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Abstract
Irregular multivariate time series (IMTS) are char-
acterized by irregular observation times, result-
ing in 1) misaligned time points across features
(i.e., misalignment) and 2) inconsistent intervals
between observations (i.e., inconsistency). How-
ever, existing time series methods often overlook
these irregularities, leading to suboptimal perfor-
mance, or depend on large labeled datasets. To
this end, we introduce SITS, a simple yet effec-
tive soft contrastive learning strategy tailored for
IMTS, where pairs are constructed from a single
instance that shares the same irregularities, rather
than from different instances with varying irreg-
ularities. Specifically, different views of a single
instance are generated with varying masking ra-
tios, where higher masking ratios correspond to
smaller soft label values. Furthermore, we pro-
pose SeqTAND, a model architecture that handles
misalignment and inconsistency in a sequential
manner, which is shown to be more effective than
addressing them in parallel. Experimental results
demonstrate that SITS outperforms state-of-the-
art methods in both classification and interpola-
tion tasks.

1. Introduction
Irregular multivariate time series (IMTS) are widely ob-
served in various fields such as healthcare (Zhang et al.,
2022a), industry (Liu et al., 2021), and climatology (Cao
et al., 2023). Nonetheless, handling IMTS is challenging
due to irregularities, which can be categorized into: 1) mis-
alignment, where features are observed at varying time
points, and 2) inconsistency, characterized by irregular inter-
vals between observations, as shown in Figure 1. However,
existing models for regular TS analysis typically assume
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Figure 1: Irregularities in IMTS.

aligned time points and consistent intervals, which may lead
to performance degradation (Chowdhury et al., 2023).

To address these issues, recent IMTS studies have mostly
relied on supervised learning (SL), which is constrained
by its need for large labeled datasets. In contrast, self-
supervised learning (SSL), despite its success in regu-
lar time series (Lee et al., 2024; Dong et al., 2024; Nie
et al., 2022), remains underexplored in IMTS. Although
PrimeNet (Chowdhury et al., 2023) adopts an SSL approach,
its reliance on hard contrastive learning (CL) with subseries
consistency (Franceschi et al., 2019) suffers from level-shift
sensitivity and a limited ability to preserve correlations (Yue
et al., 2022; Lee et al., 2024).

To this end, we propose Soft Contrastive Learning for
Irregular Multivariate Time Series (SITS), a simple yet ef-
fective soft contrastive learning strategy tailored for IMTS,
where pairs are formed from a single instance that shares
the same irregularities, rather than from different instances
with varying irregularities. Specifically, different views are
obtained by masking a single instance with varying masking
ratios, where a pair containing an instance with a higher
masking ratio is assigned a smaller soft label value.

Furthermore, we introduce Sequential mTAND (SeqTAND)
to effectively handle the irregularities of IMTS by address-
ing misalignment and inconsistency sequentially. This ap-
proach proves to be more effective than the parallel ap-
proach.

We conduct experiments on real-world datasets to demon-
strate the effectiveness of the proposed method, achieving
state-of-the-art (SOTA) performance across various tasks.
Our main contributions are summarized as follows:
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Figure 2: Overall framework of SITS. SITS constructs paired views from a single instance by applying random masking, thereby sharing
the same irregularities. In contrast to conventional hard CL, which assigns hard labels (i.e., binary labels) to sample pairs, SITS utilizes
assigns soft labels based on the similarity between augmented instances.

• We propose SITS, a simple yet effective soft contrastive
learning strategy for IMTS, where pairs are formed
from a single instance to ensure that they share the
same irregularities while applying varying masking
ratios. To the best of our knowledge, SITS is the first
method to apply soft contrastive learning to IMTS.

• We introduce SeqTAND, a model that addresses mis-
alignment and inconsistency sequentially, demonstrat-
ing greater effectiveness than the method that handles
these irregularities in parallel.

• We conduct extensive experiments, where our method
demonstrates SOTA performance across various
datasets in both classification and interpolation tasks.

2. Preliminaries
Notation. Let D = (T,X,M) represent a single IMTS
instance, where T ∈ RS , X ∈ RS×K , and M ∈ RS×K .
Here, T denotes the union of time points across all features,
with S representing the total number of timestamps. X
represents sequence values corresponding to time points
T across K features, and M denotes an observation mask
indicating the presence (1) or absence (0) of data at each
time point.

3. Soft Contrastive Learning
In this section, we introduce SITS, a soft CL strategy for
IMTS where soft assignments based on the similarity be-
tween augmented instances that share the irregularities of
the original instance. The overall framework of SITS is illus-
trated in Figure 2. As IMTS exhibits unique irregularities in
each instance, contrasting different instances with different
irregularities may pose a challenge. To address this issue,
we propose soft CL that contrasts augmented instances from
the same original instance that share the same irregularities,
rather than contrasting different original instances.

Data Augmentation. To generate diverse augmented views
while ensuring consistent irregularities are shared across
all instances, we progressively apply random masking at
different levels in a cumulative manner. Each step builds

on the previously masked data. An adjusted ratio r (Equa-
tion 1) regulates this process, ensuring that masking is ap-
plied based on a predefined ratio relative to the original
instance.

Adj(r) =

ratio(i), if i = 0,
ratio(i)− ratio(i− 1)

1− ratio(i− 1)
, if i ̸= 0.

(1)

Soft Label. Soft labels are assigned based on the similarity
between augmented instances and the original instance. We
compute a soft assignment for a pair of data indices (xi, xj),
which is used in the contrastive loss, as:

w(xi, xj) = 2σ (−τ ·D(xi, xj)) . (2)

where D(·) is an arbitrary similarity metric, and τ is a hy-
perparameter controlling the sharpness of the soft labels.

Metric. Among various choices for D, we use KL-
divergence (Kullback & Leibler, 1951) to measure the simi-
larity between instances in terms of information loss, as ran-
dom masking partially removes information from the origi-
nal instance. Notably, unlike other metrics, KL-divergence
is computed on M . Through experiments with various
choices for D, as shown in Table E.4, we demonstrate that
KL-divergence is the most suitable metric.

Loss. Specifically, the soft assignments are calculated based
on the similarity between x(0) and x(k), where x(0) is the
original instance and x(k) is the k-th augmented instance of
x(0). The soft contrastive loss for xi can be written as:

ℓ(i,t) = −
∑
k∈Ω

w(x
(0)
i , x

(k)
i ) log p(r

(k)
i ), (3)

p(r
(k)
i ) =

exp(r
(0)
i ◦ r(k)i )∑

s∈Ω exp(r
(0)
i ◦ r(s)i )

. (4)

where r
(k)
i is the representation of x(k)

i , and Ω denotes the
indices of augmented instances.
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Figure 3: Architecture of SeqTAND. SeqTAND sequentially addresses misalignment and inconsistency in IMTS. mTANDalign handles
the misalignment using the irregular (observed) time points as reference points, while mTANDconst handles the inconsistency using the
regular time points as reference points.

4. Model Architecture
The proposed model is based on the Time Embed-
ding (Shukla & Marlin, 2021), SeqTAND, and the Trans-
former Encoder (Vaswani et al., 2017), as shown in Figure 3.

Time Embedding (TE). Time Embedding ϕh(t) maps a
continuous time point t into a dr-dimensional representation,
with the i-th dimension defined as:

ϕh(t)[i] =

{
ω0,h · t+ α0,h, if i = 0,

sin(ωi,h · t+ αi,h) if 0 < i < dr.
(5)

Here, wi,h and αi,h are learnable parameters that represent
the frequency and phase of the sine function, respectively.

Sequential mTAND (SeqTAND). We introduce SeqTAND,
which utilizes mTAND (Shukla & Marlin, 2021) sequen-
tially, addressing the misalignment before handling the in-
consistency.

To address the misalignment in IMTS, mTANDalign uses the
observed time points T as reference points instead of regular
time points R, which can be expressed as:

mTANDalign(t = T, v = X,m = M) = (M ⊙AD)X,
(6)

AD = Softmax

(
QDKD

dr

)
, (7)

QD = KD = ϕh(T ). (8)

where QD and KD are the vectors obtained by feeding the
observed time points T into ϕh(·). Then, attention scores
AD, representing the similarity between the time points of
QD and KD, are calculated and element-wise multiplied by
M to generate an irregular time representation Z1.

After addressing the misalignment, mTANDcons handles the
inconsistency by using the regular time points R as refer-

ence points, generating a regular time representation Z2 as
follows:

mTANDcons(t = R, v = Z1,m = 1) = AIZ1, (9)

AI = Softmax

(
QIKI

dr

)
, (10)

QI = ϕh(R), KI = ϕh(T ). (11)

All procedures are the same as in mTANDalign, except that
QI is obtained using R instead of T and Z1, derived from
mTANDalign, is used in place of X and M .

Transformer Encoder. To capture relationships between
features, attention is performed on Z2, the output of
mTANDcons, which serves as the query, key, and value vec-
tor. Also we use Time Embedding for positional encoding
to further leverage the known exact time points for each
vector. Like a typical Transformer Encoder, residual and
feed-forward layers are applied to the output of the attention.

5. Experiment
Interpolation. We conduct experiments on the PhysioNet
and Human Activity datasets. For the interpolation task, we
simulate a scenario where [10%, 30%, 50%, 70%, 90%] of
the observed time points are randomly missing and predict
the values. As shown in Table 1, SITS achieves outstanding
performance in these experiments.

Classification. For the classification task, we use three
datasets: PhysioNet, MIMIC-III, and Human Activity. The
results in Table 2 demonstrate that SITS consistently outper-
forms the baseline models across all datasets.

Comparison of Performance under Various Settings.
Table 3 compares performance under various settings on the
classification task across three datasets. Since human activ-
ity involves classifying all originally observed time points,
sequential approaches are not applicable. In the supervised
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Methods
SSL models IMTS models SSL+IMTS models

TNC TST P-LSTM mTAND t-PatchGNN PrimeNet SITS (Ours)

Dataset Ratio (%) MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

PhysioNet

10 0.049 0.070 0.109 0.169 0.056 0.087 0.083 0.156 0.074 0.114 0.068 0.129 0.051 0.093
30 0.137 0.147 0.260 0.255 0.147 0.170 0.153 0.196 0.129 0.166 0.136 0.183 0.121 0.155
50 0.224 0.210 0.408 0.337 0.247 0.243 0.226 0.239 0.217 0.241 0.203 0.232 0.187 0.212
70 0.317 0.273 0.555 0.411 0.322 0.283 0.315 0.284 0.270 0.295 0.285 0.283 0.268 0.263
90 0.505 0.385 0.703 0.494 0.502 0.390 0.482 0.363 0.441 0.368 0.434 0.360 0.406 0.341

Human

Activity

10 0.058 0.023 0.399 0.083 0.078 0.032 0.052 0.031 0.052 0.022 0.048 0.023 0.045 0.020
30 0.183 0.053 1.154 0.168 0.215 0.065 0.158 0.058 0.161 0.054 0.147 0.050 0.143 0.048
50 0.3d40 0.086 1.905 0.252 0.373 0.097 0.268 0.085 0.259 0.087 0.248 0.077 0.251 0.076
70 0.585 0.131 2.656 0.333 0.608 0.138 0.389 0.111 0.397 0.113 0.376 0.106 0.370 0.104
90 1.213 0.213 3.406 0.414 1.270 0.223 0.640 0.159 0.606 0.156 0.597 0.151 0.579 0.148

Avg. 0.361 0.159 1.156 0.292 0.382 0.173 0.277 0.168 0.261 0.162 0.254 0.159 0.242 0.146

Table 1: Performance of the interpolation task under various missing ratios. Best results are highlighted in red, and second-best in
blue.

Dataset
AUC Acc.

PhysioNet MIMIC-III Human Activity

SSL models

TNC 77.5±0.003 83.3±0.003 87.2±0.002
TS2Vec 78.1±0.005 82.6±0.005 89.8±0.002

TST 77.5±0.004 79.8±0.006 66.1±0.001

IMTS models

P-LSTM 77.6±0.008 83.8±0.001 85.5±0.007
RNN-VAE 57.7±0.004 51.8±0.002 34.3±0.009
ODE-RNN 80.8±0.002 84.5±0.004 88.5±0.004

L-ODE 81.2±0.002 84.3±0.006 87.0±0.002
mTAND 80.9±0.003 83.3±0.005 90.0±0.001

t-PatchGNN 65.7±0.002 82.9±0.003 72.0±0.001

SSL+IMTS models

PrimeNet 82.2±0.003 84.3±0.001 88.9±0.002

SITS (Ours) 84.0±0.001 85.2±0.002 90.9±0.001

Table 2: Performance of the classification task. The best results
for each dataset are highlighted in red, and the second-best in blue.

Sequential SITS PhysioNet MIMIC-III Human Activity

81.7 83.4 88.7
✓ 82.8 83.8 -

✓ 83.2 84.8 90.9
✓ ✓ 84.0 85.2 -

Table 3: Comparison of performance across various settings.

learning (SL) setting, the model with sequential mTAND
consistently outperforms the parallel approach. While SITS
alone improves performance in SSL, the combination of
sequential mTAND and SITS achieves the highest perfor-
mance.

Effectiveness of SeqTAND. Table 4 evaluates the effec-
tiveness of SeqTAND on classification(AUC) and recon-
struction(MSE, MAE) tasks using the PhysioNet dataset.
We compare three models: (1) mTAND, which applies Cons
once; (2) A model with the same number of parameters as
SeqTAND that applies Cons twice; (3) SeqTAND, which
applies Aligns and Cons sequentially. The number of param-

Approach # Parameters AUC MSE MAE Learning Inference

Cons 221k 81.7 0.041 0.098 4.332 0.707
Cons → Cons 247k 82.0 0.044 0.105 4.662 0.736
Align → Cons 247k 82.8 0.016 0.052 5.249 0.785

Table 4: Effectiveness of SeqTAND.

CL
PhysioNet MIMIC-III Human

ActivityHard Soft

82.8 83.8 88.7
✓ 82.7 84.2 89.8

✓ 84.0 85.2 90.9

Table 5: Effectiveness of soft CL.

eters is averaged across tasks. In reconstruction, the hidden
dimension is set to 32, smaller than the number of variables
(41). Learning and inference times are measured per epoch
in seconds. SeqTAND achieves the best performance among
the models. This suggests that SeqTAND effectively cap-
tures IMTS information (Bank et al., 2023), emphasizing
that the improvement comes from the sequential approach.

Effectiveness of soft CL. Table 5 demonstrates the effec-
tiveness of the proposed soft CL on the classification task
across three datasets. In the hard setting, only augmented
versions were treated as positives with a label of 1. The
results show that the soft approach consistently outperforms
the hard approach.

6. Conclusion
In this paper, we propose SITS, a simple yet effective soft
contrastive learning strategy for IMTS, where pairs are
formed from a single instance to ensure that they share
the same irregularities. Soft labels are assigned based on
similarity, with higher masking ratios leading to smaller
soft label values. Extensive experiments validate the ef-
fectiveness of our method. We hope this work highlights
the potential of CL strategies for IMTS and inspires further
research into SSL approaches.
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A. Related Work
A.1. Self-supervised Learning for Time Series

Self-supervised learning (SSL) has shown success in computer vision (Chen et al., 2020; Wang et al., 2021) and natural
language processing (Logeswaran & Lee, 2018; Gao et al., 2021), leading to its application in time series (TS). Contrastive
learning methods such as T-loss (Franceschi et al., 2019) and TNC (Tonekaboni et al., 2021), define positive and negative
pairs based on temporal characteristics. TS-TCC (Eldele et al., 2021) employs a temporal contrastive loss, while TS2Vec (Yue
et al., 2022) applies hierarchical contrastive learning for robust contextual representations. TF-C (Zhang et al., 2022b)
captures time-frequency relationships, and SoftCLT (Lee et al., 2024) enhances both instance-wise and temporal contrastive
learning with soft assignments. Masked modeling approaches, such as TST (Zerveas et al., 2021) and TARNet (Chowdhury
et al., 2022), reconstruct masked segments to learn informative representations. While these methods can be adapted
to IMTS via binning (Shukla & Marlin, 2019), they often fail to capture critical irregularities, leading to performance
degradation (Chowdhury et al., 2023). This highlights the need for self-supervised models tailored to IMTS.

A.2. Methods for Irregular Time Series

Recently, fully and semi-supervised methods have been extensively researched in the context of IMTS and have proven
effective in handling irregularities, resulting in strong performance. GRU-D (Che et al., 2018) integrates timestamps into
GRU to manage missing values. DATA-GRU (Tan et al., 2020) employs dual-attention mechanisms, while P-LSTM (Neil
et al., 2016) updates memory selectively through a time gate. ODE-RNN (Rubanova et al., 2019) and Latent-ODE (Rubanova
et al., 2019) leverage neural ODEs for continuous modeling. ContiFormer (Chen et al., 2023) integrates neural ODEs with
Transformers for continuous-time modeling. GraFITi (Yalavarthi et al., 2024) applies graph neural networks (GNNs) to
forecast irregular series by predicting edge weights. t-PatchGNN (Zhang et al., 2024) transforms univariate series into
temporal patches and utilizes time-adaptive GNNs to capture inter-series relationships. IP-Nets (Shukla & Marlin, 2019)
employs semi-parametric interpolation, while SeFT (Horn et al., 2020) uses a set function-based classification approach.
mTAND (Shukla & Marlin, 2021) employs an attention mechanism to embed continuous time values and generate a
fixed-length representation. UTDE (Zhang et al., 2023) combines embeddings from mTAND and imputed TS with learnable
gates. PrimeNet (Chowdhury et al., 2023) introduces pre-training strategies, including hard contrastive learning (CL) and
masked modeling. However, it faces limitations in capturing inter-series correlations and addressing level shift issues in
subseries consistency.

B. Preliminaries
mTAND (Shukla & Marlin, 2021). mTAND produces a fixed-length representation of a TS with a variable number of
observations across variables. Specifically, it processes a query time point t and a set of observed time points and their
corresponding values (i.e., (T,X)) as keys and values. By utilizing predefined regular time points R as reference points,
mTAND aligns continuous time points to consistent intervals. The process of mTAND can be expressed as:

mTAND(t = R, v = X,m = M) = Z, (12)

where Z is a fixed-length representation of predefined regular time points R.

C. Dataset
• PhysioNet Challenge (Silva et al., 2012) dataset comprises multivariate time series data derived from intensive care

unit (ICU) records, featuring 41 physiological variables. Each record contains 48 hours of measurements collected
after ICU admission. The main goal of this dataset is to predict in-hospital mortality, which is framed as a binary
classification task.

• MIMIC-III (Johnson et al., 2016) dataset consists of multivariate time series data with sparse and irregular sampling
of physiological signals, collected from the Beth Israel Deaconess Medical Center between 2001 and 2012. It includes
17 key clinical variables. The irregular sampling and missing data pose significant challenges, and the dataset is mainly
utilized to predict clinical outcomes, such as in-hospital mortality.

• Human Activity (Kaluža et al., 2010) dataset includes 3D positional data captured from sensors placed on the waist,
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chest, and ankles of five individuals performing various activities, such as walking, sitting, lying, and standing. It is
designed for activity recognition and classification, offering detailed positional information to facilitate the analysis of
human movements.

D. More on Experiment Section
D.1. Baselines

• Self-Supervised TS Methods

– TNC (Tonekaboni et al., 2021) sets temporal neighborhoods based on local signal smoothness.
– TS2Vec (Yue et al., 2022) employs hierarchical CL to learn robust contextual representations.
– TST (Zerveas et al., 2021) pre-trains a Transformer-based model using fixed-length MM.

• Irregular TS Methods

– P-LSTM (Neil et al., 2016) introduces a time gate controlled by a parametrized oscillation.
– RNN-VAE comprises an RNN encoder and a decoder within a variational autoencoder model.
– ODE-RNN (Rubanova et al., 2019) employs neural ODEs for hidden state dynamics, updating them with an RNN

using new observations.
– L-ODE (Rubanova et al., 2019) refers to the Latent ODE, which uses an ODE-RNN as the encoder and a neural

ODE as the decoder.
– mTAND (Shukla & Marlin, 2021) uses a multi-time attention module to produce a fixed-length time representation.
– t-patchGNN (Zhang et al., 2024) uses transformable patches and a time-adaptive GNN for forecasting.
– PrimeNet (Chowdhury et al., 2023) designs time-sensitive CL and constant-time MM.

D.2. Experimental Protocols

During pre-training, we determine the hyperparameters τ and n(Ω) by performing a grid search to select the values from
(1, 2, 3, 4, 5) and (2, 3, 4, 5) that yield the best performance. In the fine-tuning stage, we update the parameters for both the
task-specific layers and SITS. For the classification task, we use cross-entropy loss, while for the interpolation task, we use
mean squared error (MSE) as the loss function. Early stopping is applied based on the validation dataset, with patience
set to 20 epochs for pre-training, 50 epochs for classification tasks, and 100 epochs for interpolation tasks. The learning
rates are set to 0.001 and 0.0005, and the batch size is fixed at 128. The time embedding dimension and hidden vector
dimension are both set to 128, and the number of attention heads is set to 1. These configurations follow those used in
PrimeNet (Chowdhury et al., 2023). For baselines that do not report experimental settings on the target dataset, we apply
the same experimental settings as ours; otherwise, we follow the experimental settings reported in the original papers. All
experiments are repeated three times with different random seeds for model initialization.

D.3. Task and evaluation metrics

We demonstrate the effectiveness of the proposed SITS on two downstream tasks: interpolation and classification tasks.
In interpolation task, we condition on the observed data points to predict the values for the missing points and assess
interpolation performance using MSE(10−2) and MAE(10−1) for PhysioNet and MSE(10−1) and MAE for Human Activity.
In classification task, we assess classification performance using the Area Under the ROC Curve (AUC), while for the
Human Activity dataset, which involves multi-class prediction, we use accuracy (Acc.).

E. Analysis
Robustness to the number of augmentations. Table E.1 compares the effect of the number of augmented instances
on the classification task using three datasets, where the masking ratio is determined by n-quantiles. The results show
that performance remains consistent across different numbers of augmentations. Based on these findings, we select
n(Ω) = 3, 3, 4 for PhysioNet, Human Activity, and MIMIC-III, which yield the best performance.
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n(Ω) PhysioNet MIMIC-III Human Activity

2 83.6 84.8 90.6
3 84.0 84.9 90.9
4 83.5 85.2 90.7
5 83.5 84.7 90.4

Table E.1: Performance across different numbers of augmented
instances.

τ PhysioNet MIMIC-III Human Activity

1.0 82.9 84.5 90.9
2.0 83.4 84.5 90.4
3.0 83.5 85.2 90.2
4.0 84.0 84.8 90.1
5.0 83.7 84.4 90.3

Table E.2: Performance across different values of the hyperparam-
eter τ .

Cumul. Physionet MIMIC-III Human Activity

83.4 83.2 90.5
✓ 84.0 85.2 90.9

Table E.3: Effect of cumulative random masking.

Metric PhysioNet MIMIC-II Human Activity

DTW 83.1 84.2 90.5
Rank 82.6 84.4 89.7
Ratio 83.6 84.6 89.9

KL-divergence 84.0 85.2 90.9

Table E.4: Metrics for soft CL.

Robustness to the hyperparameter τ . In soft CL, τ is introduced to control the sharpness of soft labels. Table E.2
illustrates the robustness of performance to different values of τ on the classification task across three datasets. Based on the
experimental results, we select τ = 4, 3, 1 for PhysioNet, MIMIC-III, and Human Activity.

Effect of cumulative random masking. Table E.3 demonstrates the effectiveness of the proposed cumulative random
masking on the classification task using three datasets. The results show that the cumulative approach consistently
outperforms the non-cumulative approach.

Metrics for soft CL. Table E.4 evaluates several metrics: dynamic time warping (DTW), Rank, Ratio, and KL-divergence,
on the classification task across three datasets. The Rank is assigned in ascending order, starting with the smallest masking
ratio, and Ratio corresponds to the masking ratio. The results demonstrate that although the degree of performance
improvement varies across metrics, most of them are effective. Among these, KL-divergence achieves the best performance
and is thus selected.
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