
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PROGRAMMING WITH PIXELS: CAN COMPUTER-USE
AGENTS DO SOFTWARE ENGINEERING?

Anonymous authors
Paper under double-blind review

ABSTRACT

Computer-use agents (CUAs) hold the promise of performing a wide variety of
general tasks, but current evaluations have primarily focused on simple scenar-
ios. It therefore remains unclear whether such generalist agents can automate
more sophisticated and specialized work such as software engineering (SWE). To
investigate this, we introduce Programming with Pixels (PwP), the first
comprehensive computer-use environment for software engineering, where agents
visually control an IDE to perform diverse software engineering tasks. To enable
holistic evaluation, we also introduce PwP-Bench, a benchmark of 15 existing
and new software-engineering tasks spanning multiple modalities, programming
languages, and skillsets. We perform an extensive evaluation of state-of-the-art
open-weight and closed-weight CUAs and find that when interacting purely vi-
sually, they perform significantly worse than specialized coding agents. How-
ever, when the same CUAs are given direct access to just two APIs—file editing
and bash operations—performance jumps, often reaching the levels of specialized
agents despite having a task-agnostic design. Furthermore, when given access to
additional IDE tools via text APIs, all models show further gains. Our analysis
shows that current CUAs fall short mainly due to limited visual grounding and the
inability to take full advantage of the rich environment, leaving clear room for fu-
ture improvements. PwP establishes software engineering as a natural domain for
benchmarking whether generalist computer-use agents can reach specialist-level
performance on sophisticated tasks.

1 INTRODUCTION

Computer-use agents (CUAs) hold the promise of automating a wide range of economically valu-
able tasks by acting through primitive actions such as clicking, typing, and observing digital screens,
potentially obviating the need for specialized AI agent action interfaces (Anthropic, 2024; OpenAI,
2025; Yang et al., 2024a). However, current evaluations have primarily focused on simple tasks
such as web navigation (Koh et al., 2024), basic document editing, or tweaking settings in operating
systems (Xie et al., 2024; Bonatti et al., 2024). Therefore, it remains unclear whether current gen-
eralist computer-use agents can automate more sophisticated and specialized tasks such as software
engineering. In this work, we specifically study how well the current generation of computer-use
agents can do software engineering and identify their key limitations.

The choice of using software engineering as the test domain is motivated by two primary reasons.
First, software engineering represents an economically important and practically challenging task.
Second, the field of AI software-engineering agents (SWE agents) has produced numerous spe-
cialized agents that use hand-engineered APIs for specific operations (Yang et al., 2024a; Wang
et al., 2024b; Xia et al., 2024), providing strong baselines for comparison. These agents use custom
functions such as file editing, code search, and repository management, with each tool requiring
significant engineering effort and domain expertise. For instance, SWE-agent (Yang et al., 2024a)
uses language-specific parsers and editing commands, while Agentless (Xia et al., 2024) relies on
Python-specific abstract syntax trees. This specialization has yielded strong performance, but it
raises a fundamental question: can general-purpose computer-use agents match specialized agents
in complex domains like software engineering?

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Computer-Use
Agent

env.step(action)

action ∈

⌨

"

Modalities:

Evaluation: PwP Bench
Code Gen Pull Requests

UI GenerationData ScienceDevOps

Code Editing

PwP Environment

IDE Features

Languages

observation

Figure 1: Programming with Pixels is an environment for computer-use agents, where they
interact with a VSCode IDE through keyboard and mouse actions while observing the screen. The
framework supports multiple programming languages, tests interactions with multiple IDE features,
modalities (eg: text, images, data files). PwP-Bench evaluates agents across 15 diverse software
engineering tasks such as code generation, UI generation, Data Science.

To investigate this question, we introduce Programming with Pixels (PwP), the first envi-
ronment for systematically evaluating computer-use agents on software engineering tasks. The PwP
environment provides a VSCode-based IDE where agents perceive the screen and use primitive ac-
tions such as typing and clicking to perform a variety of SWE tasks. This design enables two critical
properties. First, the environment is expressive, allowing agents to complete any software engineer-
ing task achievable in an IDE without language- or domain-specific modifications. Second, agents
can access all IDE tools—debuggers, linters, code suggestions—through the same visual interface
available to human developers or specialized SWE agents. Hence, PwP provides a general-purpose,
realistic software engineering environment for testing computer-use agents.

To evaluate computer-use agents, we construct PwP-Bench, a benchmark of 15 tasks spanning
different tasks such as code generation, pull request resolution, UI development, and data science
across multiple programming languages and modalities. The benchmark represents a unification of
13 existing SWE tasks ported for evaluating computer-use agents, and 2 additional tasks developed
by us. Our evaluation of state-of-the-art computer-use agents reveals that when restricted to pure
visual interaction, these agents achieve only 22.9% average accuracy, significantly underperforming
specialized coding agents. However, when augmented with just two basic text APIs—file edit-
ing and bash operations—the same agents achieve 50.7% accuracy, often approaching specialized
agent performance despite their task-agnostic design. Furthermore, our analysis reveals substantial
opportunities for future work. First, even state-of-the-art computer-use agents suffer from visual
grounding issues. Second, we show that current computer-use agents lack the ability to use many
of the tools available in the IDE, including ones that could make their tasks trivial. This suggests
that training computer-use agents to explore and leverage the functionality present in their computer
environment is a fruitful future direction. Overall, our results highlight software engineering as a
realistic and challenging benchmark for evaluating and improving computer-use agents.

In summary, our contributions are as follows. First, we introduce Programming with Pixels
(PwP), the first software engineering-focused environment for evaluating computer-use agents. Sec-
ond, we introduce PwP-Bench, a benchmark spanning 15 diverse SWE domains, allowing for
systematic comparison of computer-use agents. Third, through extensive evaluation, we highlight
the limitations of current computer-use agents, identifying the need for models that have better visual
grounding and that better take advantage of their environment as key future directions. Finally, we
open-source our environment and benchmark, allowing it to serve as an open platform for evaluating
and improving agents on software engineering tasks.

2 RELATED WORK

Multimodal and Computer-Use Agents. Recent works have explored using multimodal LLM
agents to operate user interfaces such as web browsers (Koh et al., 2024; Deng et al., 2023;

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Zheng et al., 2024) and operating systems (Xie et al., 2024; Bonatti et al., 2024). Agent designs
in these settings fall into two categories: (a) agents with predefined action sets (e.g., new tab,
go back, click [element id]) that receive auxiliary information such as HTML accessibil-
ity trees (Yang et al., 2023a) for visual grounding; (b) pure computer-use agents operating with prim-
itive keyboard and mouse actions, relying solely on screenshots (Anthropic, 2024; OpenAI, 2025;
Qin et al., 2025). PwP supports evaluating both agent designs. Further, existing benchmarks such as
OSWorld (Xie et al., 2024), AndroidWorld (Rawles et al., 2025), and WindowsAgentArena (Bon-
atti et al., 2024) evaluate agents on simple tasks like document editing and calendar management,
leaving unclear whether performance on these tasks translates to complex, specialized domains like
software engineering. PwP-Bench fills this gap by providing the first benchmark specifically de-
signed to test whether computer-use agents can handle software engineering tasks. While some prior
works explores specialized domains such as game playing (Tan et al., 2024) and a concurrent work
explores scientific software (Sun et al., 2025), PwP is the first environment and PwP-Bench the
first benchmark systematically evaluating computer-use agents for software engineering, a domain
that is particularly noteworthy due to the presence of strong specialized agent baselines.

Software Engineering Agents. Software engineering agents have primarily relied on specialized
scaffolding tailored to specific tools, languages, or tasks (Jin et al., 2024; Yang et al., 2024b). For in-
stance, Agentless (Xia et al., 2024) uses Python-specific parsers, SWE-agent employs task-specific
modifications (Abramovich et al., 2024; Yang et al., 2024b), and others depend on hand-engineered
components like IPython kernels (Wang et al., 2024a) or custom browser views (Yang et al., 2024b).
Our work takes a fundamentally different approach by evaluating whether computer-use agents –
which interact through the same visual interface as human developers– can match these specialized
agents. This also tests whether visual interaction with standard developer tools is sufficient for soft-
ware engineering or if specialized APIs remain necessary. As PwP supports evaluating both designs,
it enables direct comparison between computer-use and specialized agents across the diverse tasks
in PwP-Bench, establishing a unified platform for understanding the capabilities and limitations of
different agent designs. We refer readers to Appendix C for a more detailed related work.

3 PROGRAMMING WITH PIXELS (PWP)

Testing computer-use agents (CUAs) on software engineering (SWE) requires an environment that
captures the full complexity of modern software engineering, which involves multiple programming
languages, tools, and modalities. Furthermore, a fair evaluation must provide access to the wealth
of tools that human developers use and specialized AI SWE agents have access to, such as lin-
ters, visual debuggers, and even project management tools. To enable such evaluation, we create
Programming with Pixels, an IDE environment that satisfies these two requirements. First,
it is expressive, meaning that an agent can perform any task that is achievable through a sequence of
primitive operations (e.g., typing or clicking) within an IDE, which includes a wide range of soft-
ware engineering activities. Second, an agent has access to any functionality implemented within
the IDE, since using IDE functionality amounts to performing a sequence of primitive actions.

PwP environment. We represent the PwP environment as a partially observable Markov decision
process (POMDP). We define the PwP POMDP ⟨S,A,O, T,R⟩ as follows. S is the set of states
describing the IDE and the operating system (OS) context, including open files, active editor panels,
and cursor positions. A is the action space, encompassing all possible keyboard and mouse events.
The atomic actions in PwP are provided by the xdotool library (Sissel), which allows specifying
all possible keyboard and mouse events in a simple syntax. The specific action space varies based
on the agent setting, described in (§5). O is the observation space. The observation space varies
based on the agent setting, described in (§5). T is the transition function. Actions like inserting a
character typically lead to deterministic changes in the IDE state, whereas background processes can
introduce stochasticity in timing and responses. R is the reward function that measures performance
on a given task. For instance, after the agent finishes editing code to fix a bug, the environment can
run a test suite on the updated files to compute a reward. Trajectories in PwP thus resemble real-
world development work: an agent can fix a bug in a repository, use a suggestion tool to help with
writing code, or create documentation. The IDE and OS environment track changes, run tests and
return reward signals. In addition, we discuss five key features of PwP.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

1. Expressive observation and action space. PwP provides computer-use agents with an unre-
stricted environment where they can attempt any software engineering task achievable through an
IDE’s visual interface, as humans do. Unlike environments with predefined action sets, agents can
navigate IDE menus visually, move cursors, and press keys to perform more complex actions.

2. Full Spectrum of Developer Tools. When evaluating computer-use agents on SWE tasks, it is
imperative that they have a similar level of access to tools as specialized SWE agents, such as those
with custom APIs for debuggers, linters, refactoring utilities, and more (Xia et al., 2024; Yang et al.,
2024b). PwP provides all these tools through IDE’s visual interface, creating a comprehensive test of
whether CUAs can leverage the same rich functionality that specialized agents access through APIs.

3. Multimodality and language agnosticism. CUAs promise generality across tasks and domains.
Software engineering spans many languages such as Python, Java, JavaScript, Lean, and more, with
tasks involving multiple modalities, such as text, images, data files, and PDFs, providing a rigor-
ous test of this generality. In PwP, the same CUA must handle code generation, UI development,
data science, and theorem proving without task-specific modifications. For agents requiring visual
grounding support, we modified VSCode’s source code to provide rich DOM trees and Set-of-Marks
annotations, ensuring fair evaluation across different CUA architectures.

4. Ease of verification. PwP provides direct access to the IDE’s internal state, file system, and
OS processes for verification. When an agent modifies code, we can run test suites, check com-
pilation, and verify correctness. This separation between agent interaction (visual) and evaluation
(programmatic) makes it easier to verify task completion and provide other sources of feedback.

5. Future adaptability. Computer-use agents are improving rapidly, and so are software engineer-
ing agents. PwP is designed for future adaptability. First, adding new benchmarks is as simple as
modifying configuration files. Second, PwP’s checkpointing is useful for search and RL training
methods. Third, PwP’s gymnasium interface (Towers et al., 2024) provides a standard interface for
evaluation and development. Finally, as agents improve and become capable of using more complex
tools, the environment (IDE) would automatically incorporate these without architectural changes.
This makes PwP an extensible platform for evaluating and developing computer-use agents.

Infrastructure and Implementation PwP is deployed in a secure sandboxed docker environment,
running open-source VSCode and a minimal operating system. Each container is isolated, prevent-
ing interference between experiments, ensuring parallel evaluation and facilitating reproducibility.
We implement checkpointing for the environment state, which is especially useful for backtracking
in search algorithms or training RL agents. The environment interfaces to VSCode using four chan-
nels for real-time screen capture, DoM information, and customizable configuration such as display,
CPU/memory limits, etc. However, the complex interaction is abstracted away from the user, as they
can simply interact with the environment through gymnasium python API (See Figure 9) and install
the environment using a simple pip command. We refer to subsection A.3 for more details.

4 PWP-BENCH

We introduce PwP-Bench, a benchmark containing 15 diverse software engineering tasks that span
14 programming languages and multiple modalities. Each task provides agents access to the IDE
via the PwP environment. The goal of PwP-Bench is to test whether computer-use agents (CUAs)
can handle the depth and breadth of software engineering activities.

Tasks. PwP-Bench contains 5400 instances sourced from 13 existing code-generation datasets
and 2 newly created by us. These tasks are designed to be representative of software engineering
activities that take place within an IDE. Since the IDE is simply a computer program, in principle,
these activities should be achievable by a general-purpose computer-use agent. We selected the tasks
in PwP-Bench according to three key principles: (1) tasks must require substantial interaction with
software engineering tooling, (2) each task should require multiple steps, and (3) the benchmark
must cover multiple languages and modalities. Accordingly, tasks are grouped into four categories:

• Code Generation and Editing (n = 6): These tasks evaluate the ability to generate and edit code.
This category includes datasets such as HumanEval for code completion, SWE-Bench (Jimenez
et al., 2023) and SWE-Bench-Multilingual (Yang et al., 2025) for resolving pull requests, DS-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Bench for data science tasks (Jing et al., 2024), and Res-Q (LaBash et al., 2024) or CanITE-
dit (Cassano et al., 2024) for code editing. Each dataset benefits from different IDE functionality.
For example, SWE-Bench can take advantage of debuggers and linters, while DSBench may lever-
age an IPython kernel and extensions for analyzing large data files. Code editing tasks can leverage
refactoring utilities and repository searches, covering varied input-output formats and end goals.

• Multimodal Code Synthesis (n = 4): These tasks involve creating code based on input im-
ages or other visual data. Examples include Design2Code (Si et al., 2024b) for UI development,
Chart2Mimic (Shi et al., 2024) for generating Python code from chart images, SWE-Bench-
MM (Yang et al., 2024b) for multimodal code editing, and DSBench tasks that rely on images,
data files, or PDF documents for data analysis.

• Domain-Specific Programming (n = 3): These tasks focus on specialized fields such as ethical
hacking (CTF) (Yang et al., 2023b) and interactive theorem proving (miniCTX) (Hu et al., 2024),
which demand significant use and interaction with the IDE’s functionality. For example, theo-
rem proving requires continuously inspecting goal states via the IDE, while CTF tasks involve
analyzing images, running executables, or installing VSCode extensions (e.g., hexcode readers).

• IDE-Specific and General SWE Tasks (n = 2): Since code generation is only one aspect of
software engineering, we introduce two novel task sets that evaluate broader SWE skills. The
first, IDE Configuration, evaluates an agent’s ability to modify IDE settings such as themes,
extensions, and preferences. These skills involve substantial interaction with the IDE, and are
often a precondition for using IDE functionality such as new extensions. The second, which
we term General-SWE, targets five different non-code activities: performance profiling, code
refactoring, debugging bugs in standard libraries, UI mockup design, and code restoration. These
tasks target practical software engineering tasks typically absent in conventional benchmarks. Full
details are in Appendix B.2.

The distribution of tasks across categories and modalities is shown in Figure 10 in the Appendix.
Computer-use agents that perform well across these tasks would demonstrate strong potential for
automating diverse SWE activities across multiple languages, and working with varied input/output
modalities such as text, images, data files, and other data types. Furthermore, taking advantage of
the functionality provided by the agent’s environment is essential.

Benchmarking Design and Task Setup. All tasks are evaluated within the PwP environment.
Unlike traditional benchmarks, PwP-Bench presents agents with a realistic IDE environment: each
agent receives an initial IDE state Si and an instruction I , with the goal to achieve a final state Sf

evaluated via execution-based criteria (e.g., unit tests). Among other capabilities, this setup tests
whether CUAs can find relevant information from files, directories, and other resources, which is
important for complex software development. Furthermore, a task is defined by a simple setup script
that defines the initial IDE state, the instructions, and the evaluation logic. This makes it easy to add
new tasks, allowing PwP-Bench to evolve as new benchmarks or better agents are developed.

PwP-Bench-Lite. Because PwP-Bench contains more than 5400 instances in total, running a
full evaluation can be computationally expensive. To address this, we also provide PwP-Bench-
Lite: a smaller subset of 300 instances. Specifically, we randomly sample 20 tasks from each of the
15 benchmarks. This subset preserves the overall difficulty and distribution while ensuring equal
representation for each task, thereby making rapid experimentation more accessible.

5 EVALUATING AGENTS IN PROGRAMMING WITH PIXELS

We evaluate three distinct agent designs in the PwP environment to understand the capabilities and
limitations of computer-use agents for software engineering tasks.

Computer-use agents. Computer-use agents interact with the IDE through primitive actions, i.e.,
keyboard and mouse inputs, while observing the interface visually through screenshots. Each agent
operates in a turn-based manner, receiving a screenshot each turn and returning an action to progress
toward the goal. Since most vision-language models without GUI-specific training struggle with raw
pixel coordinates, we incorporate Set-of-Marks (SoM) (Yang et al., 2023a). With Set-of-Marks, an
agent receives both the raw image and a parsed representation of available interface elements (e.g.,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 2: Example of Successful Use of Live
Preview Tool in the UI Replication Task The
agent successfully uses the live preview tool in
the VSCode browser to compare the UI design
it made versus the reference design.

Figure 3: Example of Successful Use of Tool in
the Chart Generation Task The agent can com-
pare the generated chart with the reference chart
side by side and refine its code accordingly.

buttons, text fields), allowing them to interact via element IDs rather than pixel coordinates. This
design follows previous works (Xie et al., 2024; Koh et al., 2024).

Computer-use agents with File/Bash APIs. Computer-use agents are augmented with direct access
to file-editing and bash commands through text APIs. The file-editing APIs include operations such
as ‘read file’ and ‘string replace’, while bash operations allow command execution in the terminal.
Agents receive screenshots only when requested via a screenshot action, rather than automatically
each turn. This design strictly follows Anthropic’s computer-use implementation (Anthropic, 2024).

Specialized software engineering agents. For comparing how well current computer-use agents
perform relative to specialized agents, we evaluate mini-swe-agent (SWE-agent, 2024), an agent
scaffold specifically designed for software engineering. Unlike computer-use agents that interact
visually with the IDE, mini-swe-agent operates entirely through text APIs. For multimodal tasks, it
receives required images directly as input in its prompt. We chose mini-swe-agent due to its near
state-of-the-art performance on the widely-used benchmark SWE-Bench, as well as its flexibility
for adapting to different programming tasks. See Appendix D.1 for implementation details and
Appendix I for the prompts used for each agent.

Experimental setup. We test multiple models as the parametrization for the two computer-use
agent designs. Specifically, we test four vision-language models: Gemini-Flash-1.5, Gemini-
Pro-1.5, GPT-4o, GPT-4o-mini, and we test six models with UI-specific training: closed-source
Claude-3.5 Sonnet, Claude-3.7 Sonnet, Claude-4.0 Sonnet, and open-weights Qwen-2.5-VL, Qwen-
GUI-Owl-32B, and Qwen3-VL-30B-A3B. For mini-swe-agent (with multimodal support), we test
Claude-4.0 Sonnet. We also evaluate a text-only version of mini-swe-agent on multimodal tasks by
withholding image inputs to assess the importance of visual modality (see Appendix F). We keep
the experimental setup consistent across all tasks and models: for each task instance, the maximum
number of iterations is capped at 20 steps; if the agent either exhausts these steps or issues a stop
command, the environment’s final state is evaluated using task-specific metrics (see Appendix B.2
for full details). For SWE-Bench related tasks, we further evaluate with a maximum of 250 steps in
Appendix F. Due to computational and budget constraints, we evaluate on PwP-Bench-Lite, which
has 300 task instances.

5.1 RESULTS AND ANALYSIS

Table 1 summarizes performance across different agent architectures and base models over the four
categories of PwP-Bench (task-wise results are in Table 8). As seen in the top half of the table,
computer-use agents using only primitive keyboard and mouse actions achieve poor performance,
with a maximum overall average of 22.9%. This is significantly lower than the software-engineering
specific agent mini-swe-agent, which achieves 48.8% accuracy. We attribute this poor performance
primarily to limited visual grounding and an inability to interact effectively with the IDE, particularly
for file editing and tool usage; see Section 5.1 for further analysis. Among all evaluated models, the
Claude computer-use agent performs best, likely because it is specifically trained for UI interactions.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance Evaluation of Different Agents on PwP-Bench-Lite by Task Categories.
Best numbers are in bold, and best numbers for computer-use agents are underlined.

Model Code Generation Multimodal Domain-Specific General Overall
& Editing (n=6) Code Gen. (n=4) Code Gen. (n=3) SWE Tasks (n=2) Avg

Computer-Use Agents

Gemini-Flash 0.0% 4.3% 0.0% 0.0% 1.1%
GPT-4o-mini 0.8% 3.7% 0.0% 2.5% 1.7%
Qwen2.5-VL-72B 0.0% 4.3% 0.0% 5.0% 1.8%
GUI-Owl-32B 0.0% 0.0% 0.0% 22.5% 3.0%
Qwen3-VL-30B-A3B 0.8% 9.0% 0.0% 37.5% 7.7%
Gemini-Pro 2.5% 5.7% 0.0% 7.5% 3.5%
GPT-4o 0.8% 12.4% 1.7% 10.0% 5.3%
Claude-Sonnet-3.5 10.7% 8.3% 5.0% 22.5% 10.5%
Claude-Sonnet-3.7 11.8% 28.5% 8.3% 27.5% 17.7%
Claude-Sonnet-4.0 14.3±1.2% 37.3±0.6% 6.7±0.0% 40.0±3.5% 22.3±0.5%

Computer-Use Agents with File/Bash APIs

Gemini-Flash 9.5% 11.7% 8.3% 2.5% 8.9%
GPT-4o-mini 23.6% 17.6% 15.0% 5.0% 17.8%
Qwen2.5-VL-72B 13.7% 11.8% 6.7% 7.5% 11.0%
Gemini-Pro 30.0% 16.7% 3.3% 12.5% 18.8%
GPT-4o 36.2% 41.9% 28.3% 10.0% 32.6%
Claude-Sonnet-3.5 47.9% 55.1% 43.3% 22.5% 45.5%
Claude-Sonnet-3.7 51.9% 58.7% 46.7% 27.5% 49.4%
Claude-Sonnet-4.0 53.5±0.2% 57.8±1.4% 43.9±2.0% 38.3±1.2% 50.7±0.2%

Software Engineering Agents

mini-swe-agent 49.4% 60.3% 40.0% 37.5% 48.8%
OpenHands 50.4% 50.8% 43.3% 25.0% 45.7%

We found that it can leverage basic IDE tools such as HTML live preview, chart visualization, and
file navigation, boosting performance on tasks that require visual understanding and IDE navigation.

Nonetheless, when the same computer-use agents are granted access to just two text APIs (file
editing and bash operations) we observe consistent improvements across all categories, with the
maximum average accuracy reaching 50.7

However, models still struggle to fully leverage the tooling available in the IDE. This is evidenced
by poor performance on the ‘General SWE’ category, where tasks often require fewer than ten steps
when using appropriate IDE tools. We analyze the poor performance on General SWE tasks further
in the following sections, confirming that these tasks would become simpler if models could use IDE
tooling more effectively. Overall, our results show that computer-use agents to have some facility
for software engineering, but currently require better visual grounding, tool usage, and planning. In
the following paragraphs, we analyze these strengths and deficiencies in more detail.

Claude Computer-Use Agent Demonstrates Basic IDE Tool Proficiency. Qualitatively, we found
that Claude Computer-Use agent can use basic IDE functionalities, including file explorer naviga-
tion, file editing, search, browser-based live preview, and image generation and visualization ca-
pabilities. Figure 2 demonstrates the agent’s effective use of browser tools in UI replication tasks.
Similarly, Figure 11 illustrates the agent’s ability to utilize multiple tools while editing specific lines
in a repository, relying solely on screenshot observations and primitive keyboard/mouse actions.

Furthermore, we hypothesize that agents have additional latent abilities to use tools that can be
activated through prompting or fine-tuning. To investigate this, we examined the project refactoring
task (such as symbol renaming) in our ‘General-SWE’ benchmark, where Claude initially achieves
25% accuracy when attempting the task. However, when explicitly instructed to use precise tools
(such as rename or move to file), its accuracy improves to 75% (see Appendix E).

Computer-Use Agents Demonstrate Poor Visual Grounding Capabilities. While, Claude
Computer-Use agent is able to use basic IDE tools, we found that in general all current CUAs have
significant limitations in visual grounding, i.e., the ability to understand the visual input and take
actions on the visual IDE interface. We identify three primary failure modes. First, the agents can

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

The input *eld for `python.linting.pylintArgs` now contains

"--disable=import-error”.

 The search results for "python.linting.pylintArgs" are displayed.

Model Response

Figure 4: Agent Hallucinating Screen Con-
tents The agent correctly mentions, search re-
sults are displayed (green), it hallucinates an in-
put field containing “disable import error” (red).

Figure 5: Agent Misidentifying UI Elements
The agent fails to identify the correct input field,
typing ‘50’ into the settings search bar instead of
the word wrap column setting field (red arrow).

File/Bash Computer Use
0

20

40

60

80

100

P
er

ce
nt

ag
e

(%
)

100.0%

HUMANEVAL

File/Bash Computer Use
0

20

40

60

80

100

95.4%

4.6%

SWEBENCH_MM

File/Bash Computer Use
0

20

40

60

80

100

12.5%

87.5%

DESIGN2CODE

File/Bash Computer Use
0

20

40

60

80

100

100.0%

VSCODE

Figure 6: Distribution of file/bash calls vs computer-use interaction for computer-use agents.

often fail to use the correct UI elements. For example, in Figure 5 the agent types in the search bar
rather than the settings field, while in Figure 15 the model clicks the wrong location. Surprisingly,
Set-of-Marks did not resolve these issues; agents would instead select incorrect elements.

Second, the agents often struggle to comprehend the current UI state, such as linter errors indicated
by wavy underlines (Figure 13) or hallucinate screen contents (Figure 4). Finally, even when the
agent can identify a simple error, such as incorrect indentation, it is often not able to fix the error due
to struggling with clicking and typing in the proper locations. Furthermore, in Appendix F, models
frequently completely ignore the visual state information and instead rely on completely memorized
action sequences. Quantitatively, we found that 20% and 95% of trajectories have at least one visual
grounding error in GPT-4o and Claude Sonnet-4.0, respectively (see Appendix F).

While grounding has been highlighted as a weak point of computer-use agents in web and OS do-
mains (Koh et al., 2024; Xie et al., 2024), the limitations were primarily observed in models without
UI-specific training. However, our work shows that even models explicitly trained for UI interac-
tion, such as Claude Computer Use (Anthropic, 2024), exhibit these issues in PwP. We hypothesize
that the deficiencies come from the IDE being particularly information-dense, as well as potentially
not being covered by computer-use training datasets.

Agents Struggle to Use Advanced IDE Functionality. Although the best computer-use agent we
tested could use basic IDE functionality, all agents lack the ability to leverage more sophisticated
IDE tools. Specifically, we can see this through the low performance on the ‘General-SWE’ dataset,
which focuses on software engineering activities (e.g., profiling, refactoring, debugging) that can be
often completed without direct code edits. Although these tasks sometimes require only 4-5 steps
when using appropriate IDE tools, agents achieve minimal performance, highlighting substantial
room for improvement. Furthermore, we observed no successful uses of profilers, debuggers (even
when explicitly instructed to) when performing the other tasks in our benchmark (see Appendix E).
We further quantify the IDE features used across all trajectories of Claude-Sonnet-4 CUA in Ap-
pendix F.

Distribution of Functionality Used by Computer-Use Agents with File/Bash Operations. As

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

we observed in Table 1, computer-use agents perform much better when they have access to file and
bash API calls, which are based on text inputs and text outputs. A natural question is to what extent
these are using the visual interface versus relying on text-only APIs. We study this in Figure 6, which
shows the distribution of file/bash API calls versus computer-use interactions on four representative
datasets. The figure shows a few interesting patterns. First, for HumanEval, agents rely entirely on
file APIs. This is because HumanEval tasks involve simple function completions that are achiev-
able without IDE interaction. The lower performance of pure CUAs on this task (25% compared to
100%) demonstrates their inability to perform basic file editing visually. Second, for SWE-Bench-
MultiModal, surprisingly there are minimal computer-use interactions, primarily using screenshots
to understand the open repository or occasionally attempting to open the built-in browser.

In contrast, the distribution shifts dramatically for Design2Code, where agents frequently open live
preview tools to compare generated designs with reference images, and continuous refining the
output (see Figure 2). In a similar vein, for VSCode tasks, the agents rely entirely on visual IDE
functionality to update settings, install extensions, and edit themes. These patterns demonstrate that
computer-use agents with file/bash APIs have some ability to choose between visual and API based
interactions based on the task requirements. On datasets such as HumanEval, their performance
improvements stem from bypassing their inability to visually perform edits, instead using text APIs.

Oct 2024 Feb 2025 May 2025
Release Date

8

10

12

14

16

18

20

22

24

Pe
rf

or
m

an
ce

 (
%

)

10.5%
Claude-Sonnet 3.5

17.7%
Claude-Sonnet 3.7

22.9%
Claude-Sonnet 4.0

7 months 2.
2x

 im
pr

ov
em

en
t

Computer Usage Agent

Figure 7: Performance of Claude-Sonnet
Computer-Use Agents over time

Computer-Use Agents Are Rapidly Improving.
Figure 7 compares the performance of Claude-Sonnet
3.5, 3.7, and 4.0 released over a period of 7 months.
The line shows steady improvement in pure CUAs,
with performance nearly doubling from 10.5% to
22.9%. Furthermore, from Table 1 we see that the
gap between pure CUAs and CUAs with file/bash op-
erations has steadily decreased from 35.0% to 27.8%.
These results highlight that while a substantial gap
remains, rapid progress is being made and continued
improvements may eventually close this gap.

Leveraging the IDE functionality better would
improve performance. While a single computer-use agent design can perform non-trivially across
a wide variety of tasks, our analysis indicates that these models do not fully exploit domain-specific
tools. To quantify the potential performance gains if agents could effectively use the IDE, we
perform an “assisted” experiment. In this experiment, we manually engineered a set of IDE-based
tool calls representing commonly used IDE functionalities (e.g., live HTML previews, repository
structure, symbol outlines). Importantly, each API call is achievable using basic operations in the
IDE, meaning that in principle, an agent could learn to perform it. See Appendix E for full details.

Figure 8: Assisted versus Computer-Use Agents

SWE-Bench Design2Code Chartmimic BIRD (T2 SQL)

Computer Use Agents 0% 23.5% 2.7% 0%
CUA + File/Bash 15% 48.1% 25.3% 7%
Assisted 19% 79.5% 61.6% 17%

Table 8 summarizes the performance im-
provements of assisted agents, highlighting
an average gain of up to 13.3%. These re-
sults demonstrate that current CUAs have
poor interaction capabilities with complex
interfaces, yet there is significant scope for
improvement. The results also suggest that
in the near term, performance gains can be achieved by introducing specialized hand-engineered
tools into computer-use agents and incorporating existing agent designs in our PwP environment.

6 CONCLUSION

We introduce Programming with Pixels, an environment designed to evaluate computer-
use agents on software engineering tasks. We also introduce PwP-Bench, a diverse benchmark
of 15 tasks spanning the breadth of software engineering across multiple languages and modalities.
Our extensive evaluations of nine models reveal that pure computer-use agents relying solely on
visual interaction perform poorly, while augmenting these agents with simple file and bash text
APIs dramatically improves performance. Our analysis pinpoints poor visual grounding and an
inability to leverage the rich set of functionality in the PwP environment as primary weaknesses.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Despite these limitations, our findings show that CUAs are improving rapidly, signaling significant
potential. PwP establishes software engineering as a natural domain for benchmarking whether
generalist computer-use agents can reach specialist-level performance on sophisticated tasks.

REFERENCES

Talor Abramovich, Meet Udeshi, Minghao Shao, Kilian Lieret, Haoran Xi, Kimberly Milner, Sofija
Jancheska, John Yang, Carlos E. Jimenez, Farshad Khorrami, Prashanth Krishnamurthy, Brendan
Dolan-Gavitt, Muhammad Shafique, Karthik Narasimhan, Ramesh Karri, and Ofir Press. Enigma:
Enhanced interactive generative model agent for ctf challenges, 2024. URL https://arxiv.
org/abs/2409.16165.

Aider. o1 tops aider’s new polyglot leaderboard. https://aider.chat/2024/12/21/
polyglot.html, 2024. Accessed: 2025-02-12.

Anthropic. Developing a computer use model, October 2024. URL https://www.anthropic.
com/news/developing-computer-use.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021. URL https://arxiv.org/abs/2108.07732.

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong
Lu, Justin Wagle, Kazuhito Koishida, Arthur Bucker, Lawrence Jang, and Zack Hui. Windows
agent arena: Evaluating multi-modal os agents at scale, 2024. URL https://arxiv.org/
abs/2409.08264.

Federico Cassano, Luisa Li, Akul Sethi, Noah Shinn, Abby Brennan-Jones, Jacob Ginesin, Edward
Berman, George Chakhnashvili, Anton Lozhkov, Carolyn Jane Anderson, and Arjun Guha. Can
it edit? evaluating the ability of large language models to follow code editing instructions, 2024.
URL https://arxiv.org/abs/2312.12450.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Thibault Le Sellier De Chezelles, Maxime Gasse, Alexandre Drouin, Massimo Caccia, Léo Boisvert,
Megh Thakkar, Tom Marty, Rim Assouel, Sahar Omidi Shayegan, Lawrence Keunho Jang,
Xing Han Lù, Ori Yoran, Dehan Kong, Frank F. Xu, Siva Reddy, Quentin Cappart, Graham
Neubig, Ruslan Salakhutdinov, Nicolas Chapados, and Alexandre Lacoste. The browsergym
ecosystem for web agent research, 2024. URL https://arxiv.org/abs/2412.05467.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web, 2023. URL https://arxiv.
org/abs/2306.06070.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
Yu Su. Navigating the digital world as humans do: Universal visual grounding for gui agents,
2024. URL https://arxiv.org/abs/2410.05243.

Jiewen Hu, Thomas Zhu, and Sean Welleck. minictx: Neural theorem proving with (long-)contexts,
2024. URL https://arxiv.org/abs/2408.03350.

10

https://arxiv.org/abs/2409.16165
https://arxiv.org/abs/2409.16165
https://aider.chat/2024/12/21/polyglot.html
https://aider.chat/2024/12/21/polyglot.html
https://www.anthropic.com/news/developing-computer-use
https://www.anthropic.com/news/developing-computer-use
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2409.08264
https://arxiv.org/abs/2409.08264
https://arxiv.org/abs/2312.12450
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2412.05467
https://arxiv.org/abs/2306.06070
https://arxiv.org/abs/2306.06070
https://arxiv.org/abs/2410.05243
https://arxiv.org/abs/2408.03350

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yaojie Hu, Qiang Zhou, Qihong Chen, Xiaopeng Li, Linbo Liu, Dejiao Zhang, Amit Kachroo, Talha
Oz, and Omer Tripp. Qualityflow: An agentic workflow for program synthesis controlled by llm
quality checks, 2025. URL https://arxiv.org/abs/2501.17167.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code, 2024. URL https://arxiv.org/abs/
2403.07974.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik Narasimhan. Swe-bench: Can language models resolve real-world github is-
sues? ArXiv, abs/2310.06770, 2023. URL https://api.semanticscholar.org/
CorpusID:263829697.

Haolin Jin, Linghan Huang, Haipeng Cai, Jun Yan, Bo Li, and Huaming Chen. From
llms to llm-based agents for software engineering: A survey of current, challenges and fu-
ture. ArXiv, abs/2408.02479, 2024. URL https://api.semanticscholar.org/
CorpusID:271709396.

Liqiang Jing, Zhehui Huang, Xiaoyang Wang, Wenlin Yao, Wenhao Yu, Kaixin Ma, Hongming
Zhang, Xinya Du, and Dong Yu. Dsbench: How far are data science agents to becoming data
science experts? arXiv preprint arXiv:2409.07703, 2024.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
multimodal agents on realistic visual web tasks, 2024. URL https://arxiv.org/abs/
2401.13649.

Beck LaBash, August Rosedale, Alex Reents, Lucas Negritto, and Colin Wiel. Res-q: Evaluat-
ing code-editing large language model systems at the repository scale, 2024. URL https:
//arxiv.org/abs/2406.16801.

Bingxuan Li, Yiwei Wang, Jiuxiang Gu, Kai-Wei Chang, and Nanyun Peng. Metal: A multi-agent
framework for chart generation with test-time scaling, 2025. URL https://arxiv.org/
abs/2502.17651.

Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas
Scialom. Gaia: a benchmark for general ai assistants, 2023. URL https://arxiv.org/
abs/2311.12983.

Niels Mündler, Mark Niklas Müller, Jingxuan He, and Martin Vechev. Swt-bench: Testing and
validating real-world bug-fixes with code agents, 2025. URL https://arxiv.org/abs/
2406.12952.

OpenAI. Introducing operator. OpenAI, 2025. https://openai.com/index/
introducing-operator/.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jia-
hao Li, Yunxin Li, Shijue Huang, Wanjun Zhong, Kuanye Li, Jiale Yang, Yu Miao, Woyu Lin,
Longxiang Liu, Xu Jiang, Qianli Ma, Jingyu Li, Xiaojun Xiao, Kai Cai, Chuang Li, Yaowei
Zheng, Chaolin Jin, Chen Li, Xiao Zhou, Minchao Wang, Haoli Chen, Zhaojian Li, Haihua Yang,
Haifeng Liu, Feng Lin, Tao Peng, Xin Liu, and Guang Shi. Ui-tars: Pioneering automated gui
interaction with native agents, 2025. URL https://arxiv.org/abs/2501.12326.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. An-
droidinthewild: A large-scale dataset for android device control. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information
Processing Systems, volume 36, pp. 59708–59728. Curran Associates, Inc., 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/
bbbb6308b402fe909c39dd29950c32e0-Paper-Datasets_and_Benchmarks.
pdf.

11

https://arxiv.org/abs/2501.17167
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://api.semanticscholar.org/CorpusID:263829697
https://api.semanticscholar.org/CorpusID:263829697
https://api.semanticscholar.org/CorpusID:271709396
https://api.semanticscholar.org/CorpusID:271709396
https://arxiv.org/abs/2401.13649
https://arxiv.org/abs/2401.13649
https://arxiv.org/abs/2406.16801
https://arxiv.org/abs/2406.16801
https://arxiv.org/abs/2502.17651
https://arxiv.org/abs/2502.17651
https://arxiv.org/abs/2311.12983
https://arxiv.org/abs/2311.12983
https://arxiv.org/abs/2406.12952
https://arxiv.org/abs/2406.12952
https://openai.com/index/introducing-operator/
https://openai.com/index/introducing-operator/
https://arxiv.org/abs/2501.12326
https://proceedings.neurips.cc/paper_files/paper/2023/file/bbbb6308b402fe909c39dd29950c32e0-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/bbbb6308b402fe909c39dd29950c32e0-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/bbbb6308b402fe909c39dd29950c32e0-Paper-Datasets_and_Benchmarks.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, Daniel Toyama, Robert Berry,
Divya Tyamagundlu, Timothy Lillicrap, and Oriana Riva. Androidworld: A dynamic benchmark-
ing environment for autonomous agents, 2025. URL https://arxiv.org/abs/2405.
14573.

Chufan Shi, Cheng Yang, Yaxin Liu, Bo Shui, Junjie Wang, Mohan Jing, Linran Xu, Xinyu
Zhu, Siheng Li, Yuxiang Zhang, Gongye Liu, Xiaomei Nie, Deng Cai, and Yujiu Yang.
Chartmimic: Evaluating lmm’s cross-modal reasoning capability via chart-to-code genera-
tion. ArXiv, abs/2406.09961, 2024. URL https://api.semanticscholar.org/
CorpusID:270521907.

Vladislav Shkapenyuk, Divesh Srivastava, Theodore Johnson, and Parisa Ghane. Automatic meta-
data extraction for text-to-sql, 2025. URL https://arxiv.org/abs/2505.19988.

Chenglei Si, Yanzhe Zhang, Ryan Li, Zhengyuan Yang, Ruibo Liu, and Diyi Yang. Design2code:
Benchmarking multimodal code generation for automated front-end engineering, 2024a. URL
https://arxiv.org/abs/2403.03163.

Chenglei Si, Yanzhe Zhang, Zhengyuan Yang, Ruibo Liu, and Diyi Yang. Design2code: How far
are we from automating front-end engineering? ArXiv, abs/2403.03163, 2024b. URL https:
//api.semanticscholar.org/CorpusID:268248801.

Jordan Sissel. xdotool: Fake keyboard/mouse input, window management, and more. https:
//github.com/jordansissel/xdotool. Accessed: 2025-02-12.

Aditya Bharat Soni, Boxuan Li, Xingyao Wang, Valerie Chen, and Graham Neubig. Coding agents
with multimodal browsing are generalist problem solvers, 2025. URL https://arxiv.org/
abs/2506.03011.

Qiushi Sun, Zhoumianze Liu, Chang Ma, Zichen Ding, Fangzhi Xu, Zhangyue Yin, Haiteng Zhao,
Zhenyu Wu, Kanzhi Cheng, Zhaoyang Liu, Jianing Wang, Qintong Li, Xiangru Tang, Tianbao
Xie, Xiachong Feng, Xiang Li, Ben Kao, Wenhai Wang, Biqing Qi, Lingpeng Kong, and Zhiyong
Wu. Scienceboard: Evaluating multimodal autonomous agents in realistic scientific workflows,
2025. URL https://arxiv.org/abs/2505.19897.

SWE-agent. mini-swe-agent. https://github.com/SWE-agent/mini-swe-agent,
2024. GitHub repository. Accessed 2025-09-22.

Weihao Tan, Wentao Zhang, Xinrun Xu, Haochong Xia, Ziluo Ding, Boyu Li, Bohan Zhou, Jun-
peng Yue, Jiechuan Jiang, Yewen Li, Ruyi An, Molei Qin, Chuqiao Zong, Longtao Zheng, Yu-
jie Wu, Xiaoqiang Chai, Yifei Bi, Tianbao Xie, Pengjie Gu, Xiyun Li, Ceyao Zhang, Long
Tian, Chaojie Wang, Xinrun Wang, Börje F. Karlsson, Bo An, Shuicheng Yan, and Zongqing
Lu. Cradle: Empowering foundation agents towards general computer control, 2024. URL
https://arxiv.org/abs/2403.03186.

Trae Research Team, Pengfei Gao, Zhao Tian, Xiangxin Meng, Xinchen Wang, Ruida Hu, Yuanan
Xiao, Yizhou Liu, Zhao Zhang, Junjie Chen, Cuiyun Gao, Yun Lin, Yingfei Xiong, Chao Peng,
and Xia Liu. Trae agent: An llm-based agent for software engineering with test-time scaling,
2025. URL https://arxiv.org/abs/2507.23370.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U. Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, Rodrigo Perez-Vicente, An-
drea Pierré, Sander Schulhoff, Jun Jet Tai, Hannah Tan, and Omar G. Younis. Gymnasium: A
standard interface for reinforcement learning environments, 2024. URL https://arxiv.
org/abs/2407.17032.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji. Exe-
cutable code actions elicit better llm agents, 2024a. URL https://arxiv.org/abs/2402.
01030.

12

https://arxiv.org/abs/2405.14573
https://arxiv.org/abs/2405.14573
https://api.semanticscholar.org/CorpusID:270521907
https://api.semanticscholar.org/CorpusID:270521907
https://arxiv.org/abs/2505.19988
https://arxiv.org/abs/2403.03163
https://api.semanticscholar.org/CorpusID:268248801
https://api.semanticscholar.org/CorpusID:268248801
https://github.com/jordansissel/xdotool
https://github.com/jordansissel/xdotool
https://arxiv.org/abs/2506.03011
https://arxiv.org/abs/2506.03011
https://arxiv.org/abs/2505.19897
https://github.com/SWE-agent/mini-swe-agent
https://arxiv.org/abs/2403.03186
https://arxiv.org/abs/2507.23370
https://arxiv.org/abs/2407.17032
https://arxiv.org/abs/2407.17032
https://arxiv.org/abs/2402.01030
https://arxiv.org/abs/2402.01030

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for ai software
developers as generalist agents, 2024b. URL https://arxiv.org/abs/2407.16741.

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying llm-
based software engineering agents, 2024. URL https://arxiv.org/abs/2407.01489.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Sil-
vio Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments, 2024. URL https://arxiv.
org/abs/2404.07972.

Frank F. Xu, Yufan Song, Boxuan Li, Yuxuan Tang, Kritanjali Jain, Mengxue Bao, Zora Z. Wang,
Xuhui Zhou, Zhitong Guo, Murong Cao, Mingyang Yang, Hao Yang Lu, Amaad Martin, Zhe Su,
Leander Maben, Raj Mehta, Wayne Chi, Lawrence Jang, Yiqing Xie, Shuyan Zhou, and Graham
Neubig. Theagentcompany: Benchmarking llm agents on consequential real world tasks, 2024.
URL https://arxiv.org/abs/2412.14161.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
prompting unleashes extraordinary visual grounding in gpt-4v, 2023a. URL https://arxiv.
org/abs/2310.11441.

John Yang, Akshara Prabhakar, Karthik Narasimhan, and Shunyu Yao. Intercode: Standardizing
and benchmarking interactive coding with execution feedback, 2023b. URL https://arxiv.
org/abs/2306.14898.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering,
2024a. URL https://arxiv.org/abs/2405.15793.

John Yang, Carlos E. Jimenez, Alex L. Zhang, Kilian Lieret, Joyce Yang, Xindi Wu, Ori Press,
Niklas Muennighoff, Gabriel Synnaeve, Karthik R. Narasimhan, Diyi Yang, Sida I. Wang, and
Ofir Press. Swe-bench multimodal: Do ai systems generalize to visual software domains?, 2024b.
URL https://arxiv.org/abs/2410.03859.

John Yang, Kilian Lieret, Carlos E. Jimenez, Alexander Wettig, Kabir Khandpur, Yanzhe Zhang,
Binyuan Hui, Ofir Press, Ludwig Schmidt, and Diyi Yang. Swe-smith: Scaling data for software
engineering agents, 2025. URL https://arxiv.org/abs/2504.21798.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable real-
world web interaction with grounded language agents, 2023. URL https://arxiv.org/
abs/2207.01206.

Daoguang Zan, Zhirong Huang, Ailun Yu, Shaoxin Lin, Yifan Shi, Wei Liu, Dong Chen, Zongshuai
Qi, Hao Yu, Lei Yu, Dezhi Ran, Muhan Zeng, Bo Shen, Pan Bian, Guangtai Liang, Bei Guan,
Pengjie Huang, Tao Xie, Yongji Wang, and Qianxiang Wang. Swe-bench-java: A github issue
resolving benchmark for java, 2024. URL https://arxiv.org/abs/2408.14354.

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover: Autonomous
program improvement, 2024. URL https://arxiv.org/abs/2404.05427.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v (ision) is a generalist web
agent, if grounded. arXiv preprint arXiv:2401.01614, 2024.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic
web environment for building autonomous agents, 2024. URL https://arxiv.org/abs/
2307.13854.

13

https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2407.01489
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2412.14161
https://arxiv.org/abs/2310.11441
https://arxiv.org/abs/2310.11441
https://arxiv.org/abs/2306.14898
https://arxiv.org/abs/2306.14898
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2410.03859
https://arxiv.org/abs/2504.21798
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2408.14354
https://arxiv.org/abs/2404.05427
https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2307.13854

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 2: Comparison of Hand-engineered Tools across Methods versus PwP. PwP natively supports
all tools.

Method Hand-engineered Tools Supported in PwP
Agentless (Xia et al., 2024) File Edit, Repository Structure, File Structure ✓
CodeAct (Wang et al., 2024a) File Edit, IPython, Bash ✓
SWE-agent (Yang et al., 2024a) Search File, Search Text, File Edit ✓
EnIGMA (Abramovich et al., 2024) SWE-agent Tools + Debugger, Terminal, Connection Tool ✓
swebench-mm (Yang et al., 2024b) SWE-agent Tools + View Webpage, Screenshot, Open Image ✓

Table 3: Comparison of different environments across multiple dimensions

Computer-Use Execution-Based Specialized SWE
Environment Environment? Reward Domain Specific

GAIA (Mialon et al., 2023) ✗ ✗ ✗ ✗
WEBSHOP (Yao et al., 2023) ✗ ✗ ✗ ✗
WEBARENA (Zhou et al., 2024) ✗ ✓ ✗ ✗
VWEBARENA (Koh et al., 2024) ✓ ✓ ✗ ✗
BrowserGym (Chezelles et al., 2024) ✓ ✓ ✗ ✗
OSWORLD (Xie et al., 2024) ✓ ✓ ✗ ✗
AndroidWorld (Rawles et al., 2025) ✓ ✓ ✗ ✗
WindowsAgentArena (Bonatti et al., 2024) ✓ ✓ ✗ ✗
ScienceBoard* (Sun et al., 2025) ✓ ✓ ✓ ✗
Cradle* (Tan et al., 2024) ✓ ✓ ✓ ✗

PwP (Ours) ✓ ✓ ✓ ✓

A PROGRAMMING WITH PIXELS (PWP) ENVIRONMENT

A.1 TOOLS

Previous methods have proposed use of various hand-engineered tools. For a fair comparison, all
tools should be accessible in the PwP environment. Aas shown in Table 2, PwP natively supports all
these tools.

A.2 COMPARISON WITH OTHER ENVIRONMENTS

In Table 3, we compare PwP with existing environments across multiple dimensions. We evaluate
environments along the following dimensions:

• Computer-use environment: Whether the environment is designed for computer-use
agents, and thereof whether it supports multimodal interaction.

• Execution-based evaluation: Use of runtime execution to verify the correctness of agent
actions

• Specialized: Whether the environment is designed for general and basic tasks, such as web
navigation, or is it designed for a more sophisticated, specialized and potentially econom-
ically important tasks. Only Cradle (Tan et al., 2024) and ScienceBoard (Sun et al., 2025)
are specialized for Game Playing and using Scientific softwares respectively.

• SWE-specific: Whether the environment is purposefully designed for software engineering
tasks

Further, ours support other engineering features that others do not. For instance, PwP also support
streaming video and audio, something other environments do not support out of the box. Further,
unlike environments such as OS-World, which require manual creation of environment image, PwP
is natively docker based, and is based on simple scripts, that can be easily used to modify startup
scripts and other configurations for future adaptations. Finally, we also specifically suppport state
checkpointing which supports storing file system and complete process state, and is especially useful
for search-based methods.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

1 bench = PwPBench(dataset=’swebench’)
2 # Replace with any dataset from PwP-Bench
3 dataset = bench.get_dataset()
4

5 # Set up environment and get initial observation
6 env = bench.get_env(dataset[0])
7 observation: PIL.Image = env.get_observation()[’screenshot’]
8

9 # Generate and execute action
10 action = agent.get_action(observation)
11 print(action)
12 # Output: xdotool mousemove 1000 1200
13 # click 1 && xdotool type ’hello world’
14 observation, info = env.step(action)
15

16 env.render()
17

18 # Environment control
19 env.pause()
20 env.resume()
21

22 # Get reward and reset
23 is_success = env.get_reward()
24 env.reset()
25

Figure 9: Example demonstrating interaction with PwP environment, including keyboard/mouse
actions, checkpointing, and state management. The code shows basic initialization, action execution,
environment control, and reward handling.

A.3 INFRASTRUCTURE AND IMPLEMENTATION

PwP is deployed in a secure sandboxed environment. In particular, we run a modified version of Vi-
sual Studio Code (VSCode) and a minimal operating system inside a Docker container, ensuring a
secure and isolated environment. We chose VSCode for its extensive language support, rich ecosys-
tem of extensions, widespread adoption in the developer community, and open-source nature that
enables customization and modification of its core functionality. Each container instance maintains
its own file system and processes, preventing interference between experiments, facilitates repro-
ducibility, and ensuring parallelization of evaluation. We further provide the ability to checkpoint
the environment state, which is especially useful for backtracking in search algorithms or while
training RL agents.

The environment interfaces with VSCode through multiple channels: 1.) A controller that manages
Docker container lifecycle and configuration, 2.) A port-forwarding system for real-time screen and
video capture, 3.) A modified VSCode codebase that exposes DOM state information, and 4) The
VSCode Extension API for accessing fine-grained IDE state. This multi-channel approach enables
both high-level environment control and detailed state observation.

Screen capture is handled via ImageMagick for static screenshots and ffmpeg for streaming
video output. These tools were selected for their low latency and ability to handle various screen
resolutions and color depths. For actions, a lightweight controller executes xdotool commands
within the container, which in turn simulates keyboard and mouse events on the IDE. Agents can
thus insert code, open new files, or navigate menus using the same actions that a human developer
would.

As shown in Figure 9, a Python API is provided for interaction, following a style similar to common
reinforcement learning libraries such as gymnasium (Towers et al., 2024). The API abstracts away
the complexity of container management, benchmark management, and handling observations and
actions, allowing researchers to focus on agent development. Users can query the environment for
the latest screenshot, issue an xdotool command, and receive updated states or rewards. Examples

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Multimodal

Code Gen

SWE

Tasks

Code Gen

& Editing

Domain

Speci:c

Canit-

Edit

Res-Q
SWE

Bench

Human

Eval

BIRD

MiniCTX

CTF

SWE

Bench

Java
SWT

Bench

VSCode General

SWE

DSBench

Chart

Mimic

Design

2Code

SWE

Bench-MM

Figure 10: Distribution of tasks in PWP-Bench across four main categories: Code Generation and
Editing, Multimodal Code Synthesis, Domain-Specific Programming, and General SWE Tasks. The
inner ring shows the main categories while the outer ring shows specific datasets and tasks within
each category. Note that the figure is not drawn based on relative size of tasks.

of xdotool commands include ‘xdotool mousemove 1000 1200’ and ‘xdotool type ’hello world” and
are shown in Figure 9. The environment’s container configuration is flexible, allowing for software
installations, customizable CPU/memory limits, and display settings (e.g., resolution). This versatil-
ity is crucial for large-scale evaluation, especially when tasks vary in complexity and resource needs.
Finally, the environment has been tested on three different operating systems: Ubuntu, MacOS, and
Windows.

B PWP-BENCH

B.1 TASKS

Figure 10 shows the set of tasks across all categories. Further, Table 4 shows the number of instances
for each task in the full benchmark, along with the languages used in each of the tasks. PwP-Bench-
Lite contains 300 instances, which is a random sample of 20 instances from each task.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 4: Number of instances for each task in PwP-Bench

Task Number of Instances Languages

HumanEval 165 Python
Design2Code 485 HTML/CSS/JS
ChartMimic 600 Python
InterCode 100 Python, Bash
RES-Q 100 Python
CanItEdit 105 Python
VSCode 20 -
Bird 500 SQL
DSBench 112 Python
SWE-bench 2000 Python
SWE-Bench-Multilingual 91 C++, Typescript, Javascript, Rust, Go, C, Ruby, PhP, Java
Swebench-MM 510 Javascript
SWT-Bench 276 Python
Minictx 381 Lean
General SWE 20 -

B.2 EVALUATION

All tasks are evaluated using programmatic verifiers. These verifiers are typically run on an separate
environment, not accessible to the agent. This typically works based on fetching relevant files and
information from the agent environment, and then running through task-specific evaluation scripts
on a separate environment. However, to the user, this is abstracted away, and they simply have to
call ‘env.get reward()’ to get the exact score or correctness signal based on task.

Metrics We use individual metrics mentioned in the original datasets. When reporting results on
PwP-Bench, we report marco average of all these metrics. In particular, 11/15 used Accuracy
as their metric. However, due to complexity of dataset, these often goes beyond simple accuracy
metrics and in some cases, the dataset is evaluated on multiple orthogonal metrics, instead of one.
We detail, these metrics for each of the datasets.

• SWT-Bench evaluates generated tests by the agent, and reports 6 different metrics: Ap-
plicability, Success Rate, F- X, F- P, P- P, and Coverage. We report the average of all 6
metrics.

• ChartMimic evaluates generated code on various metrics such as accuracy of text, colors
used, legend etc. We average all metrics similar to the original dataset.

• Design2Code evaluates generated code on various metrics such as accuracy of text, posi-
tion, clip score, etc. We average all metrics similar to the original dataset.

• DSBench has two categories, one containing MCQ questions, while the other containing
generating code for Kaggle Competitions. We use 10/10 instances from each category in
PwP-Bench-Lite. While MCQ questions are evaluated using Accuracy, the code genera-
tion part is evaluated using linear normalization between the baseline score (of the compe-
tition) and the score of the winner of competition.

VSCode and General SWE Tasks In this section, we detail the VSCode and General SWE tasks
in PwP-Bench, created by us. The VSCode tasks are mostly designed to evaluate the ability of
agents to use basic VSCode features, such as renaming all instance of a symbol in file, installing
extensions, changing themes, modifying specific settings. All these tasks are evaluated based on final
IDE state, either by invoking the ‘code’ cli tool, configuration files stored in environment filesystem,
or through direct access to VSCode state provided by PwP (see subsection A.3). General-SWE
tasks, involves 5 categories of tasks: 1.) QA based on code profiling (evaluated based on final answer
by model which requires using appropriate profiling tools), 2.) code refactoring (assessed through
automated tests on the final repository state), 3.) debugging bugs in standard libraries (evaluated
based on the correctness of final code state), 4.) UI mockup design (assessed using CLIP scores),
and 5.) code restoration, where the agent leverages VSCode’s timeline feature to recover corrupted
codebases, evaluated by the correctness of the restored state.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Full List of Tasks We provide the full list of tasks for IDE Configuration (VSCode) and General-
SWE below.

Table 5: List of VSCode Configuration Tasks

ID Task Description

1 Install the pylance extension in VS Code.
2 Please help me change the background of VS Code to the photo background.jpg.
3 Change VS Code’s color theme to Solarized Dark.
4 Please modify VS Code’s settings to disable error reporting for Python missing im-

ports.
5 Please help me open the autosave feature of VS Code and delay AutoSave operations

for 500 milliseconds in the VS Code setting.
6 Please help me modify VS Code setting to hide all ’pycache’ folders in the explorer

view.
7 Can you delay VS Code autoSave for 1000 milliseconds?
8 Please help me configure VS Code settings so that ”Format On Save” is enabled

specifically for Python files, but disabled for all other file types.
9 Please modify the ”Files: Exclude” setting to hide all files ending in ‘.log‘ and ‘.tmp‘

from the Explorer view, ensuring they don’t clutter the workspace.
10 Please help me create a standard ‘launch.json‘ configuration file for a Flask application

within the current workspace, setting the port to 5000.
11 Please help me select the Python interpreter located at ‘./venv/bin/python‘ for the cur-

rent workspace, rather than using the system default.
12 Please help me search for and install a specific color theme extension called ”Dracula

Official”, then immediately activate it after installation.
13 Please help me set a conditional breakpoint on line 45 of ‘data processor.py‘ that

only pauses execution when the variable ‘retry count ¿ 3‘.
14 Please help me configure VS Code so that on startup it reopens the last used

workspace.
15 Please help me change all the places in this document that say ”text” to ”test” and

”test” to ”text”.
16 Please help me remove the shortcut ”Ctrl+F” for Tree view Find in the Explorer, and

then assign ”Ctrl+Alt+F” as the new shortcut for Tree view Find to avoid conflict with
editor search.

17 Please modify VS Code’s settings to disable error reporting for Python missing im-
ports.

18 Please configure the suggestion list so that Code Snippets always appear at the very
top of the suggestion list, above standard variable names or keywords.

19 Please help me install the Black Formatter extension and configure it as the default
formatter for all Python files in this workspace.

20 Please install flamegraph extension in VS Code.

Comparison with Other Benchmarks In Table 7, we further compare PwP-Bench with other
existing benchmarks.

C RELATED WORK

C.1 COMPARISON TO SOFTWARE ENGINEERING AGENTS

Task-specific SWE benchmarks Early neural code generation approaches were typically evalu-
ated on fixed input-output pairs—for example, generating code from docstrings (Chen et al., 2021)
or from general textual descriptions (Austin et al., 2021). Subsequent benchmarks extended these
evaluations to interactive settings, such as resolving GitHub pull requests or writing unit tests for
real-world code repositories (Jimenez et al., 2023; Zan et al., 2024; Mündler et al., 2025). More

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 6: List of General SWE Tasks

Category Task Description

Timeline Use the Timeline view to find the local history version of main.py where import re-
quests was deleted (30 mins ago) and restore it.
Identify the Timeline entry immediately before the formatting action that changed
spaces to tabs, and revert the file to that state.
Locate the ’Git: Staged Changes’ entry in the Timeline and copy the validate user
function from that version into the current file.
Use the Timeline to identify when timeout changed from 5000 to 10000 in utils.js and
revert to the version immediately prior.

Profiling Analyze the generated flame graph to identify the innermost C-level function consum-
ing the most CPU time during the NumPy random generation phase.
Use the flame graph to determine the execution time ratio between the compute heavy
function and the io save function.
Locate the widest bar at the top of the stack trace (the ’tip’) and identify which specific
Python library call it corresponds to.
Identify the deepest stack level in the graph where the application spends at least 50%
of its total execution time.

Refactoring Rename the DataProcessor class to LegacyDataProcessor globally, ensuring that oc-
currences within comments and string literals are excluded from the update.
Swap all assignments and references of variables width and height.
Move the AuthHandler class from main.py to a new file named auth utils.py, making
sure all import references across the workspace are updated.
Rename the random class to pseudo random across the whole workspace.

Mockups Replicate the image exactly into the currently open Draw.io canvas using standard
flowchart shapes.
Replicate the image exactly into the currently open Draw.io canvas using standard
flowchart shapes.
Replicate the image exactly into the currently open Draw.io canvas using standard
flowchart shapes.
Replicate the image exactly into the currently open Draw.io canvas using standard
flowchart shapes.

Debugging Trace the execution flow through the Middleware class to find the exact method call
that is silently modifying the request.headers dictionary before it reaches the endpoint.
The script fails during the np.dot operation; use the debugger to inspect the internal
array shapes inside the function call and identify the dimension mismatch.
We have some numpy code which isn’t working correctly due to an issue inside a
library function. Debug the code line-by-line inside the library function’s source to
identify the problematic area.
The code is failing specifically at the np.dot operation. Use the debugger to inspect the
runtime values of the matrices involved to figure out the exact dimension mismatch
issue.

recently, efforts have broadened the scope of code generation to include multimodal tasks, where
vision models must interpret images to generate correct code or edits (Si et al., 2024b; Shi et al.,
2024; Jing et al., 2024; Yang et al., 2024b). However, each of these benchmarks is confined to
specific languages, modalities, or task types. In contrast, our proposed PwP-Bench unifies these
diverse evaluations into a single framework, encompassing multimodal and multilingual challenges
that require interaction with a broad suite of IDE tools. Using this unified approach we reproduce the
performance of established benchmarks and encourage the development of general-purpose agents
capable of handling a variety of new software engineering tasks. We further compare our work with
previous efforts in Tables 3 and 7.

Software Engineering (SWE) Agents Recent work has explored “code agents” that move beyond
single-step neural code generation toward interactive methods, where intermediate feedback from
tools informs subsequent actions. However, many of these approaches specialize in particular tools

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 7: Comparison of existing software engineering benchmarks. PwP-Bench provides the
largest dataset (5400 instances) and uniquely covers all aspects: multiple languages and modalities,
real IDE interaction, interactive coding, and both code generation and general software engineering
tasks.

#Instances Multiple Multiple Real IDE Interactive Non-Code Code-Generation
Benchmark Languages Modalities Env Coding SWE Tasks SWE Tasks

SWE-Bench (Jimenez et al., 2023) 2K ✗ ✗ ✗ ✓ ✗ ✓
SWE-Bench-MM (Yang et al., 2024b) ≤ 1K ✗ ✓ ✗ ✓ ✗ ✓
LiveCodeBench (Jain et al., 2024) ≤ 1K ✗ ✗ ✗ ✓ ✗ ✓
Aider Polyglot (Aider, 2024) ≤ 1K ✓ ✗ ✗ ✓ ✗ ✓

TheAgentCompany (Xu et al., 2024) ≤ 1K ✗ ✓ ✗ ✓ ✓ ✗
VisualWebArena (Koh et al., 2024) ≤ 1K ✗ ✓ ✗ ✗ ✗ ✗
OSWORLD (Xie et al., 2024) ≤ 1K ✗ ✓ ✓ ✗ ✓ ✗
WindowsAgentArena (Bonatti et al., 2024) ≤ 1K ✗ ✓ ✓ ✗ ✓ ✗

PwP-Bench (Ours) 5.4K ✓ ✓ ✓ ✓ ✓ ✓

or programming languages (Jin et al., 2024; Yang et al., 2024b), limiting their broader applicability.
For example, Agentless (Xia et al., 2024) relies on a tool that parses files into Python-specific class
and function structures. This fails to perform well in other languages or settings (Yang et al., 2024b)
without manual modifications. Similarly, the SWE-agent requires modifications to adapt to different
tasks (Abramovich et al., 2024; Yang et al., 2024b). In contrast, agents designed for PwP are inher-
ently task and language-agnostic due to the expressive action and observation spaces mandated by
our environment. Moreover, the diverse tasks in PwP-Bench require agents to generalize across a
wide range of SWE challenges rather than excel in one narrowly defined area such as resolving pull
requests.

Many existing agents also depend on hand-engineered tools that require human effort to implement
and are susceptible to bugs. For instance, Agentless (Xia et al., 2024) leverages tools for pars-
ing files into Python-specific structures; CodeAct relies on an IPython kernel (Wang et al., 2024a);
SWE-Agent uses dedicated search and file editing tools (Yang et al., 2024a); AutoCodeRover re-
quires a linter (Zhang et al., 2024); SWE-Agent EnIGMA develops specialized tools for CTF-style
competitions (Abramovich et al., 2024); and SWE-Bench-MM (Yang et al., 2024b) implements a
browser view. In PwP, these tools are inherently available within the IDE (as detailed in Table 9),
and the agent’s task is to effectively use them rather than being explicitly guided on which tool to
use for each specific task.

Finally, current approaches often blur the line between the agent and the environment, as each agent
is designed with its own specified action and observation spaces within a self-created environment.
Programming with Pixels addresses this issue by unifying existing environments into a sin-
gle, general-purpose platform on which agents operate. This clear separation of environment design
from agent design standardizes evaluation and also allows any existing agent to be modeled within
our framework, making it an important testbed for both current and future SWE agents.

C.2 COMPARISON TO GENERAL VISUAL AND COMPUTER-USE AGENTS

Visual Agents and Computer-Use Agents A family of recent multimodal agent benchmarks re-
quire agents to operate user interfaces using a predefined, limited set of actions (e.g., new tab,
go back, click [element id]) (Koh et al., 2024; Deng et al., 2023; Zheng et al., 2024)
. These visual agents typically rely on additional prompting—such as set-of-marks techniques that
supply an HTML accessibility tree containing textual and positional information—to overcome their
inherent poor visual grounding capabilities (Yang et al., 2023a). Despite such aids, these agents of-
ten fail when faced with the complex and dense IDE interfaces found in our environment.

A separate family of computer-use agents (Anthropic, 2024; OpenAI, 2025; Gou et al., 2024) are
trained to operate with an expressive action and observation space using primitive operations like
clicks and keystrokes, without the need for external accessibility elements. However, there is no
SWE-specific environment for evaluating and further training these agents. PwP fills this gap by
providing a unified, expressive IDE platform that challenges computer-use agents with realistic and
diverse SWE tasks.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Expressive Agent Environments Prior work on expressive agent environments has predomi-
nantly targeted the web domain (Koh et al., 2024; Deng et al., 2023), entire operating systems (Xie
et al., 2024; Bonatti et al., 2024; Rawles et al., 2023), or other general scenarios (Xu et al., 2024).
Some of these environments, such as OSWorld (Xie et al., 2024), feature general action and ob-
servation spaces similar to ours. However, although these benchmarks are capable of expressing a
wide range of tasks, they do not focus on the unique challenges inherent to software engineering
within an IDE. For example, while OSWorld offers a broad set of tasks, it is not specifically de-
signed for SWE, resulting in increased computational overhead. Software engineering is a diverse
and important domain that merits its own dedicated environment.

Additionally, we design PwP so that existing tool-based software engineering agents can be readily
incorporated into our framework. Specifically, we modify the source code of the IDE to open up
API calls that let us test current tool-based agents. Furthermore, PwP-Bench is tailored specifically
for multimodal SWE tasks within an IDE, encompassing activities such as pull-request handling,
debugging, and image-based code generation across multiple programming languages. We also
observe that existing agents built for generic UI control often struggle in the PwP environment, as
they must interact with a richer set of tools and achieve precise visual grounding within a complex
interface containing a large number of interactive elements. We further distinguish PwP from other
environments in Table 3.

D EXPERIMENTAL SETUP AND IMPLEMENTATION DETAILS

D.1 AGENT DESIGN

In addition to the details mentioned in Section 5, we provide more implementation details in this
section. First, the exact version numbers used for different API models are: gpt-4o-2024-11-20,
gpt-4o-mini-2024-07-18, claude-3-5-sonnet-20241022, gemini-1.5-flash-preview-001, gemini-1.5-
pro-preview-001, claude-3-7-sonnet-20250219, claude-sonnet-4-20250514. For the three Claude
models, we use the computer-use variants by passing the ‘computer-use’ beta flag in API calls. For
open-weights models, we run inference on 8 L40s using vLLM. We use temperature=0.3 consis-
tently across models. For our main experiments, the number of iterations is set to 20 because: a.)
for most tasks, 20 iterations is enough to complete the task, b.) increasing the number to more
than 20 would increase the computational cost, and since some models didn’t support caching at
the time of running the experiments, the cost grows quadratically, c.) we ran experiments with 250
steps on Claude-Sonnet-4.0 on SWE-bench related datasets (see Appendix F); however, we found
no difference in trends.

D.2 MINI-SWE-AGENT

For mini-swe-agent, we use Claude-4.0 Sonnet. We use the same code as the official source
code (SWE-agent, 2024), except that we modify it for multimodal tasks so that the agent receives
required images as input in its prompt.

D.3 OPENHANDS

We evaluate OpenHands, a strong baseline that uses SWE-specific prompts and has access
to a variety of tools. Specifically, we use the CodeActAgent configuration with the fol-
lowing tools enabled: command line execution (CmdRunAction), IPython interactive shell
(IPythonRunCellAction), and file operations (FileReadAction, FileWriteAction)
and browser tool (BrowserAction). The agent also uses AgentThinkAction for reasoning
and AgentFinishAction to conclude tasks. The agent uses Claude-Sonnet-4.0 with a tempera-
ture of 0.3.

E RESULTS

Table 8 presents comprehensive results for all agent designs across 15 datasets in PwP-Bench.
Note, that non-trivial performance of mini-swe-agent-text on design2code and chartmimic is because

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

of noisy metrics, since if there is even some similarity between the actual image and the generated
one (eg, chart type is accidentally the same), the metric returns a non-trivial score.

E.1 COMPARISON WITH BEST REPORTED SPECIALIZED SWE AGENTS

In this section, we compare computer-use agents with the best reported specialized SWE agents
scores on individual datasets. In particular, for each dataset, we use 3 different strategies to identify
the best reported scores:

• Citations: For each dataset, we manually go through the citations and find the most relevant
works and look for reported scores.

• Official Leaderboard: For some datasets, such as SWE-Bench, we use the official leader-
board to find the best reported scores.

• Web-Search Agents: We further prompt ChatGPT-5 thinking to find the latest and highest
reported scores on each of the datasets. We then manually verify the results based on the
links provided.

For each dataset, we follow all three strategies and take the highest reported score. Typically these
results are achieved using specialized approaches including finetuned models, custom tool inter-
faces, specific pipelines, prompts, inference scaling, and verifiers. Therefore, it is important to note
that direct comparisons on individual datasets may not provide a complete picture. Further, since
our evaluations are done on 20 examples from the whole dataset, the results may not be directly
comparable. Further, while we make our best effort to include the latest publicly available results,
there may be still be discrepancies. Finally, the search was conducted on 22nd September 2025, and
future numbers may change.

We now list the best reported scores for each dataset:

• HumanEval: QualityFlow (Hu et al., 2025) achieves 98.8% performance using Claude-
3.5-Sonnet.

• SWE-Bench: Highest scores (75.2%) are achieved by a method named TRAE agent (Team
et al., 2025), with best reported performance with Claude-4-Sonnet as base model as 74.6%.

• SWE-Bench-Multilingual: Highest score publicly reported is 43% (Yang et al., 2025)
using Claude-3.7-Sonnet and Swe-agent framework (Yang et al., 2024a).

• ResQ: Highest score publicly reported is 58% (LaBash et al., 2024) using Claude-3.5-
Sonnet in the official dataset report.

• SWT-Bench: Highest score publicly reported is 63.3% (Cassano et al., 2024) using GPT-
4o in the official dataset report.

• Design2Code: Highest score publicly reported is 90.2% (Si et al., 2024a) using Claude-
3.5-Sonnet in the official dataset report.

• Chartmimic: Highest score publicly reported is 86.46% using GPT-4o and METAL
method (Li et al., 2025). Further they use inference scaling with n=5.

• Intercode-CTF: The publicly reported state of the art number is 72% using SWE-Agent-
Enigma (Abramovich et al., 2024). This is much smaller than the numbers reported by
our computer-use agent evaluation, which reaches 100% with the same Claude-3.5-Sonnet
model. This is surprising, since the method employed numerous specialized tools for static
analysis, dynamic analysis, and networking, and we confirmed that the improvement is
statistically significant (p-value = 0.014, McNemar’s test).

• BIRD: The best reported score is 76.14% (Shkapenyuk et al., 2025) as per the numbers
reported in offciail leaderboard.

• SWE-Bench-Multimodal: The best reported score is 35.98% using scaffolding over O3,
and 34.33% when using OpenHands-Versa (Soni et al., 2025) with Claude-4-Sonnet.

Overall, the results are often much higher than the numbers achieved by computer-use agents,
even with access file and bash APIs. Overall, the discussion points out that at present specialized
software-engineering agents still perform better, and built scaffolding around computer-use agents
might also be helpful.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 8: Performance Evaluation of Different Models Across Task Categories. Leged: HE: Hu-
manEval, SB: SWEBench, SJ: Swebench-Multilingual, RQ: ResQ, CI: CaniteEdit, ST: SWTBench,
DC: Design2Code, CM: ChartMimic, DS: DSBench, SM: Swebench-MM, IC: Intercode-CTF, BD:
Bird SQL, MC: Minictx, VS: VSCode, GS: General-SWE Tasks.

Code Generation & Editing (n = 6) Multimodal (n = 4) Domain-Specific (n = 3) No-Code (n = 2)
Code Generation Code Generation SWE Tasks Overall

Model HE SB SJ RQ CI ST DC CM DS SM IC BD MC VS GS Avg
Computer-Use Agents

Gemini-Flash 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 15.2% 2.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.1%
GPT-4o-mini 0.0% 0.0% 0.0% 0.0% 5.0% 0.0% 14.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 5.0% 0.0% 1.7%
Qwen2.5-VL-72B 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 17.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 10.0% 0.0% 1.8%
GUI-Owl-32B 0.0% 0.0% 0.0% 0.0% 0.0% 0% 0% 0% 0% 0% 0.0% 0.0% 0.0% 30.0% 15.0% 3.0%
Qwen3-VL-30B-A3B 0.0% 0.0% 0.0% 0.0% 5.0% 0% 22.1% 3.7% 0% 10.0% 0.0% 0.0% 0.0% 55.0% 20.0% 7.7%
Gemini-Pro 10.0% 0.0% 0.0% 0.0% 5.0% 0.0% 14.5% 8.1% 0.0% 0.0% 0.0% 0.0% 0.0% 15.0% 0.0% 3.5%
GPT-4o 5% 0.0% 0.0% 0.0% 0.0% 0.0% 48.7% 0.7% 0.0% 0.0% 5.0% 0.0% 0.0% 20.0% 0.0% 5.3%
Claude-Sonnet-3.5 20.0% 0.0% 0.0% 15.0% 25.0% 4.2% 18.1% 0.0% 5.0% 10.0% 15.0% 0.0% 0.0% 35.0% 10.0% 10.5%
Claude-Sonnet-3.7 15.0% 15.0% 0.0% 20.0% 20.0% 0.9% 51.4% 47.6% 0.0% 15.0% 25.0% 0.0% 0.0% 50.0% 5.0% 17.7%
Claude-Sonnet-4.0 16.7±5.8% 5.0±5.0% 5.0±0.0% 21.7±2.9% 20.0±0.0% 17.3±3.8% 60.9±2.2% 68.3±4.4% 10.0±0.0% 10.0±0.0% 20.0±0.0% 0.0±0.0% 0.0±0.0% 56.7±7.6% 23.3±2.9% 22.3±0.5%

Computer-Use Agents with File/Bash APIs

Gemini-Flash 0.0% 5% 5% 15% 15% 17.1% 19.9% 13.5% 3.2% 10% 25% 0% 0% 5% 0.0% 8.9%
GPT-4o-mini 60% 10% 5% 20% 30% 16.7% 41.3% 5.5% 8.4% 15% 40% 5% 0% 10.0% 0.0% 17.8%
Qwen2.5-VL-72B 10.0% 5.0% 0.0% 25.0% 25.0% 17.1% 34.1% 13.1% 0.0% 0.0% 5.0% 15.0% 0.0% 15.0% 0.0% 11.0%
Gemini-Pro 85% 10% 10% 15% 40.0% 20.2% 25.6% 24.7% 1.6% 15% 5% 5% 0% 10% 15.0% 18.8%
GPT-4o 85% 25% 10% 30% 50% 17.0% 70.2% 65.5% 11.9% 20% 70% 10% 5% 10% 10.0% 32.6%
Claude-Sonnet-3.5 95% 25% 10% 55% 65% 37.4% 83.4% 71.2% 55.7% 10% 100% 15% 15% 35% 10.0% 45.5%
Claude-Sonnet-3.7 90% 25% 15% 65% 75% 41.4% 79.2% 81.2% 59.4% 15% 100% 15% 25% 40% 15.0% 49.4%

Claude-Sonnet-4.0 100.0±0.0% 28.3±2.9% 25.0±0.0% 60.0±5.0% 61.7±2.9% 46.0±4.1% 87.1±2.1% 77.4±2.1% 53.3±5.3% 13.3±2.9% 96.7±5.8% 18.3±2.9% 16.7±2.9% 48.3±2.9% 28.3±5.8% 50.7±0.2%

Software Engineering Agents

mini-swe-agent 100.0% 25.0% 20.0% 55.0% 65.0% 31.4% 88.1% 80.2% 57.9% 15.0% 90.0% 10.0% 20.0% 55.0% 20.0% 48.8%
mini-swe-agent-text 100.0% 25.0% 20.0% 55.0% 65.0% 31.4% 40.4% 8.1% 50.1% 10.0% 90.0% 10.0% 20.0% 55.0% 20.0% 40.0%
OpenHands 95% 25.0% 20.0% 55% 70% 37.4% 85.2% 68.9% 38.9% 10.0% 85% 15% 30% 30% 20.0% 45.7%

Table 9: Tools available in different environments. The table shows the various tools provided by
different environments for assisted analysis. Common tools like file manipulation and bash opera-
tions are shared across environments, while specialized tools cater to specific tasks like web design
and chart replication.

Category Tool Description

Common Tools bash Perform bash operations
file edit Perform file manipulation operations

SWEBench
search repository Search the repository for a string in the entire repository
file name search Search for a file by its name
view structure View the structure of the current directory

Design2Code

view html preview Get a preview of the index.html page as rendered in the browser
view original image Get a screenshot of the html image for replication
zoom in Zoom in on the current rendered html page
zoom out Zoom out on the current rendered html page

ChartMimic
view python preview Get a preview of the graph generated by python file
view original image Get a screenshot of the graph for replication

BIRD
test sql Test a SQL query against the database
get relevant schemas Get relevant descriptions of the relevant database tables

F ADDITIONAL RESULTS

Visual Grounding Errors. In Section 5.1, we show that current agents struggle in visual ground-
ing, despite some of these models being specifically trained for visual interfaces. To quantify the
extent, we manually analyzed 20 random trajectories of two best performing agents: GPT-4o and
Claude-3.5-Sonnet. In particular, we quantify the number of trajectories where the model had at
least one visual grounding error, where a visual grounding error is defined as any of the following:
(1) incorrect click, (2) incorrect interpretation of the current state, or (3) interacting with the wrong
element. Surprisingly, we find that 20% of the trajectories of Claude-Sonnet-4.0, 35% for Claude-
3.5-Sonnet, and 95% of the trajectories of GPT-4o contained at least one visual grounding error,
indicating significant scope for improving these models for complex visual interfaces such as those
demanded by PwP.

Training models to use IDE tools better would improve performance. In Section 5.1, we
demonstrate that models can achieve superior performance when effectively utilizing IDE tools.
In particular, Table 8 shows the performance of assisted agents (averaged across 3 models: GPT-4o,
Gemini-1.5-Pro, and Claude-3.5-Sonnet), highlighting an average gain of up to 13.3%.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Step 1: The agent is given a repository, and
needs to 5x a bug

Step 2: The agent use VSCode 5le search tool,
that performs name match across repository.

Step 3: The agent searches for the term
“process” and reads "def process function".

Step 6: The agent edits the required line
with correct content, solving the task!

Step 4: The agent identi5es the line to edit,
and jumps to it, using VSCode tool.

Step 5: The agent reads the surrounding
code and selects the line to edit

Figure 11: Example of the Claude Computer-Use agent successfully using multiple IDE tools to
complete a repository level code-editing task.

However, our analysis reveals two primary limitations in current models’ tool usage: (1) poor visual
grounding and inability to handle complex tool interfaces, and (2) failure to prioritize IDE tool-based
solutions over manual approaches.

To evaluate the second limitation specifically, we developed refactoring tasks within our ‘General-
SWE’ dataset. These tasks require agents to rename symbols across a project repository—an opera-
tion that cannot be reliably accomplished through simple search-and-replace due to potential naming
conflicts and contextual variations. The IDE provides a robust solution through its rename feature,
which leverages the complete AST to ensure accurate symbol renaming across the codebase. This
operation requires only pressing F2 on a symbol and entering the new name. In our evaluation, the
Claude agent initially achieved 25% accuracy across four tasks when given no tool guidance. How-
ever, when explicitly prompted with ”You can utilize the rename feature in VSCode to perform this
task,” its accuracy improved to 75%.

We observed similar patterns across other tasks designed to evaluate tool usage. For instance, tasks
that could be efficiently solved using the debugger showed limited success. While agents could
sometimes set breakpoints, their poor visual grounding prevented them from effectively interpreting
the debugging interface—particularly in understanding the current execution state and paused line
location. These findings suggest significant potential for improving agent performance through
better training on IDE tool utilization.

Successful Use of Tools We further show a couple of examples of successful tool use in Figure 2 3.
However, we do note that while the agent is able to use the IDE tool through UI interaction, it still
may not be able to make optimal use of it as shown in Figure 17.

Agents Fail to Edit Files. File editing is a basic capability required in most SWE tasks. However,
we find that the deficiencies in visual grounding significantly impact the file editing capabilities
of current agents that use basic actions (clicking and typing). For example, even when provided
with cursor location information in textual form, these models struggle to interpret such data amid
complex UI elements. Models fine-tuned for UI interactions still commit basic editing errors—such
as incorrect indentation and text misplacement—and are unable to recover from these errors (see
Appendix for examples). We speculate these limitations could stem from two factors: (i) model
overfitting to user interfaces in their training domains, or (ii) the increased complexity of the PwP
IDE interface, which contains substantially more interactable elements than typical web or OS envi-
ronments. Addressing these limitations represents an important direction for future work. Although
direct file access via tool operations is available, UI-based editing confers unique advantages for

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 10: Performance Evaluation of Different Agents on 250 steps on SWE-Bench related tasks.

Model SWE-Bench SWE-Bench-Multimodal SWE-Bench-Multilingual Average
Computer-Use Agent 10.0% 30.0% 15.0% 18.3%
CUA w/ File/Bash Tools 60.0% 30.0% 40.0% 43.3%
mini-swe-agent 60.0% 30.0% 35.0% 41.7%

tasks such as editing Jupyter notebooks, comparing changes, or modifying specific sections of large
files. These results underscore two limitations: (i) current VLMs are challenged by complex UI in-
teractions beyond simple web/OS interfaces (Xie et al., 2024; Koh et al., 2024), and (ii) the inability
to effectively perform UI-based editing prevents agents from leveraging valuable IDE features that
could have improved their performance.

Agents Are Incapable of Recovering from Errors. Next, we find that current agents show lim-
ited error recovery capabilities. When an action fails to execute correctly, models tend to persis-
tently repeat the same failed action without exploring alternatives. Similarly, if an agent selects an
incorrect action, it continues along an erroneous solution path without recognizing or correcting
the mistake. In an experiment designed to probe this behavior, we deliberately suppressed one of
the model’s (Gemini-1.5-Pro) actions. Despite the environment’s screenshot clearly showing an un-
changed state, the models proceeded with their planned action sequence as though the suppressed
action had succeeded. This behavior suggests a heavy reliance on memorized action sequences
rather than dynamic responses to visual feedback, resulting in exponentially increasing errors and
poor performance. However, when we repeated the experiment with Claude-Sonnet-4.0, we tested 5
such scenarios, and found only in one case, the agent ignored the screenshot, potentially highlighting
that computer-use agents are improving over time.

Performance on Long Horizon Tasks. In our main experiments, we had capped the maximum
number of agent steps to 20, owing to high cost associated with each of the models. However,
certain datasets, such as SWE-Bench, typically require much larger number of steps for agent to
complete the task. In this section, we therefore evaluate 3 agents based on Claude-Sonnet 4.0, with
250 steps on 3 relevant datasets: SWE-Bench, SWE-Bench-Multimodal, SWE-Bench-Multilingual.
The results are shown in Table 10. We note, that almost all agents show consistent improvement in
performance with higher number of steps. However, overall tends remain consistent with 20 steps:
Computer-Use Agents with File/Bash APIs show 43.3% performance, and mini-swe-agent shows
41.7% performance, and pure computer-use agents show 18.3% performance.

Robustness and Ablations To address potential robustness concerns, we re-ran the experiments
for the best-performing computer-use agent (with and without bash/file APIs) over multiple trials.
We find the variance in performance on PwP-Bench-Lite is very low (1.x%), and does not affect
any of the conclusions of the work.

We also investigated the importance of visual modality by running mini-swe-agent without pro-
viding any images on the multimodal task category. Overall, the performance drops significantly,
demonstrating the importance of the visual modality. However, the effect varies by task: perfor-
mance on SWE-Bench-MM sees a non-significant difference, whereas performance on tasks like
ChartMimic drops to near zero.

IDE Feature Usage Analysis We analyzed the distribution of IDE feature usage across all trajec-
tories of the Claude-Sonnet-4.0 Computer-Use Agent. Specifically, we prompted Claude-Sonnet-4.0
with complete trajectory (including textual steps and each step’s screenshot), to generate what fea-
ture the model used at each step. We then aggregate this information across all tasks, and report the
results in Figure 12. Importantly, the results just show when the agent attempted to use a tool, and not
whether it succeeded or not. As shown in Figure 12, the agent primarily relies on basic editing and
navigation features. Specifically, Text/Code Editing accounts for 26.2% of interactions, followed
by File Explorer usage (16.8%), Terminal interaction (12.5%), and Global Search (10.6%). These
four categories alone comprise over 65% of all IDE interactions. In contrast, advanced features see
significantly lower usage: Debug/Run capabilities are used in only 1.8% of interactions, and Code
Intelligence features (such as go-to-definition) account for just 2.8%. Further, manual inspection

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

shows that while the agent is attempting to use these advanced features, it fails very commonly.
This analysis reinforces our finding that while current agents can perform basic IDE operations,
they struggle to leverage the full depth of specialized software engineering tools available in the
environment.

0 5 10 15 20 25

Relative Frequency (%)

Text/Code Editing

File Explorer

Terminal

Global Search

File Ops

Others

Find/Replace

Code Intel

Notebooks

Image Viewer

Dialogs

Tabs

Cmd Palette

Settings

Editor Nav

Debug/Run

25.6%

16.5%

12.2%

10.4%

6.6%

5.7%

3.0%

2.8%

2.7%

2.3%

2.2%

2.2%

2.1%

2.0%

2.0%

1.8%

Figure 12: Distribution of VS Code Feature Usage by Claude-Sonnet-4.0 Agent. The agent pre-
dominantly uses basic editing and navigation tools, with limited usage of advanced features like
debugging or code intelligence.

G QUALITATIVE ANALYSIS

In this section, we consider both positive and negative examples of agent grounding and ability to
interact with the complete IDE interface in PwP.

H DISCUSSION

Computational Overhead of Running PwP While PwP provides a much more general interface
for software engineering agents, a natural question is what computational overhead it introduces.
The added computational requirements primarily come from: (1) capturing screenshots using the
xdotool library, (2) running the IDE, (3) maintaining a VNC server, and (4) processing video and
audio streams via ffmpeg. Importantly, only components (1) and (2) are essential for all agents,
as video and audio processing are only necessary when agents must interpret visual or auditory
cues—a universal requirement for any environment supporting these modalities. The VNC server
is used solely for debugging or pair programming scenarios and can be disabled when not needed.
The xdotool commands consume negligible CPU resources (¡¡ 1%) and minimal memory. While
VSCode does increase memory and CPU utilization, the latency overhead remains limited, and the
computational cost is substantially lower than running the large-scale computer-use models that
power the agents. In summary, despite its comprehensive feature set, the computational overhead of
PwP is minimal, with the primary computational demand stemming from the computer-use models
themselves rather than the environment.

Why use IDE over simple Bash Agent? While computer-use agents perform worse than even
simple API based SWE agents, intuitively there still remains a lot of value in utilizing a general in-
terface such as IDE, for software engineering. The reason being modern IDEs, have been developed
over multiple years of effort, and provide several advantages that are not possible with say bash in-
terface. While, theoretically it may still be possible to create equivalent tools, it would take similar
tremendous effort, to develop them again for agents, with less reliability.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 13: Example of Agent Missing Visual
Error Indicators The agent fails to recognize
linter error indicators (wavy underlines).

Figure 14: Example of Agent’s Inability to Per-
form File Editing The agent incorrectly posi-
tions new content in the file editor.

Figure 15: Example of wrong mouse click
by Claude-Computer Use Agent The agent at-
tempted to click Settings icon but clicked at the
wrong location.

Figure 16: Example of Agent Misidentifying
Active Panel The agent fails to recognize the
active editor panel, incorrectly typing into the
search bar (red arrow) instead of the file editor.

To give few examples of myriads advantages of IDEs:

• Interactive Debugging Capabilities
– IDEs provide rich, stateful debugging interfaces that allow AI agents to set break-

points, inspect variables, and evaluate expressions dynamically
– Unlike CLI debuggers (GDB, LLDB, pdb), IDE debuggers maintain visual context

and state, making it easier for AI agents to track program flow and debug complex
scenarios

– The visual representation of stack traces and variable states is more structured and
machine-parseable compared to text-based CLI output

• Intelligent Code Refactoring
– IDEs maintain a complete Abstract Syntax Tree (AST) of the project, enabling accu-

rate symbol renaming and code restructuring across multiple files
– AI agents can leverage IDE’s semantic understanding to perform complex refactoring

operations with higher confidence
– Unlike text-based search-and-replace in Bash, IDE refactoring tools understand code

context and prevent accidental modifications to unrelated symbols

• Test Management and Coverage Analysis
– IDEs provide structured APIs for test discovery, execution, and result analysis
– AI agents can efficiently track test coverage through visual indicators and program-

matic interfaces
– Real-time test feedback and coverage data is more readily accessible compared to

parsing CLI test runner output

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 17: Performance comparison of GPT-4 agent in Computer-Use and Assisted settings on the
ChartMimic dataset. a) Image as seen by the Computer-Use agent. b) Replication in Computer-Use
setting. c) Replication in Assisted setting. The Assisted agent demonstrates superior performance
despite seeing the same image but in different context and state.

• Performance Profiling and Analysis
– IDE profilers offer structured data about CPU usage, memory allocation, and runtime

behavior
– Visual representations of performance metrics (flame graphs, memory usage) are eas-

ier for AI agents to analyze systematically
– Profiling data is available through APIs rather than requiring parsing of complex text-

based output
• Code Indexing and Semantic Search

– IDEs maintain comprehensive code indexes that enable fast, context-aware code
search and navigation

– AI agents can leverage these indexes for more accurate code understanding and mod-
ification

– Unlike grep or find, IDE search capabilities understand code structure and can filter
based on semantic properties

• Extension Integration and Automation
– IDE extensions can be programmatically controlled through APIs, allowing AI agents

to leverage additional tools seamlessly
– Extensions can provide structured data and interfaces that are more reliable for au-

tomation compared to parsing CLI tool output
– Configuration and coordination of multiple tools can be managed through unified IDE

interfaces rather than managing separate CLI tools

I PROMPTS

In this section, we provide the prompts used for the agents in our evaluation.

I.1 COMPUTER-USE AGENT PROMPTS

1 system_message = """You are an autonomous intelligent agent tasked with interacting with a code IDE (e.g.,
VSCode). You will be given tasks to accomplish within the IDE. These tasks will be accomplished through
the use of specific actions you can issue.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

2
3 Here’s the information you’ll have:
4
5 - **The user’s objective**: This is the task you’re trying to complete.
6 - **The current IDE screenshot**: This is a screenshot of the IDE, with each clickable element assigned a

unique numerical ID. Each bounding box and its respective ID shares the same color.
7 - **The observation**, which lists the IDs of all clickable elements on the current IDE screen with their text

content if any, in the format ‘[id] [element type] [text content]‘. The element type could be a button,
link, textbox, etc. For example, ‘[123] [button] ["Run"]‘ means there’s a button with id 123 and text

content "Run" on the current IDE screen.
8 - **Delta Image**: The difference between the current image and the previous image, highlighting the changes

that have occurred. You can use this information to figure the action executed by you had the intended
effect or not. Additionally, this serves purpose of clearly showing the content that you may want to
focus on.

9 - **The cursor position**: Information about the current cursor position, provided as a DOM element in both
text and image formats.

10
11 The actions you can perform fall into several categories:
12
13 ---
14 You can use the computer_control tool to issue these actions. example, you can call the computer_control tool

and pass arguments as ’xdotool type "hello world"’ to type "hello world" at the current cursor position.
15
16 **Keyboard Actions:**
17
18 - ‘xdotool type "[content]"‘: Type the specified content at the current cursor position.
19 - ‘xdotool key [key_combination]‘: Simulate pressing a key or combination of keys (e.g., ‘xdotool key "ctrl+s

"‘ to save a file).
20
21 **Mouse Actions:**
22
23 - ‘xdotool mousemove [id] click [click_code]‘: Move the mouse to the element with the specified id and click

on it.
24 - ‘xdotool mousemove [x] [y] click [click_code]‘: Move the mouse to the coordinates (x, y) on the screen and

click.
25 - ‘xdotool mousemove [id] click --repeat 2 1‘: Double-click on the element with the specified id.
26 - ‘xdotool mousemove [id] click 5‘: Scroll down on the element with the specified id.
27 ---
28
29 **IDE Navigation Actions:**
30
31 - **Interacting with IDE Tools**: You can use any tools inside the IDE, such as file explorer search, go to

definition, etc., by performing the appropriate keyboard or mouse actions.
32
33 ---
34
35 **Completion Action:**
36
37 - ‘execution_done‘: Issue this command when you believe the task is complete. Do not generate anything after

this action.
38
39 ---
40
41 To be successful, it is very important to follow these rules:
42
43 1. **Start with a Plan on how to achieve the objective**:
44 - Begin the task by creating a plan on how you will achieve the objective. Think about the steps you need to

take, the tools you can use, and the actions you need to perform. This will help you stay organized and
focused throughout the task.

45
46 2. **Start every step with an Image Description**:
47 - Begin every step by describing the provided IDE screenshot.
48 - Enclose your description within ‘<image description>‘ tags.
49 ‘‘‘
50 <image description>
51 <!-- Your description here -->
52 </image description>
53 ‘‘‘
54
55 2. **Think Before Acting**:
56 - Analyze the screenshot and plan your next action carefully.
57
58 3. **Issue Only Valid Actions**:
59 - Only perform actions that are valid given the current observation.
60
61
62 5. **Completion**:
63 - Use ‘execution_done‘ when you think you have achieved the objective.
64
65
66 6. **Cursor Positioning**:
67 - Before editing any file or field, make sure where the cursor is. Clear things if you have already written

something, and do not want it anymore. You can also move cursor to right location use vscode utility by
sending key ctrl+g, typing line number, press Return, then move to the right column using arrow keys.

68 - If unsure, use keyboard shortcuts or mouse actions to place the cursor appropriately before typing.
69 - Despite being sure, you might still make a mistake. Review screenshots and text information after each

action to ensure correctness.
70
71 7. **Precision in Actions**:
72 - Be precise when performing mouse actions.
73 - Prefer keyboard actions over mouse actions whenever possible.
74

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

75 8. **Utilize Available Tools**:
76 - Leverage any functionalities available within the IDE to accomplish the task.
77
78
79 9. **Other Tips**:
80 - **Use UI:** Use UI when possible instead of editing files.
81 - **Review the text on Screen**: Previous experiments with you show, that you often confuse what is shown

in the image. Make sure you use the text information provided to cross verify what you are seeing in the
image.

82 - **Learn from Mistakes**: If a an action or step of actions didn’t get the intended result, think of
different strategy in order to achieve the goal.

83 - **Keyboard Shortcuts**: Use keyboard shortcuts whenever possible to increase efficiency. For instance, in
order to open settings, use "xdotool key ctrl+," instead of clicking on the settings icon.

84 - **What is on Screen**: If you do not see something in a menu/setting that you were planning to use, look
for appropriate search bar, and type relevant queries to find the option you are looking for.

85 - **Clear the Editor/Input Field**: If you are planning to type something in an editor or input field, make
sure to clear the existing content before typing the new content. For instance, you can use "xdoool key
ctrl+a BackSpace" to clear the content.

86 - **Location:** Do not automatically assume you are at the right location before typing. For instance, if
you want to search something, make sure your cursor is in the right input field. If nothing gets typed,
despite the command being correct, you are supposed to find the right input field and click on it and
then type again.

87 - **VSCode Shortcutts:** VScode shortcuts are not necessarily same as xdotool commands. For example in
order to execute ctrl+k ctrl+o, you will have to use two commands: ‘xdotool key ctrl+k‘ followed by ‘
xdotool key ctrl+o‘.

88 ---
89
90 **Remember**: Your actions should methodically guide the IDE towards accomplishing the required task, using

precise and atomic commands. Prioritize keyboard interactions over mouse actions to enhance efficiency.
91
92 <IMPORTANT FILE EDITING>
93 Keep in mind these tips while editing files:
94 - To jump to a particular line number, you can use ‘ctrl+g‘ followed by ‘line number‘ (and optionally column

number, eg: 11:12) and then press ‘Return‘.
95 - If you execute a type command, however, file does not change, it can likely mean, the focus is not on the

file. Make sure to move your mouse to the file and click on it, to ensure the file is focused.
96 - While typing make sure that correct indentation is being used.
97 """

I.2 MINI-SWE-AGENT PROMPTS

1 system_template: |
2 You are a helpful assistant that can interact with a computer.
3
4 Your response must contain exactly ONE bash code block with ONE command (or commands connected with && or

||).
5 Include a THOUGHT section before your command where you explain your reasoning process.
6 Format your response as shown in <format_example>.
7
8 <format_example>
9 Your reasoning and analysis here. Explain why you want to perform the action.

10
11 ‘‘‘bash
12 your_command_here
13 ‘‘‘
14 </format_example>
15
16 Failure to follow these rules will cause your response to be rejected.
17 instance_template: |
18 Please solve this issue: {{task}}
19
20 You can execute bash commands and edit files to implement the necessary changes.
21
22 ## Recommended Workflow
23
24 This workflows should be done step-by-step so that you can iterate on your changes and any possible

problems.
25
26 1. Analyze the codebase by finding and reading relevant files
27 2. Create a script to reproduce the issue
28 3. Edit the source code to resolve the issue
29 4. Verify your fix works by running your script again
30 5. Test edge cases to ensure your fix is robust
31 6. Submit your changes and finish your work by issuing the following command: ‘echo

COMPLETE_TASK_AND_SUBMIT_FINAL_OUTPUT‘.
32 Do not combine it with any other command. <important>After this command, you cannot continue working on

this task.</important>
33
34 ## Important Rules
35
36 1. Every response must contain exactly one action
37 2. The action must be enclosed in triple backticks
38 3. Directory or environment variable changes are not persistent. Every action is executed in a new

subshell.
39 However, you can prefix any action with ‘MY_ENV_VAR=MY_VALUE cd /path/to/working/dir && ...‘ or write/

load environment variables from files
40
41
42 ## Formatting your response

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

43
44 Here is an example of a correct response:
45
46 <example_response>
47 THOUGHT: I need to understand the structure of the repository first. Let me check what files are in the

current directory to get a better understanding of the codebase.
48
49 ‘‘‘bash
50 ls -la
51 ‘‘‘
52 </example_response>
53
54 ## Useful command examples
55
56 ### Create a new file:
57
58 ‘‘‘bash
59 cat <<’EOF’ > newfile.py
60 import numpy as np
61 hello = "world"
62 print(hello)
63 EOF
64 ‘‘‘
65
66 ### Edit files with sed:
67
68 ‘‘‘bash
69 # Replace all occurrences
70 sed -i ’s/old_string/new_string/g’ filename.py
71
72 # Replace only first occurrence
73 sed -i ’s/old_string/new_string/’ filename.py
74
75 # Replace first occurrence on line 1
76 sed -i ’1s/old_string/new_string/’ filename.py
77
78 # Replace all occurrences in lines 1-10
79 sed -i ’1,10s/old_string/new_string/g’ filename.py
80 ‘‘‘
81
82 ### View file content:
83
84 ‘‘‘bash
85 # View specific lines with numbers
86 nl -ba filename.py | sed -n ’10,20p’
87 ‘‘‘
88
89 ### Any other command you want to run
90
91 ‘‘‘bash
92 anything
93 ‘‘‘

31

	Introduction
	Related Work
	Programming with Pixels (PwP)
	PwP-Bench
	Evaluating Agents in Programming with Pixels
	Results and Analysis

	Conclusion
	Programming with Pixels (PwP) Environment
	Tools
	Comparison with Other Environments
	Infrastructure and Implementation

	PwP-Bench
	Tasks
	Evaluation

	Related Work
	Comparison to Software Engineering Agents
	Comparison to General Visual and Computer-Use Agents

	Experimental Setup and Implementation Details
	Agent Design
	mini-swe-agent
	OpenHands

	Results
	Comparison with best reported Specialized SWE Agents

	Additional Results
	Qualitative Analysis
	Discussion
	Prompts
	Computer-Use Agent Prompts
	mini-swe-agent Prompts

