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ABSTRACT

In many complex sequential decision making tasks, online planning is crucial
for high-performance. For efficient online planning, Monte Carlo Tree Search
(MCTS) employs a principled mechanism for trading off between exploration and
exploitation. MCTS outperforms comparison methods in various discrete decision
making domains such as Go, Chess, and Shogi. Following, extensions of MCTS to
continuous domains have been proposed. However, the inherent high branching
factor and the resulting explosion of search tree size is limiting existing methods.
To solve this problem, this paper proposes Continuous Monte Carlo Graph Search
(CMCGS), a novel extension of MCTS to online planning in environments with
continuous state and action spaces. CMCGS takes advantage of the insight that,
during planning, sharing the same action policy between several states can yield
high performance. To implement this idea, at each time step CMCGS clusters
similar states into a limited number of stochastic action bandit nodes, which
produce a layered graph instead of an MCTS search tree. Experimental evaluation
with limited sample budgets shows that CMCGS outperforms comparison methods
in several complex continuous DeepMind Control Suite benchmarks and a 2D
navigation task.

1 INTRODUCTION

Monte Carlo Tree Search (MCTS) is a well-known online planning algorithm for solving the decision
making problem in discrete action spaces (Coulom, 2006; 2007). It has been shown that when a
learned transition model is available, MCTS could be used for achieving super-human performance
in various domains such as Atari, Go, Chess, and Shogi (Schrittwieser et al., 2020). That is why
recent research has been trying to extend MCTS to environments with continuous state and action
spaces (Hämäläinen et al., 2014; Rajamäki & Hämäläinen, 2018; Lee et al., 2020; Kim et al., 2020;
Hubert et al., 2021).

There are several limitations in the current approaches for extending MCTS to environments with
continuous states and actions. Approaches such as MCTS with progressive widening (Chaslot et al.,
2008; Couëtoux et al., 2011), that build the search tree by discretizing the action space, do not scale
up well to high-dimensional action spaces. On the other hand, learning-based approaches require a
large number of samples and are also difficult to implement (Rajamäki & Hämäläinen, 2018; Hubert
et al., 2021).

This paper presents Continuous Monte Carlo Graph Search (CMCGS), a novel extension of MCTS
to the continuous control problem. Similar to MCTS, CMCGS employs an iterative mechanism
for building a search graph that can the be used for sampling the next action. At each iteration,
a series of operators is used to grow the search graph and update the information stored in the
graph nodes. CMCGS uses state clustering and Gaussian action bandits to deal with challenges
posed by continuous states and actions. Our experiments show that CMCGS demonstrates robust
and superior performance compared to the baselines in several challenging benchmarks, including
high-dimensional environments from DeepMind Control Suite (Tunyasuvunakool et al., 2020).

This paper makes the following contributions:

• We propose Continuous Monte Carlo Graph Search (CMCGS) algorithm, a straightforward
extension to the popular MCTS algorithm for online planning in environments with continu-
ous states and actions. CMCGS uses state clustering and stochastic action bandits to build a
search graph, which can be used for controlling the agent.
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• We evaluate the performance of CMCGS using several popular continuous control bench-
marks and two novel environments with sparse rewards and requiring complex continuous
control. The results show a clear advantage of CMCGS compared to the baselines.

• In order to share our findings with other researchers, we publish an open-source implemen-
tation of CMCGS on GitHub1.

2 RELATED WORK

Monte Carlo Tree Search is a successful decision-time planning method in discrete action space
(Coulom, 2006; koc; Browne et al., 2012). It is a core component of the success of the computer
Go game (Gelly & Silver, 2011; Silver et al., 2017; 2018). It also shows advantages in general
game playing (Finnsson & Björnsson, 2008; Guo et al., 2014; Anthony et al., 2017; Grill et al.,
2020). Several recent work combine MCTS with a learned dynamic model to lift the requirement of
accessing dynamic models or simulators, making MCTS-based methods to be a general solution for
decision making problems (Schrittwieser et al., 2020; Ye et al., 2021).

Online planning in continuous action spaces. In continuous action spaces, unlike discrete spaces,
the action can be any real number within a pre-defined range. This property makes it challenging to
apply MCTS in continuous action spaces. Instead, Cross-Entropy Method (CEM) is vastly used in
the continuous action domain as an online planning method (Rubinstein, 1997; Rubinstein & Kroese,
2004; Weinstein & Littman, 2013; Chua et al., 2018; Hafner et al., 2019). Many methods combine
CEM with a value function and/or policy in different ways to improve its performance (Negenborn
et al., 2005; Lowrey et al., 2018; Bhardwaj et al., 2020; Hatch & Boots, 2021; Hansen et al., 2022).
The main limitation of CEM compared to MCTS (and this work) is that CEM models the whole action
trajectory using a single sampling distribution. This could be translated into the context of MCTS by
using only one node at each layer of the search tree. This can limit the exploration capabilities of
CEM in environments where there are several dissimilar ways for controlling the agent, for example,
going around an obstacle using two different ways.

MCTS in continuous action spaces Since the success of MCTS in discrete action spaces, several
attempts have been made to adopt it in the continuous action domain. To mitigate the requirement of
enumerating all actions as in the discrete case, several work use progressive widening to increase the
number of child actions of a node according to its number of visits (Coulom, 2007; Chaslot et al.,
2008; Couëtoux et al., 2011; Moerland et al., 2018). Hamrick et al. (2020) directly split the action
space into bins by factorizing across action dimensions (Tang & Agrawal, 2020). Together with a
learned value function, policy and dynamic model, this method can successfully control a humanoid
character with 21 action dimensions (Tassa et al., 2012). Besides these, a line of work extends MCTS
to continuous action space via Hierarchical Optimistic Optimization (HOO) (Bubeck et al., 2008;
Munos et al., 2014; Mao et al., 2020; Quinteiro et al., 2021). HOO hierarchically partitions the
action space by building a binary tree to incrementally split the action space into smaller subspaces.
Furthermore, several works grow the search tree based on sampling. Yee et al. (2016) use kernel
regression to generalize the value estimation, thus only limited actions are sampled per node. Ahmad
et al. (2020); Hubert et al. (2021) represent the policy using a neural network and sample from it when
expanding the tree. By leveraging the learned policy, these methods achieve promising performance
with limited search budgets. The main differences between this class of methods and our work is that
our proposed algorithm builds a search graph instead of a search tree. Note that while we focus in
this paper on the core search mechanism, our approach could also take advantage of a value function
or policy learning similar to other approaches.

3 PRELIMINARIES

Planning and search is arguably the most classical approach for optimal control (Fikes & Nilsson,
1971; Mordatch et al., 2012; Tassa et al., 2012). The idea of this approach is to start with a (rough)
estimation of the action trajectory, and gradually improve it through model-based simulation of the
environment. In the case of environments with complex dynamics, this is usually done online, i.e., at

1During the review process, the code is uploaded as the supplementary material. It will be published on
GitHub after acceptance.
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each timestep only a small part of the action trajectory is optimized and the first action in the best
found trajectory is returned as the result. After executing the best found action, the whole process is
repeated again, starting from the new visited state. This process is also known as closed-loop control,
or model-predictive control (MPC). MPC has shown to be an effective approach in for optimal control
in complex real-time environments (Samothrakis et al., 2014; Gaina et al., 2017; Babadi et al., 2018).

Monte Carlo Tree Search (MCTS) is one of the most popular MPC algorithms in time-sensitive
environments such as video games (Perez et al., 2014; Holmgård et al., 2018). It was first introduced
in 2006 (Coulom, 2006), when it demonstrated impressive performance in the game of Go (Coulom,
2007). The psuedocode of general MCTS is shown in Algorithm 1. It starts by initializing a single-
node search tree using the current state st as the root, and grows the tree in an iterative manner, where
at each iteration one node is added to the tree.

Algorithm 1 General Monte Carlo Tree Search (MCTS) algorithm

1: function MCTS(st)
2: Let vt be the root of the MCTS tree, with vt.state = st.
3: while within computational budget do
4: vs ← TREEPOLICY(vt)
5: r ← ROLLOUT(vs)
6: BACKUP(vs, r)

7: return Action from vt to the best node

The iterative process of MCTS is comprised of the following four key steps:

1. Selection (Tree Policy): In this step, the algorithm selects one of the tree nodes to be
expanded next. This is done by starting from the root, and navigating to a child node until a
node with at least one unexpanded child is visited. This is done using a selection criteria,
whose goal is to balance the exploration-exploitation trade off.

2. Expansion: In this step, MCTS expands the search tree by adding a (randomly chosen)
unvisited child to the selected node from the previous step.

3. Simulation (Default Policy): After expanding the selected node, the newly added node is
evaluated using a trajectory of random actions and computing the return.

4. Backpropagation: In the final step, the computed return is propagated backwards through
the navigated nodes, updating the statistics stored in each node.

For a more detailed explanations of the MCTS algorithm, the reader is referred to (Browne et al.,
2012).

4 METHOD

4.1 OVERVIEW

Figure 1 shows the core steps followed in one iteration of the proposed Continuous Monte Carlo
Graph Search (CMCGS) algorithm. The idea behind each step is similar to its corresponding step
in the original MCTS algorithm. CMCGS starts by initializing the search graph one node per layer,
and continues by adding more nodes to the graph until the simulation budget is exhausted. Finally,
the best action found in the root node of the graph is returned as the agent’s next action. Important
thing to note here is that, unlike MCTS, each node in the search graph of CMCGS corresponds to a
cluster of visited states and has a replay memory for storing the experience tuples of states, actions,
and accumulated rewards. Modelling clusters of visited states using nodes is the most fundamental
building block of CMCGS that enables it to operate in environments with continuous states and
actions using a relatively small search graph. We now explain the steps of the CMCGS algorithm
shown in Figure 1.

(a) Selection: Starting from the root node, the selection mechanism is repeatedly applied to navigate
through the search graph, until a leaf node or a terminal state is reached. This process is shown
in Figure 1a. When visiting a node q, the node’s policy πq (a) is used to sample and simulate a
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Figure 1: Core steps in one iteration of Continuous Monte Carlo Graph Search (CMCGS). a) Starting
from the root node, the graph is navigated via action sampling and node selection until a leaf node is
reached. b) If there is enough experience collected in the final layer of the graph, a new child node N
is added to the previously-selected leaf node. c) A trajectory of random actions is simulated from
the graph’s leaf node to compute the accumulated reward. d) The computed accumulated reward
is backpropagated through the selected nodes, updating their replay memories, policies, and node
selection bandits. e) If a new cluster of experience data is found in a previous layer of the graph, all
nodes in that layer are updated based on the new clustering information (in this example, the node S
is split into two new nodes S1 and S2).

random action a, which updates the simulation state s. The next node is then selected by finding
the node that maximizes the likelihood of the state s, i.e., q ← argmax

q′∈ the next layer
pq

(
s;µq′ , σ

2
q′

)
.

(b) Depth expansion (if needed): In the second step, CMCGS may add a new layer to the graph.
This process is triggered if the graph has low depth or the replay memory of the graph’s last layer
has collected enough experience. Each new layer has initially a single node (as shown in Figure
1b).

(c) Simulation: Similar to MCTS, a trajectory of random actions is simulated starting from the last
selected (leaf) node to update the accumulated reward. This is shown in Figure 1c.

(d) Backpropagation: The nodes visited during the selection step are updated by backpropagating
the collected data (states, actions, and accumulated reward) through the graph and updating the
replay memory of each visited node (shown in Figure 1d). This process also updates the policy
and the state distribution of the nodes, if the corresponding replay memory contains enough
experience.

(e) Width expansion (if needed): The algorithm may increase the width of a graph layer if the
visited states stored in that layer could be clustered into more clusters than the current ones. In
this case, as shown in Figure 1e, for each new cluster a new node is added to the layer and all the
collected experience tuples are re-assigned to their corresponding nodes. Each affected node will
then update its policy and state distribution based on its fresh replay memory.

The pseudocode of the CMCGS algorithm is shown in Algorithm 2. Next we explain the implementa-
tion details of the algorithm.

4.2 IMPLEMENTATION DETAILS

In order to implement CMCGS, one has to make a few design choices that affect the performance of
the algorithm. Fortunately, most of these choices are intuitive and therefore easy to control, leading
to a few hyperparameters in the algorithm. Here, we explain these details that are used throughout
the paper for producing the results.

State Distribution at Each Node: Each node q in the search graph uses a Gaussian distribution
N (µq, Σq) to model the state distribution of its replay memory. The mean µq and covariance
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Algorithm 2 Continuous Monte Carlo Graph Search

1: function CMCGS(st)
2: Initialize the search graph with one node per layer and qroot as the root node in the first layer.
3: while within computational budget do
4: τ, r ← GRAPHPOLICY(st, qroot) ▷ τ ← {⟨qt′ , st′ , at′ , st′+1⟩}t+d−1

t′=t
5: r ← ROLLOUT(sd, r)
6: BACKUP(τ, r)

7: return best action found in the replay memory of the root node qroot

8: function GRAPHPOLICY(s, q)
9: τ ← ∅

10: r ← 0
11: while s is not terminal and not visited all graph layers do
12: a ∼ πq (a) ▷ Action bandit
13: Apply action a and observe new state s′ and reward r′

14: τ ← τ ∪ {⟨q, s, a, s′⟩}
15: r ← r + r′

16: if s′ is not terminal and we are visiting the last layer of the graph then
17: Try adding a new layer with one node to the graph.
18: if s′ is terminal or we are visiting the last layer of the graph then
19: break
20: q ← argmax

q′∈ the next layer
p
(
s′;µq′ , σ

2
q′

)
▷ Q bandit

21: s← s′

22: return τ, r

23: function ROLLOUT(s, r)
24: while within rollout budget and s is not terminal do
25: Choose a uniformly at random
26: Apply action a and update state s and accumulated episode return r

27: return r
28: function BACKUP(τ, r)
29: for each ⟨qt, st, at, st+1⟩ ∈ τ do
30: Store the new experience ⟨st, at, r, st+1⟩ in the replay memory of qt
31: Compute c∗t , the desired number of clusters in layer t
32: if there is less than c∗t clusters in layer t then
33: Try to cluster the data in the replay memory of layer t into c∗t clusters
34: if clustering was successful then
35: For each new cluster, add a new node to layer t of the graph
36: Use the replay memory of each node q′ to update its bandits
37: if no new cluster has been found in layer t then
38: Only update the bandits of the visited node qt using its replay memory

matrix Σq of this distribution are estimated using the visited states in the replay memory of q. Our
experiments showed no significant advantage of using the full covariance matrix. Therefore, for the
sake of faster performance, we used diagonal covariance matrices throughout our experiments.

Policy (Action Bandit) at Each Node: A second Gaussian distribution (with a scalar variance) is
used to model the policy πq (a) of each node q. The mean of this distribution is computed using the
highest scoring experiences stored in the replay memory of the node q. This process is similar to how
CEM updates its sampling distribution, with the difference that CMCGS uses a one-step action bandit
at each node. The scalar variance of the policy is initialized at 0.5 and reduced to 0.15 as the size
of the replay memory increases. The policy πq (a) is then used during the selection step to sample
random actions.

Selection of Q Nodes: As explained in Section 4.1, during the selection step, CMCGS repeatedly sam-
ples random actions and navigates to a q node in the next layer. In this step, CMCGS navigates to the q
node that maximizes the likelihood of the new visited state s, i.e., q ← argmax

q′∈ the next layer
pq

(
s;µq′ , σ

2
q′

)
.
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Table 1: Hyperparameters used in the experiments

Parameter description Value

Initial depth of the search graph 3
Maximum rollout length 5
Clustering algorithm Agglomerative clustering
Ratio of elite samples to be used for updating the action bandits 0.1
Discount factor 1

Hyperparameters: Table 1 shows the list of hyperparameters used throughout our implementation.
Note that, unlike MCTS, in CMCGS the graph is initialized with an initial number of layers (3 in our
setup). In our experiments, this turned out to be an effective approach for better exploitation of visited
experience tuples. For the clustering, we used Agglomerative Clustering provided in Scikit-learn
library (Pedregosa et al., 2011).

5 EXPERIMENTS

We implemented CMCGS using Python, and the source code used throughout this paper is available
on GitHub2. We compared CMCGS with (1) Monte Carlo Tree Search with Progressive Widening
(MCTS-PW) (Chaslot et al., 2008; Couëtoux et al., 2011) and (2) Cross-Entropy Method (CEM)
(Rubinstein & Kroese, 2004; Weinstein & Littman, 2013). To keep the experiments fair, we did not
compare CMCGS against algorithms that employ learning of the value function or the policy, such as
the recent work of Hubert et al. (2021). We used the following simulation environments throughout
our experiments:

1. 2D Navigation: We developed an environment for control of a particle such that it tries to
reach the goal (shown in green in Figures 2a–2b) without colliding with the obstacles. We
used two variations of this environment using circular and rectangular obstacles (shown
in gray in Figures 2a and Figure 2b, respectively). In these environments, a new action is
applied whenever the particle reaches a vertical gray line. We used a continuous reward
that encouraged reaching the goal while penalizing high accelerations and collision with
obstacles. The main challenge in these environments is that the agent has to repeatedly pick
the direction for going around the obstacles.

2. 2D Reacher: Since 2D Navigation environments only have 1 Degree of Freedom (DOF),
we also developed a variation of the classic reacher task for a 2D multi-link arm. In this
environment, only a sparse binary reward is used for reaching the goal (shown in green in
Figures 2c–2d), and there were some obstacles (shown in black) that blocked the path. In
order to evaluate the scalability of CMCGS, we used two variations of this environment
using 15- and 30-linked arms, as shown in Figure 2c and Figure 2d, respectively.

3. DeepMind Control Suite: We also used several popular environments provided by Deep-
Mind Control Suite (Tassa et al., 2018) in our experiments. These environments pose a
wide range of challenges for continuous control with low- and high-dimensional states and
actions.

6 RESULTS

6.1 ABILITY IN EXPLORATION

Figure 3 shows how CMCGS explores the state and action space in the 2d-navigation-circles task.
As it can be seen in the figure, CMCGS demonstrates a good ability in exploration of the state space
and, in particular, is able to find different ways for going around the obstacles. The supplementary
material includes the videos for showing the full episode and how search graphs are generated in
different steps of the 2d-navigation-circles task.

2During the review process, the code is uploaded as the supplementary material. It will be published on
GitHub after acceptance.
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(a) 2D navigation task using circular obstacles (2d-
navigation-circles)

(b) 2D navigation task using rectangular obstacles
(2d-navigation-boxes)

(c) 2D reacher task using 15-linked arm (2d-
reacher-fifteen-poles)

(d) 2D reacher task using 30-linked arm (2d-
reacher-thirty-poles)

Figure 2: Developed environments that were used in the experiments

Figure 3: The search graph generated using CMCGS for the 2d-navigation-circles task. The generated
graph has 5 layers, where each node in the graph is shown using a different color and by projecting
its state and action distributions on the navigation environment.
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6.2 ROBUSTNESS

Figure 4 shows the reward plots for CMCGS and the tested baselines using different simulation
budgets per control timestep. The plots show the mean and standard deviation of the undiscounted
sum of rewards over the full episode, computed using 10 random seeds per each configuration. All
experiments used the same set of hyperparameters, as shown in Table 1. The supplementary material
includes example videos of how CMCGS works in different environments.

As it can be seen in Figure 4, CMCGS demonstrates the best performance compared to CEM and
MCTS-PW. CEM achieves similar or slightly better performance in only a few environments such as
reacher-hard, walker-walk, and walker-run. MCTS-PW is the weakest method in all environments
except 2d-reacher-fifteen-poles and 2d-reacher-thirty-poles.

An important observation from Figure 4 is that CMCGS performs well even with small simulation
budgets of less than 1000 timesteps. On the other hand, CEM requires at least 2000 timesteps to reach
similar performance. This behavior can be easily seen in ball_in_cup_catch, finger-spin, cheetah-run,
walker-walk, and walker-run environments.

Figure 4 also shows how the performance of each algorithm changes for different simulation budgets
per timestep. As it can be seen in the plots, CMCGS and MCTS-PW demonstrate the least sensitivity
to the simulation budget, which could be the result of Monte Carlo estimation of the return at each
node.

Figure 4: Reward plots for different simulation budgets per timestep. As explained in Section 5,
2d-X environments (shown in the first row) have been developed by the authors, and the rest of the
environments are from DeepMind Control Suite. The proposed CMCGS algorithm demonstrates
superior performance in most of the tested environments, especially when using small simulation
budgets of less than 1000 timesteps.
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7 LIMITATIONS AND FUTURE WORK

In this section, we explain the main limitations of the proposed algorithm and how they could be
addressed in future work.

Bootstrapping: In our current implementation, at each timestep CMCGS builds the search graph
from scratch. It has been shown that in model-predictive control it is usually beneficial to use the best
found trajectory from previous timestep(s) to bias the optimization process towards more promising
trajectories. In CMCGS, this could be done by biasing the mean of the action policies of the search
nodes towards old best actions. A more trivial approach would be to simply inject the old best
trajectory into the replay memory of the search nodes.

Learning: It has been shown that MCTS could benefit from learned value functions or rollout policies
that have been trained using pre-recorded datasets. We believe that this could be a trivial next step for
improving the performance of CMCGS.

Arbitrary graph structures: Currently, CMCGS uses layered graph structures to explore the state
space. This does not allow the search graph to re-use previous experience in environments where
the agent can navigate back and forth between different states (such as searching through a maze).
This limitation could be lifted by allowing the algorithm to build arbitrary graph structures (such as
complete graphs) to better explore the structure of the state space.

8 CONCLUSION

In this paper, we proposed Continous Monte Carlo Graph Search (CMCGS), an extension of the
popular MCTS algorithm for solving decision making problems with continuous state and action
spaces. CMCGS builds up on the observation that different regions of the state space ask for different
action bandits for estimating the value function. Based on this observation, CMCGS builds a layered
search graph where at each layer the visited states are clustered into several stochastic action bandit
nodes. This allows CMCGS to solve complex continuous control problems with small search graphs.
Our experiments show that CMCGS outperforms popular benchmarks in several complex continuous
environments, such as DeepMind Control Suite benchmarks. We believe that the proposed CMCGS
algorithm could be a building block for a new family of Monte Carlo methods applied to decision
making problems with continuous action spaces.
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