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Abstract

We introduce Direct Models, a generative modeling framework that enables single-
step diffusion by learning a direct mapping from initial noise x to all intermediate
latent states along the generative trajectory. Unlike traditional diffusion models that
rely on iterative denoising or integration, Direct Models leverages a progressive
learning scheme where the mapping from z( to x4y s is composed as an update
from x( to x; plus the velocity at time ¢. This formulation allows the model to
learn the entire trajectory in a recursive, data-consistent manner while maintaining
computational efficiency. At inference, the full generative path can be obtained in
a single forward pass. Experimentally, we show that Direct Models achieves state-
of-the-art sample quality among single-step diffusion methods while significantly
reducing inference time.

1 Introduction

Diffusion models and flow matching methods have recently achieved remarkable success across
a wide range of applications, including image synthesis [5], audio generation [7], and 3D shape
modeling [10]. Despite their effectiveness, a significant limitation of these approaches lies in their
reliance on iterative sampling or inference procedures, which are computationally expensive and can
limit real-time deployment.

To address this bottleneck, some recent works have explored distillation techniques to compress
multi-step diffusion or flow matching models into efficient single-step samplers. Notable examples
include [12, 16], which require first training a high-quality teacher model and then performing a
costly distillation step. Moreover, such distillation sometimes involves constructing large synthetic
datasets, increasing the complexity and resource demands of the overall pipeline.

In contrast, this work proposes a novel single-run training approach that directly learns a one-step
diffusion-like generative model without relying on teacher models or distillation. Our method offers a
more practical and efficient solution for fast sampling, avoiding the overhead inherent in multi-stage
training pipelines and results in high-quality samples (see Figure 1).

To address these challenges, we propose a new class of Direct Models, a residual-based formulation
that enables both single-step sampling and single-run training. The key idea is to directly model the
full flow map through a time-indexed residual field, allowing us to query any intermediate latent
x; without requiring numerical integration. This direct access to latents motivates the name of our
approach.

At the core of our method lies a simple recursive structure: the residual displacement at time ¢ 4 Jt is
expressed as a combination of the residual at time ¢ and the local velocity at that point. This recursive
formulation not only serves as a training objective but also acts as a structural prior, encouraging
consistency across time steps while remaining efficient and fully self-supervised.

Our main contributions are as follows:
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Figure 1: Generations of multi-step flow-matching models and single-step Direct Models. Top row:
128-step generation by a vanilla flow matching model. Bottom row: Generations with our single-step
model. Direct Models generates high-quality images across a wide range of inference budgets,
including using a single forward pass, drastically reducing sampling time by up to 128 x compared to
diffusion and flow-matching models. The same starting noise is used within each column.

* We propose Direct Models, a novel direct residual model for one-step flow generation that
enables efficient single-step sampling without iterative inference.

* We introduce a recursive training framework, based on a straightforward mathematical
derivation based on a Taylor expansion of the flow, that enforces local velocity consistency,
allowing the model to be trained in a single run.

* We demonstrate that Direct Models achieves superior sample quality compared to existing
single-step, single-run generative approaches, closing the gap with iterative methods while
maintaining fast inference.

2 Preliminaries: Continuous-Time Generative Models

Modern generative modeling has been significantly shaped by methods that transform simple source
distributions into complex data distributions through continuous-time dynamics. Two prominent
families in this space are diffusion-based models (e.g., [18, 5, 19]) and flow-based approaches,
particularly those based on flow matching [8, 9]. These frameworks parameterize sample trajectories
using neural differential equations, typically in the form of an ODE, to transport mass smoothly from
a source distribution (e.g., Gaussian noise) to a target data distribution.

In this work, we adopt a flow matching viewpoint, leveraging its optimal transport-inspired formu-
lation to model deterministic sample paths. Notably, recent studies (e.g., [0]) have emphasized the
close relationship between diffusion and flow-based models, observing that flow matching can be
viewed as a deterministic instance of more general stochastic diffusion processes. As such, we view
these paradigms as conceptually intertwined and refer to them in parallel where appropriate.

Formally, consider a pair of distributions: a base distribution py and a target distribution p1. The
goal is to learn a velociry field vy(z,t), parameterized by a neural network, that defines the evolution
of a sample over time

d .

9@ 1) = vo(¢(z,1), 1), with ¢(x,0) = 2o, @0 ~ pio. (M
Solving this ODE from ¢ = 0 to ¢t = 1 generates a trajectory that ideally maps p into z1.

A practical and efficient instantiation of this idea is given by Conditional Flow Matching (CFM),
which sidesteps density estimation by using known correspondence pairs (g, 1) ~ (o, 141). Rather

than relying on stochastic score-based gradients, the model is trained to approximate the ground-truth
transport velocity along straight-line paths

xy = (1 —t)xg + ta. 2
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The true instantaneous velocity along this path is simply 21 — x¢, and the model vg(z, t) is trained
to match this velocity using the loss

L(0) = Eyy 0t [||v9((1 — By + ta, t) — (21 — z0)||2} . 3)

This supervised objective encourages the model to replicate the optimal displacement between samples
at intermediate points in time, by constructing a continuous flow without requiring likelihoods or
sampling noise. Once trained, generation consists of drawing xy ~ jo and integrating the ODE (1)
forward using the learned dynamics. This process can be efficiently implemented with standard ODE
solvers such as Euler or Runge—Kutta methods.

3 Method: One-Step Flow via Direct Models

3.1 Formulation

We introduce a one-step generative model by directly parameterizing the flow map ¢(x,¢). A natural
formulation is to define the flow as ¢(x, t) = x+w(x, t), where the residual field w(z, t) captures the
displacement from the initial point. However, this choice allows the magnitude of the displacement to
vary arbitrarily with time which we found leading to unstable training. To impose a form of temporal
consistency, we instead define the flow as

¢($,t) :x+t~w(x,t), (4)

where w(x,t) € R is now interpreted as a normalized direction of displacement, and the scaling
by t ensures that the overall displacement grows smoothly from zero to its final value. This parame-
terization encourages the magnitude ||t - w(x, t)| to vary linearly with time, providing a stable and
interpretable structure for learning. This formulation provides a single-step trajectory, in contrast to
the continuous ODE integration approach commonly used in flow matching.

In the flow matching framework, the temporal derivative of the trajectory satisfies

d
%(b(l',t) :U(¢($,t),t), (5)

where v(z4, t) is the target velocity field at the point 2:; = ¢(z, t). To incorporate this into our model,
we compute the time derivative of ¢(x,t) as defined in Equation (4)

ow(x,t)
o (6)

We approximate the time derivative of w(z, t) using the forward difference with a discrete 6t step
ow(z,t)  w(w,t+6t) —w(w,t)

d
%M&:,t) =w(x,t)+t-

ot = ot ' ™
By substituting this approximation into the derivative of ¢(x, t), we obtain
%gﬁ(m,t) =w(z,t)+t- w(:r,t—i—é(z;i—w(x,t)‘ 8)
By matching this expression to the target velocity v(x;, t), we then have
w(x,t)+1t- w(x,t—}—é;i—w(x,t) = v(z¢,t), ©)
which can be rearranged into the equation
t- w(gc,t—i—étt;])f—w(x,t) = v(zy, t) — w(a,t). (10)
Finally, by multiplying both sides by % we have
w(z, t+ 0t) —w(x,t) = % (v(xg, t) —w(zx,t)), (11)
and by isolating w(x, t 4 dt), we arrive at
w(x,t+ 0t) = @~w(m,t)+%~v(xt,t). (12)
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3.2 Training Direct Models via Local Velocity Propagation

To learn the flow map parameterized by a model w,, with parameters v, we leverage the recursive
structure implied by the progressive velocity propagation equation

t— ot

w(x,t+ 0t) = w(z,t) + % ~v(x, t) | (13)

This relation connects the residual field w at two consecutive time steps through the velocity field v.
We exploit this property to define a consistency-based training loss for w,, encouraging it to align
with the propagated velocity information.

In our formulation, we train two models jointly:

* vg(x,t): a velocity field trained using the standard Conditional Flow Matching (CFM) loss,

* w,(z,t): aresidual displacement field trained using a recursive propagation loss derived
from Equation (13).

The velocity field vy is trained using the standard Conditional Flow Matching (CFM) loss. Given a
sample pair (zg, 1) ~ (f0, #41) and a uniformly sampled time ¢ ~ U0, 1], we define the intermediate
point

xe=1—t) - zo+t-z. (14)
The CFM objective encourages the predicted velocity to match the ground-truth displacement between
x¢ and z at this intermediate point

Lerm(8) = Evpoa, ¢ [lva(ae,t) = (@1 —20)]°] - (1s)

The residual field w,, is trained using a local velocity propagation loss derived from Equation (13).
Given the sample 2o ~ pg, a small step size 6t and ¢’ ~ U[dt, 1 — §t], we define the propagation loss

as
2
] , (16

with z}, = xg +t' - sg[w, (zo,t’)], where sg[-] denotes a stop-gradient operator. Notice that we define
the residual field model w, only with respect to the samples zo from the initial distribution p9. In
this way, at inference we can directly map these samples to any point along the trajectory in one
step, and, in particular, to the target distribution samples x;. Although w, (x,t") may be initially
uninformative at the beginning of the training, the propagation loss remains effective, removing the
need for explicit scheduling of ¢’. This simplifies training, improving stability and practicality without
compromising performance.

t'— ot
t/

‘cPrOP(V) = EIOJ'

le,(xo,t’ +6t) — (

ot
selu(an )] + 5 )

Our training algorithm is outlined in Algorithm 1.

3.3 Sampling from Direct Models

Sampling from our direct flow map model is straightforward and efficient. Given an initial sample
o ~ lo, the corresponding transformed sample z; can be obtained via a single forward pass of the
residual field

1 = xo + wy(x0, 1). 17
This one-step sampling eliminates the need for iterative procedures, making the approach practical
and fast for inference.

4 Experiments

4.1 Settings

In this section, we compare our method against several existing approaches. All models are trained
from scratch using the same architecture and implementation framework to ensure a fair comparison.
Specifically, we adopt the DiT-B diffusion transformer architecture from [14]. Our experiments
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Algorithm 1 Training Direct Models via Local Velocity Propagation

1: Initialize parameters 6 for vy, v for w,,
2: for each training step do
3 Sample pair (zo, 1) ~ (po0, p1)
4:  Train velocity model vy with CFM loss:
5 Sample t ~ U]0, 1]
6:  Compute z; = (1 — t)xg + tz; and
7 Minimize
Lepm = |vg(24,t) — (21 — 20)|?
with respect to 0

8:  Update

9:  Train residual field w, with local propagation loss:
10:  Sample ¢’ ~ U[0t, 1 — 6t]
11:  Compute z}; = xg + t' - sglw, (zg,t’)]
12:  Minimize
t— 6t ?
t/

Lprop = ku(xo,t/ + 0t) — (

ot
-sglw, (o, )] + i ve (7}, t’))

with respect to v
13:  Update v
14: end for

include unconditional generation on the CelebAHQ-256 dataset [1 ] and we also provide a compari-
son with class-conditional generation on ImageNet-256 [2] . For the results in Table 1 , we use the
AdamW optimizer with a fixed learning rate of 5 x 10~° and no weight decay. Models are trained
for 500K iterations, using a step size of 6t = 10~2 and batch size of 64. Additionally, all models
operate in the latent space provided by the sd-vae-ft-mse autoencoder [15].

4.2 Compared Methods

We compare our method to several prior approaches, following the same comparison setup as in [3].
For completeness, we briefly describe the training details of the compared methods based on the
descriptions in [3].

We consider two categories of diffusion-based models: distillation methods,! which involve pre-
training a diffusion model followed by distillation, and end-to-end methods, which train a one-step
model from scratch in a single training run. As representatives of the first category, we include
the standard diffusion model, following the setup of [14], and Flow Matching, which replaces the
diffusion objective with an optimal transport loss as proposed in [9]. These serve as baselines for
iterative multi-step denoising models. Several other methods build upon the flow matching objective,
often utilizing a teacher model. Reflow [9] is a two-stage distillation technique that generates syn-
thetic (zg, z1) pairs by fully evaluating a teacher model. Following [9], 50k synthetic samples are
generated for CelebAHQ, with each requiring 128 forward passes. Unlike conventional distillation,
the student model is trained across the full time interval ¢ € (0, 1). Progressive Distillation [16]
adopts a binary time-distillation framework. Starting from a pretrained teacher, a sequence of student
models is distilled, each trained with a step size that is double the previous one. The initial phase
employs classifier-free guidance to enhance performance. Consistency Distillation [20] is a two-stage
approach where the student model learns to predict consistent z; values from teacher-generated pairs
(z¢, 2¢+5). In contrast, Consistency Training [20] is an end-to-end method that trains a one-step
model directly on empirical pairs (¢, z15), with time discretization bins increasing progressively
during training. Shortcut models [3] propose a novel generative modeling framework that conditions
on both the current noise level and desired step size, enabling efficient and flexible sampling under
different inference budgets. Finally, Live Reflow, introduced in [3], is an end-to-end model trained

'We do not claim that our method outperforms existing distillation techniques; rather, we include some
representative distillation methods for reference.
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Table 1: Comparison of different training objectives using the same model architecture (DiT-B).
FID-50k scores (lower is better) are reported for 128, 4, and 1-step denoising. Direct Models
produces high-quality samples within a single step and training run, narrowing the gap with single-
step distillation methods. Parentheses represent evaluation under conditions that the objective is not
intended to support.

CelebAHQ-256
128-Step 4-Step  1-Step

Distillation
Progressive Distillation (302.9) (251.3) 14.8
Consistency Distillation 59.5 39.6 38.2
Reflow 16.1 18.4 23.2
End-to-end (single training run)
Diffusion 23.0 (123.4) (132.2)
Flow Matching 7.3 (63.3) (280.5)
Consistency Training 53.7 19.0 33.2
Live Reflow 6.3 27.2 433
Shortcut Models 6.9 13.8 20.5
Direct Models (ours) - - 16.8

Figure 2: Interpolations between two sampled noise points. All displayed images are model generated.
Each horizontal set represents images generated by one-step denoising of a variance preserving
interpolation between two Gaussian noise samples.

simultaneously on flow-matching and Reflow-distilled targets. The model is conditioned separately on
each type of target, and new distillation targets are generated at every training step via full denoising,
making the method computationally expensive.

4.3 Evaluation

We follow the evaluation protocol from [3]. Models are evaluated by generating samples using 1
diffusion step for our method, and 128, 4, and 1 steps for the baselines. We report the FID-50k score,
a standard metric in generative modeling. FID is computed using statistics from the full dataset, with
no compression applied to the generated images. All images are resized to 299 x 299 using bilinear
interpolation and clipped to the (—1, 1) range. During evaluation, we use the Exponential Moving
Average (EMA) of the model parameters.

4.4 Results

Table 1 shows that Direct Models achieves strong generation quality using just a single sampling step.
Our method outperforms all single-stage training approaches in one-step generation and remains
competitive with two-stage progressive distillation. Unlike these multi-phase methods, Direct Models
reaches this performance within a single training run. As expected, standard diffusion and flow-
matching methods show a significant drop in performance when limited to 4 or 1 sampling step.
Additional qualitative results are provided in the supplementary material.
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Table 2: Effect of §t on the image quality on CelebAHQ-256.
ot 1072 5-1073
FID| 16.8 16.6

4.5 Does Direct Models Induce a Semantically Coherent Latent Space?

To examine whether the latent space learned by Direct Models supports smooth semantic transi-
tions, we explore linear interpolations in the input noise space. Specifically, we select pairs of
initial Gaussian noise vectors (2, 2$) and interpolate between them using the variance-preserving

formulation

) =nxh +/1—n2ax)
where the coefficient n € [0, 1]. We then pass the interpolated noise samples through the model and
observe the corresponding outputs.

Figure 2 presents representative samples from these interpolations. Despite the absence of any explicit
constraint or regularizer enforcing smoothness in the learned mapping, the results reveal coherent
and continuous transformations across the generated images. These transitions are not only visually
smooth but also retain semantic consistency, suggesting that Direct Models constructs a meaningful
latent structure.

5 Ablation

We investigate the effect of the discretization interval ¢ on image quality. As shown in Table 2, both
values of dt, namely 10~2 and 5 - 10~3, lead to very comparable FID scores (16.8 vs. 16.6).

6 Related Work

We briefly review existing approaches that enable single-step diffusion-based generation, which can
be broadly categorized into distillation-based methods and single-phase training methods.

Distillation Methods In recent years, various techniques have been developed to distill generative
models, particularly diffusion models, into more efficient one-step sampling frameworks. These
methods typically follow a two-stage pipeline: first, a diffusion model is pretrained; second, a separate
model is trained to approximate the behavior of the full diffusion process using fewer inference steps.

Methods such as knowledge distillation [12] and rectified flows [9] generate synthetic training
pairs by fully simulating the reverse-time denoising ODE. Due to the high computational cost of
full simulation, more efficient alternatives have been proposed that use bootstrapping strategies to
partially initialize the ODE trajectory [4, 21]. Additionally, several works have explored alternatives
to the standard L2 loss, including adversarial training objectives [17] and distribution-matching
approaches [23, 22]. Progressive distillation techniques [16, 1, 13] further decompose the distillation
process into multiple stages with increasing time step sizes, thereby reducing the need for long
bootstrap paths.

In contrast to these methods, we propose an end-to-end training approach that directly learns a
one-step generative model. This eliminates the need for separate pretraining and distillation phases,
making our method simpler than both full simulation-based techniques and multi-stage progressive
distillation.

Single-phase Training Methods Few methods have been proposed for single-phase training that
enable single-step generation. Consistency Models [20], a pioneering approach in this area, represent
a class of generative models that directly map partially noised data points to their final, fully denoised
outputs in a single step. While these models have been effectively used in distillation purposes,
they have also been explored the end-to-end training scenario. Shortcut models [3] propose a novel
generative modeling framework that conditions on both the current noise level and desired step size,
enabling efficient and flexible sampling under different inference budgets.
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Figure 3: Visual illustration of the differences between prior work in terms of the learned trajectory
mappings. xo denotes an initial Gaussian noise and z; its corresponding noise-free image. Left:
Consistency models [20] . Middle: Shortcuts models [3]. Right: Direct Models (ours).

Difference from consistency models [20] While we share the general concept of consistency
with [20], Direct Models differs significantly in its formulation. Conceptually, Direct Models can
be seen as the opposite approach: instead of mapping intermediate latents x; directly to the fully
denoised image x1, our method maps initial Gaussian noise g to all intermediate latent states x;, as
shown in Figure 3.

Difference from shortcut models [3] Shortcut models are arguably the most similar approach to
Direct Models. However, there are key differences: 1) Conceptually, Shortcut models learn direct
mappings between all pairs of latent states, including both the initial and final ones. In contrast,
Direct Models focuses on learning a direct mapping only between the initial Gaussian noise and
all intermediate latent states. 2) More importantly, our approach is grounded on a more principled
mathematical formulation. Specifically, we derive our method using a Taylor expansion of the flow,
as shown in Equation (13), which links the flow at neighboring timesteps to the velocity field.

7 Limitations and Future Work

Our method presents some limitations. First, Direct Models requires training two separate networks,
which limits efficiency. Second, the current formulation is restricted to single-step inference. A
promising direction for future research is to extend our framework to enable training a single unified
model while potentially allowing flexibility in the number of inference steps during sampling.

8 Conclusion

We introduced Direct Models, a new type of diffusion-based generative model that enables both
single-step sampling and single-run training. By learning a time-indexed residual field to directly
approximate the full generative flow, our method achieves fast and high-quality generation while
significantly simplifying the training process. This makes Direct Models a practical and efficient
alternative to existing diffusion-based techniques.
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We included the assumptions and the full derivations.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We will share our code in the supplementary.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: we will share the code.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We will share all the details in the supplementary.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: We follow prior works that do not .
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:
Justification: We will provide this information if the reviewers ask for it.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We follow the code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: We believe there is no major societal impacts.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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12.

13.

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: There is no high risk.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cited the used assets.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer:[NA]
Justification: No new asset.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowd-sourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No risks.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: No major use of LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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