
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

On the Geometry of Regularization in Adversarial Training:
High-Dimensional Asymptotics and Generalization Bounds
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Abstract
Regularization, whether explicit in terms of a
penalty in the loss or implicit in the choice of
algorithm, is a cornerstone of modern machine
learning. Indeed, controlling the complexity of
the model class is particularly important when
data is scarce, noisy or contaminated, as it trans-
lates a statistical belief on the underlying structure
of the data. This work investigates the question
of how to choose the regularization norm ∥·∥ in
the context of high-dimensional adversarial train-
ing for binary classification. To this end, we first
derive an exact asymptotic description of the ro-
bust, regularized empirical risk minimizer for vari-
ous types of adversarial attacks and regularization
norms (including non-ℓp norms). We complement
this analysis with a uniform convergence analysis,
deriving bounds on the Rademacher Complex-
ity for this class of problems. Leveraging our
theoretical results, we quantitatively characterize
the relationship between perturbation size and the
optimal choice of ∥·∥, confirming the intuition
that, in the data scarce regime, the type of reg-
ularization becomes increasingly important for
adversarial training as perturbations grow in size.

1. Introduction
Despite all its successes, deep learning still underperforms
spectacularly in worst-case situations, when models face
innocent-looking data which are adversarially crafted for
eliciting erroneous or undesired outputs. Since the discovery
of these failure modes in computer vision (Szegedy et al.,
2014) and their re-discovery, more recently, in other modali-
ties including text (Zou et al., 2023), considerable effort has
been put in designing algorithms for training models which
are robust against these adversarial attacks.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

In the context of supervised learning problems, a princi-
pled approach consists of appropriately modifying standard
empirical risk minimization: a parametric model is fit by
minimizing a worst-case empirical risk, where “worst-case”
refers to an assumed threat model. For example, in com-
puter vision, a threat model of ℓ∞ perturbations translates
the assumption that images whose pixels only differ by a
little should share the same label. Despite its conceptual
clarity and proven ability to return robust models, a major
drawback of this method, known as robust empirical risk
minimization (RERM) or adversarial training (Goodfellow
et al., 2015; Madry et al., 2018), is that it often comes with a
performance tradeoff, besides being computationally more
intensive than standard ERM. Indeed, it has been observed
that model accuracy is often compromised for better robust-
ness (Tsipras et al., 2019; Zhang et al., 2019). To make
matters worse, neural networks often exhibit a large gap
between their robust train and test performances in standard
computer vision benchmarks (Rice et al., 2020).

Many empirical efforts in addressing these statistical lim-
itations of RERM have focused on either increasing the
amount of labeled (Wang et al., 2023) or unlabeled (Car-
mon et al., 2019; Zhai et al., 2019) data, or on painstakingly
re-imagining several of the design choices of deep learning
(such at the loss function (Zhai et al., 2019), model aver-
aging (Chen et al., 2021; Rebuffi et al., 2021) and more).
Despite the apparent empirical challenges, simple guide-
lines on how different choices affect the statistical efficiency
of RERM are clearly missing, even in simple models.

In this work, we make a step towards theoretically filling
this gap by investigating model selection in RERM, and
how it relates to robust and standard generalization error. In
particular, we focus on the oldest model selection method:
(weight) regularization. Following a large body of work
originating in high-dimensional statistics (Krogh & Hertz,
1991; Seung et al., 1992; Bean et al., 2013a; Thrampoulidis
et al., 2018; Aubin et al., 2020; Vilucchio et al., 2024),
we study this fundamental question asymptotically, when
both the input dimension and the number of training sam-
ples grow to infinity while keeping their ratio constant, and
under a Gaussian setting. While it is customary in this lit-
erature to study which values of regularization coefficients
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On the Geometry of Regularization in Adversarial Training

yield the best test errors (balancing empirical fitness with
model complexity), we instead analyze the optimality of a
type of regularization. A motivation for this comes from a
separate line of work in uniform convergence bounds that
stresses the importance of the type of regularization for ro-
bust generalization (Yin et al., 2019; Awasthi et al., 2020;
Tsilivis et al., 2024). Borrowing from this line of work,
which mainly offers qualitative bounds, and reinforcing it
with new findings, we demonstrate, via sharp asymptotic de-
scriptions of the errors in (regularized) RERM for a variety
of different perturbation and regularization norms, that reg-
ularization becomes increasingly important in RERM as the
perturbation strength grows in size. This allows us to get an
exact description of the relationship between optimal type
of regularization and strength of perturbation, and discuss
how regularization affects the tradeoff between robustness
and accuracy.

To summarize, our main contributions in this work are the
following:

1. We derive an exact asymptotic description of the per-
formance of reguralized RERMs for a variety of per-
turbation and regularization norms. In addition to the
usually studied ℓp, we consider ∥·∥Σ norms (induced
by a positive symmetric matrix Σ), which allow us to
separate the effect of a perturbation on different features
of the input.

2. We show uniform convergence bounds for this class of
problems (i.e., ∥·∥Σ regularized), by establishing new re-
sults on the Rademacher complexities for several classes
of linear hypothesis classes under adversarial perturba-
tions.

3. Leveraging the theoretical results above, we show that
regularizing with the dual norm of the perturbation can
yield significant benefits in terms of robustness and
accuracy, compared to other regularization choices. In
particular, our analysis permits a precise characterization
of the relationship between the perturbation geometry
and the optimal type of regularization. It further allows
a decomposition of the contribution of regularization in
terms of standard and robust (test) error.

Our results can be seen as positive news. Indeed, the main
implication of our work for robust machine learning practice
is that model selection, in the form of either explicit or
implicit regularization, plays a more important role in robust
ERM than in standard ERM. In the context of robust deep
learning practice, model selection is often implicit in the
choice of architecture, learning algorithm, stopping time,
hyperparameters, etc. Our theoretical analysis in the context
of simple adversarial tasks highlights the importance of
these choices, as they can be crucial to the outcome in terms
of robustness and performance.

Finally, while typical-case and worst-case analyses usually
appear as opposites in the statistical learning literature, we
believe our work nicely illustrates how these two approaches
to studying generalization can be combined in a comple-
mentary way to yield precise answers with both explanatory
and predictive powers.

1.1. Further related Work

Exact asymptotics: Our results on the exact asymptotics
of adversarial training build on an established body of litera-
ture that spans high-dimensional probability (Thrampoulidis
et al., 2014; 2015; Taheri et al., 2023), statistical physics
(Mignacco et al., 2020; Gerace et al., 2021; Bordelon et al.,
2020; Loureiro et al., 2021; Okajima et al., 2023; Ado-
maityte et al., 2024; 2023) and random matrix theory (Bean
et al., 2013b; Mai et al., 2019; Liao et al., 2020; Mei & Mon-
tanari, 2022; Xiao et al., 2022; Schröder et al., 2023). Our
study is also motivated by recent efforts to understand Gaus-
sian universality (Goldt et al., 2021; Montanari & Saeed,
2022; Dandi et al., 2023). These works suggest that sim-
ple models for the covariates can have a broader scope in
the context of high-dimensional generalized linear estima-
tion, often mirroring real-world datasets. From a technical
perspective, this phenomenon arises due to strong concen-
tration properties in the high-dimensional regime, which
imply some universality properties of the generalization
error with respect to the covariate distribution (Tao & Vu,
2010; Donoho & Tanner, 2009; Wei et al., 2022; Dudeja
et al., 2023).

Adversarial training: Robust empirical risk minimiza-
tion, i.e. adversarial training, was first introduced for com-
puter vision applications (Goodfellow et al., 2015; Madry
et al., 2018). A large body of work is devoted to the study of
applied methods for improving its computational (Shafahi
et al., 2019; Rice et al., 2020) and statistical (Zhai et al.,
2019; Chen et al., 2021; Wang et al., 2023) properties. Theo-
retically, robust training has been considered before in both
the case of Gaussian mixture models (Bhagoji et al., 2019;
Dan et al., 2020; Javanmard & Soltanolkotabi, 2022) and
linear regression (Raghunathan et al., 2020; Taheri et al.,
2023; Dohmatob & Scetbon, 2024). Of particular interest is
the work of Tanner et al. (2024), which recently derived high
dimensional asymptotics for binary classification with ℓ2
regularization, considering perturbations in a general ∥·∥Σ
norm. In our work, we study the effect of regularization,
providing exact asymptotics for any combination of ℓp per-
turbation and regularization norm, while extending (Tanner
et al., 2024) for various ∥·∥A regularization norms (where
A is a positive symmetric matrix).

Statistical learning theory: The role of regularization in
statistical inference traces back to the work of Tikhonov
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On the Geometry of Regularization in Adversarial Training

(1963) and plays a central role in statistical learning the-
ory, directly inspiring general inductive principles such as
Structural Risk Minimization (Vapnik, 1998) and practical
methods that realize this principle, such as SVMs (Cortes &
Vapnik, 1995). Uniform convergence bounds, quantities that
upper bound the difference between empirical and expected
risk of any predictor uniformly inside a hypothesis class,
were originally stated as a function of the VC dimension of
the class (Vapnik & Chervonenkis, 1971). The Rademacher
complexity of the class (Koltchinskii, 2001) is known to
typically provide finer guarantees (Kakade et al., 2008).
Several recent papers derive such results in the context of
adversarially robust classification for linear predictors and
neural networks (Yin et al., 2019; Awasthi et al., 2020; Xiao
et al., 2024). Based on these results, (Tsilivis et al., 2024)
highlighted the importance of the (implicit) regularization
in RERM with linear models, by showing the effect of the
learning algorithm and the architecture on the robustness
of the final predictor. In our work, we consider, instead,
explicit regularization and more general perturbation (and
regularization) geometries.

2. Setting Specification
We consider a binary classification task with training data
S = {(xi, yi)}ni=1, where xi ∈ Rd and yi ∈ {−1,+1}
are sampled independently from a distribution D of the
following form:

P (x, y) =

∫
Rd

dw⋆Pout

(
y
∣∣∣ ⟨w⋆,x⟩√

d

)
Pin(x)Pw(w⋆),

(1)

where Pin is a probability density function over Rd and
Pout : R → [0, 1] encodes our assumption that the label
is a (potentially non-deterministic) linear function of the
input x with teacher weights w⋆ ∈ Rd. For example, a
noiseless problem corresponds to Pout(y|z) = δ(y − z),
while we can incorporate noise by using the probit model:
Pout(y|z) = 1/2 erfc (−yz/

√
2τ), where τ > 0 controls the

label noise. We assume that w⋆ ∈ Rd is drawn from a prior
distribution Pw.

Given the training data S, our objective is to investigate
the robustness and accuracy of linear classifiers ŷ(ŵ,x) =
sign(⟨ŵ,x⟩/

√
d), where ŵ = ŵ(S) are learned from the

training data.

We define the robust generalization error as

Erob(ŵ) = E(x,y)∼D

[
max
∥δ∥≤ε

1(y ̸= ŷ(ŵ,x+ δ))

]
, (2)

where the pair (x, y) comes from the same distribution as
the training data, and ε bounds the magnitude of adver-
sarial perturbations under a specific choice of norm. The

(standard) generalization error is defined as the rate of mis-
classification of the learnt predictor

Egen(ŵ) = E(x,y)∼D[1(y ̸= ŷ(ŵ,x))] . (3)

Notice that for ε = 0: Erob(ŵ) = Egen(ŵ) for all ŵ ∈ Rd.
We will frequently use the following decomposition of the
robust generalization error into (standard) generalization
error and boundary error Ebnd:

Erob(ŵ) = Egen(ŵ) + Ebnd(ŵ), (4)

where Ebnd is defined as follows

Ebnd(ŵ)

= E(x,y)∼D

[
1(y = ŷ(ŵ;x))max

∥δ∥≤ε
1(y ̸= ŷ(ŵ,x+ δ))

]
.

(5)

As its name suggests, Ebnd is the probability of a sample
lying on (or near) the decision boundary, i.e., the probability
that a sample is correctly classified without perturbation but
incorrectly classified with it.

2.1. Robust Regularized Empirical Risk Minimization

Direct minimization of the robust generalization error of
eq. (2) presents two main challenges: first, the objective
function is non-convex due to the indicator function, and
second, we only have access to a finite dataset rather than the
full data-generating distribution. To address these issues, a
widely adopted approach is to optimise the robust empirical
(regularized) risk, defined as

L(w) =

n∑
i=1

max
∥δi∥≤ε

g

(
yi
⟨w,xi + δi⟩√

d

)
+ λr̃(w) , (6)

where g : R→ R+ is a non-increasing convex loss function
that serves as a surrogate for the 0-1 loss, r(w) is a convex
regularization term, and λ ≥ 0 is a regularization parame-
ter. The inner maximization over δi models the worst-case
perturbation for each data point, constrained by the attack
budget ε during training. Given the dataset S, we estimate
the parameters of our model as

ŵ ∈ argmin
w∈Rd

L(w) . (7)

The choice of loss function g, regularization r, and parame-
ters ε and λ can significantly impact the model’s accuracy
and robustness.

In practice, eq. (7) is often solved with a first-order optimiza-
tion method, such as gradient descent. Prior work (Soudry
et al., 2018) has showed that optimizing the unregular-
ized loss without any adversarial perturbations (eq. (6) for
λ, ε = 0) with gradient descent is equivalent to eq. (6) with
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On the Geometry of Regularization in Adversarial Training

the euclidean norm squared as a regularizer, where the free
regularizer strength λ corresponds to the time duration of
the algorithm (λ → 0 as the number of iterations goes to
∞). Similar results can be obtained for different first-order
algorithms (Gunasekar et al., 2018) (in particular, when
r(w) = ∥w∥pp, this corresponds to the family of steep-
est descent algorithms) as well as in the adversarial case
(ε > 0) (Tsilivis et al., 2024). Therefore, studying eqs. (6)
and (7) is equivalent to studying the solutions returned by a
first-order optimization algorithm.

3. Exact Asymptotics of Robust ERM
Our first technical result is an asymptotic description of
the properties of the solution of eqs. (6) and (7) in the pro-
portional high-dimensional limit, under the assumption of
isotropic Gaussian distribution. While restrictive, this as-
sumption is supported by recent theoretical advances show-
ing that many learning problems exhibit universality: their
asymptotic behavior matches Gaussian predictions even
with non-Gaussian data (Goldt et al., 2022; Loureiro et al.,
2021; Hu & Lu, 2023; Montanari & Saeed, 2022; Dandi
et al., 2023; Wei et al., 2022; Pesce et al., 2023; Gerace
et al., 2024). While proving such correspondence for our
setting is outside the scope of this work, this suggests our
analysis of the Gaussian case can provide valuable insights
into practical adversarial training.

3.1. Results for ℓp norms

First, we consider the setting where the perturbations in
eqs. (2) and (6) are constrained in their ℓp norm for p ∈
(1,∞]. More precisely, we make the following assumptions:

Assumption 3.1 (High-Dimensional Limit). We consider
the proportional high-dimensional regime where both the
number of training data n and input dimension d diverge to
infinity simultaneously at the same rate, while maintaining
a fixed ratio α := n/d.

Assumption 3.2 (ℓp Norms). Let ∥x∥p = (
∑n

i=1 |xi|
p
)
1/p

denote the ℓp norm for p ∈ (1,∞], with p⋆ being its dual
exponent (1/p + 1/p⋆ = 1). The adversarial perturbations
are constrained by an ℓp norm with parameter p, while
for regularization we consider the function r̃(w) = ∥w∥rr
where r ∈ [1,∞) is a parameter that can differ from p.

Assumption 3.3 (Scaling of Adversarial Norm Constraint).
We suppose that the value of ε scales with the dimension d
such that ε/d1/p⋆ = Od(1).

Assumption 3.4 (Data Distribution). For each i ∈ [n], the
covariates xi ∈ Rd are drawn i.i.d. from the data distri-
bution Pin(x) = Nx(0, Idd). Then the corresponding yi
is sampled independently from the conditional distribution
Pout defined in eq. (1). The target weight vector w⋆ ∈ Rd

is drawn from a prior probability distribution Pw which is

separable, i.e. Pw(w) =
∏d

i=1 Pw(wi) for a distribution
Pw in R with finite variance Var(Pw) = ρ <∞.

Under these assumptions, our first result states that in the
high-dimensional limit, the robust generalization error as-
sociated with the RERM solution in eq. (6) asymptotically
depends only on a few deterministic variables, known as the
summary statistics, which can be computed by solving a set
of low-dimensional self-consistent equations.
Theorem 3.5 (Limiting errors for ℓp norm). Let ŵ(S) ∈ Rd

denote a solution of the RERM problem in eq. (6). Then,
under Assumptions 3.1 to 3.4, the standard, robust and
boundary generalization error of ŵ converge to the follow-
ing deterministic quantities

Egen(ŵ) =
1

π
arccos

(
m⋆/

√
(ρ+ τ2)q⋆

)
,

Ebnd(ŵ) =

∫ ε
p⋆√

P⋆√
q⋆

0

erfc

(
− m⋆√

q⋆
ν

√
2(ρ+τ2−m⋆2/q⋆)

)
e−

ν2

2√
2π

dν ,

Erob(ŵ) = Egen(ŵ) + Ebnd(ŵ)

where m⋆, q⋆, P ⋆ are the limiting values of the following
summary statistics:

1
d ⟨w⋆, ŵ⟩ → m⋆ , 1

d∥ŵ∥
2
2 → q⋆ , 1

d∥ŵ∥
p⋆

p⋆ → P ⋆ ,

Remark 3.6. An immediate observation from the above
equations is that Egen is monotonically increasing as a
function of the cosine of the angle between teacher and
student (m⋆

/
√
ρq⋆), while Ebnd is decreasing. This has been

observed before for boundary based classifiers (Tanay &
Griffin, 2016; Tanner et al., 2024).

Theorem 3.5 therefore states that in order to characterize the
robust generalization error in the high-dimensional limit, it
is enough to compute three low-dimensional statistics of the
RERM solution. Our next result shows that these quantities
can be asymptotically computed without having to actually
solve the high-dimensional minimization problem in eq. (6).
Theorem 3.7 (Self-consistent equations for ℓp norms). Un-
der the same assumptions as Theorem 3.5, the summary
statistics (m⋆, q⋆, P ∗) are the unique solution of the follow-
ing set of self-consistent equations:

m̂ = αEξ

[∫
R dy ∂ωZ0fg(

√
qξ, P )

]
q̂ = αEξ

[∫
R dyZ0f

2
g (
√
qξ, P )

]
V̂ = −αEξ

[∫
R dyZ0∂ωfg(

√
qξ, P )

]
P̂ = εαp⋆P− 1

pEξ

[∫
R dyZ0yfg(

√
qξ, P )

] , (8)

and 

m = Eξ

[
∂γZwfw(

√
qξ, P̂ , λ)

]
q = Eξ

[
Zwfw(

√
qξ, P̂ , λ)2

]
V = Eξ

[
Zw∂γfw(

√
qξ, P̂ , λ)

]
P = Eξ

[
Zw∂P̂M λ

V̂
|·|r+ P̂

V̂
|·|p⋆ (

√
q̂ξ

V̂
)
] , (9)
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where Zw = Zw(m̂ξ/
√
q̂, m̂/

√
q̂), Z0 = Z0(y,mξ/√q, ρ −

m2/q) and ξ ∼ N (0, 1), and:

Z0(y, ω, V ) = Ez∼N (0,1)

[
Pout(y |

√
V z + ω)

]
, (10)

fg(ω, P̂ ) =
(
P
V g(y,·−yε

p⋆√
P )
(ω)− ω

)
/V, (11)

Zw(γ,Λ) = Ew∼Pw

[
e−

1
2Λw2+γw

]
, (12)

fw(γ, P̂ ,Λ) = P λ
Λ |·|r+ P̂

Λ |·|p⋆
( γ
Λ

)
. (13)

where we indicate the proximal of a function f : R→ R as
PV f(·)(ω) and its moreau envelope withMV f(·)(ω).

Two remarks on these two results are in order.
Remark 3.8. Both results hold for any separable convex
regularizer in the definition of the empirical risk in eq. (6).
This is in contrast to many prior works in this field, which
primarily consider ℓ2 regularizations.
Remark 3.9. The first four equations (eq. (8)) depend only
on the noise distribution and the loss function, while the
second set (eq. (9)) depends on the regularization function
and the dual norm of the perturbation.

3.2. Results for Mahalanobis norms

While the ℓp norm is the most frequently discussed in the ro-
bust learning literature, ℓp perturbations are isotropic, treat-
ing all covariates equally. Under the isotropic Gaussian
Assumption 3.4, this is justified. However, it can be limiting
under more realistic scenarios where the covariates are struc-
tured, and for instance some features are more relevant than
others. Recently, (Tanner et al., 2024) introduced a model
for studying adversarial training under structured convari-
ates which considers perturbations under a Mahalanobis
norm, allowing to weight the perturbation along different
directions. However, the discussion in that work focused
only on ℓ2 regularization.

Since our goal in this work is to study what is the best
regularization choice for a given perturbation geometry, we
now derive asymptotic results akin to the ones of Section 3.1
under any combination of Mahalanobis perturbation and
regularization norm. As before, we start by introducing our
assumptions.

Assumption 3.10 (Mahalanobis norms). Given a positive
definite matrix Σδ , we consider perturbations under a Maha-
lanobis norm ∥x∥Σδ

=
√
x⊤Σδx. Additionally, we con-

sider the regularization function to be r(w) = 1/2w⊤Σww
for a positive definite matrix Σw.

Assumption 3.11 (Structured data). For each i ∈ [n], the
covariates xi ∈ Rd are drawn i.i.d. from the data dis-
tribution Pin(x) = Nx(0,Σx). Then the corresponding
yi is sampled independently from the conditional distri-
bution Pout defined in eq. (1). The target weight vector

w⋆ ∈ Rd is drawn from a prior probability distribution
w⋆ ∼ Pw = Nw⋆(0,Σθ), which we assume has limiting
Mahalanobis norm given by ρ = limd→∞ E[ 1dw

⊤
⋆ Σxw⋆].

Assumption 3.12 (Scaling of Adversarial Norm Constraint).
The value of ε scales with the dimension d such that
ε/
√
d = O(1).

Assumption 3.13 (Convergence of spectra). We suppose
that Σx,Σδ,Σθ,Σw are simultaneously diagonalisable.
We call Σx = S⊤ diag(ωi)S, Σδ = S⊤ diag(ζi)S and
Σw = S⊤ diag(wi)S. We define θ̄ = SΣ⊤

xw⋆/
√
ρ. We

assume that the empirical distributions of eigenvalues and
the entries of θ̄ jointly converge to a probability distribution
µ as∑d

i=1δ
(
θ̄i − θ̄

)
δ(ωi − ω)δ(ζi − ζ)δ(wi − w)→ µ . (14)

As in Section 3.1, our first result concerns the limiting robust
error.
Theorem 3.14 (Limiting errors for Mahalanobis norm). Let
ŵ(S) ∈ Rd denote the unique solution of the RERM prob-
lem in eq. (6). Then, under Assumptions 3.1 and 3.10 to 3.13,
the standard, robust and boundary generalization error of
ŵ converge to the following deterministic quantities

Egen(ŵ) =
1

π
arccos

(
m⋆/

√
(ρ+ τ2)q⋆

)
,

Ebnd(ŵ) =

∫ εg
√

P⋆√
q⋆

0

erfc

(
− m⋆√

q⋆
ν

√
2(ρ+τ2−m⋆2/q⋆)

)
e−

ν2

2√
2π

dν ,

Erob(ŵ) = Egen(ŵ) + Ebnd(ŵ)

where m⋆, q⋆, P ⋆ are the limiting values of the following
summary statistics:

w⊤
⋆ Σxŵ
d → m⋆ , ŵ⊤Σxŵ

d → q⋆ , ŵ⊤Σδŵ
d → P ⋆ .

As in Section 3.1, our next result shows that the summary
statistics characterizing the limiting errors can be obtained
from of a set of self-consistent equations.
Theorem 3.15 (Self-Consistent equations for Mahalanobis
norm). Under the same assumptions as Theorem 3.14, the
summary statistics (m⋆, q⋆, P ∗) are the unique solution of
the following set of self-consistent equations:

m̂ = αEξ

[∫
R dy ∂ωZ0fg(

√
qξ, P )

]
q̂ = αEξ

[∫
R dyZ0f

2
g (
√
qξ, P )

]
V̂ = −αEξ

[∫
R dyZ0∂ωfg(

√
qξ, P )

]
P̂ = 2εαP− 1

2Eξ

[∫
R dyZ0yfg(

√
qξ, P )

] , (15)

and 

m = Eµ

[
m̂θ̄2

λw+V̂ ω+P̂ δ

]
q = Eµ

[
m̂2θ̄2ω+q̂ω2

(λw+V̂ ω+P̂ δ)2

]
V = Eµ

[
ω

λw+V̂ ω+P̂ δ

]
P = Eµ

[
ζ m̂2θ̄2+q̂ω2

(λw+V̂ ω+P̂ δ)2

] , (16)
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where µ is the joint limiting distribution for the spectrum of
all the matrices.

Remark 3.16. Notice that the first set of equations is the
same as in Theorem 3.7, as they depend only on the marginal
distribution Pout and the loss function.
Remark 3.17 (Interpretation of the self-consistent equations).
The self-consistent equations in Theorems 3.7 and 3.15
reduce the high-dimensional optimization problem in eq. (6)
to tracking only three scalar statistics (m⋆, q⋆, P ⋆). These
equations, derived via Gordon’s Min-Max theorem, fully
characterize the asymptotic behavior of regularized RERM
through the interaction of these quantities at optimality.

While the self-consistent equations in Theorem 3.7 and The-
orem 3.15 do not admit a closed-form solution, they can be
efficiently solved using an iteration scheme (Appendix D).
Solving them yields precise curves for the generalization
errors of the final predictor as a function of the sample com-
plexity α and regularization geometry, allowing us to draw
conclusions for the interplay between the regularization and
perturbation – see simulations in Section 5.

The details of the proofs of Theorems 3.5, 3.7, 3.14 and 3.15
are discussed in Appendix A. They are based on an adapta-
tion of Gordon’s Min-Max Theorem for convex empirical
risk minimization problems (Thrampoulidis et al., 2014;
Loureiro et al., 2021).

4. Which Regularization to Choose?
Our results in the previous section provide tight predictions
on the robust and standard generalization error of the set
of minimizers of the robust (regularized) empirical risk.
However, since the self-consistent equations describing the
robust errors are not closed, it is not straightforward to read
why some regularizers might produce better results than
others. In this section, we derive complementary uniform
convergence bounds based on the Rademacher Complexity
for linear predictors under various geometries. While these
bounds might not be numerically tight, they are distribution-
agnostic, and provide a-priori guarantees for the error of a
predictor which are qualitatively useful. We start by intro-
ducing concepts in a general way, before deriving guarantees
for the case considered in Section 3.2.

LetHr̃ be a hypothesis class of linear predictors of restricted
complexity, as captured by a function r̃ : Rd → R. This
function r̃ plays the role of a regularizer, as in Section 3.
We define:

Hr̃ = {x→ ⟨w,x⟩ : r̃(w) ≤ W2
r̃ }, (17)

where Wr̃ > 0 is an arbitrary upper bound. Central to
the analysis of the generalization error uniformly inside
the hypothesis class Hr̃ is the notion of the (empirical)

Rademacher Complexity (Koltchinskii, 2001) ofHr̃:

R̂S(Hr̃) = Eσ

[
1

n
sup

w:r̃(w)≤W2
r̃

n∑
i=1

σi ⟨w,xi⟩
]
, (18)

where the σi’s are either −1 or 1 with equal probability.
In the case of robust generalization with respect to ∥·∥-
limited perturbations, it suffices to analyse the worst-case
Rademacher Complexity ofHr̃:

R̂S(H̃r̃) = Eσ

[
1

n
sup

w:r̃(w)≤W2
r̃

n∑
i=1

σi min
∥δi∥≤ε

⟨w,xi + δi⟩
]
.

With these ingredients in place, we can state the following
bound on the robust generalization gap of any predictor in
Hr̃.

Theorem 4.1 (Mohri et al. (2012); Awasthi et al. (2020)).
For any δ > 0, with probability at least 1 − δ over the
draw of the dataset S, for all w ∈ Rd such that r(w) ≤
W2

r (eq. (17)), it holds that

Erob(w) ≤ Êrob(w) + 2 R̂S(H̃r) + 3

√
log 2/δ

2n
, (19)

where

Êrob(w) =
1

n

n∑
i=1

max
∥δi∥≤ε

1(yiŷ(w,xi + δi) ≤ 1) (20)

is a robust empirical error.

Theorem 4.1 promises that a tight bound on the worst-case
Rademacher complexity ofHr̃ can bound the (robust) gen-
eralization gap of any predictor inHr̃. The next Proposition
realises this goal for the general class of strongly convex
functions r̃. This will permit the study of the cases of Sec-
tion 3.2.

Proposition 4.2. Let ε, σ > 0. Consider a sample
S = {(x1, y1), . . . , (xn, yn)}, and let Hr̃ be the hypoth-
esis class defined in eq. (17), where r̃ is σ- strongly convex
with respect to a norm r∥·∥. Then, it holds:

R̂S(H̃r̃) ≤ max
i∈[n]

r∥xi∥⋆Wr̃

√
2

σn
+

ε

2
√
n

sup
w:r̃(w)≤W2

r̃

∥w∥⋆,

(21)
where r∥·∥⋆, ∥·∥⋆ denote the dual norms of r∥·∥, ∥·∥, re-
spectively.

The proof (Appendix B) leverages a fundamental result on
(standard) Rademacher complexities for strongly convex
functions due to Kakade et al. (2008) and a symmetrization
argument.

This result informs us that the worst-case Rademacher com-
plexity can decompose into two terms: one which char-
acterizes the standard error and one that scales with the

6
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magnitude of perturbation ε and depends on the dual norm
of the perturbation. Thus, we expect that a regularization
which promotes a small second term in the RHS of eq. (21)
will likely mean a smaller robust generalization gap, as ε
increases. This can be further elucidated in the following
subcases (proofs appear in appendix B), for which we al-
ready derived exact asymptotics in Section 3.2:

• ∥·∥ = ∥·∥Σδ
and r̃(w) = ∥w∥22: this corresponds to

perturbations with respect to a a symmetric positive
definite matrix Σδ ∈ Rd×d, while we regularize in the
Euclidean norm. In this case, we obtain:

Corollary 4.3. Let ε > 0 and symmetric positive defi-
nite Σδ ∈ Rd×d. Then:

R̂S(H̃∥·∥2
2
) ≤ maxi∈[n] ∥xi∥2W2√

n
+
εW2

2
√
n

√
λ−1
min(Σδ).

• ∥·∥ = ∥·∥Σδ
and r̃(w) = ∥w∥2Σw

: this corresponds to
perturbations with respect to a a symmetric positive
definite matrix Σδ ∈ Rd×d and regularization with
respect to a norm induced by another matrix Σw ∈
Rd×d. We will analyze the special case where Σδ and
Σw share the same set of eigenvectors.

Corollary 4.4. Let ε > 0. Let Σw =
∑d

i=1 αiviv
T
i

and Σδ =
∑d

i=1 λiviv
T
i , with vi ∈ Rd being orthonor-

mal. Then:

R̂S(H̃∥·∥2
A
) ≤
WA maxi∈[n] ∥xi∥Σ−1

w√
n

+
εWA

2
√
n

√
max
i∈[d]

1

λiαi
.

(22)

Hence, we deduce that regularizing the class of linear pre-
dictors with Σw = Σ−1

δ , where Σδ is the matrix of the
perturbation norm, can more effectively control the robust
generalization error.

Similar results can be derived in the context of ℓp pertur-
bations - see Yin et al. (2019); Awasthi et al. (2020) and
Appendix B. In fact, mirroring our analysis, the robust gen-
eralization error there is controlled by the ∥·∥p⋆ norm of the
weights. We explore the effect of the regularizer numerically
with simulations next.

5. Experiments
Leveraging our exact results from Section 3 and guided by
the predictions of Section 4, in this Section we numerically
investigate the role of the regularization geometry in the
robustness and accuracy of robust empirical risk minimiz-
ers. Experimental details and further ablation studies are
in Appendix C.

0.4

0.5

E
ro

b
/E

g
e
n

Egen Erob

10−2 10−1 100

α = n/d

10−2

10−1

E
b
n
d

r = 1

r = 2

r = 3

Figure 1: Generalization error of RERMs in the low sam-
ple complexity regime under ℓ∞ perturbations for various
choices of regularization. We see that the edge of ℓ1 over
the rest of the methods stems from the boundary error (Ebnd)
which goes to zero as α → 0+. Setting: ε = 0.2 and opti-
mally tuned regularization parameter λ. The bullet points
with the error bars are RERM simulations for d = 1000
(10 random seeds), while the solid lines correspond to the
theoretical predictions.

5.1. Importance of Regularization in the Scarce Data
Regime

First, we consider the setting of Section 3.1, with pertur-
bations constrained in their ℓ∞ norms, for three different
regularizers (ℓ1, ℓ2 and ℓ3 norms). Figure 1 compares the
generalization errors of the solutions of eq. (6) for the vari-
ous regularizers and plots them as a function of the sample
complexity α. Note that when α is small (scarce data),
the ℓ1 regularized solution (dual norm of ℓ∞) provides bet-
ter defense against ℓ∞ perturbations. Interestingly, this is
due to the fact that the boundary error approaches zero as
α → 0+, only in the case when r = 1 (Figure 3, bot-
tom). We analytically explore this phenomenon further
in Appendix A.8, where we analyze the boundary error
from Theorem 3.5 and probe its dependence on the overlap
parameters (m⋆, q⋆, P ⋆).

The phase diagram of Figure 2 further elucidates the dif-
ference of the methods as a function of ε. We display the
difference in robust generalization error between ℓ2 and
ℓ1 regularized solutions versus attack budget ε and sample
complexity α, with optimally tuned regularization coeffi-
cient λ. We observe that ℓ1 outperforms ℓ2 regularization in
regions of high ε and low α.

Figure 3 demonstrates Erob in the structured case of Sec-
tion 3.2, where the perturbations are constrained in a Ma-
halanobis norm ∥·∥Σδ

. We observe that regularizing the
weights of the solution with the dual norm of the pertur-
bation (∥·∥Σ−1

δ
) yields better robustness, while the gap be-

tween the various methods increases as ε grows.
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Figure 2: Difference between robust generalization errors
for r = 2 and r = 1 as a function of ε and α for ℓ∞ attacks.
Green zones correspond to areas where the the dual norm
regularization is better than ℓ2.
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Figure 3: Difference between robust generalization error
for Σδ perturbations. We see that a regularization with
the dual norm has the best adversarial error for different
choices of ε. The points with the error bars (std) are RERM
simulations for d = 1000 (10 random seeds), while the solid
lines correspond to the theoretical predictions.

5.2. Optimal Regularization Geometry as a Function of
ε

While the previous figures compared the various regularizers
r(w) as ε grows, it is not clear what exactly the relation-
ship is between optimal r(w) and perturbation strength. In
particular, we expect when ε = 0, ℓ2-regularized solutions
to achieve better accuracy, due to the fact that the data are
Gaussian. However, it is not clear how the transition to the
dual norm happens.

We examine this relationship in Figure 4, where we plot the
robust generalization error for various values of perturbation
ε and regularization order r for a fixed value of sample com-
plexity α. We observe that, as the attack strength increases,
the order of the optimal regularization smoothly transitions

1.0 1.5 2.0 2.5 3.0

r

0.25

0.30

0.35

0.40

0.45

E
ro

b

ε = 0.01

ε = 0.20

ε = 0.40

ε = 0.60

0.25 0.50
ε

1

2

r
?

Figure 4: Robust generalization error of the solution of
regularized RERM as a function of the regularization order
r, i.e. r(w) = λ∥w∥rr for various perturbations strengths
ε. Sample complexity α = 1.0. Regularization coefficients
λ are optimally tuned. The inside figure shows how the
optimal value of r scales with ε.

from r = 2 to r = 1. Hence, there is a regime of perturba-
tion scale ε where neither r = 2 nor r = 1 is optimal, but
an order of r ∈ (1, 2) achieves the least robust test error.

6. Conclusion
We studied the role of regularization in robust empirical
risk minimization (adversarial training) for a variety of per-
turbation and regularization norms. We derived an exact
asymptotic description of the robust and standard generaliza-
tion error in the high-dimensional proportional limit, and we
showed results for the (worst-case) Rademacher Complexity
of linear predictors in the case of structured perturbations.
Phase diagrams and exact scaling laws, afforded by our anal-
ysis, suggest that choosing the right regularization becomes
increasingly important as ε grows, and, in fact, this optimal
regularization often corresponds to the dual norm of the per-
turbation. Furthermore, our results reveal a curious, smooth,
transition between different optimal regularizations (ℓ2 to
ℓ1) with increasing perturbation strength; a phenomenon
that has not yet been captured by any other theoretical work.

It would be interesting for future work to investigate the
interplay between regularization and perturbation geometry
in non-linear models, such as the random features model
(Mei & Montanari, 2022; Gerace et al., 2021; Hassani &
Javanmard, 2024).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

8



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

On the Geometry of Regularization in Adversarial Training

References
Adomaityte, U., Defilippis, L., Loureiro, B., and Sicuro,

G. High-dimensional robust regression under heavy-
tailed data: Asymptotics and universality. arXiv preprint
arXiv:2309.16476, 2023.

Adomaityte, U., Sicuro, G., and Vivo, P. Classification of
heavy-tailed features in high dimensions: a superstatisti-
cal approach. Advances in Neural Information Processing
Systems, 36, 2024.

Aubin, B., Krzakala, F., Lu, Y., and Zdeborová, L. General-
ization error in high-dimensional perceptrons: Approach-
ing bayes error with convex optimization. In Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H.
(eds.), Advances in Neural Information Processing Sys-
tems, volume 33, pp. 12199–12210. Curran Associates,
Inc., 2020.

Awasthi, P., Frank, N., and Mohri, M. Adversarial learning
guarantees for linear hypotheses and neural networks.
In International Conference on Machine Learning, pp.
431–441. PMLR, 2020.

Bean, D., Bickel, P. J., El Karoui, N., and Yu, B. Optimal m-
estimation in high-dimensional regression. Proceedings
of the National Academy of Sciences, 110(36):14563–
14568, 2013a.

Bean, D., Bickel, P. J., Karoui, N. E., and Yu, B.
Optimal m-estimation in high-dimensional regression.
Proceedings of the National Academy of Sciences,
110(36):14563–14568, 2013b. doi: 10.1073/pnas.
1307845110. URL https://www.pnas.org/doi/
abs/10.1073/pnas.1307845110.

Bhagoji, A. N., Cullina, D., and Mittal, P. Lower bounds on
adversarial robustness from optimal transport. Advances
in Neural Information Processing Systems, 32, 2019.

Bordelon, B., Canatar, A., and Pehlevan, C. Spectrum depen-
dent learning curves in kernel regression and wide neural
networks. In III, H. D. and Singh, A. (eds.), Proceedings
of the 37th International Conference on Machine Learn-
ing, volume 119 of Proceedings of Machine Learning
Research, pp. 1024–1034. PMLR, 13–18 Jul 2020.

Boyd, S. and Vandenberghe, L. Convex Optimization.
Cambridge University Press, 2004. doi: 10.1017/
CBO9780511804441.

Carmon, Y., Raghunathan, A., Schmidt, L., Duchi, J. C.,
and Liang, P. Unlabeled data improves adversarial robust-
ness. In Wallach, H. M., Larochelle, H., Beygelzimer,
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A. Sharp High-Dimensional Asymptotics

Symbol Description

n Number of training samples
d Input dimension
α = n/d Sample complexity (ratio of samples to dimension)
xi ∈ Rd Input features for sample i
yi ∈ {−1,+1} Binary label for sample i
w⋆ ∈ Rd Teacher (true) weight vector
ŵ ∈ Rd Learned weight vector (student)
ε Adversarial perturbation budget
∥ · ∥p ℓp norm, defined as ∥x∥p = (

∑
i |xi|p)1/p

p∗ Dual exponent of p, satisfying 1/p+ 1/p∗ = 1
Erob(ŵ) Robust generalization error
Egen(ŵ) Standard generalization error
Ebnd(ŵ) Boundary error (difference between robust and standard error)
λ Regularization strength parameter
r̃(w) Regularization function
g(·) Surrogate loss function
Pout Output channel (conditional probability of labels)
Pin Input distribution
Pw Prior distribution on teacher weights
Σδ Matrix defining Mahalanobis norm for perturbations
Σw Matrix defining Mahalanobis norm for regularization
m⋆ Asymptotic overlap between teacher and student weights
q⋆ Asymptotic squared ℓ2 norm of student weights
P ⋆ Asymptotic dual norm of student weights

Table 1: Notation Table

Before delving into the technical proofs of Theorems 3.5, 3.7, 3.14 and 3.15, we provide in Table 1 a comprehensive overview
of the notation used throughout the paper and particularly in these proofs. The table includes both the basic notation for the
problem setup and the more specialized symbols that appear in the asymptotic analysis. We have organized the symbols
thematically, starting from the fundamental quantities (n, d, α) and progressing to the more complex asymptotic statistics
(m∗, q∗, P ∗). This reference should help readers track the various quantities as they appear in the detailed derivations that
follow.

We now proceed with the proofs. The first theorem that will be crucial in our subsequent analysis is the Convex Gaussian
MinMax Theorem (CGMT), a powerful tool in high-dimensional probability theory. The CGMT provides a connection
between two seemingly unrelated optimization problems under Gaussian conditioning. Essentially, it allows us to study the
properties of a complex primary optimization problem (PO) by examining a simpler auxiliary optimization problem (AO).
This theorem is particularly valuable in our context as it enables us to transform intricate high-dimensional problems into
more tractable lower-dimensional equivalents, significantly simplifying our analysis and leading to Theorems 3.7 and 3.15.

The CGMT states that under certain conditions, the probabilistic behavior of the primary optimization problem involving a
Gaussian matrix is upper and lower bounded by the behavior of an auxiliary problem involving only Gaussian vectors. This
powerful result allows us to derive tight probability bounds and asymptotic predictions for the high-dimensional estimation
problems considered in this manuscript.

We state the theorem in full generality.

Theorem A.1 (CGMT (Gordon, 1988; Thrampoulidis et al., 2014)). Let G ∈ Rm×n be an i.i.d. standard normal matrix
and g ∈ Rm, h ∈ Rn two i.i.d. standard normal vectors independent of one another. Let Sw, Su be two compact sets such

13
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that Sw ⊂ Rn and Su ⊂ Rn. Consider the two following optimization problems for any continuous ψ on Sw × Su

C(G) := min
w∈Sw

max
u∈Su

u⊤Gw + ψ(w,u) (23)

C(g,h) := min
w∈Sw

max
u∈Su

∥w∥2g⊤u+ ∥u∥2h⊤w + ψ(w,u) (24)

Then the following hold

1. For all c ∈ R we have

P(C(G) < c) ≤ 2P(C(g,h) ≤ c) (25)

2. Further assume that Sw and Su are convex sets, ψ is convex-concave on Sw × Su. Then for all c ∈ R

P(C(G) > c) ≤ 2P(C(g,h) ≥ c) (26)

In particular for all µ ∈ R, t > 0 we have P(|C(G)− µ| > t) ≤ 2P(|C(g,h)− µ| ≥ t).

In our analysis, we will employ a version of the CGMT applied to a general class of generalized linear models, as proved by
Loureiro et al. (2021).

A.1. Notations and Definitions

In this paper, we extensively employ the concepts of Moreau envelopes and proximal operators, pivotal elements in convex
analysis frequently encountered in recent works on high-dimensional asymptotic of convex problems (Boyd & Vandenberghe,
2004; Parikh & Boyd, 2014). For an in-depth analysis of their properties, we refer the reader to the cited literature. Here, we
briefly outline their definition and the main properties for context.

Definition A.2 (Moreau Envelope). Given a convex function f : Rn → R we define its Moreau envelope as being

MV f(·)(ω) = min
x

[
1

2V
∥x− ω∥22 + f(x)

]
. (27)

where the Moreau envelope can be seen as a functionMV f(·) : Rn → R.

Definition A.3 (Proximal Operator). Given a convex function f : Rn → R we define its Proximal operator as being

PV f(·)(ω) = argmin
x

[
1

2V
∥x− ω∥22 + f(x)

]
. (28)

where the Proximal operator can be seen as a function PV f(·) : Rn → Rn.

Theorem A.4 (Gradient of Moreau Envelope (Thrampoulidis et al., 2018), Lemma D1). Given a convex function f : Rn → R,
we denote its Moreau envelope byMV f(·)(·) and its Proximal operator as PV f(·)(·). Then, we have:

∇ωMV f(·)(ω) =
1

V

(
ω − PV f(·)(ω)

)
. (29)

Additionally we will use the following two properties

MV f(·+u)(ω) =MV f(·)(ω + u) , PV f(·+u)(ω) = u+ PV f(·)(ω + u) , (30)

which are easy to show from a change of variables inside the minimization.

Definition A.5 (Dual of a Number). We define the the dual of a number a ≥ 0 as being a⋆ as the only number such that
1/a + 1/a⋆ = 1.
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A.2. Assumptions and Preliminary Discussion

We restate here all the assumptions that we make for the problem.

Assumption A.6 (Estimation from the dataset). Given a dataset D made of n pairs of input outputs {(xi, yi)}ni=1, where
xi ∈ Rd and yi ∈ R we estimate the vector ŵ as being

ŵ ∈ argmin
w∈Rd

n∑
i=1

max
∥δi∥≤ε

g

(
yi
w⊤(xi + δi)√

d

)
+ λr̃(w) , (31)

where g : R→ R is a convex non-increasing function, λ ∈ [0,∞) and r̃ : Rd → R a convex regularization function.

Assumption A.7 (High-Dimensional Limit). We consider the proportional high-dimensional regime where both the number
of training data and input dimension n, d→∞ at a fixed ratio α := n/d.

Assumption A.8 (Regularization functions and Attack Norms considered). We consider consider two settings for the
perturbation norm ∥·∥ and the regularization function r. For the first one, the regularization function and the attack norm ℓp
norms, defined as

∥x∥p =

(
n∑

i=1

|xi|p
)1/p

(32)

for p ∈ (1,∞]. We will refer to the index of the regularization function as r and to the index of the norm inside the inner
maximization as p and we define p⋆ as the dual number of p (definition A.5).

For the second case, both the regularization function and the attack norm are Mahalanobis norms, defined as

∥x∥Σ =
√
x⊤Σx (33)

for a positive definite matrix Σ. We refer to the index of the matrix of the regularization function as Σw and to the matrix of
the norm inside the inner maximization as Σδ . In this case, we define p = r = 2 (in order to unify notations) and we will
thus talk about p⋆ = r⋆ = 2.

This setting considers most of the losses used in machine learning setups for binary classification, e.g. logistic, hinge,
exponential losses. We additionally remark that with the given choice of regularization the whole cost function is coercive.

Assumption A.9 (Scaling of Adversarial Norm Constraint). We suppose that the value of ε scales with the dimension d
such that ε p⋆

√
d = Od(1).

Assumption A.10 (Data Distribution). We consider two cases of data distribution. Both of them will rely on the following
general generative process. For each i ∈ [n], the covariates xi ∈ Rd are drawn i.i.d. from a data distribution Pin(x). Then,
the corresponding yi is sampled independently from the conditional distribution Pout. More succinctly, one can write the
data distribution for a given pair (x, y) as

P (x, y) =

∫
Rd

dw⋆Pout

(
y

∣∣∣∣∣ ⟨w⋆,x⟩√
d

)
Pin(x)Pw(w⋆), (34)

The target weight vector w⋆ ∈ Rd is drawn from a prior probability distribution Pw.

Our two cases differentiate in the following way. For the first case, we consider Pin(x) = Nx(0, Idd) and Pw which is
separable, i.e. Pw(w) =

∏d
i=1 Pw(wi) for a distribution Pw in R with finite variance Var(Pw) = ρ <∞.

For the second case, we consider Pin(x) = Nx(0,Σx) and Pw(w) = Nw(0,Σθ).

Assumption A.11 (Limiting Convergence of Spectral Values). We suppose that Σx,Σδ,Σθ,Σw are simultaneously
diagonalisable. We call Σx = S⊤ diag(ωi)S, Σδ = S⊤ diag(ζi)S and Σw = S⊤ diag(wi)S. We define θ̄ = SΣ⊤

xw⋆/
√
ρ.

We assume that the empirical distributions of eigenvalues and the entries of θ̄ jointly converge to a probability distribution µ
as ∑d

i=1δ
(
θ̄i − θ̄

)
δ(ωi − ω)δ(ζi − ζ)δ(wi − w)→ µ . (35)
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A.3. Problem Simplification

Recall that we start from the following optimization problem:

Φd = min
w∈Rd

n∑
i=1

max
∥δi∥≤ε

g

(
yi
w⊤(xi + δi)√

d

)
+ λr(w) , (36)

where r(·) is a convex regularization function and g(·) is a non-increasing loss function. The non-increasing property of g
allows us to simplify the inner maximization, leading to an equivalent formulation

Φd = min
w∈Rd

n∑
i=1

g

(
yi
w⊤xi√

d
− ε√

d
∥w∥⋆

)
+ λr̃(w) . (37)

To facilitate our analysis, we introduce auxiliary variables P = ∥w∥p
⋆

⋆ /d and P̂ (the Lagrange parameter relative to this
variable), which allow us to decouple the norm constraints. This leads to a min-max formulation

Φd = min
w∈Rd,P

max
P̂

n∑
i=1

g

(
yi
w⊤xi√

d
− ε

p⋆
√
d

p⋆
√
P

)
+ λr̃(w) + P̂∥w∥p

⋆

⋆ − dP P̂ , (38)

where we switched the value of ε for its value without the scaling in d. This reformulation is what will allow us to apply the
CGMT in subsequent steps.

It’s worth noting the significance of the scaling for ε as detailed in Assumption A.9. In the high-dimensional limit d→∞,
it’s essential that all terms in Φd exhibit the same scaling with respect to d. This careful scaling ensures that our asymptotic
analysis remains well-behaved and meaningful in the high-dimensional regime.

A.4. Scalarization and Application of CGMT

To facilitate our analysis, we further introduce effective regularization and loss functions, ˜̃r and g̃, respectively. These
functions are defined as

g̃(y, z) =

n∑
i=1

g

(
yizi −

ε
p⋆
√
d

p⋆
√
P

)
, ˜̃r(w) = r̃(w) + P̂∥w∥p

⋆

p⋆ . (39)

A crucial step in our analysis involves inverting the order of the min-max optimization. We can justify this operation by
considering the minimization with respect to w ∈ Rd at fixed values of P̂ and P . This reordering is valid due to the
convexity of our original problem. Specifically, the objective function is convex in w and concave in P̂ and P , and the
constraint sets are convex. Under these conditions, we apply Sion’s minimax theorem, which guarantees the existence of a
saddle point and allows us to interchange the order of minimization and maximization without affecting the optimal value.

This reformulation enables us to directly apply (?)Lemma 11]loureiro2021learning. This lemma represents a meticulous
application of Theorem A.1 to scenarios involving non-separable convex regularization and loss functions. The result is a
lower-dimensional equivalent of our original high-dimensional minimization problem that represent the limiting behavior of
the solution of the high-dimensional problem.

Consequently, our analysis now focuses on a low-dimensional functional, which takes the form

Φ̃ = min
P,m,η,τ1

max
P̂ ,κ,τ2,ν

[
κτ1
2
− αLg −

η

2τ2

(
ν2ρ+ κ2

)
− ητ2

2
− Lr̃ +mν − PP̂

]
(40)

where we have restored the min max order of the problem.

In this expression, g and h are independent Gaussian vectors with i.i.d. standard normal components. The terms Lg and Lr̃

represent the scaled averages of Moreau Envelopes (eq. (27))

Lg =
1

n
E
[
M τ1

κ g̃(y,·)

(
m√
ρ
s+ ηh

)]
(41)

Lr̃ =
1

d
E
[
M η

τ2
˜̃r(·)
(
η

τ2
(κg + νw⋆)

)]
(42)
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The extremization problem in eq. (40) is related to the original optimization problem in eq. (36) as it can be thought as the
leading part in the limit n, d→∞.

This dimensional reduction is the step that allows us to study the asymptotic properties of our original high-dimensional
problem through a more tractable low-dimensional optimization and thus have in the end a low dimensional set of equations
to study.

It’s important to note that the optimization problem Φ̃ is still implicitly defined in terms of the dimension d and, consequently,
as a function of the sample size n. We introduce two variables

weq = P η∗
τ∗
2

˜̃r(.)
(
η∗

τ∗2
(ν∗t+ κ∗g)

)
, zeq = P τ∗

1
κ∗ g̃(,,y)

(
m∗
√
ρ
s+ η∗h

)
(43)

where (η⋆, τ⋆2 , P
⋆, P̂ ⋆, κ⋆, ν⋆,m⋆, τ⋆1 ) are the extremizer points of Φ̃.

Building upon Loureiro et al. (2021, Theorem 5), we can establish a convergence result. Let ŵ be an optimal solution
of the problem defined in eq. (36), and let ẑ = 1√

d
Xŵ. For any Lipschitz function φ1 : Rd → R, and any separable,

pseudo-Lipschitz function φ2 : Rn → R, there exist constants ϵ, C, c > 0 such that

P
(∣∣∣∣ϕ1( ŵ√

d

)
− E

[
ϕ1

(
weq√
d

)]∣∣∣∣ ≥ ϵ) ≤ C

ϵ2
e−cnϵ4

P
(∣∣∣∣ϕ2( ẑ√

n

)
− E

[
ϕ2

(
zeq√
n

)]∣∣∣∣ ≥ ϵ) ≤ C

ϵ2
e−cnϵ4

(44)

It demonstrates that the limiting values of any function depending on ŵ and ẑ can be computed by taking the expectation of
the same function evaluated at weq or zeq, respectively. This convergence property allows us to translate results from our
low-dimensional proxy problem back to the original high-dimensional setting with high probability.

A.5. Derivation of Saddle Point equations

We now want to show that extremizing the values of m, η, τ1, P, P̂ , ν, τ2, κ lead to the optimal value Φ̃ of eq. (40). We are
going to directly derive the saddle point equations and then argue that in the high-dimensional limit they become exactly the
ones reported in the main text.

We obtain the first set of derivatives that depend only on the loss function and the channel part by taking the derivatives with
respect to m, η, τ1, P to obatin

∂

∂m
: ν = α

κ

nτ1
E

[(
m

ηρ
h− s√

ρ

)⊤

P τ1
κ g̃(.,y)

(
m√
ρ
s+ ηh

)]
∂

∂η
: τ2 = α

κ

τ1
η − κα

τ1n
E
[
h⊤P τ1

κ g̃(·,y)

(
m√
ρ
s+ ηh

)]
∂

∂τ1
:
τ21
2

=
1

2
α
1

n
E

[∥∥∥∥ m√ρs+ ηh− P τ1
κ g̃(·,y)

(
m√
ρ
s+ ηh

)∥∥∥∥2
2

]
∂

∂P
: P̂ =

α

n
∂PE

[
M τ1

κ g̃(y,·)

(
m√
ρ
s+ ηh

)]
(45)

By taking the derivatives with respect to the remaining variables κ, ν, τ2, P̂ we obtain a set of equations depending on
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regularization and prior over the teacher weights

∂

∂κ
: τ1 =

1

d
E
[
g⊤P η

τ2
˜̃r(·)
(
η

τ2
(νw⋆ + κg)

)]
∂

∂ν
: m =

1

d
E
[
w⊤

⋆ P η
τ2

˜̃r(·)
(
η

τ2
(νw⋆ + κg)

)]
∂

∂τ2
:
1

2d

τ2
η
E

[∥∥∥∥ ητ2 (νw⋆ + κg)− P η
τ2

˜̃r(·)
(
η

τ2
(νw⋆ + κg)

)∥∥∥∥2
2

]
=

η

2τ2

(
ν2ρ+ κ2

)
−mν − κτ1 +

ητ2
2

+
τ2
2η

m2

ρ

∂

∂P̂
: P =

1

d
∂P̂E

[
M η

τ2
˜̃r(·)
(
η

τ2
(κg + νw⋆)

)]
(46)

The rewriting of these equations in the desired form in Theorems 3.7 and 3.15 follows from the same considerations as in
Loureiro et al. (2021, Appendix C.2).

To perform this rewriting the first ingredient we need is the following change of variables

m← m, q ← η2 +
m2

ρ
, V ← τ1

κ
, P ← P ,

V̂ ← τ2
η
, q̂ ← κ2 , m̂← ν , P̂ ← P̂ .

(47)

ant the use of Isserlis’ theorem (Isserlis, 1918) to simplify the expectation where Gaussian g, h vectors are present.

A.5.1. REWRITING OF THE CHANNEL SADDLE POINTS

To obtain specifically the form implied in the main text we introduce

Z0(y, ω, V ) =

∫
dx√
2πV

e−
1

2V (x−ω)2δ
(
y − f0(x)

)
, (48)

where this definition is equivalent to the one presented in eq. (10). The function Z0 can be interpreted as a partition function
of the conditional distribution Pout and contains all of the information about the label generating process.

A.5.2. SPECIALIZATION OF PRIOR SADDLE POINTS FOR ℓp NORMS

In the case of ℓp norms, we can leverage the separable nature of the regularization to simplify our equations. The key insight
here is that the proximal operator of a separable regularization is itself separable. This property allows us to treat each
dimension independently, leading to a significant simplification of our high-dimensional problem.

First, due to the separability, all terms depending on the proximal of either g̃ or ˜̃r simplify the n or d at the denominator.
This cancellation is crucial as it eliminates the explicit dependence on the problem dimension, allowing us to derive
dimension-independent equations.

Next, we introduce

Zw(γ,Λ) =

∫
dwPw(w)e

−Λ
2 w2+γw, (49)

which, in turn, leads in the form shown in eq. (9).

A.5.3. SPECIALIZATION OF PRIOR SADDLE POINTS FOR MAHALANOBIS NORMS

In the case of Mahalanobis norm, the form of the proximal of the effective regularization function is specifically

P
V ˜̃r(·)(ω) = argmin

z

[
λz⊤Σwz + P̂z⊤Σδz +

1

2V
∥z − ω∥22

]
=

1

V

(
2P̂Σδ + 2λΣw +

1

V

)−1

ω (50)

By substituting this explicit form into the equations from eq. (46), we obtain a set of simplified equations that still depends
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on the dimension

m =
1

d
tr

[
m̂Σ⊤

xθ0θ
⊤
0 Σx

(
λΣw + P̂Σδ + V̂Σx

)−1
]

q =
1

d
tr

[(
m̂2Σ⊤

xθ0θ
⊤
0 Σx + q̂Σx

)
Σx

(
λΣw + P̂Σδ + V̂Σx

)−2
]

V =
1

d
tr

[
Σx

(
λΣw + P̂Σδ + V̂Σx

)−1
]

P =
1

d
tr

[(
m̂2Σ⊤

xθ0θ
⊤
0 Σx + q̂Σx

)
Σδ

(
λΣw + P̂Σδ + V̂Σx

)−2
]

(51)

The final step involves taking the high-dimensional limit of these equations. Here, we leverage our assumptions about the
trace of the relevant matrices to further simplify the expressions so that they only depend on the limiting distribution µ from
Assumption A.11.

Specifically, the assumptions on the trace allow us to replace certain high-dimensional operations with scalar quantities,
effectively reducing the dimensionality of our problem. This dimensionality reduction is crucial for obtaining tractable
equations in the high-dimensional limit. In the end we obtain the equations in eq. (16).

A.6. Different channels and Prior functions

We want to show how the different functions Z0,Zw look like for some choices of output channel and prior in the data
model. For the case of a probit output channel, we have by direct calculation

Z0(y, ω, V ) =
1

2
erfc

(
−y ω√

2(V + τ2)

)
(52)

For the case of a channel of the form y = sign(z) +
√
∆∗ξ, one has that

Z0(y, ω, V ) = Ny (1,∆
⋆)

1

2

(
1 + erf

(
ω√
2V

))
+Ny (−1,∆⋆)

1

2

(
1− erf

(
ω√
2V

))
(53)

For the choices of the prior over the teacher weights, we have for a Gaussian prior that

Zw(γ,Λ) =
1√

Λ + 1
eγ

2/2(Λ+1) (54)

or for sparse binary weights
Zw(γ,Λ) = ρ+ e−

Λ
2 (1− ρ) cosh(γ) (55)

A.7. Error Metrics

To derive the form of the generalization error the procedure is the same as detailed in Aubin et al. (2020) or in Mignacco
et al. (2020, Appendix A). We report here the final form being

Egen =
1

π
arccos

(
m√

(ρ+ τ2)q

)
(56)

To derive the form for the boundary error one can proceed in the same way as Gerace et al. (2021, Appendix D) and obtain

Ebnd =

∫ ε
p⋆√

P/
√
q

0

erfc

− m√
q
λ

1√
2(ρ+ τ2 − m2

q )

e− 1
2λ

2

√
2π

dλ (57)

We are also interested in the average teacher margin defined as

E
[
yw⊤

⋆ x
]

(58)
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Figure 5: Scaling of the overlap parameters in the low sample complexity regime for p =∞, ε = 0.3, ρ = 1 and λ = 10−3.
The numbers presented in the legends are the linear fit in log-log scale of the dashed part.

which can be expressed as a function of the solutions of the saddle point equations as follows:√
2

π

√
ρ√

1 + τ2

ρ

(59)

A.8. Asymptotic in the low sample complexity regime

This section examines the asymptotic behavior of our model in the regime of low sample complexity. Our analysis is
motivated by numerical observations of the overlaps m, q, P, V in the small α regime, as illustrated in Figure 5.

Based on these observations, we propose a general scaling ansatz for the overlap parameters (solutions of the equations
presented in Theorems 3.7 and 3.15) as functions of the sample complexity α

m⋆ = m0α
δm , q⋆ = q0α

δq , V ⋆ = V0α
δV , P ⋆ = P0α

δP , (60)

where the values with a zero subscript do not depend on α and the exponents are all positive. We focus on the noiseless case
τ = 0.

We are interested in the expansion of the generalization error and the boundary error, keeping only the most relevant terms
in the limit α→ 0+. For the generalization error we have

Egen =
1

π
arccos

(
m⋆

√
ρq⋆

)
=

1

2
− m0

π
√
ρq0

αδm− δq
2 + o

(
αδm−δq/2

)
(61)

and for the boundary error a similar expansion leads to

Ebnd =

∫ p⋆√
P⋆

q⋆

0

erfc

(
− m⋆

√
q⋆
ν√

2(ρ− (m⋆)2/q⋆)

)
e−

ν2

2√
2π

dν =
εg

p⋆
√
P0√

2πq0
αδP /p⋆−δq/2 +

θ0
2π
α2δP /p⋆+δm−2δq + o(ακ) (62)

where κ = max(δP /p
⋆ − δq/2, 2δP /p⋆ + δm − 2δq).

Numerical simulations reveal a clear distinction in the low α regime between cases where the regularization parameter
r = p⋆ and r ̸= p⋆. Figure 5 illustrates this difference for a fixed regularization parameter λ. We identify two scenarios that
characterize the behavior of the leading term in the boundary error expansion

When δP /p⋆ > δq/2 : This occurs when p⋆ = r = 1. In this case, the leading term has a positive exponent, causing it to
vanish as α→ 0.
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When δP /p⋆ = δq/2 : This scenario arises when r ̸= p⋆ = 1. Here, the exponent of the leading term becomes zero,
resulting in a constant term independent of α.

Notably, in all cases we’ve examined, the second terms in both the generalization error and boundary error expansions
consistently approach zero in the limit of low sample complexity.

B. Rademacher Complexity Analysis
Missing proofs for main text results.

Proposition B.1. Let ε, σ > 0. Consider a sample S = {(x1, y1), . . . , (xn, yn)}, and let Hr̃ be the hypothesis class
defined in eq. (17). Then, it holds:

R̂S(H̃r̃) ≤ max
i∈[n]

r∥xi∥⋆Wr̃

√
2

σn
+

ε

2
√
n

sup
w:r̃(w)≤W2

r̃

∥w∥⋆, (63)

where r∥·∥⋆, ∥·∥⋆ denote the dual norm of r∥·∥, ∥·∥, respectively.

Proof. We have:

R̂S(H̃r̃) = Eσ

[
1

n
sup
h∈Hr̃

n∑
i=1

σi min
∥x′

i−xi∥≤ε
yih(x

′
i)

]

= Eσ

[
1

n
sup
h∈Hr̃

n∑
i=1

σiyi ⟨w,xi⟩ − ε∥w∥⋆
]

(Def. of dual norm)

≤ Eσ

[
1

n
sup
h∈Hr̃

n∑
i=1

σiyi ⟨w,xi⟩
]
+ Eσ

[
1

n
sup
h∈Hr̃

n∑
i=1

−εσi∥w∥⋆
]

(Subadditivity of supremum)

= R̂S(Hr̃) +
ε

2
Eσ

[∣∣∣∣∣ 1n
n∑

i=1

σi

∣∣∣∣∣
]

sup
w:r̃(w)≤W2

r̃

∥w∥⋆. (Symmetry of σ)

(64)

For the first term, i.e. the “clean” Rademacher Complexity, we plug in (Kakade et al., 2008, Theorem 1). By Jensen’s
inequality, we have for the second term:

Eσ

[∣∣∣∣∣ 1n
n∑

i=1

σi

∣∣∣∣∣
]
≤

√√√√√Eσ

( 1

n

n∑
i=1

σi

)2
 =

1√
n
, (65)

which concludes the proof.

Corollary B.2. Let ε > 0. Then:

R̂S(H̃∥·∥2
2
) ≤ maxi∈[n] ∥xi∥2W2√

m
+
εW2

2
√
n

√
λ−1
min(Σδ). (66)

Proof. Leveraging Proposition 4.2, the first term of the RHS follows from the fact that the squared ℓ2 norm is 1-strongly

convex (w.r.t itself). For the second term, we have that the dual norm of ∥·∥Σδ
is given by ∥·∥Σ−1

δ
=
√〈

w,Σ−1
δ w

〉
. Then,

it holds:

sup
w:∥w∥2

2≤W2
2

∥w∥⋆ = sup
w:∥w∥2

2≤W2
2

∥w∥Σ−1
δ

=W2 sup
w:∥w∥2≤1

∥w∥Σ−1
δ

=W2

√
λmax(Σ

−1
δ ),

(67)

where the last equality follows from Courant–Fischer–Weyl’s min-max principle.
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Corollary B.3. Let Σw =
∑d

i=1 αiviv
T
i and Σδ =

∑d
i=1 λiviv

T
i , with vi ∈ Rd being orthonormal. Then:

R̂S(H̃∥·∥2
A
) ≤
WA maxi∈[n] ∥xi∥Σ−1

w√
m

+
εWA

2
√
n

√
max
i∈[d]

1

λiαi
. (68)

Proof. For the worst-case part, we have:

sup
w:∥w∥2

Σw
≤W2

A

∥w∥Σ−1 =WA sup
w:∥w∥Σw≤1

√〈
w,Σ−1

δ w
〉

=WA sup
w:∥w∥Σw≤1

√√√√ d∑
i=1

λ−1
i ⟨w,vi⟩2

=WA sup
w:∥w∥Σw≤1

√√√√ d∑
i=1

λ−1
i

αi
αi ⟨w,vi⟩2

≤ WA sup
w:∥w∥Σw≤1

√√√√max
i∈[d]

λ−1
i

αi

d∑
i=1

αi ⟨w,vi⟩2

=WA sup
w:∥w∥A≤1

√
max
i∈[d]

λ−1
i

αi
∥w∥Σw =WA

√
max
i∈[d]

λ−1
i

αi
.

(69)

On the other hand, for w = 1√
αj

vj where j ∈ argmaxi∈[d]
λ−1
i

αi
, it is ∥w∥Σw = 1 and also ∥w∥Σ−1

δ
=

√
maxi∈[d]

λ−1
i

αi
,

so the above bound is tight.

B.1. Worst-case Rademacher complexity for ℓp norms

Awasthi et al. (2020) provides the following bound on the worst-case Rademacher complexity of linear hypothesis classes
constrained in their ℓr norm.

Theorem B.4. Theorem 4 in (Awasthi et al., 2020) Let ϵ > 0 and p, r ≥ 1. DefineHr̃ = {x 7→ ⟨w,x⟩ : ∥w∥r ≤ 1}. Then,
it holds:

R̂S(H̃r) ≤ R̂S(H) + ϵ
max(d1−

1
r−

1
p , 1)

2
√
m

. (70)

The bound above suggests regularizing the weights in the ℓr norm, r = p
p−1 , for effectively controlling the estimation error

of the class.

C. Parameter Exploration
This section presents the experimental details for all the figures in the main text and explore the model parameters in greater
detail. For implementation details of our numerical procedures, please refer to Appendix D.

C.1. Settings for Main Text Figures

All figures in the main text utilize the logistic loss function, defined as g(x) = log(1 + exp(−x)). Below, we detail the
specific parameters for each figure.

Figure 1 We optimize the regularization parameter λ for each curve. Parameters: ϵ = 0.2, noiseless regime (τ = 0). Data
points represent averages over 10 distinct data realizations with dimension d = 1000, varying sample size n to adjust
α. Error bars indicate deviation from the mean.

Figure 2 Generated in the noiseless case (τ = 0) with optimal regularization parameter λ. We optimize robust error for
regularizations r = 2 and r = 1 independently, then compute their difference.
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Figure 6: Robust error as a function of the regularization order r for two different p⋆. By increasing the value of ε we have
that the optimal value r⋆ gets close to p⋆.
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Figure 7: Robust error, generalization error and boundary error for different choices of regularization geometry r as a
function of the sample complexity α. We see that the value of the errors increases with ε.

Figure 3 We employ a Strong Weak Feature Model (SWFM) as defined in Tanner et al. (2024). This model implements a
block structure on all covariances (Σx, Σδ , Σθ, and Σw), with block sizes relative to dimension d denoted by ϕi for
block i. We use two equal-sized feature blocks, totaling d = 1000. All matrices are block diagonal, with each block
being diagonal. The values for each matrix are as follows

Σx Σδ Σθ Case Σw = Σδ Case ℓ2 Case Σw = Σ−1
δ

First Block 1 1 1 1 1 2.5
Second Block 1 2.5 1 2.5 1 1

All matrices are trace-normalized, with ε values as specified in the figure. Again error bars indicate the deviation from
the mean.

Figure 4 We optimize the regularization parameter λ in the noiseless case (τ = 0), with α = 1. The inset is generated by
conducting r sweeps for 10 distinct ε values. Each sweep comprises 50 points, with the minimum determined using
np.argmin.

C.2. Additional Parameter Exploration

We now present some additional exploration of the model in some different regimes.

Figure 6 These figures display theoretical results for attack perturbations constrained by ℓ2 (Left) and ℓ3/2 (Right) norms.
We vary ε as shown and use the noiseless regime (τ = 0). Parameters: α = 0.1, optimal λ. Each sweep comprises 50
points, with minima determined using np.argmin. Points on the curves indicate the minimum for each ε value.

23



1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

On the Geometry of Regularization in Adversarial Training

1.0 1.5 2.0 2.5 3.0

r

0.46

0.48

0.50

0.52

E
ro

b

ε = 0.10

ε = 0.20

ε = 0.30

Optimized λ

1.0 1.5 2.0 2.5 3.0

r

0.425

0.450

0.475

0.500

0.525

E
ro

b

ε = 0.01

ε = 0.05

ε = 0.10

ε = 0.18

ε = 0.27

ε = 0.31

λ = 10−4

0.1 0.2 0.3
ε

1.0

1.5r
?

Figure 8: Robust generalization error as a function of regularization order r for fixed versus optimized regularization strength
λ. The comparison illustrates that the impact of λ optimization does not change qualitatively the behavior of the optimal
regularization geometry r⋆ as ε increases.

Figure 7 This figure illustrates generalization metrics as a function of α for various regularization geometries. We present
results for two attack strengths: ε = 0.1 (Left) and ε = 0.3 (Right). Both use optimal λ values. This figure can be
compared to Figure 1.

Figure 8 Both panels show robust generalization error versus regularization geometry r, with α = 0.1. The right panel
optimizes regularization strength λ, while the left uses a fixed value λ = 10−4.

D. Numerical Details
The self-consistent equations from Theorems 3.7 and 3.15 are written in a way amenable to be solved via fixed-point
iteration. Starting from a random initialization, we iterate through both the hat and non-hat variable equations until the
maximum absolute difference between the order parameters in two successive iterations falls below a tolerance of 10−5.

To speed-up convergence we use a damping scheme, updating each order parameter at iteration i, designated as xi, using
xi := xiµ+ xi−1(1− µ), with µ as the damping parameter.

Once convergence is achieved for fixed λ, hyper-parameters are optimized using a gradient-free numerical minimization
procedure for a one dimensional minimization.

For each iteration, we evaluate the proximal operator numerically using SciPy’s (Virtanen et al., 2020) Brent’s algorithm for
root finding (scipy.optimize.minimize scalar). The numerical integration is handled with SciPy’s quad method
(scipy.integrate.quad), which provides adaptive quadrature of a given function over a specified interval. These
numerical techniques allow us to evaluate the equations and perform the necessary integrations with the desired accuracy.
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