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Abstract

In recent years, the deployment of large-scale pre-trained models in audio-visual
downstream tasks has yielded remarkable outcomes. However, these models, pri-
marily trained on single-modality unconstrained datasets, still encounter challenges
in feature extraction for multi-modal tasks, leading to suboptimal performance.
This limitation arises due to the introduction of irrelevant modality-specific infor-
mation during encoding, which adversely affects the performance of downstream
tasks. To address this challenge, this paper proposes a novel Dual-Guided Spatial-
Channel-Temporal (DG-SCT) attention mechanism. This mechanism leverages
audio and visual modalities as soft prompts to dynamically adjust the parameters
of pre-trained models based on the current multi-modal input features. Specifically,
the DG-SCT module incorporates trainable cross-modal interaction layers into
pre-trained audio-visual encoders, allowing adaptive extraction of crucial informa-
tion from the current modality across spatial, channel, and temporal dimensions,
while preserving the frozen parameters of large-scale pre-trained models. Experi-
mental evaluations demonstrate that our proposed model achieves state-of-the-art
results across multiple downstream tasks, including AVE, AVVP, AVS, and AVQA.
Furthermore, our model exhibits promising performance in challenging few-shot
and zero-shot scenarios. The source code and pre-trained models are available at
https://github.com/haoyi-duan/DG-SCT.

1 Introduction

With the increasing availability of hardware resources, large-scale models [20, 4, 3] pre-trained
on extensive data have achieved significant advancements in various multi-modal tasks [26, 5].
Nonetheless, since these models are primarily pre-trained on single modality, they may not be
optimally suited for current multi-modal downstream tasks [33, 32, 43, 14]. As depicted in Fig 1 (a),
the pre-trained model equally extracts visual features and directly passes them to downstream tasks.
However, when perceiving the roaring sound of an engine, the visual region depicting a "car" should
receive more attention than the region of "trees". Simultaneously, when observing the car, it is crucial
to concentrate on the audio segments of the engine sound. Therefore, the encoder should not only
equally extract modal-specific information from the current modality, but also highlight information
related to other modalities to enhance feature fusion across diverse modalities in downstream tasks.
Retraining these large models based on downstream tasks would impose an unaffordable burden [41,
22, 39], leading recent works to explore methods for fine-tuning pre-trained models on downstream
tasks without full retraining, showing promising progress. However, these CLIP-based methods
have primarily focused on text-image tasks [46, 45, 7, 12] , while overlooking another important
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Figure 1: Our Spatial and Temporal attention can focus on important regions and moments in
video and emphasize critical timestamps and frequencies in audio; Channel attention enhances
the representations of audio and visual features. Take visual modality, our visual features contain
fine-grained, task-specific information under the guidance of audio prompts.

multi-modal scenario: audio-visual tasks. Hence, in this paper, we primarily investigate how to
utilize existing large-scale models, such as CLIP [26] and Swin-Transformer [20], to adaptively
adjust the encoding features with the guidance of counterpart modality when encoding audio or visual
information.

The success of prompt learning in large language models (LLMs) [13, 18, 19, 30, 21] has recently
sparked growing research interest in multi-modal prompt learning, as seen in works such as CoOp
[46], CoCoOp [45], CLIP-Adapter [7], DenseCLIP [27], and MaPLe [12]. While these approaches
enable adaptive adjustment of input features using text-based prompt templates for downstream tasks,
an important question arises: Can audio or video serve as innovative prompt templates to enhance
task comprehension for pre-trained models and guide adaptive feature extraction of the counterpart
modality? Our findings suggest a positive answer to this question.

In this paper, we present the Dual-Guided Spatial-Channel-Temporal (DG-SCT) attention mecha-
nism, designed to adaptively adjust feature extraction of pre-trained models based on audio-visual
input. Our work is motivated by a recent work, LAVisH [17], which introduces trainable layers
with shared parameters in pre-trained models to enhance fusion of audio-visual features, demon-
strating promising performance on various audio-visual downstream tasks with minimal additional
parameters. However, LAVisH has a few limitations. First, it relies solely on a visual encoder to
encode audio, which we argue is insufficient for capturing key audio features [10, 23]. Second, it only
employs cross-attention in trainable layers to introduce information from different modalities, without
explicitly highlighting crucial information within the current modality. By contrast, our approach
incorporates cross-modal interaction layers into audio (HTS-AT [3]) and visual (ViT [4] or Swin-T
[20]) pre-trained models, leveraging different modalities as prompts to focus on special aspects of the
input features that are more relevant to the counterpart modal semantics across spatial, channel, and
temporal dimensions. We term our proposed approach as "prompts" to denote the guidance provided
to the trainable weights in preceding layers. It emphasizes utilizing audio and video cues to guide the
representation of the counterpart modalities.

As depicted in Fig. 1, unlike previous audio and visual encoders, which generate audio and visual
features separately and uniformly (Fig. 1 (a)), our features contain fine-grained, task-specific informa-
tion at multiple levels by leveraging the guiding characteristics of multi-modal information [37, 36].
This enables efficient implementation of a wide range of downstream tasks. Notably, unlike previous
CLIP works [46, 45] that offer unidirectional prompts, our approach introduces bidirectional prompts.
This means that visual and audio modalities can mutually guide each other, facilitating enhanced
feature extraction from the respective modalities.

In summary, this paper makes the following contributions:

• We highlight the limitations faced by large-scale pre-trained models in audio-visual down-
stream tasks, which hinder their optimal performance. To overcome these, we propose to
utilize audio-visual features as novel prompts to fully leverage the feature extraction capa-
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Figure 2: 1) Audio-visual inputs; 2) DG-SCT is injected into every layer of frozen pre-trained audio
and visual encoders; 3) After feature extraction, the audio and visual features are sent to various
downstream tasks; 4) Details of DG-SCT in spatial-channel-temporal attention levels.

bilities of large-scale models, enabling the effective utilization of task-specific information
from different modalities.

• We introduce a novel attention mechanism named Dual-Guided Spatial-Channel-Temporal
(DG-SCT), which utilizes audio and visual modalities to guide the feature extraction of
their respective counterpart modalities across spatial, channel, and temporal dimensions.
Notably, our approach adds only a limited number of parameters for the interaction layer,
while keeping the original parameters of the large-scale pre-trained models frozen.

• Extensive experimental results on four audio-visual tasks, namely, AVE, AVVP, AVQA, and
AVS, demonstrate the superiority of our model compared to state-of-the-art counterparts
across various settings. Furthermore, we evaluate the performance of DG-SCT in few-shot
and zero-shot scenarios on the AVE and LLP datasets, demonstrating its superiority over
CLIP and several competitive CLIP-Adapters.

2 Related work

2.1 Audio-visual understanding

Audio-visual understanding tasks involve utilizing both audio and visual modalities to get a better
perception of audio-visual scenarios [8, 22, 41, 31]. For instance, Audio-Visual Event Localization
(AVE [33]) requires models to recognize joint audio-visual events. Previous works [33, 16, 35,
37, 36] use late interaction strategies to better leverage the visual and audio features encoded from
modality-specific pre-trained models. Audio-Visual Video Parsing (AVVP [32]) task breaks the
restriction that audio and visual signals are definitely aligned. To tackle the weakly-supervised AVVP
task, previous work [32] proposes a hybrid attention network and attentive Multimodal Multiple
Instance Learning (MMIL) Pooling mechanism to aggregate all features. The task of Audio-Visual
Segmentation (AVS [42]) focuses on whether each pixel corresponds to the given audio so that
a mask of the sounding object(s) is generated. Zhou et al. [43] use a temporal pixel-wise audio-
visual interaction module to inject audio semantics as guidance for the visual segmentation process.
Furthermore, the newly introduced Audio-Visual Question Answering (AVQA [14]) task requires
methods that perceive both audio and visual modalities to answer human-generated questions about
the audio-visual content. Li et al. propose a spatiotemporal grounding model [14] to achieve scene
understanding and reasoning over audio and visual modalities.

However, most methods designed for these tasks rely on modality-specific audio and visual pre-
trained models, which can not utilize multi-modal cues early in the representation stage. In this paper,
we propose a novel early-interaction strategy, adaptively extracting key information from the current
modality across spatial-channel-temporal dimensions.
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2.2 Vision-language models and prompt learning

Vision-language models have made remarkable progress since the introduction of CLIP [26], with
zero-shot and few-shot ideas achieving excellent generalization abilities in many downstream tasks;
Meanwhile, prompt, a concept in NLP [15, 13, 19], has achieved impressive results in various NLP
domains since its introduction, as evidenced by the success of the GPT series [25, 1]. Subsequent
works have attempted to combine these two and achieved better results. For example, CoOp [46]
improves the CLIP model by optimizing the continuous prompts in the language branch, and CoCoOp
[45] further improves the model by incorporating prompts in the video branch. However, these
works only utilize prompts to guide individual branches. CLIP-adapter [7] builds on these works by
proposing to use embedding of video and language to guide each other at the end of the encoder.
MaPLe [12] is the first to use an adaptor to guide each other inside the encoder, integrating visual
and text representations with the semantics of each other to enhance the generalization ability of the
model. However, none of these works consider utilizing prompts in the audio-visual domain.

In this paper, we introduce a novel bidirectional prompt that employs audio and video cues indepen-
dent of text to achieve outstanding information extraction abilities for audio-visual tasks.

3 Approach

In this section, more details about our proposed DG-SCT are elaborated. An overview of the proposed
framework is illustrated in Fig. 2.

3.1 Representations for audio-visual modalities

Visual representation Given an input video sequence, we first sample a fixed number of RGB
video frames {Vt}Tt=1 ∈ RT×H×W×3, where H, W are height and width. Following the Swin-T
[20], we first split each RGB frame Vt into non-overlapping patches by a patch-splitting module with
kernel size (Pv × Pv). Each patch is treated as a "token" and its feature is set as a concatenation of
the raw pixel values. A linear embedding layer is then applied to this raw-valued feature and we can
get visual features as vt ∈ R

H
Pv

× W
Pv

×Cv , where Cv is the number of visual channels.

Audio representation Given an input audio track, we first get an audio mel-spectrogram {At}Tt=1,
where At ∈ RL×F with time L and frequency bins F . Following the HTS-AT [3],3 the audio
mel-spectrogram is cut into different patch tokens with a Patch-Embed CNN of kernel size (Pa×Pa).
A linear embedding layer is then applied to this raw-valued feature and we can obtain audio features
as at ∈ R

L
Pa

× F
Pa

×Ca , where Ca is the number of audio channels.

3.2 Adding DG-SCT modules to frozen encoders

Now, we describe how we adjust pre-trained Swin-T and HTS-AT with our proposed DG-SCT. Every
layer of the Swin-T and HTS-AT consists of three main operations: 1) multi-head attention (MHA),
2) multi-layer perceptron (MLP), and 3) our DG-SCT modules which use the intermediate layer
information of audio and video as prompts to guide each other through spatial-channel-temporal
dimensions. We skip the linear normalization layers in both MHA and MLP operations for brevity.

Given audio inputs a(ℓ) ∈ RT×(L(ℓ)·F (ℓ))×C(ℓ)
a and visual inputs v(ℓ) ∈ RT×(H(ℓ)·W (ℓ))×C(ℓ)

v from
layer ℓ, we first use a two-dimensional convolution kernel and a linear projection to make the
dimensions of the audio and visual prompts consistent of their counterpart modality. Let v(ℓ)f =

Ωa2v(a(ℓ), v(ℓ)) and a(ℓ)
f = Ωv2a(v(ℓ), a(ℓ)) denote the operation that implements DG-SCT module,

which we will describe in the next subsection. Then, the operations in each layer can be written as:

3https://github.com/RetroCirce/HTS-Audio-Transformer, an audio encoder based on Swin-
Transformer.
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v(ℓ)y = v(ℓ) + MHA(v(ℓ)) + Ωa2v(a(ℓ), v(ℓ)), a(ℓ)y = a(ℓ) + MHA(a(ℓ)) + Ωv2a(v(ℓ), a(ℓ)), (1)

v(ℓ+1) = v(ℓ)y + MLP(v(ℓ)y ) + Ωa2v(a(ℓ)y , v(ℓ)y ), a(ℓ+1) = a(ℓ)y + MLP(a(ℓ)y ) + Ωv2a(v(ℓ)y , a(ℓ)y ).
(2)

3.3 Dual-guided spatial-channel-temporal attention

In this subsection, we will describe how DG-SCT works in more detail. Given visual and audio
features, the encoder such as Swin-Transformer pre-trained on large-scale single-modal data, will
uniformly extract features from audio-visual inputs (See Fig. 1 (a)). However, in practical multi-modal
scenarios, not all of this information carries equal importance. For example, as we see in Fig. 1, the
region where the car appears in the visual field is evidently more crucial than the background trees.
Additionally, the moment when the engine sound emerges in the audio should also be given more
attention. Hence, we take advantage of the fact that audio-visual pairs can provide mutual guidance
for each other, and utilize different modalities as prompts to help pre-trained models focus more on
specific aspects of opposite modal inputs across spatial, channel, and temporal dimensions. Different
from previous works [37, 36] which only leverage audio as guidance to extract visual features, our
proposed DG-SCT module can achieve triple levels of information highlighting in two directions. We
illustrate these cross-modal attention mechanisms in the following parts:

Channel-wise attention: Different channels represent different aspects of features. The introduction
of channel attention can facilitate the model to ignore irrelevant features and improve the quality
of representations [11]. We let the audio and video serve as mutual guidance signals and explicitly
model the dependencies between channels on each other’s modality. Concretely, We use ψa and
ψv to denote the combinations of convolutional and linear projection in section 3.2, to encode
audio and visual inputs as prompts: a

′

t = ψa(at) ∈ RCv×(H·W ) and v
′

t = ψv(vt) ∈ RCa×(L·F ),
respectively. For audio-to-visual (A2V), we use the spatial average pooling to process a

′

t and
get a

′′

t ∈ RCv×1, then fuse it with vision via element-wise multiplication after feeding them to
projection layers Θc

a,Θ
c
v ∈ RCv×Cv respectively, generating audio channel-guidance maps acmt =

(Θc
a(a

′′

t )⊙Θc
v(vt)) ∈ RCv×(H·W ). After that, we spatially squeeze the fused feature by global

average pooling, denoted as δa, Finally, a bottleneck layer Φa follows with a sigmoid function σ is
used, yielding channel attention maps Mvc

t ; Similarly, we generate V2A channel attentive maps Mac
t :

Mvc
t = σ(Φa(δa(acm

t ))) ∈ RCv×1, Mac
t = σ(Φv(δv(vcmt ))) ∈ RCa×1, (3)

where vcmt ∈ RCa×(L·F ) is the visual channel-guidance maps, δv is spatial-wise global average
pooling, Φv indicates a bottleneck layer and σ denotes the sigmoid function.

Spatial-wise attention: Audio can improve visual feature extraction by contributing to visual
attention in the spatial dimension [33]. Inspired by this, we leverage the guidance capabilities of
audio and visual prompts to guide visual spatial attention and audio frequency attention, respectively.
Similar to the aforementioned channel-wise attention, For A2V, we first get channel-attentive visual
features vct = (Mvc

t + 1) ⊙ vt, then we element-wise multiply audio prompt and vct after the
projection of Θs

a and Θs
v to hidden dimension d = 256, generating audio spatial-guidance maps

asmt = (Θs
a(a

′

t)⊙Θs
v(v

c
t)) ∈ Rd×(H·W ). Then we use a projection layer Θs ∈ R1×d with a sigmoid

function σ to obtain spatial attention maps Mvs
t ; Similarly, we generate V2A frequency attentive

maps Maf
t :

Mvs
t = σ(Θs(asmt )) ∈ R1×(H·W ), Maf

t = σ(Θf (vfmt )) ∈ R1×(L·F ), (4)

where vfmt denotes visual frequency-guidance maps, Θf ∈ R1×d is a projection layer.

Temporal-gated attention: Given an audio, significant time segments (e.g., “engine sound”) should
be emphasized, while background information (e.g., “silence”) should be attenuated. The same holds
for the visual information as well [36]. Inspired by this, we add temporal-gated attention in the

final layer. For A2V, we first feed the frequency-channel attentive audio features {acft }
T

t=1 through
an RNN to capture temporal information better and then pass it through a projection layer with
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sigmoid function to obtain the temporal attention gates Gv ∈ RT×1; Similarly, for V2A, we feed the
spatial-channel attentive visual features to generate Ga ∈ RT×1:

Gv = σ(Θt
a(RNN({acft }

T

t=1))), Ga = σ(Θt
v(RNN({vcst }Tt=1))). (5)

Summary: We combine the abovementioned three attention mechanisms together to form our DG-
SCT module. Given audio features at ∈ RCa×(L·F ) and visual features vt ∈ RCv×(H·W ), DG-SCT
first generates channel-wise attention maps Mvc

t and Mac
t to let audio and video adaptively emphasize

informative features of the corresponding modality. It then lets audio pay attention to the important
sounding regions to produce spatial-wise attention maps Mvs

t and lets video pay attention to the
important frequency regions to generate frequency-wise attention maps Maf

t , thus the yielding of the
spatial-channel attentive visual features vcst and the frequency-channel attentive audio features acft
can be summarized as:

vcst = (α · Mvc
t + β · Mvs

t + 1)⊙ vt, acft = (α · Mac
t + β · Maf

t + 1)⊙ at, (6)

Then we generate two temporal attention gates Gv ∈ RT×1 and Ga ∈ RT×1 for {vcst }Tt=1 and

{acft }
T

t=1, respectively, thus the final outputs of Ωa2v and Ωv2a mentioned in section 3.2 are:

{vcstt }Tt=1 = (γ · Gv + 1)⊙ {vcst }Tt=1, {acftt }Tt=1 = (γ · Ga + 1)⊙ {acft }Tt=1, (7)

Where α, β, and γ are hyperparameters. Consequently, this approach yields high-quality, fine-grained
audio-visual representations, significantly improving the performance of subsequent tasks in the
audio-visual domain.

4 Experiments

4.1 Tasks and datasets

Audio-visual event localization (AVE) focuses on recognizing an audio-visual event that is both
visible and audible throughout multiple time segments in a video. We evaluate the AVE [33] dataset;
Audio-visual video parsing (AVVP) aims to parse a video into temporal event segments and label
them as either audible, visible, or both. We evaluate our method for weakly-supervised AVVP task on
the LLP dataset [32]; The goal of Audio-visual segmentation (AVS) is to output a pixel-level map of
the object(s) that produce sound at the image frame. We evaluate on AVSBench [43]; Audio-visual
question answering (AVQA) aims to answer questions based on the associations between objects
and sounds. We conduct our experiments on the MUSIC-AVQA dataset [14].

Meanwhile, We propose Audio-visual few-shot/zero-shot tasks on AVE [33] and LLP [32] datasets.
We evaluate AVE and classification tasks on AVE dataset and classification task on LLP dataset.
More details about tasks and datasets will be illustrated in Appendix.

4.2 Implementation details

Audio-visual downstream tasks: To adapt our approach to the four audio-visual downstream tasks,
we replace the pre-trained audio and visual encoders with a frozen HTS-AT [3] and a frozen Swin-
Transformer [20], respectively. The trainable DG-SCT modules in Fig. 2 (4) are injected into the
frozen layers to let audio and visual modalities guide each other. We then use this as our audio-visual
feature extractor. For AVE task, our feature extractor is combined with CMBS [36]. The event
category label of each video segments is required to be predicted in supervised manner. We adopt
[33, 38, 37, 36] and exploit the overall accuracy of the predicted event category as the evaluation
metrics; Combined with MGN [24], DG-SCT is able to tackle the weakly-supervised AVVP task.
Following [32], we evaluate the parsing performance of all events (audio, visual, and audio-visual
events) under segment-level and event-level metrics; For AVS task, We combine our audio-visual
feature extractor with the original AVS model [43]. We use the Jaccard index J [6] and F-score F
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Table 1: Audio-visual event localization. Comparisons on the test set of AVE in supervised manner.
The result of our re-implementation of LAVisH [17] is 79.7%.

Method Visual Encoder Audio Encoder Acc
AVEL(Audio-Visual) [33] VGG-19 VGG-like 71.4

AVEL(Audio-Visual+Att) [33] VGG-19 VGG-like 72.7
AVSDN [16] VGG-19 VGG-like 72.6
CMAN [38] VGG-19 VGG-like 73.3
DAM [35] VGG-19 VGG-like 74.5

CMRAN [37] VGG-19 VGG-like 77.4
PSP [44] VGG-19 VGG-like 77.8

CMBS [36] VGG-19 VGG-like 79.3
LAVisH [17] Swin-V2-L (shared) 81.1
LAVisH [17] Swin-V2-L (shared) 79.7

LAVisH*4 Swin-V2-L HTS-AT 78.6
Ours Swin-V2-L HTS-AT 82.2

Table 2: Audio-visual video parsing. Comparisons on the test set of LLP.

Methods Segment-level Event-level
A V AV Type Event A V AV Type Event

AVE [33] 49.9 37.3 37.0 41.4 43.6 43.6 32.4 32.6 36.2 37.4
AVSDN [16] 47.8 52.0 37.1 45.7 50.8 34.1 46.3 26.5 35.6 37.7

HAN [32] 60.1 52.9 48.9 54.0 55.4 51.3 48.9 43.0 47.7 48.0
MGN [24] 60.7 55.5 50.6 55.6 57.2 51.0 52.4 44.4 49.3 49.2

Ours 59.0 59.4 52.8 57.1 57.0 49.2 56.1 46.1 50.5 49.1

as the evaluation metrics; For AVQA task, our audio-visual feature extractor is used in the original
ST-AVQA [14]. Similarly, we use the answer prediction accuracy as the evaluation metrics.

Audio-visual few-shot/zero-shot tasks: We incorporate DG-SCT modules as adapters between the
frozen CLIP image encoder ViT [26] and frozen CLAP audio encoder HTS-AT [5], generating audio
and visual features for text-audio and text-image contrastive learning, as shown in Fig. 2 (e). For the
zero-shot setting, the model is pre-trained on the VGG-Sound(40K) [2] dataset. More details will be
discussed in Appendix.

4.3 Compared with state-of-the-arts on audio-visual downstream tasks

First, we challenge our method against current state-of-the-art methods on the four audio-visual
tasks. As demonstrated in Table 1, our model outperforms CMBS [36] and LAVisH [17] by a
significant margin (2.9% and 2.5%); In Table 2, our model attains either a competitive or even better
performance. For instance, DG-SCT surpasses MGN by 3.9% points in the segment-level visual
event parsing metric, demonstrating our method can utilize large-scale models to extract more useful
features and further promote the fusion of these features in downstream tasks. We also achieve
state-of-the-art results on S4 setting of AVS task (Table 3). Lastly, our model performs exceptionally
well on AVQA task and outperforms previous leading methods on AQ, VQ, and AVQ question
types, respectively. The experimental results reveal that our model has the capability of utilizing
pre-trained audio and visual models to extract more comprehensive, higher-quality features tailored
for downstream tasks than the cross-attention mechanism of LAVisH. Moreover, our model exhibits
excellent generalization abilities, achieving impressive results across various audio-visual tasks.

4.4 Compared with state-of-the-arts on audio-visual few-shot/zero-shot tasks

Furthermore, as presented in Fig. 4, our DG-SCT model surpasses top-performing methods like
CoCoOp, CLIP-Adapter, and MaPLe by a non-negligible margin on our newly proposed audio-visual
few-shot/zero-shot scenarios. Our few-shot (shot=16) learning for the AVE task attains 72.4%,

4Our modified implementation of LAVisH for fair comparisons.
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Table 3: Audio-visual segmentation. Comparisons on the S4 and MS3 settings of AVSBench. MJ
and MF denote the mean J and F metric values (section 4.2) over the whole dataset.

Method Visual Encoder Audio Encoder
Setting

S4 MS3
MJ MF MJ MF

AVS [43] PVT-v2 VGG-like 78.7 87.9 54.0 64.5
LAVisH [17] Swin-V2-L (shared) 80.1 88.0 49.8 60.3

LAVisH* Swin-V2-L HTS-AT 78.0 87.0 49.1 59.9
Ours Swin-V2-L HTS-AT 80.9 89.2 53.5 64.2

Table 4: Audio-visual question answering. Comparisons on the test set of MUSIC-AVQA. We
report accuracy on three types of questions, e.g., audio (AQ), visual (VQ), and audio-visual (AVQ).

Method Visual Encoder Audio Encoder AQ VQ AVQ Avg
AVSD [28] VGG-19 VGG-like 68.5 70.8 65.5 67.4

Pano-AVQA [40] Faster RCNN VGG-like 70.7 72.6 66.6 68.9
ST-AVQA [14] ResNet-18 VGG-like 74.1 74.0 69.5 71.5
LAVisH [17] Swin-V2-L(shared) 75.7 80.4 70.4 74.0

LAVisH* Swin-V2-L HTS-AT 75.4 79.6 70.1 73.6
Ours Swin-V2-L HTS-AT 77.4 81.9 70.7 74.8

outperforming MaPLe for 5.3% points, and is even comparable to previous full-training baselines
(Table 1). Note that experimental results for few-shot on the LLP classification task are worse
than zero-shot scenario. We argue that this is due to a significant gap between downstream and
pre-training data, which may have disrupted the original parameters of the CLIP model. However,
we still outperform MaPLe by 2.2% and 0.7% points, for zero-shot and few-shot (shot=16) settings,
respectively. The outcomes demonstrate that our dual-guided audio-visual prompts extract task-
specific information better than text-image [26, 46, 45, 7, 12] and text-audio [5] pre-trained models
and exhibit stronger adaptability on audio-visual tasks.

4.5 Ablation analysis

We verify the effectiveness of the three modules, namely, S (spatial), C (channel), and T (temporal),
in DG-SCT. As shown in Table 5, compared to the baseline model, the individual incorporation
of these attention modules leads to substantial performance enhancements of our model across a
range of downstream tasks, demonstrating the effectiveness of these modules. Although cross-modal
interactions in any dimension can enhance feature extraction, we argue that distinct modules can
also mutually guide and enhance each other’s performance. For instance, removing the T module
individually does not result in a significant decrease in the performance of the model, which indicates
that the combination of S and C can slightly substitute the function of T. The reason might be that if
the features of a certain segment are more prominent in both spatial and channel dimensions, it is
more likely to be important in the temporal dimension as well.

Table 5: Ablation study of the spatial-channel-temporal attention module. "S", "C", and "T" denote
spatial, channel, and temporal attention, respectively.

Module AVE AVVP AVS AVQA

S C T Acc Segment-level
AV

Event-level
AV

S4 MS3 AQ VA AVQ AvgMJ MF MJ MF
- - - 78.6 49.8 43.9 78.0 87.0 49.1 59.9 75.4 79.6 70.1 73.6
- ✓ - 81.8 51.3 45.6 79.9 88.4 51.0 62.1 76.0 80.9 70.8 74.4
✓ - - 80.9 51.7 44.7 78.6 87.6 50.9 61.6 74.9 80.3 69.5 73.3
✓ ✓ - 82.0 52.3 45.9 80.0 88.6 51.8 62.3 77.0 81.9 70.3 74.6
- - ✓ 81.5 50.9 45.7 79.9 88.9 52.2 61.5 76.0 81.3 70.2 74.1
✓ ✓ ✓ 82.2 52.8 46.1 80.9 89.2 53.5 64.2 77.4 81.9 70.7 74.8
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Figure 3: The qualitative results of DG-SCT on AVE and AVS tasks.
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Figure 4: Results of our model and previous methods on few-shot/zero-shot tasks.

4.6 Qualitative analysis

Fig. 3 represents examples of the effectiveness of our DG-SCT. On the left, we observe that with
the guidance of the audio prompts, the module can accurately focus on the critical visual regions
for different AVE events. For instance, when multiple objects are present in video frames, our
model is capable of accurately localizing the sounding objects (e.g., bark, cat, the second example
of flute, the fifth example of speak). Moreover, our model can precisely pinpoint the sound source
location at a fine-grained level, such as the strings of a violin and the hands of the performer, and
the speaker’s mouth. In addition, DG-SCT achieves excellent results on AVS task. The right part of
Fig. 3 indicates that our model can accurately segment the pixels of sounding objects and outline
their shapes perfectly. The excellent qualitative results of our model on various downstream tasks
illustrate its strong potential for generalization.

As depicted in Fig. 5, we employ t-SNE [34] to visualize the learned audio and visual features and
compare features generated by our model with features generated by baseline without DG-SCT, on
various tasks. Each spot denotes the feature of one audio or visual event, and each color corresponds
to a particular category, such as "cat" in orange as shown in Fig. 5 (AVE). As we can see, features
extracted by the proposed DG-SCT are more intra-class compact and more inter-class separable.
These meaningful visualizations further demonstrate that the DG-SCT model successfully learns
compact and discriminative features for each modality across diverse downstream tasks.

4.7 Efficiency analysis

Our efficiency analysis on AVE task is presented in Table 6. Our approach utilizes more trainable
parameters. However, our proposed DG-SCT attention mechanism requires a comparable number
of parameters to the latent tokens utilized in LAVisH [17]. The increase trainable parameters
primarily arises from the inclusion of a two-dimensional convolution kernel and a linear projection
(section 3.2). These additions ensure consistency of dimensions between the audio and visual prompts.
In other words, the increase in parameter count from our approach mainly results from addressing the
inconsistency in dimensions between the audio and visual encoders.

We also conducted a comparison of computational cost [29] on AVE task. Our approach involves
fine-tuning the pre-trained model, which inevitably leads to a reduction in speed compared to previous
late-interaction baselines (CMBS [36]). However, we have achieved outstanding results, and our
approach is applicable to multiple audio-visual tasks. Overall, the benefits are substantial.

5 Conclusion and discussion

This paper introduces DG-SCT, a method that leverages audio and visual modalities as prompts in
the early layers of frozen pre-trained encoders. By doing so, our model can extract higher-quality

9



Church bell
Male speech
Bark
Airplane
Race car
Female speech
Helicopter
Violin
Flute
Ukulele
Frying (food)
Truck
Shofar
Motorcycle
Acoustic guitar
Train horn
Clock
Banjo
Goat
Baby cry
Bus
Chainsaw
Cat
Horse
Toilet flush
Rodents
Accordion
Mandolin

Speech
Car
Cheering
Dog
Cat
Frying(food)
Basketball bounce
Fire alarm
Chainsaw
Cello
Banjo
Singing
Chicken rooster
Violin fiddle
Vacuum cleaner
Baby laughter
Accordion
Lawn mower
Motorcycle
Helicopter
Acoustic guitar
Telephone bell
Baby cry
Blender
Clapping

Helicopter
Bird singing
typing
Playing violin
Playing glockenspiel
Playing piano
Lions roaring
Baby laughter
Male speech
Lawn mowing
Playing ukulele
Playing tabla
Driving buses
Cap gun shooting
Chainsawing trees
Playing acoustic guitar
Cat meowing
Female singing
Ambulance siren
Dog barking
Horse clip-clop
Coyote howling
Race car

(AVE) (AVVP) (AVS)

Original

Ours

Original

Ours

Audio

Visual

Figure 5: Qualitative visualizations of original visual (top row), our visual (second row), original
audio (third row), and our audio (bottom row) features on AVE, AVVP, and AVS tasks.

Table 6: Efficiency analysis on AVE task. For trainable parameters of LAVisH* and our model, the
first number (17.3) represents the trainable parameters of a two-dimensional convolution kernel and a
linear projection.

Method Trainable Params (%) Total Params (M) GFLOPs Acc
CMBS [36] 14.4 216.7 40.9 79.3
LAVisH [17] 10.1 238.8 406.7 79.7

LAVisH* 17.3+13.3=30.6 374.9 416.1 78.6
Ours 17.3+26.3=43.6 461.3 460.8 82.2

and finer-grained audio-visual features, enhancing performance in subsequent tasks. We conduct
comprehensive experiments on four datasets, including AVE, AVVP, AVS, and AVQA, as well as our
newly proposed few-shot/zero-shot audio-visual tasks. Across 25 experimental settings, our approach
achieves state-of-the-art results on 19 of them. Additionally, ablation studies conducted on these
datasets validate the effectiveness of our proposed spatial, channel, and temporal attention modules.
Furthermore, our approach demonstrates robust generalizability and holds potential for application in
more audio-visual scenarios in the future.
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A Implementation details

For the AVE and the AVQA tasks, we set α = 0.3, β = 0.05, and γ = 0.1. We train the model with
a batch size of 8 and a learning rate of 5× 10−4 and 1× 10−4, respectively; For the AVVP task, we
set α = 0.3, β = 0.05, and γ = 0.05. We train the model with a batch size of 8 and a learning rate of
3× 10−4; For the S4 setting of the AVS task, we set α = 0.3, β = 0.05, and γ = 0.05. We train the
model with a batch size of 8 and a learning rate of 3× 10−4; For the MS3 setting of the AVS task,
we set α = 0.2, β = 0.1, and γ = 0.1. We train the model with a batch size of 2 and a learning rate
of 1.5× 10−4.

For few-shot/zero-shot tasks, we set the learning rate to 3×10−4 with a batch size of 2. For the AVE
task, we set α = 0.2, β = 0.05, and γ = 0.01; For the AVE classification and the LLP classification
tasks, we set α = 0.2, β = 0.05, and γ = 0.05.

All of our experiments are trained on one NVIDIA A100 GPU.

B More details of datasets

Table 7: Dataset statistics. Each dataset is shown with the number of videos and the annotated
frames. The "annotations" column indicates whether the frames are labeled by category, pixel-level
masks, or answer.

Datasets Videos Frames Classes/
Answers Types Annotations

AVE [33] 4,143 41,430 28 video category
LLP [32] 11,849 11,849 25 video category

AVSBench [43] 5,356 12,972 23 video pixel
VGG-Sound(40K) [2] 40,801 408,010 141 video category
MUSIC-AVQA [14] 9,288 45,867 42 video answer

AVE dataset 5 We evaluate the AVE task on the AVE dataset [33] originating from the AudioSet [9].
The AVE dataset contains 4, 143 videos covering 28 categories. Each video lasts for 10 seconds and
contains an event category labeled for each video on a segment level.

LLP dataset 6 We evaluate the AVVP task on the LLP dataset [32], which has 11, 849 video-level
event annotations on the presence or absence of different video events and each video is 10s long and
has at least 1s audio or visual events. There are 7, 202 videos that contain events from more than one
event category and per video has averaged 1.64 different event categories. For evaluation, there are
4, 131 audio events, 2, 495 visual events, and 2, 488 audio-visual events for the 1, 849 videos.

AVSBench dataset 7 We evaluate the AVS task on the AVSBench dataset [43], which contains two
settings: 1) Single Sound Source Segmentation (S4), which contains 4, 932 videos over 23 categories;
2) Multiple Sound Source Segmentation (MS3), which contains 424 videos over 23 categories. Each
video is 5 seconds long.

MUSIC-AVQA dataset 8 We conduct our experiments of the AVQA task on the MUSIC-AVQA
dataset [14], which contains 9, 288 videos, 45, 867 question-answer pairs, 33 question templates, and
42 answers.

VGG-Sound(40K) 9 The pre-training data of our zero-shot task is VGG-Sound(40K), which is split
from the VGG-Sound dataset [2]. VGG-Sound contains over 200k clips for 300 different sound
classes, while our VGG-Sound(40K) has 40, 801 clips for 141 sound classes.

5https://github.com/YapengTian/AVE-ECCV18
6https://github.com/YapengTian/AVVP-ECCV20
7http://www.avlbench.opennlplab.cn/download.
8https://gewu-lab.github.io/MUSIC-AVQA/.
9https://www.robots.ox.ac.uk/~vgg/data/vggsound/.
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Figure 6: Details of our framework in few-shot/zero-shot scenarios. Right: two text branches are
used to operate image-text and audio-text matching, respectively. The final result is obtained by
adding the weighted sum of the two outputs from image-text matching and audio-text matching.

C More details of few-shot/zero-shot tasks

C.1 Framework and method

As shown in Fig. 6, our DG-SCT module is injected into every layer of the frozen CLIP [26] image
encoder and the frozen CLAP [5] audio encoder. After that, the image encoder and the audio encoder
are denoted as fv(·) and fa(·), respectively. Two text branches fvt (·), fat (·) are employed to perform
image-text and audio-text matching, respectively, as the text encoders from different pre-trained
models exhibit a substantial gap, using only one of them will result in a significant decrease in
accuracy.

Let (vi, ai, ti) represents a piece of visual-audio-text pair indexed by i. The visual embedding Ev
i , the

audio embedding Ea
i , and the corresponding text embeddings Tv

i and Ta
i , are obtained by encoders

with projection layers, respectively:

Ev
i = MLPv(fv(vi)), Ea

i = MLPa(fa(ai)), Tv
i = MLPv

t (f
v
t (ti)), Ta

i = MLPa
t (f

a
t (ti)), (8)

where the visual/audio/text projection layer is a 2-layer multilayer perception (MLP) with ReLU as the
activation function to map the encoder outputs into the same dimension D (i.e., Ev

i ,E
a
i ,T

v
i ,T

a
i ∈ RD).

The model is trained with the contrastive learning paradigm between the paired visual and text
embeddings, as well as the paired audio and text embeddings, following the same loss function in
[26]:

Lv =
1

2N

N∑
i=1

(log
exp(Ev

i · Tv
i /τv)∑N

j=1 exp(E
v
i · Tv

j/τv)
+ log

exp(Tv
i · Ev

i /τv)∑N
j=1 exp(T

v
i · Ev

j/τv)
), (9)

La =
1

2N

N∑
i=1

(log
exp(Ea

i · Ta
i /τa)∑N

j=1 exp(E
a
i · Ta

j /τa)
+ log

exp(Ta
i · Ea

i /τa)∑N
j=1 exp(T

a
i · Ea

j /τa)
), (10)

Where τv and τa are learnable temperature parameters for scaling the loss. N is usually the number
of data, but during the training phase, N is used as the batch size. Let yv denotes the image-text
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Figure 7: Results of our model and previous methods on few-shot/zero-shot tasks.

matching score, and ya denotes the audio-text matching score, we set hyperparameters w1 = yv

yv+ya

and w2 = 1− w1, thus the overall objective function is:

L = w1 · Lv + w2 · La, (11)

When the image-text matching score is higher, it indicates that the visual modality is more certain in
determining the category of the sample, therefore the model needs to increase the weight of visual
modality in the loss function, and vice versa.

The same weight settings for w1 and w2 in Fig. 6 are also significant during the inference process,
indicating that some samples require more guidance from the audio modality while others might
require more guidance from the visual modality.

For the few-shot setting, we train the model by selecting shot samples of each category from the
training dataset of the downstream tasks. For the zero-shot setting, we pre-train the model using the
VGG-Sound(40K) dataset.

C.2 Evaluation metrics

For the AVE task, the category label of each video segment is required to be predicted in supervised
manner. We adopt [33, 37, 36], and exploit the overall accuracy of the predicted event category as the
evaluation metrics; For the AVE classification task, the category label of each video is required to
be predicted. We leverage the overall accuracy of the video category as the evaluation metrics; For
the LLP classification task, the category label of each video is required to be predicted. Note that
some videos might have multiple categories, we randomly select one as ground truth for brevity. We
leverage the overall accuracy of the video category as the evaluation metrics.

Table 8: Ablation study of A2V and V2A modules on AVE, AVS, and AVQA tasks.

Module AVE AVS AVQA

A2V V2A Acc S4 MS3 AQ VQ AVQ AvgMJ MF MJ MF
- - 78.6 78.0 87.0 49.1 59.9 75.4 79.6 70.1 73.6
✓ - 79.2 80.7 89.0 51.4 61.6 76.1 82.0 70.8 74.7
- ✓ 81.3 79.1 88.0 50.7 62.4 75.9 80.8 70.8 74.3
✓ ✓ 82.2 80.9 89.2 53.5 64.2 77.4 81.9 70.7 74.8

C.3 Results

As shown in Fig. 7 (a), (b) and (c), for few-shot (shot = 16) setting, our method outperforms MaPLe
by a significant margin on AVE, AVE classification, and LLP classification tasks, achieving 72.4%,
84.2%, and 32.6%, respectively. However, the performance of our model on both the AVE and
LLP classification tasks may not be as effective as some previous methods when shot < 8. The
classification tasks are relatively simple and are already closely related to the image-text matching task
in the upstream pre-training of the CLIP model. Therefore, the CLIP model’s pre-trained parameters
can achieve good results. However, when shot > 8, our model gains significant advantages. We also
observe that the accuracy curves of other few-shot learning methods are relatively flat, particularly for
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Figure 8: Hyperparameters. We explore the impact of the hyperparameters α, β, and γ on the
experimental results of the AVE task. a) Fix β = 0.05 and γ = 0.1, observe the impact of α; b) Fix
α = 0.3 and γ = 0.1, observe the impact of β; c) Fix α = 0.3 and β = 0.05, observe the impact of
γ.

the LLP classification task, where the accuracy sometimes decreases when shot increases. This issue
might be the limited ability of the image-text models to extract rich information from the training data
of audio-visual tasks. Thus, the potential for improving accuracy is limited. For zero-shot setting,
our model also achieves state-of-the-art on all three tasks. The results demonstrate that our model can
extract audio-visual task information more effectively and achieve better results.

Table 9: Ablation study of A2V and V2A modules on AVVP task.

Module Segment-level Event-level
A2V V2A A V AV Type Event A V AV Type Event

- - 57.8 56.3 49.8 55.2 54.9 48.2 51.7 43.9 48.8 47.6
✓ - 56.4 59.5 53.3 56.4 55.0 47.4 55.9 46.3 49.9 47.8
- ✓ 59.4 57.3 50.8 55.8 56.8 49.2 54.1 44.4 49.2 48.6
✓ ✓ 59.0 59.4 52.8 57.1 57.0 49.2 56.1 46.1 50.5 49.1

D More ablation studies

Next, we conduct more ablation studies to investigate how different components of our model affect
the performance on the downstream tasks.

A2V and V2A modules. We first investigate the effectiveness of the bidirectional attention mech-
anism. We compare our final bidirectional approach with the unidirectional variants that only use
either audio-to-visual (A2V) or visual-to-audio (V2A) spatial-channel-temporal attention mechanism,
and also a baseline that does not use any cross-modal connections.

As indicated in Table 8, integrating A2V or V2A individually leads to substantial performance
enhancements across AVE, AVS, and AVQA tasks compared to the baseline model. Furthermore, the
bidirectional DG-SCT outperforms the unidirectional A2V and V2A baselines (e.g., 3.0% and 0.9%
on the AVE task). In Table 9, we observe that using the A2V module alone does not significantly
decrease the accuracy for visual and audio-visual events. However, without visual guidance (V2A),
the performance of audio events suffers a considerable decline; Likewise, the performance of visual
events drops without audio guidance (using the V2A module alone). These experimental findings
demonstrate the necessity of visual guidance for audio events and the need for audio guidance for
visual events. Our proposed DG-SCT model can bidirectionally guide the representation of each
modality, thus enhancing the accuracy of downstream audio-visual tasks.

Hyperparameters. Now, we explore the impact of the hyperparameters α, β, and γ on the
experimental results of the AVE task. As we can see in Fig. 8, our model achieves the best accuracy
(82.2%) when α = 0.3, β = 0.05, and γ = 0.1.
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Figure 9: Qualitative examples of the baseline method (w/o DG-SCT) and our DG-SCT frame-
work, under the S4 setting of the AVS task.

E Additional qualitative analyses

Qualitative examples of the AVS task. We provide some qualitative examples of the AVS task to
test the effectiveness of the DG-SCT model. As shown in Fig 9, under the S4 setting, the DG-SCT
model can not only outline the object shapes more perfectly (shown in the upper left, upper right,
and bottom left figures) but also locate the sounding objects more accurately than the baseline model
without the DG-SCT module. As we can see in the bottom right figure of Fig. 9, DG-SCT can locate
the dog that is barking, simultaneously excluding the mower that hasn’t produced sound. The baseline
model, however, mistakenly locates the dog and the mower at the same time. In Fig 10, under the
MS3 setting, the DG-SCT model can locate multiple sound sources and outline their shape nicely.
In some difficult cases (the bottom row in Fig. 10), DG-SCT can still pinpoint the correct sounding
source even if the sound has stopped or the scene has changed dramatically.

Qualitative examples of the AVVP task. In Fig. 11, we visualize the video parsing results of DG-
SCT and baseline (w/o DG-SCT) on different examples. "GT" denotes the ground truth annotations.
The results show that adding the DG-SCT module achieves more accurate parsing performance by
acquiring mutual guidance from audio and visual modalities during the representation. For example,
in Fig. 11 (b), our model can recognize the mixture of "banjo" and "singing" while the baseline model
(w/o DG-SCT) falsely predicts the sound as "violin fiddle".
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Figure 10: Qualitative examples of the baseline method (w/o DG-SCT) and our DG-SCT
framework, under the MS3 setting of the AVS task.
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Figure 11: Qualitative examples of the baseline method (w/o DG-SCT) and our DG-SCT
framework, under the AVVP task.
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