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Abstract

We introduce Direct Models, a generative modeling framework that enables single-1

step diffusion by learning a direct mapping from initial noise x0 to all intermediate2

latent states along the generative trajectory. Unlike traditional diffusion models that3

rely on iterative denoising or integration, Direct Models leverages a progressive4

learning scheme where the mapping from x0 to xt+δt is composed as an update5

from x0 to xt plus the velocity at time t. This formulation allows the model to6

learn the entire trajectory in a recursive, data-consistent manner while maintaining7

computational efficiency. At inference, the full generative path can be obtained in8

a single forward pass. Experimentally, we show that Direct Models achieves state-9

of-the-art sample quality among single-step diffusion methods while significantly10

reducing inference time.11

1 Introduction12

Diffusion models and flow matching methods have recently achieved remarkable success across13

a wide range of applications, including image synthesis [5], audio generation [7], and 3D shape14

modeling [10]. Despite their effectiveness, a significant limitation of these approaches lies in their15

reliance on iterative sampling or inference procedures, which are computationally expensive and can16

limit real-time deployment.17

To address this bottleneck, some recent works have explored distillation techniques to compress18

multi-step diffusion or flow matching models into efficient single-step samplers. Notable examples19

include [12, 16], which require first training a high-quality teacher model and then performing a20

costly distillation step. Moreover, such distillation sometimes involves constructing large synthetic21

datasets, increasing the complexity and resource demands of the overall pipeline.22

In contrast, this work proposes a novel single-run training approach that directly learns a one-step23

diffusion-like generative model without relying on teacher models or distillation. Our method offers a24

more practical and efficient solution for fast sampling, avoiding the overhead inherent in multi-stage25

training pipelines and results in high-quality samples (see Figure 1).26

To address these challenges, we propose a new class of Direct Models, a residual-based formulation27

that enables both single-step sampling and single-run training. The key idea is to directly model the28

full flow map through a time-indexed residual field, allowing us to query any intermediate latent29

xt without requiring numerical integration. This direct access to latents motivates the name of our30

approach.31

At the core of our method lies a simple recursive structure: the residual displacement at time t+ δt is32

expressed as a combination of the residual at time t and the local velocity at that point. This recursive33

formulation not only serves as a training objective but also acts as a structural prior, encouraging34

consistency across time steps while remaining efficient and fully self-supervised.35

Our main contributions are as follows:36
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Figure 1: Generations of multi-step flow-matching models and single-step Direct Models. Top row:
128-step generation by a vanilla flow matching model. Bottom row: Generations with our single-step
model. Direct Models generates high-quality images across a wide range of inference budgets,
including using a single forward pass, drastically reducing sampling time by up to 128× compared to
diffusion and flow-matching models. The same starting noise is used within each column.

• We propose Direct Models, a novel direct residual model for one-step flow generation that37

enables efficient single-step sampling without iterative inference.38

• We introduce a recursive training framework, based on a straightforward mathematical39

derivation based on a Taylor expansion of the flow, that enforces local velocity consistency,40

allowing the model to be trained in a single run.41

• We demonstrate that Direct Models achieves superior sample quality compared to existing42

single-step, single-run generative approaches, closing the gap with iterative methods while43

maintaining fast inference.44

2 Preliminaries: Continuous-Time Generative Models45

Modern generative modeling has been significantly shaped by methods that transform simple source46

distributions into complex data distributions through continuous-time dynamics. Two prominent47

families in this space are diffusion-based models (e.g., [18, 5, 19]) and flow-based approaches,48

particularly those based on flow matching [8, 9]. These frameworks parameterize sample trajectories49

using neural differential equations, typically in the form of an ODE, to transport mass smoothly from50

a source distribution (e.g., Gaussian noise) to a target data distribution.51

In this work, we adopt a flow matching viewpoint, leveraging its optimal transport-inspired formu-52

lation to model deterministic sample paths. Notably, recent studies (e.g., [6]) have emphasized the53

close relationship between diffusion and flow-based models, observing that flow matching can be54

viewed as a deterministic instance of more general stochastic diffusion processes. As such, we view55

these paradigms as conceptually intertwined and refer to them in parallel where appropriate.56

Formally, consider a pair of distributions: a base distribution µ0 and a target distribution µ1. The57

goal is to learn a velocity field vθ(x, t), parameterized by a neural network, that defines the evolution58

of a sample over time59

d

dt
ϕ(x, t) = vθ(ϕ(x, t), t),with ϕ(x, 0) = x0, x0 ∼ µ0. (1)

Solving this ODE from t = 0 to t = 1 generates a trajectory that ideally maps µ0 into µ1.60

A practical and efficient instantiation of this idea is given by Conditional Flow Matching (CFM),61

which sidesteps density estimation by using known correspondence pairs (x0, x1) ∼ (µ0, µ1). Rather62

than relying on stochastic score-based gradients, the model is trained to approximate the ground-truth63

transport velocity along straight-line paths64

xt = (1− t)x0 + tx1. (2)
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The true instantaneous velocity along this path is simply x1 − x0, and the model vθ(x, t) is trained65

to match this velocity using the loss66

L(θ) = Ex0,x1,t

[∥∥vθ

(
(1− t)x0 + tx1, t

)
− (x1 − x0)

∥∥2] . (3)

This supervised objective encourages the model to replicate the optimal displacement between samples67

at intermediate points in time, by constructing a continuous flow without requiring likelihoods or68

sampling noise. Once trained, generation consists of drawing x0 ∼ µ0 and integrating the ODE (1)69

forward using the learned dynamics. This process can be efficiently implemented with standard ODE70

solvers such as Euler or Runge–Kutta methods.71

3 Method: One-Step Flow via Direct Models72

3.1 Formulation73

We introduce a one-step generative model by directly parameterizing the flow map ϕ(x, t). A natural74

formulation is to define the flow as ϕ(x, t) = x+w(x, t), where the residual field w(x, t) captures the75

displacement from the initial point. However, this choice allows the magnitude of the displacement to76

vary arbitrarily with time which we found leading to unstable training. To impose a form of temporal77

consistency, we instead define the flow as78

ϕ(x, t) = x+ t · w(x, t), (4)

where w(x, t) ∈ Rd is now interpreted as a normalized direction of displacement, and the scaling79

by t ensures that the overall displacement grows smoothly from zero to its final value. This parame-80

terization encourages the magnitude ∥t · w(x, t)∥ to vary linearly with time, providing a stable and81

interpretable structure for learning. This formulation provides a single-step trajectory, in contrast to82

the continuous ODE integration approach commonly used in flow matching.83

In the flow matching framework, the temporal derivative of the trajectory satisfies84

d

dt
ϕ(x, t) = v(ϕ(x, t), t), (5)

where v(xt, t) is the target velocity field at the point xt = ϕ(x, t). To incorporate this into our model,85

we compute the time derivative of ϕ(x, t) as defined in Equation (4)86

d

dt
ϕ(x, t) = w(x, t) + t · ∂w(x, t)

∂t
. (6)

We approximate the time derivative of w(x, t) using the forward difference with a discrete δt step87

∂w(x, t)

∂t
≈ w(x, t+ δt)− w(x, t)

δt
. (7)

By substituting this approximation into the derivative of ϕ(x, t), we obtain88

d

dt
ϕ(x, t) = w(x, t) + t · w(x, t+ δt)− w(x, t)

δt
. (8)

By matching this expression to the target velocity v(xt, t), we then have89

w(x, t) + t · w(x, t+ δt)− w(x, t)

δt
= v(xt, t), (9)

which can be rearranged into the equation90

t · w(x, t+ δt)− w(x, t)

δt
= v(xt, t)− w(x, t). (10)

Finally, by multiplying both sides by δt
t we have91

w(x, t+ δt)− w(x, t) =
δt

t
· (v(xt, t)− w(x, t)), (11)

and by isolating w(x, t+ δt), we arrive at92

w(x, t+ δt) =
t− δt

t
· w(x, t) + δt

t
· v(xt, t). (12)
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3.2 Training Direct Models via Local Velocity Propagation93

To learn the flow map parameterized by a model wν , with parameters ν, we leverage the recursive94

structure implied by the progressive velocity propagation equation95

w(x, t+ δt) =
t− δt

t
· w(x, t) + δt

t
· v(xt, t) . (13)

This relation connects the residual field w at two consecutive time steps through the velocity field v.96

We exploit this property to define a consistency-based training loss for wν , encouraging it to align97

with the propagated velocity information.98

In our formulation, we train two models jointly:99

• vθ(x, t): a velocity field trained using the standard Conditional Flow Matching (CFM) loss,100

• wν(x, t): a residual displacement field trained using a recursive propagation loss derived101

from Equation (13).102

The velocity field vθ is trained using the standard Conditional Flow Matching (CFM) loss. Given a103

sample pair (x0, x1) ∼ (µ0, µ1) and a uniformly sampled time t ∼ U [0, 1], we define the intermediate104

point105

xt = (1− t) · x0 + t · x1. (14)
The CFM objective encourages the predicted velocity to match the ground-truth displacement between106

x0 and x1 at this intermediate point107

LCFM(θ) = Ex0,x1,t

[
∥vθ(xt, t)− (x1 − x0)∥2

]
. (15)

The residual field wν is trained using a local velocity propagation loss derived from Equation (13).108

Given the sample x0 ∼ µ0, a small step size δt and t′ ∼ U [δt, 1− δt], we define the propagation loss109

as110

Lprop(ν) = Ex0,t′

[∥∥∥∥wν(x0, t
′ + δt)−

(
t′ − δt

t′
· sg[wν(x0, t

′)] +
δt

t′
· vθ(x′

t, t
′)

)∥∥∥∥2
]
, (16)

with x′
t = x0 + t′ · sg[wν(x0, t

′)], where sg[·] denotes a stop-gradient operator. Notice that we define111

the residual field model wν only with respect to the samples x0 from the initial distribution µ0. In112

this way, at inference we can directly map these samples to any point along the trajectory in one113

step, and, in particular, to the target distribution samples x1. Although wν(x0, t
′) may be initially114

uninformative at the beginning of the training, the propagation loss remains effective, removing the115

need for explicit scheduling of t′. This simplifies training, improving stability and practicality without116

compromising performance.117

Our training algorithm is outlined in Algorithm 1.118

3.3 Sampling from Direct Models119

Sampling from our direct flow map model is straightforward and efficient. Given an initial sample120

x0 ∼ µ0, the corresponding transformed sample x1 can be obtained via a single forward pass of the121

residual field122

x1 = x0 + wν(x0, 1). (17)
This one-step sampling eliminates the need for iterative procedures, making the approach practical123

and fast for inference.124

4 Experiments125

4.1 Settings126

In this section, we compare our method against several existing approaches. All models are trained127

from scratch using the same architecture and implementation framework to ensure a fair comparison.128

Specifically, we adopt the DiT-B diffusion transformer architecture from [14]. Our experiments129
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Algorithm 1 Training Direct Models via Local Velocity Propagation

1: Initialize parameters θ for vθ, ν for wν

2: for each training step do
3: Sample pair (x0, x1) ∼ (µ0, µ1)
4: Train velocity model vθ with CFM loss:
5: Sample t ∼ U [0, 1]
6: Compute xt = (1− t)x0 + tx1 and
7: Minimize

LCFM = ∥vθ(xt, t)− (x1 − x0)∥2

with respect to θ
8: Update θ
9: Train residual field wν with local propagation loss:

10: Sample t′ ∼ U [δt, 1− δt]
11: Compute x′

t = x0 + t′ · sg[wν(x0, t
′)]

12: Minimize

Lprop =

∥∥∥∥wν(x0, t
′ + δt)−

(
t′ − δt

t′
· sg[wν(x0, t

′)] +
δt

t′
· vθ(x′

t, t
′)

)∥∥∥∥2
with respect to ν

13: Update ν
14: end for

include unconditional generation on the CelebAHQ-256 dataset [11] and we also provide a compari-130

son with class-conditional generation on ImageNet-256 [2] . For the results in Table 1 , we use the131

AdamW optimizer with a fixed learning rate of 5× 10−5 and no weight decay. Models are trained132

for 500K iterations, using a step size of δt = 10−2 and batch size of 64. Additionally, all models133

operate in the latent space provided by the sd-vae-ft-mse autoencoder [15].134

4.2 Compared Methods135

We compare our method to several prior approaches, following the same comparison setup as in [3].136

For completeness, we briefly describe the training details of the compared methods based on the137

descriptions in [3].138

We consider two categories of diffusion-based models: distillation methods,1 which involve pre-139

training a diffusion model followed by distillation, and end-to-end methods, which train a one-step140

model from scratch in a single training run. As representatives of the first category, we include141

the standard diffusion model, following the setup of [14], and Flow Matching, which replaces the142

diffusion objective with an optimal transport loss as proposed in [9]. These serve as baselines for143

iterative multi-step denoising models. Several other methods build upon the flow matching objective,144

often utilizing a teacher model. Reflow [9] is a two-stage distillation technique that generates syn-145

thetic (x0, x1) pairs by fully evaluating a teacher model. Following [9], 50k synthetic samples are146

generated for CelebAHQ, with each requiring 128 forward passes. Unlike conventional distillation,147

the student model is trained across the full time interval t ∈ (0, 1). Progressive Distillation [16]148

adopts a binary time-distillation framework. Starting from a pretrained teacher, a sequence of student149

models is distilled, each trained with a step size that is double the previous one. The initial phase150

employs classifier-free guidance to enhance performance. Consistency Distillation [20] is a two-stage151

approach where the student model learns to predict consistent x1 values from teacher-generated pairs152

(xt, xt+δ). In contrast, Consistency Training [20] is an end-to-end method that trains a one-step153

model directly on empirical pairs (xt, xt+δ), with time discretization bins increasing progressively154

during training. Shortcut models [3] propose a novel generative modeling framework that conditions155

on both the current noise level and desired step size, enabling efficient and flexible sampling under156

different inference budgets. Finally, Live Reflow, introduced in [3], is an end-to-end model trained157

1We do not claim that our method outperforms existing distillation techniques; rather, we include some
representative distillation methods for reference.
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Table 1: Comparison of different training objectives using the same model architecture (DiT-B).
FID-50k scores (lower is better) are reported for 128, 4, and 1-step denoising. Direct Models
produces high-quality samples within a single step and training run, narrowing the gap with single-
step distillation methods. Parentheses represent evaluation under conditions that the objective is not
intended to support.

CelebAHQ-256
128-Step 4-Step 1-Step

Distillation
Progressive Distillation (302.9) (251.3) 14.8
Consistency Distillation 59.5 39.6 38.2
Reflow 16.1 18.4 23.2

End-to-end (single training run)
Diffusion 23.0 (123.4) (132.2)
Flow Matching 7.3 (63.3) (280.5)
Consistency Training 53.7 19.0 33.2
Live Reflow 6.3 27.2 43.3
Shortcut Models 6.9 13.8 20.5
Direct Models (ours) - - 16.8

Figure 2: Interpolations between two sampled noise points. All displayed images are model generated.
Each horizontal set represents images generated by one-step denoising of a variance preserving
interpolation between two Gaussian noise samples.

simultaneously on flow-matching and Reflow-distilled targets. The model is conditioned separately on158

each type of target, and new distillation targets are generated at every training step via full denoising,159

making the method computationally expensive.160

4.3 Evaluation161

We follow the evaluation protocol from [3]. Models are evaluated by generating samples using 1162

diffusion step for our method, and 128, 4, and 1 steps for the baselines. We report the FID-50k score,163

a standard metric in generative modeling. FID is computed using statistics from the full dataset, with164

no compression applied to the generated images. All images are resized to 299× 299 using bilinear165

interpolation and clipped to the (−1, 1) range. During evaluation, we use the Exponential Moving166

Average (EMA) of the model parameters.167

4.4 Results168

Table 1 shows that Direct Models achieves strong generation quality using just a single sampling step.169

Our method outperforms all single-stage training approaches in one-step generation and remains170

competitive with two-stage progressive distillation. Unlike these multi-phase methods, Direct Models171

reaches this performance within a single training run. As expected, standard diffusion and flow-172

matching methods show a significant drop in performance when limited to 4 or 1 sampling step.173

Additional qualitative results are provided in the supplementary material.174

6



Table 2: Effect of δt on the image quality on CelebAHQ-256.

δt 10−2 5 · 10−3

FID ↓ 16.8 16.6

4.5 Does Direct Models Induce a Semantically Coherent Latent Space?175

To examine whether the latent space learned by Direct Models supports smooth semantic transi-176

tions, we explore linear interpolations in the input noise space. Specifically, we select pairs of177

initial Gaussian noise vectors (x0
0, x

1
0) and interpolate between them using the variance-preserving178

formulation179

xn
0 = nx1

0 +
√

1− n2 x0
0

where the coefficient n ∈ [0, 1]. We then pass the interpolated noise samples through the model and180

observe the corresponding outputs.181

Figure 2 presents representative samples from these interpolations. Despite the absence of any explicit182

constraint or regularizer enforcing smoothness in the learned mapping, the results reveal coherent183

and continuous transformations across the generated images. These transitions are not only visually184

smooth but also retain semantic consistency, suggesting that Direct Models constructs a meaningful185

latent structure.186

5 Ablation187

We investigate the effect of the discretization interval δt on image quality. As shown in Table 2, both188

values of δt, namely 10−2 and 5 · 10−3, lead to very comparable FID scores (16.8 vs. 16.6).189

6 Related Work190

We briefly review existing approaches that enable single-step diffusion-based generation, which can191

be broadly categorized into distillation-based methods and single-phase training methods.192

Distillation Methods In recent years, various techniques have been developed to distill generative193

models, particularly diffusion models, into more efficient one-step sampling frameworks. These194

methods typically follow a two-stage pipeline: first, a diffusion model is pretrained; second, a separate195

model is trained to approximate the behavior of the full diffusion process using fewer inference steps.196

Methods such as knowledge distillation [12] and rectified flows [9] generate synthetic training197

pairs by fully simulating the reverse-time denoising ODE. Due to the high computational cost of198

full simulation, more efficient alternatives have been proposed that use bootstrapping strategies to199

partially initialize the ODE trajectory [4, 21]. Additionally, several works have explored alternatives200

to the standard L2 loss, including adversarial training objectives [17] and distribution-matching201

approaches [23, 22]. Progressive distillation techniques [16, 1, 13] further decompose the distillation202

process into multiple stages with increasing time step sizes, thereby reducing the need for long203

bootstrap paths.204

In contrast to these methods, we propose an end-to-end training approach that directly learns a205

one-step generative model. This eliminates the need for separate pretraining and distillation phases,206

making our method simpler than both full simulation-based techniques and multi-stage progressive207

distillation.208

Single-phase Training Methods Few methods have been proposed for single-phase training that209

enable single-step generation. Consistency Models [20], a pioneering approach in this area, represent210

a class of generative models that directly map partially noised data points to their final, fully denoised211

outputs in a single step. While these models have been effectively used in distillation purposes,212

they have also been explored the end-to-end training scenario. Shortcut models [3] propose a novel213

generative modeling framework that conditions on both the current noise level and desired step size,214

enabling efficient and flexible sampling under different inference budgets.215
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Figure 3: Visual illustration of the differences between prior work in terms of the learned trajectory
mappings. x0 denotes an initial Gaussian noise and x1 its corresponding noise-free image. Left:
Consistency models [20] . Middle: Shortcuts models [3]. Right: Direct Models (ours).

Difference from consistency models [20] While we share the general concept of consistency216

with [20], Direct Models differs significantly in its formulation. Conceptually, Direct Models can217

be seen as the opposite approach: instead of mapping intermediate latents xt directly to the fully218

denoised image x1, our method maps initial Gaussian noise x0 to all intermediate latent states xt, as219

shown in Figure 3.220

Difference from shortcut models [3] Shortcut models are arguably the most similar approach to221

Direct Models. However, there are key differences: 1) Conceptually, Shortcut models learn direct222

mappings between all pairs of latent states, including both the initial and final ones. In contrast,223

Direct Models focuses on learning a direct mapping only between the initial Gaussian noise and224

all intermediate latent states. 2) More importantly, our approach is grounded on a more principled225

mathematical formulation. Specifically, we derive our method using a Taylor expansion of the flow,226

as shown in Equation (13), which links the flow at neighboring timesteps to the velocity field.227

7 Limitations and Future Work228

Our method presents some limitations. First, Direct Models requires training two separate networks,229

which limits efficiency. Second, the current formulation is restricted to single-step inference. A230

promising direction for future research is to extend our framework to enable training a single unified231

model while potentially allowing flexibility in the number of inference steps during sampling.232

8 Conclusion233

We introduced Direct Models, a new type of diffusion-based generative model that enables both234

single-step sampling and single-run training. By learning a time-indexed residual field to directly235

approximate the full generative flow, our method achieves fast and high-quality generation while236

significantly simplifying the training process. This makes Direct Models a practical and efficient237

alternative to existing diffusion-based techniques.238
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much the results can be expected to generalize to other settings.311

• It is fine to include aspirational goals as motivation as long as it is clear that these goals312

are not attained by the paper.313

2. Limitations314

Question: Does the paper discuss the limitations of the work performed by the authors?315

Answer: [Yes]316

Justification: We included a Limitations section.317

Guidelines:318

• The answer NA means that the paper has no limitation while the answer No means that319

the paper has limitations, but those are not discussed in the paper.320

• The authors are encouraged to create a separate "Limitations" section in their paper.321

• The paper should point out any strong assumptions and how robust the results are to322

violations of these assumptions (e.g., independence assumptions, noiseless settings,323

model well-specification, asymptotic approximations only holding locally). The authors324

should reflect on how these assumptions might be violated in practice and what the325

implications would be.326

• The authors should reflect on the scope of the claims made, e.g., if the approach was327

only tested on a few datasets or with a few runs. In general, empirical results often328

depend on implicit assumptions, which should be articulated.329

• The authors should reflect on the factors that influence the performance of the approach.330

For example, a facial recognition algorithm may perform poorly when image resolution331

is low or images are taken in low lighting. Or a speech-to-text system might not be332

used reliably to provide closed captions for online lectures because it fails to handle333

technical jargon.334

• The authors should discuss the computational efficiency of the proposed algorithms335

and how they scale with dataset size.336

• If applicable, the authors should discuss possible limitations of their approach to337

address problems of privacy and fairness.338

• While the authors might fear that complete honesty about limitations might be used by339

reviewers as grounds for rejection, a worse outcome might be that reviewers discover340

limitations that aren’t acknowledged in the paper. The authors should use their best341

judgment and recognize that individual actions in favor of transparency play an impor-342

tant role in developing norms that preserve the integrity of the community. Reviewers343

will be specifically instructed to not penalize honesty concerning limitations.344

3. Theory assumptions and proofs345

Question: For each theoretical result, does the paper provide the full set of assumptions and346

a complete (and correct) proof?347

Answer: [Yes]348
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Justification: We included the assumptions and the full derivations.349

Guidelines:350

• The answer NA means that the paper does not include theoretical results.351

• All the theorems, formulas, and proofs in the paper should be numbered and cross-352

referenced.353

• All assumptions should be clearly stated or referenced in the statement of any theorems.354

• The proofs can either appear in the main paper or the supplemental material, but if355

they appear in the supplemental material, the authors are encouraged to provide a short356

proof sketch to provide intuition.357

• Inversely, any informal proof provided in the core of the paper should be complemented358

by formal proofs provided in appendix or supplemental material.359

• Theorems and Lemmas that the proof relies upon should be properly referenced.360

4. Experimental result reproducibility361

Question: Does the paper fully disclose all the information needed to reproduce the main ex-362

perimental results of the paper to the extent that it affects the main claims and/or conclusions363

of the paper (regardless of whether the code and data are provided or not)?364

Answer: [Yes]365

Justification: We will share our code in the supplementary.366

Guidelines:367

• The answer NA means that the paper does not include experiments.368

• If the paper includes experiments, a No answer to this question will not be perceived369

well by the reviewers: Making the paper reproducible is important, regardless of370

whether the code and data are provided or not.371

• If the contribution is a dataset and/or model, the authors should describe the steps taken372

to make their results reproducible or verifiable.373

• Depending on the contribution, reproducibility can be accomplished in various ways.374

For example, if the contribution is a novel architecture, describing the architecture fully375

might suffice, or if the contribution is a specific model and empirical evaluation, it may376

be necessary to either make it possible for others to replicate the model with the same377

dataset, or provide access to the model. In general. releasing code and data is often378

one good way to accomplish this, but reproducibility can also be provided via detailed379

instructions for how to replicate the results, access to a hosted model (e.g., in the case380

of a large language model), releasing of a model checkpoint, or other means that are381

appropriate to the research performed.382

• While NeurIPS does not require releasing code, the conference does require all submis-383

sions to provide some reasonable avenue for reproducibility, which may depend on the384

nature of the contribution. For example385

(a) If the contribution is primarily a new algorithm, the paper should make it clear how386

to reproduce that algorithm.387

(b) If the contribution is primarily a new model architecture, the paper should describe388

the architecture clearly and fully.389

(c) If the contribution is a new model (e.g., a large language model), then there should390

either be a way to access this model for reproducing the results or a way to reproduce391

the model (e.g., with an open-source dataset or instructions for how to construct392

the dataset).393

(d) We recognize that reproducibility may be tricky in some cases, in which case394

authors are welcome to describe the particular way they provide for reproducibility.395

In the case of closed-source models, it may be that access to the model is limited in396

some way (e.g., to registered users), but it should be possible for other researchers397

to have some path to reproducing or verifying the results.398

5. Open access to data and code399

Question: Does the paper provide open access to the data and code, with sufficient instruc-400

tions to faithfully reproduce the main experimental results, as described in supplemental401

material?402
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Answer: [Yes]403

Justification: we will share the code.404

Guidelines:405

• The answer NA means that paper does not include experiments requiring code.406

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/407

public/guides/CodeSubmissionPolicy) for more details.408

• While we encourage the release of code and data, we understand that this might not be409

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not410

including code, unless this is central to the contribution (e.g., for a new open-source411

benchmark).412

• The instructions should contain the exact command and environment needed to run to413

reproduce the results. See the NeurIPS code and data submission guidelines (https:414

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.415

• The authors should provide instructions on data access and preparation, including how416

to access the raw data, preprocessed data, intermediate data, and generated data, etc.417

• The authors should provide scripts to reproduce all experimental results for the new418

proposed method and baselines. If only a subset of experiments are reproducible, they419

should state which ones are omitted from the script and why.420

• At submission time, to preserve anonymity, the authors should release anonymized421

versions (if applicable).422

• Providing as much information as possible in supplemental material (appended to the423

paper) is recommended, but including URLs to data and code is permitted.424

6. Experimental setting/details425

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-426

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the427

results?428

Answer: [Yes]429

Justification: We will share all the details in the supplementary.430

Guidelines:431

• The answer NA means that the paper does not include experiments.432

• The experimental setting should be presented in the core of the paper to a level of detail433

that is necessary to appreciate the results and make sense of them.434

• The full details can be provided either with the code, in appendix, or as supplemental435

material.436

7. Experiment statistical significance437

Question: Does the paper report error bars suitably and correctly defined or other appropriate438

information about the statistical significance of the experiments?439

Answer: [No]440

Justification: We follow prior works that do not .441

Guidelines:442

• The answer NA means that the paper does not include experiments.443

• The authors should answer "Yes" if the results are accompanied by error bars, confi-444

dence intervals, or statistical significance tests, at least for the experiments that support445

the main claims of the paper.446

• The factors of variability that the error bars are capturing should be clearly stated (for447

example, train/test split, initialization, random drawing of some parameter, or overall448

run with given experimental conditions).449

• The method for calculating the error bars should be explained (closed form formula,450

call to a library function, bootstrap, etc.)451

• The assumptions made should be given (e.g., Normally distributed errors).452

• It should be clear whether the error bar is the standard deviation or the standard error453

of the mean.454
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• It is OK to report 1-sigma error bars, but one should state it. The authors should455

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis456

of Normality of errors is not verified.457

• For asymmetric distributions, the authors should be careful not to show in tables or458

figures symmetric error bars that would yield results that are out of range (e.g. negative459

error rates).460

• If error bars are reported in tables or plots, The authors should explain in the text how461

they were calculated and reference the corresponding figures or tables in the text.462

8. Experiments compute resources463

Question: For each experiment, does the paper provide sufficient information on the com-464

puter resources (type of compute workers, memory, time of execution) needed to reproduce465

the experiments?466

Answer: [No]467

Justification: We will provide this information if the reviewers ask for it.468

Guidelines:469

• The answer NA means that the paper does not include experiments.470

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,471

or cloud provider, including relevant memory and storage.472

• The paper should provide the amount of compute required for each of the individual473

experimental runs as well as estimate the total compute.474

• The paper should disclose whether the full research project required more compute475

than the experiments reported in the paper (e.g., preliminary or failed experiments that476

didn’t make it into the paper).477

9. Code of ethics478

Question: Does the research conducted in the paper conform, in every respect, with the479

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?480

Answer: [Yes]481

Justification: We follow the code of ethics.482

Guidelines:483

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.484

• If the authors answer No, they should explain the special circumstances that require a485

deviation from the Code of Ethics.486

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-487

eration due to laws or regulations in their jurisdiction).488

10. Broader impacts489

Question: Does the paper discuss both potential positive societal impacts and negative490

societal impacts of the work performed?491

Answer: [NA]492

Justification: We believe there is no major societal impacts.493

Guidelines:494

• The answer NA means that there is no societal impact of the work performed.495

• If the authors answer NA or No, they should explain why their work has no societal496

impact or why the paper does not address societal impact.497

• Examples of negative societal impacts include potential malicious or unintended uses498

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations499

(e.g., deployment of technologies that could make decisions that unfairly impact specific500

groups), privacy considerations, and security considerations.501

• The conference expects that many papers will be foundational research and not tied502

to particular applications, let alone deployments. However, if there is a direct path to503

any negative applications, the authors should point it out. For example, it is legitimate504

to point out that an improvement in the quality of generative models could be used to505
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generate deepfakes for disinformation. On the other hand, it is not needed to point out506

that a generic algorithm for optimizing neural networks could enable people to train507

models that generate Deepfakes faster.508

• The authors should consider possible harms that could arise when the technology is509

being used as intended and functioning correctly, harms that could arise when the510

technology is being used as intended but gives incorrect results, and harms following511

from (intentional or unintentional) misuse of the technology.512

• If there are negative societal impacts, the authors could also discuss possible mitigation513

strategies (e.g., gated release of models, providing defenses in addition to attacks,514

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from515

feedback over time, improving the efficiency and accessibility of ML).516

11. Safeguards517

Question: Does the paper describe safeguards that have been put in place for responsible518

release of data or models that have a high risk for misuse (e.g., pretrained language models,519

image generators, or scraped datasets)?520

Answer: [NA]521

Justification: There is no high risk.522

Guidelines:523

• The answer NA means that the paper poses no such risks.524

• Released models that have a high risk for misuse or dual-use should be released with525

necessary safeguards to allow for controlled use of the model, for example by requiring526

that users adhere to usage guidelines or restrictions to access the model or implementing527

safety filters.528

• Datasets that have been scraped from the Internet could pose safety risks. The authors529

should describe how they avoided releasing unsafe images.530

• We recognize that providing effective safeguards is challenging, and many papers do531

not require this, but we encourage authors to take this into account and make a best532

faith effort.533

12. Licenses for existing assets534

Question: Are the creators or original owners of assets (e.g., code, data, models), used in535

the paper, properly credited and are the license and terms of use explicitly mentioned and536

properly respected?537

Answer: [Yes]538

Justification: We cited the used assets.539

Guidelines:540

• The answer NA means that the paper does not use existing assets.541

• The authors should cite the original paper that produced the code package or dataset.542

• The authors should state which version of the asset is used and, if possible, include a543

URL.544

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.545

• For scraped data from a particular source (e.g., website), the copyright and terms of546

service of that source should be provided.547

• If assets are released, the license, copyright information, and terms of use in the548

package should be provided. For popular datasets, paperswithcode.com/datasets549

has curated licenses for some datasets. Their licensing guide can help determine the550

license of a dataset.551

• For existing datasets that are re-packaged, both the original license and the license of552

the derived asset (if it has changed) should be provided.553

• If this information is not available online, the authors are encouraged to reach out to554

the asset’s creators.555

13. New assets556

Question: Are new assets introduced in the paper well documented and is the documentation557

provided alongside the assets?558
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Answer:[NA]559

Justification: No new asset.560

Guidelines:561

• The answer NA means that the paper does not release new assets.562

• Researchers should communicate the details of the dataset/code/model as part of their563

submissions via structured templates. This includes details about training, license,564

limitations, etc.565

• The paper should discuss whether and how consent was obtained from people whose566

asset is used.567

• At submission time, remember to anonymize your assets (if applicable). You can either568

create an anonymized URL or include an anonymized zip file.569

14. Crowdsourcing and research with human subjects570

Question: For crowdsourcing experiments and research with human subjects, does the paper571

include the full text of instructions given to participants and screenshots, if applicable, as572

well as details about compensation (if any)?573

Answer: [NA]574

Justification: No crowd-sourcing.575

Guidelines:576

• The answer NA means that the paper does not involve crowdsourcing nor research with577

human subjects.578

• Including this information in the supplemental material is fine, but if the main contribu-579

tion of the paper involves human subjects, then as much detail as possible should be580

included in the main paper.581

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,582

or other labor should be paid at least the minimum wage in the country of the data583

collector.584

15. Institutional review board (IRB) approvals or equivalent for research with human585

subjects586

Question: Does the paper describe potential risks incurred by study participants, whether587

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)588

approvals (or an equivalent approval/review based on the requirements of your country or589

institution) were obtained?590

Answer: [NA]591

Justification: No risks.592

Guidelines:593

• The answer NA means that the paper does not involve crowdsourcing nor research with594

human subjects.595

• Depending on the country in which research is conducted, IRB approval (or equivalent)596

may be required for any human subjects research. If you obtained IRB approval, you597

should clearly state this in the paper.598

• We recognize that the procedures for this may vary significantly between institutions599

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the600

guidelines for their institution.601

• For initial submissions, do not include any information that would break anonymity (if602

applicable), such as the institution conducting the review.603

16. Declaration of LLM usage604

Question: Does the paper describe the usage of LLMs if it is an important, original, or605

non-standard component of the core methods in this research? Note that if the LLM is used606

only for writing, editing, or formatting purposes and does not impact the core methodology,607

scientific rigorousness, or originality of the research, declaration is not required.608

Answer: [NA]609
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Justification: No major use of LLMs.610

Guidelines:611

• The answer NA means that the core method development in this research does not612

involve LLMs as any important, original, or non-standard components.613

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)614

for what should or should not be described.615
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