN. To address this challenge,
a bias estimation and elimination method is required.

We first formally define the bias in SC-DQN in a certain
state si and action aj as ε̂ = (Qh(si, aj)−Q∗(si, aj))2. In-
tuitively, the bias can be interpreted as the squared Euclidean
distance between the value of Q∗ and Qh. Assuming in each
iteration, Qh is well-training within the dataset in D5, we

4For simplification, we will use Qh and Qh as the symbols of
Q(s, a; θ) and Q(s, a; θ) if no special mentioned.

5This can be done by larger batch size and longer training time
in each training step.

Algorithm 1: Safe Coupled Deep Q-Learning
Result: the Well-trained parameters θ and θ

1 Initialize Q and Q with parameters θ & θ and the
experience buffer D.;

2 for episode τ do
3 for each step t do
4 get st, take action at = π(a|st), and reward rt

and st+1. ;
5 store tuple 〈st, at, rt, ct, st+1〉 in D.;
6 end
7 sample a batch of 〈s, a, c, r, s′〉 from D.;
8 train θ and θ by minimizing L and L. ;
9 end

have an alternative form of value iteration:

LD

(
Qh′ , Qh

)
= 1
|D|
∑

(s,a,r,s′)∈D

[
Qh′(s, a)−

c(s, a)− γmaxa′ Q
h (s′, a′)

]2
,

Qh

k+1
= τQh

k
:= arg minQh′LD

(
Qh′ , Qh

k

)
,

where k is the number of iterations. The equation above
indicates that each update can always be optimal w.r.t. the
samples in dataset D (i.e., the updating is sufficient). Then,
using the similar technique from the concentration inequali-
ties (Sridharan 2002), we have the upper bound for ε̂:

Theorem 1. For state si, the distance between the estimated
abstracted Q-value Qh(si, a) and the optimal Q∗(si, a) are
bound by

(
Qh(si, a)−Q∗(si, a)

)2
≤ 2|C0|

1− γ

√
1

2(n ∧ 1)
log

2γ|A|
δ

+
(
√

2Cmax)2

(1− γ)2
+ (

Cmax

1− γ −Q
h
k(s, a))2,

with probability at least 1 − δ, where C0 = Cmax − Cmin

and n ∧ 1 = max{n, 1}.
Due to space limitation, the details of the proofs can

be found in Appendix A. For simplification, we define

σ2 := 2|C0|
1−γ

√
1

2(n∧1) log 2γ|A|
δ + (

√
2Cmax)2

(1−γ)2 + (Cmax

1−γ −
Qhk(s, a))2and we haveQ∗(si, a) ≥ Qh(si, a)−σ with prob-
ability at least 1− δ. Then, we can guarantee safety by taking
those actions satisfying the safety constraint: Qh(si, a) −
σ ≥ ε, and the safe policy π̃ can be similarly modified as
π(a|s) := arg maxa[Q(si, a)(1(C̃ + Q(si, a) − σ ≥ ε))].
The pseudo-code can be found in Alg. 1. To balance the ex-
ploration and exploitation trade-off in practice, we multiply a

positive constant φ (i.e., φ|C0|
1−γ

√
1

2(n∧1) log 2γ|A|
δ ) to reduce

the count-based module.
Notice that si can also be an abstracted state (Lemma 3 in

Appendix A) which can speed up the training process when
the original state space is large.



5 Theoretical Analysis
This section shows the convergence analysis as well as the
safety analysis. We first prove that our methods are always
safe with a high probability:

Theorem 2. If Ωsafe 6= ∅, the statement π ∩ Ωunsafe = ∅
is established with probability at least 1− δ.

Theorem 2 reveals that if the environment itself has at least
one safety policy (Ωsafe 6= ∅)6, then the policy π, with a
high probability, is always safe (π∩Ωunsafe = ∅ ). Specially,
when the agent is well-trained (π = π∗), π ∩Ωunsafe = ∅ is
almost surely (δ = 0).

Now, we focus on the convergence analysis when Q and
Q are in function space. To facilitate our analysis, we define
an operator to update the Q function:

LD
(
Qh
′
, Qh

)
= 1
|D|
∑

(s,a,r,s′)∈D |Qh
′
(s, a)− c(s, a)

−γmaxa′ Q
h (s′, a′) |,

Qhk+1 = τQhk := arg minQh′LD
(
Qh
′
, Qhk

)
.

(4)
Eq. (3) is a method to find the optimal Q value minimizing
the TD error w.r.t. the samples in the dataset (replay memory)
D, while Eq. (4) indicates the optimal function to find the Q.
Since the former is an approximation to the latter if enough
gradient descent is taken at each interaction, we use the latter
to analyze our method.

Based on the simplification, we give the convergence anal-
ysis for our method in a specified function space:

Theorem 3. For a stationary policy, assuming that the neural
networks based Q satisfies two conditions: (1) the feature
extraction layers are fixed. (2) The decision layer is a linear
mapping. When Q is initialized by zero, i.e., Qh1 = 0, we
always have:∥∥Qhk(s, a)−Q∗(s, a)

∥∥
∞ ≤ γ

k−1Rmax

1− γ
+ 2(4N+7)e(N+2)×

(N + 2) exp(LaW (
4b22(−8N−8)e(−2N−4) log δ

nd(N2 + 4N + 5)
)/2),

with probability at least (1− δ)2, where N is the dimension
of embedding.

LaW (·) is the Lambert W function. Notice that
whenlimn→∞,k→∞

∥∥ Qhk(s, a)−Q∗(s, a)
∥∥
∞ = 0. This re-

sult reveals that Q coverages to Q∗.
Notice that our analysis is based on a specific neural net-

work structure, which can be implemented easily to other
structures.

Moreover, our methods can be applied to the immediate
recommendation (stochastic Multi-Armed Bandit, MAB) en-
vironment with slight modification. The complete theoretical
analysis and the pseudo-code can be found in Appendix B
and C respectively.

6This also tick out those environments that are impossible to be
safe.

6 Practical Implementations
In practice, it is still hard to implement the safe policy π
since it includes the visiting times of each state: 1∧ n, which
changes slowly for most states in large-scale environment.
This result induces the overestimation of σ and further causes
all safe actions to be banned totally. We name it as the over-
estimated bias problem, and two practical approaches are
introduced to address the challenges.

6.1 Simhash-based State-action Counting
Inspired by (Tang et al. 2017), we use the Simhash method to
map similar states together to reduce the state space. Simhash
is a method for quickly estimating how similar two states are,
and the hash function is defined as φ(s) := sgn(Gg(s)) ∈
{−1, 1}k, where G is a k×D matrix with i.i.d. entries drawn
from a standard Gaussian distribution N (0, 1), sgn(·) is the
step function and g : S × A → RD is a prepossessing
function. Notice that in Simhash, a well-known equation
is P[φ(s1) = φ(s2)] = sim(s1, s2) , where sim is sim-
ilarity function (Charikar 2002). Thus, applying this con-
clusion we can immediately get with probability at least
(1 − δ) mins1,s2 sim(s1, s2) that safety is guaranteed. We
name this methods as Simhash SCDQN (S2CDQN).

6.2 Relaxation of the Safety Bound
However, the count-based method is both time and memory
consuming since it requires to map the states into hash val-
ues, store the hash table, and count the visiting times of the
abstracted states. To make our method more sample efficient
and memory saving, a relaxation approach is leveraged to
further reduce the training time.

We approximate σ2 as: σ2 ≈ (
√

2Cmax)2

(1−γ)2 + (Cmax

1−γ −
Qhk(s, a))2. Now, σ is irrelevant to the term 1∧n. This relax-
ation helps diminish both the memory space and time since it
no longer requires to store and search the visited states. This
method is named as Relaxed SC-DQN (RSC-DQN).

Both S2C-DQN and RSC-DQN have their own advantages.
the former’s strategy is more risk-sensitive than the latter,
while the latter is more time and memory saving than the
former.

7 Experiments
We conduct four experiments to evaluate the performance of
our proposed methods, including immediate recommenda-
tion, sequential recommendation I and II, and safe gridworld.

7.1 Immediate Recommendation
Environment setup.We firstly assess the performance of our
methods within a special case of CMDP: the immediate rec-
ommendation, one of the widely adopted models for single-
step recommendation (Li et al. 2010). The baselines include
two standard policies: the ε-greedy strategy as well as the
UCB strategy (Slivkins 2019). We build the environment
based on the synthetic data: the total number of items (arms)
is 10 and each item obeys the Gaussian distribution with
the same variance 0.7 and different means (−3 + 0.5 ∗ N ,



(a) Reward in IR (b) Unsafe Ratio in IR. (c) Accumulated Reward in SG. (d) Unsafe Ratio in SG.

Figure 2: The reward and the unsafe ratio in Immediate Recommendation (IR) and Safe Gridworld (SG).

(a) Accumulated Reward in RS I. (b) Unsafe Ratio in RS I. (c) Accumulated Reward in RS II. (d) Unsafe Ratio in RS II.

Figure 3: The accumulated reward and unsafe number in the Sequential Recommendations I and II.

ε-greedy UCB Ours

UA ↓ 1317±0.080 954±0.059 554±0.035

Table 1: The total number of unsafe actions in immediate
recommendation. UA means unsafe action. The best results
are highlighted in bold. The mean and standard deviation are
reported by 100 independent trials.

N ∈ {0, 1, . . . , 9}). The training time is 150 with 100 tri-
als. The cost is c = 1(r ≤ ε) ∗ r, where ε = 0. We use
two metrics to evaluate the performance of the methods
mentioned above: the accumulated reward and the unsafe
ratio (

∑n
i=1 1(

∑
j cj<ε)

n ). All the details of metrics and hyper-
parameters can be found in Appendix E.

Results. As shown in Fig.2(a) and 2(b), our methods out-
perform the baselines with less unsafe ratio and higher con-
vergence rate. Moreover, Tab. 1 reveals that our methods can
prevent the unsafe action dramatically than other baselines in
the MAB environment, with nearly half number of the unsafe
actions (554) than that of the second-best method (954).

7.2 Sequential Recommendation I
Environment setup. We also conduct experiments on sequen-
tial recommendation, which recommends an item (e.g., a
movie) and receives a reward (the score of that movie) from
the user. We choose the MovieLens-1M as the dataset and
simulate the user behavior using the neural networks7. The
user chooses an integer from [1, 5] as the score of that movie
and the reward is set as 1 when score > 3. To encourage diver-
sity in recommendation, we further penalize the repeated rec-

7We simulate the online learning process to avoid the pricey cost,
and potential risk in the real-world online A/B test.

ommended items. The reward is rt = 1∗1([score > 3]∧[a /∈
Ãt]) and the cost is ct = −1∗1(score ≤ 3)−0.5∗1(a ∈ Ãt),
where Ã = 〈a′t〉t−1

t′=0 is the augmented set of actions from
step 0 to t − 1. The threshold ε is set to −1. We randomly
choose 1, 000 users for the online training process. Details
of the hyper-parameters, the formal definition of metrics, and
the simulators are revealed in Appendix E.

Baselines. We compare S2C-DQN and RSC-DQN with
several state-of-the-arts baselines. (1) DQN. This is the stan-
dard DQN without any cost8. (2) DQN-RES. DQN-RES is
similar to DQN except that we add the cost implicitly into
the reward by the REward Shaping (RES) technique, where
shaping reward is defined as rst = rt + ct. (3) LDQN (Chow
et al. 2015; Zhang et al. 2019). The Lagrangian-based DQN
(LDQN) is known as one of the scalable safe RL methods
in large-scale CMDP and we use it as the standard safe RL
baseline9.

Results. From Fig. 3(b), except for DQN, all the methods
can have low average unsafe ratio (about 0.1), while our
methods have low unsafe ratio at the first 50 episodes (less
than 0.1), comparing with DQN-RES and LDQN, which have
about 0.4 − 0.5 unsafe ratio. From Fig. 3(a), our methods,
together with DQN-RES do not have a higher average reward
than other SOTAs, revealing the fact that there is a trade-off
between safe and high scores. Our methods guarantee safety
and thus its convergence rate might not be as high as DQN,
which has the highest rate but fails to be safe. Also, Tab. 2
indicates that our methods achieve the best and second-best
precision value but are not good enough in CR metric. This

8To stabilize and accelerate training, we use double DQN with
priorier replay buffer for all the methods in this paper.

9For completeness, we introduce the LDQN in appendix E.



may be caused by the fact that our methods prefer to choose
conservative actions to guarantee safety.

7.3 Sequential Recommendation II
Environment setup. We further certify our method in an-
other real-world sequential recommendation environment.
We firstly collect 10,000 users with different log data from
one of the largest ecommerce platforms in the world, in-
cluding item features and users’ feedback (skipping, leav-
ing, and viewing). Similar to Section 7.2, we build the on-
line simulator for users by learning the user behavior from
log data. Due to the imbalanced distribution in users’ feed-
back, 1

64 is chosen as the resampling ratio. For the envi-
ronment, we model the states as an augmented browsing
history, including the previous user feedback, the items’
features, and the current step. The reward is defined as:
rt = 1 ∗ 1([score = click]) − 0.1 ∗ 1(a ∈ Ãt), while the
cost is ct = −5 ∗ 1([score = leave])− 0.1 ∗ 1(a ∈ Ãt). We
set the ε = −3. The baselines and hyper-parameter settings
are the same as those in Section 7.2. We randomly choose
1, 000 users for the online training.

Results. Firstly, from Fig. 3(c) and 3(d), we can find that
our methods outperform SOTA in both accumulated reward
and unsafe ratio. Notice that though S2C-DQN has relatively
low UN, it does not achieve high reward score. On the con-
trary, RSC-DQN has high reward score but its UF is not
low enough. This forms a trade-off between safety and re-
ward. Secondly, Tab. 2 reveals that our methods are also
well-performing w.r.t click ratio and browsing history, indi-
cating that our methods can help the RS system to satisfy the
users’ requirements in the long run.

7.4 Safe Gridworld
Environment setup. Finally, to illustrate that our method can
be flexibly extended to other safe environments, we conduct
an experiment on the AI safety gridworld (Leike et al. 2017),
which includes various environments to testify the perfor-
mance of RL methods. Here, we choose the distributional
shift I as the environment, where the agent needs to find the
goal without touching lava, as shown in Appendix E. The
baselines are those methods similar to the sequential RS. The
rewards are−1 and 50 for taking a step, and reaching the goal
respectively, while the cost is c is −50 when falling into the
lava. The threshold ε is manually set to −20. The parameter
settings and network structures are similar to the sequential
recommendation environment except that we do not use the
embedding layers since the safety grid-world environment
does not include too many features.

Results. Fig. 2(d) and 2(c) indicate that our method (es-
pecially RSC-DQN) can achieve both completed safety (the
unsafe ratio is zero) and find near-optimal strategy fastest
among other SOTAs. One interesting phenomenon is that
comparing with DQN, both our methods have similar con-
vergence rate w.r.t total rewards but have significantly lower
unsafe ratio, while for DQN-RES, our methods have similar
convergence rate w.r.t unsafe ratio but converge much faster
w.r.t total rewards. This indicates that our methods have ad-
vantage in finding optimal results and keeping safety among

Environment SR I SR II
Metrics HR↑ CR ↑ CR↑ BH↑
DQN 0.357 0.919 0.179 7.269

DQN-RES 0.299 0.959 0.338 6.036
Lagrangian DQN 0.347 0.955 0.538 5.787
RSC-DQN (ours) 0.281 0.976 0.699 7.779
S2C-DQN (ours) 0.273 0.974 0.577 7.921

Table 2: The performance comparison of different methods.
The best results are highlighted in bold. ↑ means higher is
better. The mean and standard deviation are reported by 3
independent trials.

(a) Unsafe Ratio. (b) Accumulated Reward.

Figure 4: The ablation studies of unsafe ratio and accumu-
lated reward in sequential RS I.

other SOTAs.

7.5 Extra experiments.
We also conduct extra experiments to evaluate our methods in
various perspectives, including (1) different metrics for each
user; (2) ablations; and (3) training time. For (1), it reveals
that our method can converge faster than previous methods
in most cases in terms of different metrics. For (2), as shown
in Figs. 4(a) and 4(b), an ablation study indicates that φ does
play an important role in agent’s performance. Too large φ
masks some accessible safe actions, too small φ leads to
unsafety. Moreover, regarding vanilla SC-DQN, it performs
the worst among all the methods. This is caused by the fact
that in large-state environment, σ is always overestimated
and most of the safe actions are banned, which is consistent
with our conjecture. For (3), the training time coincides with
our analysis that RSC-DQN is more time-consuming than
S2C-DQN (2.4h vs 3.9h in GPU hours). More details can be
found in Appendix E.

8 Conclusion
This paper proposes a novel safe RL method aiming to handle
the challenge of irrelevant recommendation derived from free
exploration. Our main contributions are three-fold. Firstly,
we are the first to introduce safe RL for RS by designing
two value functions to choose the actions that maximize
the total rewards with safety constraints. Secondly, we show
that our methods are able to converge and stay safe with a
high probability during training. Thirdly, with a focus on the
large-scale environments, we propose two practical methods,
including a Simhash-based method as well as a relaxiation-
based method to reduce the overestimated bias. Experiments
on immediate recommendation, sequential recommendations,



as well as safe gridworld reveal that our methods outperform
the state-of-the-arts dramatically.
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A Omitted Proofs
This section shows the missing proofs in the main text, including 1) the upper bound for (Q(si, a)−Q∗(si, a))2 in a certain
state, 2) the safety guarantee of our method and 3) the convergence analysis of our method.

To facilitate our analysis, we define ‖ · ‖∞ as the infinity norm. We also use the inner product to represent the expectation: i.e.,
PV π(s′) := Es′∼P (·|s,a) [V π(s′)] and omit the superscript π if there is no confusion.

A.1 Upper bound for action selection
We first prove the upper bound for (Q(si, a) − Q∗(si, a))2 in a certain state si. As we discuss in the main text, we use an
alternative form of the temporal difference:

LD
(
Qh
′
, Qh

)
= 1
|D|
∑

(s,a,r,s′)∈D

[
Qh
′
(s, a)− c(s, a)− γQh (s′, a′)

]2
,

Qh
k+1

= τQh
k+1

:= arg min
Qh

k

LD
(
Qh
′
, Qh

k

)
.

(5)

These formulations are adapted from (Munos and Szepesvári 2008). τ is an operator to find Q that minimize LD
(
Qh
′
, Qh

)
.

Lemma 1. For ∀k, when the policy is stationary, the inequality is always established:∥∥∥T Qh
k
(s, a)−Qh∗(s, a)

∥∥∥2

∞
≤ γ2

∥∥∥Qh
k
(s, a)−Qh∗(s, a)

∥∥∥2

∞
.

Proof. This can be done by using the definition of Qh.∥∥∥T Qh
k
(s, a)−Qh∗(s, a)

∥∥∥2

∞
=
∥∥∥T Qh

k
(s, a)− T Qh∗(s, a)

∥∥∥2

∞

=
∥∥∥r + γEQh

k
(s, a)− r − γEQ∗(s, a)

∥∥∥2

∞

≤ γ2
∥∥∥Qh

k
(s, a)−Q∗(s, a)

∥∥∥2

∞
,

which completes the proof.

Lemma 2. We have |LDsi

(
Q
k
(si, a), Q

k−1
(si, a)

)
− L

(
Q
k
(si, a), Q

k−1
(si, a)

)
| ≤ χ = |C0|

1−γ

√
1

2(n∧1) log 2|A|
δ with prob-

ability at least 1− δ, where n is the visiting number for state si and n ∧ 1 := max{n, 1}.

Proof. Notice that the Q function is bound by [Cmin, Cmax]. We first define a sequence of random variables 〈Xl〉N1 :

Xl =
[
Qh
k
(sil, a

j
l )− c(sl, al)− γQ

h

k−1
(si
′

l , a
j′

l )
]2
.

Then we can check that Xl − E
[
Qh
k
(si, aj)− c(s, a)− γQh

k−1
(si
′
, aj)

]2
is a martingale difference sequence bounded by

[(Cmin

1−γ )2, (Cmax

1−γ )2] and LDsi

(
Q
k
(si, a), Q

k−1
(si, a)

)
= 1

n

∑n
l=1Xl, i.e., the loss function is the average of the random

variables Xl. Dsi is the tuple {si, a, c, s′}, containing state si. Then, by applying the Azuma’s inequality and the union bound
w.r.p actions, we can get

∀a,P

{∣∣∣∣∣ 1n
n∑
l=1

Xl − E(Xl)

∣∣∣∣∣ ≥ t

n

}
≤ 2γ|A| exp

(
− 2t2(n ∧ 1)

|C|2/(1− γ)2

)
.

Therefore, with probability at least 1− δ, we have
∣∣ 1
n

∑n
l=1Xl − E(Xl)

∣∣ ≤ χ, where

χ =
|Cmin − Cmax|

1− γ

√
1

2(n ∧ 1)
log

2γ|A|
δ

. (6)

Lemma 3. For a fixed abstraction mapping function h(·), we have |LDsi

(
Q
k
(si, a), Q

k−1
(si, a)

)
−

EL
(
Q
k
(si, a), Q

k−1
(si, a)

)
| ≤ χ = |C0|

1−γ

√
1

2(n∧1) log 2|A|
δ with probability at least 1 − δ, where n is the count

number for state embedding h(si) and n ∧ 1 := max{n, 1}.



Proof. This proof is similar to Lemma 2, except that the n is for the visiting time for h(s) rather than that of s.

Remark. As we mentioned above, it is very hard to count the visiting times of different states when the state size is large.
Moreover, it is also sample inefficient and unsafe if we separate all the states, since some states might have similar properties.
Therefore, this lemma above reveals that we may count the visiting times of a more compact state representation so as to decrease
the unsafe risk while speeds up the training process.

Corollary 1. If Qh
0
(si, aj) = 0 (the Q is initialized by zero), for state si and action aj , the upper bound is always established:(
Qh
k
(si, aj)−Qh,∗(si, aj)

)2

≤ 2|Cmin − Cmax|
1− γ

√
1

2(n ∧ 1)
log

2γ|A|
δ

+
(Cmax)2γ2k

(1− γ)2
. (7)

Proof.(
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T Q
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√
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log
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δ

+
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(1− γ)2
.

The second inequality uses Lemma 1 while the third inequality is adapted from Theorem 11 in (Chen and Jiang 2019). The
last inequality uses Lemma 2.
Lemma 4. (Qh(si, a)−Q∗(si, a))2is bounded by (Cmax

1−γ )2 + (Q∗(si, a)−Qhk(si, a))2.

Proof. The proof can be got immediately by noticing that ∀s, a : |Q∗(s, a)| ≤ |Cmax

1−γ |:

(Qh(s, a)−Q∗(s, a))2 ≤ (Q∗h(s, a)−Qhk(s, a))2 + (Q∗(s, a)−Qhk(s, a))2

≤ ‖Q∗h(s, a)−Qhk(s, a)‖2∞ + (Q∗(s, a)−Qhk(s, a))2

≤ (
Cmax

1− γ
)2 + (Q∗(s, a)−Qhk(s, a))2.

Theorem 1. For a certain state si ∈ S, with probability at least 1 − δ, assume the policy is stationary, the upper bound for(
Qh(si, a)−Q∗(si, a)

)2

is:

(
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log

2γ|A|
δ
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Proof. we decompose the term
(
Qh(si, a)−Q∗(si, a)

)2

by the triangle inequality and using Corollary 1 and Lemma 4:(
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As we assume each gradient descent in deep learning setting can approximated the operator Qh
k+1

:=

arg minQh LD
(
Q
k+1

, Qh
)

in the main text. Therefore, Theorem 1 can be used to estimate the bias for Qh(si, a).

A.2 Safety Property
This sections we discuss our method can always guarantee safety.

We first show that the optimal policy π∗ is safe:

Lemma 5. Assuming that there always exists a policy is safety in a constrained MDP, i.e. Ωsafe 6= ∅, for the Q∗ and its policy
π∗, the policy π∗ will never choose actions that leads to unsafety: π∗ ∩ Ωunsafe = ∅.

Proof. Before we begin our analysis, we first define unsafety in state si at step t̂:

∀a, Ĉ + γ t̂Eπ
∗


T∑
t=t̂

γtct|st̂

 ≤ ε, (9)

where Ĉ is the accumulated sum of cost until time t̂− 1. Now we start to proof that the inequality mentioned above is not true
during the whole steps.

The following proof is based on induction and contradiction. We first explore the case when the agent is ’lucky’: i.e., the agent
choose action which always leads to safe state. We prove that in a safety state, under our policy, we can always reach another
safety state within a probability.

i). When t̂ = 1, if there exists a at least one state sj that satisfies the safe criteria, as we analyze above, absolutely, the policy
will choose actions to these states.

We then show that it is impossible all the states are unsafe by contradiction. Assuming that all the state is unsafe, then for all
the policies cannot reach a safety trajectory: Ωsafe = ∅ which contradicts the assumption that there always exists a safe policy.
Therefore, when t̂ = 1 there always have a safe state. Furthermore, the policy will choose actions to these states.

ii). Assume when st̂−1 (t̂ > 2), the safety is guaranteed. Then for st̂, the proof is similar to case i). If there exists a at least one
state sj that satisfies the safe criteria, as we analyze above, the policy will choose actions to these states.

If the statement: ∀st̂, Ĉ + Eπ∗
{∑T

t=t̂ γ
tct|st̂

}
≤ ε is true, then we have:

C̃ + Eπ
∗


T∑
t=t̃

γtct|st̂

 = Ĉ + γ t̂−1Eπ
∗ {
ct̂−1

}
− γ t̂−1ct̂−1 + Eπ

∗


T∑
t=t̂

γtct|st̂

 ≥ ε
where C̃ = Ĉ + γ t̂−1Eπ∗

{
ct̂−1

}
− γ t̂−1ct̂−1. The second inequality is because Eπ∗

{
ct̂−1

}
≥ γ t̂−1ct̂−1. Then when the

transition function leads to the state that is unsafe. Definitely, choosing any of the policy will all lead to unsafety. But through
backtracking, we will always find one state satisfying the safe criteria ( The first one is the initial state). Therefore, π∗ always
satisfy the safety criteria.

The final thing is to prove Eπ∗
{
ct̂−1

}
≥ γ t̂−1ct̂−1. This can be done by contradiction. If Eπ∗

{
ct̂−1

}
< γ t̂−1ct̂−1 and

Ĉ + Eπ∗
{∑T

t=t̂ γ
tct|st̂

}
≤ ε, then we can check that st̂−1 is not safety any longer which contradicts the statement.

Thus the statement of the Lemma is true.

Now, we show the safety for π.

Theorem 2. If Ωsafe 6= ∅, the statement π ∩ Ωunsafe = ∅ is established with probability at least 1− δ.

Proof. Before we begin our proof, we first show that

Q(s0, a) = c(s0) + γEs′Q(s′, π(s′)) ≥ c(s0) + γEs′(Q∗(s′, π(s′))) = c(s0, a) + Eπ
∗

{
T∑
t=1

γtct|s′
}

This first inequality is achieved due to definition of π as well as the fact that the Q(s, a) ≤ Q∗(s, a) + σ(s, a).

We can expand this result to all the step. For any step t̂ ≤ T , notice that Eπ∗{Eπ∗
{∑T

t=t̂ γ
tct|st

}
|s0} =

Eπ∗
{∑T

t=t̂ γ
tct|st

}
(due to the tower property), similarly, we have Q(st̂, a) ≥ c(st̂, a) + Eπ∗

{∑T
t=t̂ γ

tct|st̂+1
}

.

Now, based on Lemma 5, the policy is always safe: i.e., π∗ ∩ Ωunsafe = ∅.
Then since Q(s, a) ≥ c(s, a) + Eπ∗

{∑T
t=1 γ

tct|s′
}

, we have π ∩ Ωunsafe = ∅ with probability at least 1− δ.



A.3 Convergence Analysis
This section we present the convergence analysis of our method, including the tabular case as well as the specified neural network
case.

We first show that the convergence analysis of a special case of our method: the safe constrained coupled value iteration in
tabular case:
Lemma 6. (contraction) Both Q and Q satisfy:∥∥(T Q) (s, a)− T Q∗(s, a)

∥∥
∞ ≤ γ

∥∥Q(s, a)−Q∗(s, a)
∥∥
∞ (10)

and

‖(T Q) (s, a)− (T Q∗) (s, a)‖∞ ≤ γ |Q(s, a)−Q∗(s, a)|∞ (11)

Proof.

‖(T Q) (s, a)− (T Q∗) (s, a)‖∞
= |(r(s, a) + γPV π(s′))− (r(s, a) + γPV π,∗(s′))|∞
(a)

≤ γP max
s′
|V (s′)− V ∗(s′)|

(b)
= γP max

s
|V (s)− V ∗(s)|

(c)

≤ γP max
s,a
|Q(s, a)−Q∗(s, a)|

≤ γ ‖Q(s, a)−Q∗(s, a)‖∞
(a) is due to the Jesen’s inequality and (b) is the property of the stationary policy. (c) comes from
the fact that maxa |Q(s, a)−Q∗(s, a)| ≥

∣∣maxa{Q (s, a)1{Q (s, a)− ε} −Q∗(s, a)1{Q∗ (s, a)}
∣∣ ≥∣∣maxa{Q (s, a)1{Q (s, a)− ε} −maxa′ Q

∗(s, a′)1{Q∗ (s, a′)}
∣∣. For Q, the proof is similar:∥∥(T Q) (s, a)−

(
T Q∗

)
(s, a)

∥∥
∞

(a)

≤ γP max
s,a

∣∣Q(s, a)−Q∗(s, a)
∣∣

≤ γ
∥∥Q(s, a)−Q∗(s, a)

∥∥
∞

(a) is from the fact that maxa
∣∣Q(s, a)−Q∗(s, a)

∣∣ ≥ ∣∣∣∑a P
Q
a,sQ(s, a)− PQ

∗

a,sQ
∗(s, a)

∣∣∣.
Proposition 1. Under the proposed value iteration scheme (Eq. (1) & (2)), both theQ andQ function can converge to the optimal
Q and Q function respectively. If we decompose with uncertain decomposition, i.e., Q = µt − σ̃t, with σ̃t = γP σ̃t, µt+1 =

c+ γPµt;we have limt→∞ σ̃t = 0, limt→∞ µt = Q∗.

Proof. Based on lemma 6, we have:∥∥∥(T Qk) (s, a)−
(
T Q∗

)
(s, a)

∥∥∥
∞
≤ γ

∥∥∥(Qk) (s, a)−
(
Q∗
)

(s, a)
∥∥∥
∞

and ∥∥(T Qk) (s, a)− (T Q∗) (s, a)
∥∥
∞ ≤ γ

∥∥(Qk) (s, a)− (Q∗) (s, a)
∥∥
∞ (12)

Applying the Banach fixed point theorem, we can conclude that both Q and Q are able to converge to optimal solution.
Specifically, for Q, with uncertain decomposition we have

σt+1 = γPσt, µt+1 = c+ γPµt; (13)

Directly solving the equation above, we have σ∗ = ~0, µ∗ = (I − γP )−1c = Q∗, where ~0 is the zero vector.

Here, we need to stress that σ(s, a) and σ̃(s, a) are not the same but we can choose σ̃(s, a) to match σ(s, a) just like (Metelli,
Likmeta, and Restelli 2019).

Now we begin to analysis the neural network case. Unfortunately, due to the fact that the hypothesis of our neural network is
infinite, leading the upper bound to be infinite when applying the Hoffding’s inequality. Therefore, we need to ferret out another
inequality which has a tighter bound for the hypothesis:



Lemma 7. (Mohri, Rostamizadeh, and Talwalkar 2012) The pseudo-dimension of hyper-planes in Rn is given by

Pdim
({

x 7→ w · x + b : w ∈ RN , b ∈ R
})

= N + 1 (14)

This Lemma is directly from Theorem 10.4 of (Mohri, Rostamizadeh, and Talwalkar 2012), where N is the embedding
dimension10.
Lemma 8. (Devroye, Györfi, and Lugosi 1996; Jiang et al. 2017) Suppose Pdim(H) ≤ d, then for any α > 0, we have:

Pr

{
sup
h∈H

∣∣∣∣∣ 1n
n∑
i=1

h (xi)− E [h (xi)]

∣∣∣∣∣ > α

}
≤ 8e(d+ 1)

(
16e

α

)d
exp

(
− nα2

128b2

)
(15)

whereH ⊂ X → [0, b] be a hypothesis class, (x1, . . . , xn) be i.i.d. samples drawn from some distribution supported on X . This
lemma is from Corollary 2 of (Jiang et al. 2017) .
Corollary 2. Based on Lemma 7 and 8 we always have

sup
h∈H

∣∣∣∣∣ 1n
n∑
i=1

h (xi)− E [h (xi)]

∣∣∣∣∣ ≤ 2(4d+3)e(d+1)(d+ 1) exp(LambertW (
4b22(−8d)e(−2d−2) log δ

nd(d2 + 2d+ 1)
)/2) = 2(4N+7)e(N+2)(N + 2)

(16)

with probability 1− δ, where LambertW (·) is the Lambert W function and d is the pesudo-dimension.

Proof. Solving Eq. (15)11, we have:

sup
h∈H

∣∣∣∣∣ 1n
n∑
i=1

h (xi)− E [h (xi)]

∣∣∣∣∣
≤ 2(4d+3)e(d+1)(d+ 1) exp(LambertW (

4b22(−8d)e(−2d−2) log δ

nd(d2 + 2d+ 1)
)/2).

The last inequality is due to the fact that 0 ≥ LambertW ( 4b22(−8d)e(−2d−2) log δ
nd(d2+2d+1) )/2) while the last equation is from Lemma

7.

Before we get into deeper into the analysis of NN-based Q-network. To facility our analysis, we define an ideal operator
update the Q function which is similar to Eq. (5):

LD
(
Qh
′
, Qh

)
= 1
|D|
∑

(s,a,r,s′)∈D

∣∣∣Qh′(s, a)− c(s, a)− γmaxa′ Q
h′ (s′, a′)

∣∣∣ ,
Qhk+1 = τ̂Qhk := arg min

Qh

LD
(
Qh
′
, Qhk

)
.

Lemma 9. Assume that the neural networks based Q satisfy those conditions: 1). the feature extraction layers are fixed and
2)the decision layer is a linear mapping. When the Q is initialized by zero, i.e., Qh1 = 0. Then, based on Corollary 2, we have∥∥∥Q̃hk(s, a)−Qh∗k (s, a)

∥∥∥
∞
≤ 2(4N+7)e(N+2)(N + 2) exp(LaW (

4b22(−8N−8)e(−2N−4) log δ

nd((N + 1)2 + 2N + 3)
)/2) + γ

Rmax

1− γ
with probability at least 1− δ.

Proof. Deducting
∥∥∥Q̃hk −Qh∗∥∥∥∞ we obtain:∥∥∥Q̃hk −Qh∗∥∥∥∞ =

∥∥∥Q̃hk + T Q̃hk−1 − T Q̃hk−1 −Qh∗
∥∥∥
∞

≤
∥∥∥Q̃hk − T Q̃hk−1

∥∥∥
∞

+
∥∥∥T Q̃hk−1 − T Qh∗

∥∥∥
∞

≤
∥∥∥Q̃hk − T Q̃hk−1

∥∥∥
∞

+ γ
∥∥∥Q̃hk−1 −Qh∗

∥∥∥
∞

≤
∥∥∥Q̃hk − T Q̃hk−1

∥∥∥
∞

+ γ
∥∥∥Q̃hk−1 −Qh∗

∥∥∥
∞

≤
k∑
i=2

γk−i+1
∥∥∥Q̃hi − T Q̃hi−1

∥∥∥
∞

+ γk−1
∥∥∥Q̃h1 −Qh∗∥∥∥∞

(17)

10More details about the pseudo-dimension can also be found in (Mohri, Rostamizadeh, and Talwalkar 2012).
11We leverage the computer-aided tool (Sympy https://www.sympy.org/en/index.html) to solve this inequality due to the high computation.



Using the similar approach in Corollary 1, we have
∥∥∥Q̃hi − T Q̃hi−1

∥∥∥
∞

= max

[
LD
(
Q
k
, Q

k−1

)
−LD

(
T hQ

k−1
, Q

k−1

)]
,

then if we set
|c(si, aj) + γQ(s′, π(s′))−Q(si, π(aj))| − |c(si, aj) + γQ(s′, π(s′))− T̂ Q(si, π(aj))| := Zi

as a random variable bounded by [0, 2Rmax

1−γ ], applying the Corollary 2 we have:

∀i,
∥∥∥Q̃hi − T Q̃hi−1

∥∥∥
∞
≤ 2(4N+7)e(N+2)(N + 2) exp(LaW (

4b22(−8N−8)e(−2N−4) log δ

nd((N + 1)2 + 2N + 3)
)/2) (18)

Adding them together, we finally get:∥∥∥Q̃hk −Qh∗∥∥∥∞ ≤ 1

1− γ
2(4N+7)e(N+2)(N + 2) exp(LaW (

4b22(−8N−8)e(−2N−4) log δ

nd((N + 1)2 + 2N + 3)
)/2) + γk−1Rmax

1− γ
with probability at least 1− δ.

Lemma 10. Based on Lemma 6, we have ∥∥T Qh∗ − T Q∗∥∥∞ = 0 (19)

Proof. ∥∥T Qh∗ − T Q∗∥∥∞ = ‖r(s, a) + γ(PV ∗(h(s′))− r(h(s), a)− γP ∗V (s′)‖∞
≤ ‖γ(PV ∗(h(s′))− γPV ∗(s′)‖∞

≤ γ ‖V (h(s′))− V (s′)‖∞
(a)

≤ γ
∣∣Qh∗ −Q∗∥∥∞

(a) is due to the fact that maxa
∣∣Qh∗(s, a)−Q∗(s, a)

∣∣ ≥ ∣∣∣maxa{Qh∗ (s, a)1{Qh∗ (s, a)} −Q∗(s, a)1{Q∗ (s, a)}
∣∣∣ ≥∣∣∣maxa{Qh∗ (s, a)1{Qh∗ (s, a)} −maxa′ Q

∗(s, a′)1{Q∗ (s, a′)}
∣∣∣ which is similar to Lemma 6.

Also, we have: ∥∥T Qh∗ − T Q∗∥∥∞ =
∥∥Qh∗ −Q∗∥∥∞

because of the optimal operator.
Thus combining the analysis above, we finally have:∥∥T Qh∗ − T Q∗∥∥∞ = γ ‖V (h(s′))− V (s′)‖∞

(a)

≤ γ
∥∥Qh∗ −Q∗∥∥∞ → ∥∥T Qh∗ − T Q∗∥∥∞ = 0

Theorem 3. For a stationary policy, assuming that the neural networks based Q satisfies those two conditions: (1) the feature
extraction layers are fixed. (2) The decision layer is a linear mapping. When Q is initialized by zero, i.e., Qh1 = 0, we always
have: ∥∥ Qhk(s, a)−Q∗(s, a)

∥∥
∞ ≤ 2(4N+7)e(N+2)(N + 2) exp(LaW (

4b22(−8N−8)e(−2N−4) log δ

nd((N + 1)2 + 2N + 3)
)/2) + γk−1Rmax

1− γ
,

and

∥∥∥ Qh
k
(s, a)−Q∗(s, a)

∥∥∥
∞
≤ 2(4N+7)e(N+2)(N + 2) exp(LaW (

4b22(−8N−8)e(−2N−4) log δ

nd((N + 1)2 + 2N + 3)
)/2) + γk−1 |Cmin|

1− γ
,

with probability at least (1− δ)2.

Proof. Apply Lemmas 6 and 9, we can find that:∥∥∥Q̃hk(s, a)−Q∗(s, a)
∥∥∥
∞

≤
∥∥ Qh∗k (s, a)−Q∗(s, a)

∥∥
∞ +

∥∥∥Q̃hk(s, a)−Qh∗(s, a)
∥∥∥
∞

≤ 2(4N+7)e(N+2)(N + 2) exp(LaW (
4b22(−8N−8)e(−2N−4) log δ

nd((N + 1)2 + 2N + 3)
)/2) + γk−1Rmax

1− γ
,

For,
∥∥∥Q̃hk(s, a)−Q∗(s, a)

∥∥∥
∞

, we can use the similar technique.

When n→∞ and k →∞, we can check that
∥∥ Qhk(s, a)−Q∗(s, a)

∥∥
∞ = 0.



Algorithm 2: Safe Constrained Multi-armed Bandit
Result: the well-trained Q and Q.

1 Initialize Q and Q with zero matrice.;
2 for each step t do
3 Pull an action at = πt(a) according to Eq. (21), and receive the reward r and cost c.;
4 end
5 Update Qt+1 and Q

t+1
(a) according to Eqs. (22).;

B Relationship to Multi-armed Bandits with Constraints
When the length of the time step is one and the environment is stateless, the MDP degenerates to the multi-armed bandit (MAB)
settings with constraints (Slivkins 2019). In the following, we will show that with a slight modification of our method, we can
apply our approach to MAB with constraints.

Lemma 11. When the time step is only one and the environment is stateless, if Cmax = 0, we have

|c(a)− c∗(a)| ≤ |Cmin − Cmax|

√
log n

2(n ∧ 1)
, |r(a)− r∗| ≤ |Rmax|

√
log n

2(n ∧ 1)
(20)

with probability at least (1− 2
n2 )2, where c(a) and r(a) are the estimated cost and reward for arm a and c∗ and r∗ are the true

cost and reward for that arm.

Proof. The proof can be easily done by applying the same approaches from Lemma 1.5 in (Slivkins 2019) to c and r.

For real-world application, we can control the exploration rate by introducing two manually set constants ψ1 & ψ2 to replace
|Cmin − Cmax| and |Rmax| respectively as what UCB method has done (Slivkins 2019). Details can be found in C.1.

C Algorithm Details
C.1 Safe Constrained Multi-armed Bandit
Adapted from Chapter 2 in (Sutton and Barto 2018), we modify the original UCB method into our new algorithms. We firstly
define the policy π̄ at step t as:

π̄t = arg max
a∈A′

[
Qt(a) + ψ1

√
ln t

n

]
, A′ =

{
a|

[
Q
t
(a)− ψ2

√
ln t

n

]
≥ ε
}
. (21)

where ψ1 & ψ2 are the positive hyper-parameters. We additionally define the updating rules for Q and Q :

Qt+1(a) = Qt(a) +
1

t
[r −Qt(a)] ,

Q
t+1

(a) = Q
t
(a) +

1

t

[
c−Q

t
(a)
]
. (22)

The pseudo-code can be found in Alg. 2.

C.2 Safe Double DQN with priorier replay buffer
We briefly introduce how to combine the Double DQN (DDQN) method with the prioritized replay buffer in our framework.

For the safe DDQN, adapted from the original DDQN (Van Hasselt, Guez, and Silver 2016) we can define the TD-loss

Ld =

(
rt+1 + γQθ̄

(
st+1, argmax

a′
Qθ (st+1, a

′)

)
−Qθ (st, at)

)2

+

(
ct+1 + γQ

θ̄

(
st+1, argmax

a′
Q
θ

(st+1, a
′)

)
−Q

θ
(st, at)

)2

Where Qθ̄ and Q
θ̄

are the target networks for Q and Q respectively. The first term is exact the double-Q TD-loss for Q while
second term is the TD-loss for Q.

We introduce the prioritized replay buffer to further stabilize the prioritized replay buffer (Schaul et al. 2015):

pt ∝ |Ld|ω/2 ,
where ω is a hyper-parameter to determine the shape of the distribution.



Algorithm 3: Safe Double DQN with priorier replay buffer

Result: the well-trained parameter θ , θ̄ , θ̂ , and θ̂.
1 Initialize Q and Q with parameter θ , θ̄, their target networks with target networks θ̂ , θ̂ and the experience buffer D.;
2 for episode τ do
3 for each step t do
4 get st, take action at = π(a|st), and reward rt and st+1. Store tuple 〈st, at, rt, ct, st+1〉 in replay buffer D.;
5 end
6 sample a batch of 〈s, a, r, c, s′〉 from D with priority pt.;
7 train θ , θ̄ , θ̂ , and θ̂ by minimizing Ld.;
8 end

D Lagrangian DQN
We briefly introduce the Lagrangian DQN. Generally speaking, Lagrangian DQN is to converting the original CMDP into a
minmax problem:

min
π

max
λ≥0

Qπ (x0) + λ
(
Q
π

(x0)− ε
)
,

where λ is the Lagrange multiplier of the CMDP cost. We can optimize the Q, Q and λ synchronously with three time scale
gradient descent.

E Extra Experiments
This section show more details of the experiments missing in the main text.

E.1 Details of implementation.
Hyper-parameters. Regarding the hyper-parameters, for MAB, we set the degree of exploration to 3 for UCB strat-
egy, ε = 0.1 for the ε-greedy strategy, and ψ1 = ψ2 = 3 for our method.For other environments, we use the same
hyper-parameters among all the methods, as shown in Tab. 4. We conduct all the experiments in Python 3 and Pytorch12

within a single GeForce GTX 1080 Ti. The running time for RSC-DQN and S2C-DQN in SR II are shown in Tab. 3.

Figure 5: The Distributional Shift I environment.
The figure is reproduced from (Leike et al. 2017).

Metrics. We also implement other metrics to evaluate our methods
in different aspects:

1) Accumulated reward. Accumulated reward is to show how agent
perform in the environment. For MAB environment, we use the accu-
mulated reward is exact the instant reward since MAB only has one
step.

2) Unsafe Ratio (UR). UR is to evaluate how agent is against the
cost: UR =

∑n
i=1 1

(∑
j cj < ε

)
/n, where i is the i-th user, total n

users and j is the index of time step.
3) Precision (P): P is to measure how much the recommended items

are in the ground-true item set: P =
∑n
i=1

|Ai∩A∗i |
n .

4) Click Ratio (CR): CR measures whether the item is clicked by
the user: HR =

∑n
i=1

∑m
j 1

(
a∗ij ∈ Aii

)
/(n ∗m), i, j means the i-th

user with j-th recommended items.
5) Browsing Length (BL): BL is to estimate how long a user interacts

with the RS.
6) Cost Action (CA). cost action is to judge the num-

ber of actions that imply costs (1
(∑

j cij < 0
)
/n): UA =∑n

i=1

∑m
j=1 1

(∑
j cij < 0

)
/n.

7) Unsafe Number (UN). UN aims to evaluate the number that the trajectory is unsafe: UR =
∑n
i=1 1

(∑
j cj < ε

)
.

Simulator. As we mentioned in the main text, both the Sequential Recommendation I and Sequential Recommendation II
are based on NN. The input of the simulator in RS I are the recommended features as well as the feature of users (as shown in

12https://pytorch.org/



Table 3: The training time (GPU hours) for different methods.

RSC-DQN S2C-DQN DQN SC-DQN

Training time (hours) 2.41 3.85 2.41 3.97

Table 4: The hyper-parameters for Sequential Recommendation I, Sequential Recommendation II, and Safe GridWorld.

Parameters Sequential Recommendation I Sequential Recommendation II Safe GridWorld

Batch size 1024 1024 1024
Learning Rate 0.0001 0.0001 0.0001

Buffer Size 40000 40000 40000
Discount rate γ 0.99 0.99 0.99
Qdiscount rate 0.99 0.99 0.99

α prioritised replay 0.6 0.6 0.6
β prioritised replay 0.1 0.1 0.1

units for each hidden layer 30,15 30,15 30,15
gradient clipping norm 0.7 0.7 0.7

update every n steps n=1 n=1 n=1
φ 1e-3 1e-3 1e-3

Tab. 5 and the output is the score of the items. For RS II, the input is the user profile, the sequence information (some statistical
information, including how many times user click and view) and recommended item, while the output is the user feedback (click,
view or leave). Moreover, for the network structure, each FC layer consists of a linear transformation with RELU as activation
function (Nair and Hinton 2010). Notice that the user behavior simulators in both RS I and RS II do not perform well when the
network structure is simple. Therefore, for each features, we use different embedding layers to extract each of the feature. Then
we concatenate all the embeddings together and further use two FC layers to get the output. As we mentioned in the main text,
we use the resampling tricks in RS II to avoid sparseness. Regarding the loss function, we use mean squared error in RS I and
cross entropy error in RS II. The MSE on test set is 1.3 in RS I while the AUC is 0.60 and the accuracy is 0.81 in RS II. This
result illustrates the NN based simulator can simulate the true users’ behaviors well.

Ablations. For ablations, we choose different φ to evaluate the effects of count-based exploration, including 1) RSC-DQN
1e-0: RSC-DQN with φ = 1 2) RSC-DQN 1e-3: RSC-DQN with φ = 10−3 (our default setting); and 3) RSC-DQN 0, RSC-DQN
0 is equal to the RSC-DQN.

Simhash. For the Sim-hash, we use the code from13.

E.2 Analysis.
This is an extension of Sec. 7.5. From Fig. 8, we can find that our methods are well-performing in almost all the metrics. Also,
the reason that average HR is not high in Tab. 2 is because our methods converage slower than other SOTAs, inducing lower HR
in the early stage. Fig. 7 reveals that our methods also perform well regarding the shaping reward. But the rewarding shaping
needs delicate reward design, our method can achieve similar scores without this time-consuming design process. In Fig. 6 and
Tab. 7, we can find that expect for DQN, all the methods have low cost actions, indicating that these safe methods are all able to
prevent cost actions. Among these methods, ours have lower cost actions than others, which means our methods are more safe
than others.

Fig. 9 and Tab. 8 illustrate that the count-based module does play an important role in terms of performance. However, too
large φ does harm to the agent. We can find that too large φ causes large unsafe ratio because too large φ bans all possible actions
(includes the safe actions) and when all the actions are banned, the agent will randomly choose an action from the action set. This
is the main reason that too large φ ironically intensifies the unsafety. Moreover, the phenomenon that too large actions induce
higher reward is due to the fact that some actions are dangerous but leads to high reward. Moreover, we find that φ = 0 can
reduce the training time while reach similar performance. This motivates us to relax this term.

From Tab. 3, the training time for RSC-DQN is far less than S2C-DQN. This phenomenon is caused by the fact that counting
the occurrence of each states is time-consuming. Combining Tab. 2, since RSC-DQN and S2C-DQN have similar performance,
we conclude that RSC-DQN may be more sample efficiency.

13https://github.com/openai/EPG



Table 5: Statistics of MovieLens-1M and Production dataset.

MovieLens-1M Production dataset
Number of the users 5940 6591

Item numbers 3883 45067
Features for items genre, direct, actor ctr, cvr, price, logctr, logcvr, logprice, ctrcvr, cvrprice, ctrcvrprice.
Features for users state, country, age gender, age, occupation, zipcode, state, country

Table 6: The average unsafe ratio in different environments. SR means sequential recommendation. The best results are
highlighted in bold. The mean and standard deviation are reported by 3 independent trials.

Metric Total Unsafe Number ↓
Methods SR I SR II Gridworlds

DQN 180.44±0.03 658.33±1.26 226.91±0.03

DQN-RES 57.94±0.01 371.94±0.19 220.75±0.07

Lagrangian DQN 80.26±0.01 560.76±0.14 306.37±0.07

RSC-DQN (ours) 37.27±0.00 320.65±0.14 186.04±0.06

S2C-DQN (ours) 42.71±0.02 185.26±0.08 171.69±0.07

(a) Cost Actions in RS I. (b) Cost Action in RS II. (c) Cost Action in Safe GridWorld.

Figure 6: The cost action of various environments.

Table 7: The number of cost actions for different methods. The best results are highlighted in bold. The mean and standard
deviation are reported by 3 independent trials.

Metric Average Cost Actions ↓
Environment SR I SR II Gridworlds

DQN 820.33 399.67 160.83
DQN-RES 300.00 386.50 58.50

Lagrangian DQN 408.83 548.16 30.50
RSC-DQN (ours) 235.33 299.16 25.17
S2C-DQN (ours) 235.16 164.50 28.67

Table 8: Performances of different methods in SR I. The best results are highlighted in bold. The mean is reported by 3
independent trials.

Environment Sequential Recommendation I
Methods RSC-DQN 1e-0 SC-DQN S2C-DQN 1e-3 S2C-DQN 0

Avg Unsafe Number ↓ 86.83 947.33 37.27 42.71

Avg Precision ↑ 0.966 0.266 0.976 0.974

Avg Click Ratio ↑ 0.295 0.208 0.281 0.273



(a) Shaping Reward in RS I. (b) Shaping Reward in RS II. (c) Shaping Reward in Safe GridWorld.

Figure 7: The shaping reward of various environments.

(a) Click Ratio in RS I. (b) Precision in RS I. (c) Browsing History in RS II. (d) Click Ratio in RS II.

Figure 8: The metrics of different methods in each step.

(a) Click Ratio in RS I. (b) Reward in RS I. (c) Unsafe Ratio in RS I. (d) Precision in RS I.

Figure 9: The ablation studies in RS I.


