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ABSTRACT

Machine learning models are vulnerable to both security attacks (e.g., adversarial examples)
and privacy attacks (e.g., private attribute inference). Existing defenses propose different
strategies to individually defend against the security attack or privacy attack, and combining
them would yield suboptimal performance. In this paper, we aim to mitigate both the security
and privacy attacks, and maintain utility of the learning task simultaneously. We achieve
the goal by proposing a representation learning framework based on information theory, i.e.,
learning information-theoretic representations that are robust to adversarial examples and
attribute inference adversaries, and effective for learning tasks as well. We also derive novel
theoretical results, e.g., the inherent tradeoff between adversarial robustness/utility and attribute
privacy, and guaranteed attribute privacy leakage against attribute inference adversaries.

1 INTRODUCTION

Machine learning (ML) has achieved remarkable breakthroughs in many research fields, including but not
limited to computer vision, speech, and natural language processing. However, recent works show that the
current ML design is vulnerable to both security and privacy attacks, e.g., adversarial examples and private
attribute inference. Adversarial examples (Szegedy et al., 2013; Goodfellow et al., 2015; Carlini & Wagner,
2017) are typically generated by carefully adding imperceptible perturbations to natural data and they remain
a serious problem that prevents the deployment of modern ML models in safety-critical applications such as
autonomous driving (Eykholt et al., 2018) and medical imaging (Bortsova et al., 2021). In addition, many
real-world applications involve data that contain sensitive/private information, such as race, gender, income, and
age. When applying ML to these applications, it poses a great challenge since private attribute can often be
accurately inferred (Jia et al., 2017; Aono et al., 2017; Melis et al., 2019).

To mitigate adversarial examples and attribute inference attacks, many defenses have been proposed, but they
mainly follow two separate lines and with different techniques. For instance, the state-of-the-art defenses against
adversarial examples are based on adversarial training (Madry et al., 2018; Zhang et al., 2019; Wang et al.,
2019), which solves a min-max optimization problem. In contrast, the representative defense against inference
attacks are based on differential privacy (Abadi et al., 2016), which is a statistical method (more details on
defenses against adversarial examples and attribute inference attacks are in Section 2). Some works (Song et al.,
2019b;a) show that adversarially robust models only can even leak more private information (also verified in our
Section 5.2). In addition, we observe that combining the state-of-the-art defenses against adversarial examples
and attribute inference attacks produce suboptimal performance (see results in Section 5.3).

In this paper, we focus on the research question: 1) Can we design an adversarially robust and attribute privacy
protection model, while maintaining utility of (unknown) downstream tasks simultaneously? 2) Further, can we
theoretically understand the relationships among adversarial robustness, utility, and attribute privacy? To achieve
the goal, we propose an information-theoretic defense framework through the lens of representation learning,
termed ARPRL. Representation learning is very pertinent in today’s context given the rise of foundation/large
ML models. Particularly, instead of training large models from scratch, which requires huge computational
resources and is time consuming, shared learnt representations ensures the community to save much time and
costs. Our ARPRL is partly inspired by Zhu et al. (2020); Zhou et al. (2022), which show adversarially robust
representations based defenses outperform the de facto adversarial training based methods, while being the
first work to non-trivially generalize learning data representations that are robust to both adversarial examples
and attribute inference adversaries. More specifically, we formulate learning representations via three mutual
information (MI) objectives: one for adversarial robustness, one for attribute privacy protection, and one for
utility preservation. We point out that our ARPRL is task-agnostic, meaning the learnt representations does not
need to know the target task at hand and can be used for any downstream task. However, directly solving the MI
objectives is challenging, as calculating an MI between two arbitrary variables is often infeasible (Peng et al.,
2019). To address it, we are motivated by the MI neural estimation (Alemi et al., 2017; Belghazi et al., 2018;
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Oord et al., 2018; Poole et al., 2019; Hjelm et al., 2019; Cheng et al., 2020), which converts the intractable MI
calculations to the tractable variational MI bounds. Then we parameterize each bound with a neural network, and
finally train the neural networks to approximate the true MI.

Based on our designed MI objectives, we can derive novel theoretical results. For instance, we obtain an inherent
tradeoff between adversarial robustness and attribute privacy, as well as between utility and attribute privacy.
These tradeoffs are also verified through the experimental evaluations on multiple benchmark datasets. We also
derive the guaranteed attribute privacy leakage against (worst-case) attribute inference adversaries. Our key
contributions can be summarized below:
• This is the first work to advocate learning both robust and privacy-preserving ML models from the representation

learning perspective.
• We formulate learning adversarially robust and privacy-preserving representations via information theory—an

elegant yet powerful tool.
• Under the information-theoretic framework, we derive novel theoretical results: the tradeoff among adversarial

robustness, utility, and attribute privacy, and guaranteed attribute privacy leakage.

2 RELATED WORK

Defenses against adversarial examples. Many efforts have been made to improve the adversarial robustness
of ML models against adversarial examples (Goodfellow et al., 2015; Kurakin et al., 2017; Pang et al., 2019;
Wong & Kolter, 2018; Mao et al., 2019; Cohen et al., 2019; Zhai et al., 2020; Wong et al., 2020). Among
them, adversarial training based defenses (Madry et al., 2018; Zhang et al., 2019; Wang et al., 2019; Dong
et al., 2020; Zhou et al., 2021) has become the mainstream defense and achieved the state-of-the-art defense
effectiveness. At a high level, adversarial training augments training data with adversarial examples (e.g., via
FGSM attack (Szegedy et al., 2013), CW attack (Carlini & Wagner, 2017), PGD attack (Madry et al., 2018),
AutoAttack (Croce & Hein, 2020)) and uses a min-max formulation to train the target ML model (Madry et al.,
2018). However, as pointed out by Zhu et al. (2020); Zhou et al. (2022), the dependence between the output
of the target model and the input/adversarial examples has not been well studied, which makes the ability of
adversarial training not fully exploited. To improve it, Zhu et al. (2020); Zhou et al. (2022) propose to learn
adversarially-robust representations via mutual information, which is shown to outperform the state-of-the-art
adversarial training based defenses. Our ARPRL is inspired by them while having a nontrivial generalization to
learn both robust and privacy-preserving representations.

Defenses against inference attacks. Existing privacy-preserving methods against inference attacks can be
roughly classified as adversarial learning (Oh et al., 2017; Wu et al., 2018; Pittaluga et al., 2019; Liu et al.,
2019), differential privacy (Shokri & Shmatikov, 2015; Abadi et al., 2016), and information obfuscation (Bertran
et al., 2019; Hamm, 2017; Osia et al., 2020b; Roy & Boddeti, 2019; Zhao et al., 2020; Osia et al., 2020a; Li
et al., 2021). Adversarial learning methods are mainly inspired by GAN (Goodfellow et al., 2014) and they
learn obfuscated features from the training data so that their privacy information cannot be inferred from a
learnt model. However, these methods need to know the primary task in advance and lack of formal privacy
guarantees. Differential privacy methods have formal privacy guarantees, but they have high utility losses.
Information obfuscation methods aim to maximize the utility, under the constraint of bounding the information
leakage, but almost all of them are empirical and task-dependent. The only exception is Zhao et al. (2020),
which has guaranteed information leakage. However, this works requires stronger assumptions (e.g., conditional
independence assumption between variables). Our work can be seen as a combination of information obfuscation
with adversarial learning to learn both robust and privacy-preserving representations. It provides privacy leakage
guarantees as well as inherent tradeoffs between robustness/utility and privacy.

3 PRELIMINARIES AND PROBLEM SETUP

Notations. We use s, s, and S to denote (random) scalar, vector, and space, respectively. Given a data
x ∈ X , we denote its label as y ∈ Y and private attribute as u ∈ U , where X , Y , and U are input data
space, label space, and attribute space, respectively. An lp ball centered at a data x with radius ϵ is defined
as Bp(x, ϵ) = {x′ ∈ X : ∥x′ − x∥p ≤ ϵ}. The joint distribution of x, y, and u is denoted as D. We further
denote f : X → Z as the representation learner that maps x ∈ X to its representation z ∈ Z , where Z is the
representation space. Moreover, we let C : Z → Y be the primary task classifier, which predicts data label y
based on the learnt data representation z, and A : Z → U be the attribute inference classifier, which infers the
private attribute u based on the representation z. The composition function of two functions f and g is denoted
as (g ◦ f)(x) = g(f(x)). We use [m] to denote the set {1, 2, · · · ,m} and | · | to denote its cardinality.

Mutual information (MI) and entropy. In information theory, MI is a measure of shared information between
two random variables, and offers a quantifiable metric for the amount of information leakage on one variable
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given the other. Let (x, z) be a pair of random variables with values over the space X × Z . Then the MI of x
and z is defined as

I(x; z) =

∫
Z

∫
X
p(x, z) log

p(x, z)

p(x)p(z)
dxdz. (1)

Intuitively, I(x, z) tells us how well one can predict z from x (and x from z, since it is symmetric). By
definition, I(x, z) = 0 if x and z are independent, i.e., x ⊥ z. On the other hand, when x and z are identical,
I(x;x) = H(x) =

∫
X −p(x) log p(x)dx, which is the entropy of x.

Adversarial example/perturbation, adversarial risk, and representation vulnerability Zhu et al. (2020). Let
X and Y be the data space and label space, respectively, and ϵ as the lp perturbation budget. For any classifier
C : X → Y , the adversarial risk of C with respect to ϵ is defined as:

AdvRiskϵ(C) = Pr[∃x′ ∈ Bp(x, ϵ), s.t. C(x′) ̸= y] = supx′∈Bp(x,ϵ) Pr[C(x′) ̸= y], (2)

where x′ is called adversarial example and δ = x′ − x is adversarial perturbation with ∥δ∥p ≤ ϵ. Formally,
adversarial risk captures the vulnerability of a classifier to adversarial perturbations. When ϵ = 0, adversarial
risk reduces to the standard risk, i.e., AdvRisk0(C) = Risk(C) = Pr(C(x) ̸= y).

Motivated by the empirical and theoretical difficulties of robust learning with adversarial examples, Zhu et al.
(2020); Zhou et al. (2022) target learning adversarially robust representations based on MI. They introduced the
term representation vulnerability: Given a representation learner f : X → Z and an lp perturbation budget ϵ, the
representation vulnerability of f with respect to ϵ is defined as

RVϵ(f) = maxx′∈Bp(x,ϵ)[I(x; z)− I(x′; z′)], (3)

where z = f(x) and z′ = f(x′) are the learnt representation for x and x′, respectively. We note that
higher/smaller RVϵ(f) values imply the representation is less/more robust to adversarial perturbations. Further,
Zhu et al. (2020) linked the connection between adversarial robustness and representation vulnerability through
the following theorem:

Theorem 1 (Zhu et al. (2020)). Consider all the primary task classifiers as C = {C : Z → Y}. Given the
perturbation budget ϵ, for any representation learner f : X → Z ,

infC∈C AdvRiskϵ(C ◦ f) ≥ 1−
(
I(x; z)− RVϵ(f) + log 2

)
/ log |Y|. (4)

The theorem states that a smaller representation vulnerability implies a smaller adversarial risk, which means
better adversarial robustness, and vice versa. Finally, f is called (ϵ, τ)-robust if RVϵ(f) ≤ τ .

Attribute inference attacks and advantage. Without loss of generality, we assume the attribute space U is
binary. Let A be the set of all binary attribute inference classifiers that takes data representations z = f(x) as
an input and infers the private attribute u, i.e., A = {A : Z → U = {0, 1}}. Then, we formally define the
attribute inference advantage of the worst-case attribute inference adversary with respect to the joint distribution
D = {x, y, u} as below:

AdvD(A) = max
A∈A

|PrD(A(z) = a|u = a)− PrD(A(z) = a|u = 1− a)|, ∀a = {0, 1}. (5)

We can observe that: if AdvD(A) = 1, an adversary can completely infer the privacy attribute through the learnt
representations. In contrast, if AdvD(A) = 0, an adversary obtains a random guessing inference performance.
To protect the private attribute, we aim to obtain a small AdvD.

Threat model and problem setup. We focus on a classification task under the adversarial setting. We consider
the attacker’s goal is to perform both attribute inference and adversarial example attacks. We assume the attacker
does not have access to the internal representation learner (i.e., f ), but instead can obtain and arbitrarily use
the shared data representations. 1 The attacker is also assumed to have some background knowledge (e.g., even
know the underlying data distribution). As the defense is task-agnostic, the defender does not know the learning
task. Our goal is to learn task-agnostic representations that are adversarially robust, protect attribute privacy, and
maintain the utility of (unknown) downstream tasks. Formally, given {x, y, u} from an underlying distribution
D, and a perturbation budget ϵ, we aim to obtain the representation learner f such that the representation
vulnerability RVϵ(f) is small, attribute inference advantage AdvD(A) is small, and the risk Risk(C) is small.

1This is practical when representation learner is deployed as an API: end-users obtain the representations via querying
the API with their data, but do not know the details about the representation learner. Note that many companies have
deployed representation learner as an API to provide the machine learning service, e.g., Amazon’s AWS Marketplace (AWS
Marketplace), OpenAI’s Embedding API (cha), and Clarifai’s General Embedding API (Clarifai).
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4 DESIGN OF ARPRL

In this section, we will design our adversarilly robust and privacy-preserving representation learning method,
termed ARPRL, inspired by information theory.

4.1 FORMULATING ARPRL VIA MI OBJECTIVES

Given a data x with private attribute u sampled from a distribution D, and a perturbation budget ϵ, our purpose is
to convert x into a representation z = f(x) that satisfies the following three goals:

• Goal 1: Privacy protection. z contains as less information as possible about the private attribute u. Ideally,
when z does not include information about u, i.e., z ⊥ u, it is impossible to infer u from z.

• Goal 2: Utility preservation. z should be be useful for many downstream tasks. To achieve the goal, we
require z should include as much information about the data x as possible, while excluding the private attribute
u. Ideally, when z retains the most information about x, the model trained on z will have the same performance
as the model trained on the raw x (though we do not know the downstream task), thus preserving utility.

• Goal 3: Adversarially robust. z should be not sensitive to adversarial perturbations on the data x, indicating
a small representation vulnerability.

We propose to formalize the above goals via MI. Formally, we quantify the goals as below:

Formalizing Goal 1: min
f

I(z;u); (6)

Formalizing Goal 2: max
f

I(x; z|u); (7)

Formalizing Goal 3: min
f

{
RVϵ(f |u) = max

x′∈Bp(x,ϵ)
[I(x; z|u)− I(x′; z′|u)]

}
. (8)

where 1) we minimize I(z;u) to maximally reduce the correlation between z and the private attribute u; 2)
I(x; z|u) is the MI between x and z given u. We maximize such MI to keep the raw information in x as much as
possible in z and remove the information that x contains about the private u; 3) RVϵ(f |u) is the representation
vulnerability of f conditional on u with respect to ϵ. Minimizing it learns adversarially robust representations
that exclude the information about private u. Note that I(x; z|u) in Equation (8) can be merged with that in
Equation (7). Hence Equation (8) can be reduced to the below min-max optimization problem:

max
f

min
x′∈Bp(x,ϵ)

I(x′; z′|u). (9)

Objective function of ARPRL: Combining the above equations, we have the MI objective function to learn
adversarially robust and privacy preserving representations as below:

max
f

[−αI(z;u) + β min
x′∈Bp(x,ϵ)

I(x′; z′|u) + (1− α− β)I(x; z|u) ], (10)

where α, β ∈ [0, 1] are tradoff hyperparameters. That is, a larger/smaller α indicates a stronger/weaker attribute
privacy protection and a larger/smaller β indicates a stronger/weaker robustness against adversarial perturbations.

4.2 ESTIMATING MI VIA TRACTABLE VARIATIONAL BOUNDS

The key challenge of solving Equation (10) is that calculating an MI between two arbitrary random variables is
likely to be infeasible (Peng et al., 2019). To address it, we are inspired by the existing MI neural estimation
methods (Alemi et al., 2017; Belghazi et al., 2018; Oord et al., 2018; Poole et al., 2019; Hjelm et al., 2019; Cheng
et al., 2020), which convert the intractable exact MI calculations to the tractable variational MI bounds. Then, we
parameterize each variational MI bound with a neural network, and train the neural networks to approximate
the true MI. We clarify that we do not design novel MI neural estimators, but adopt existing ones to assist our
customized MI terms for learning adversarially robust and privacy-preserving representations.

Minimizing upper bound MI in Equation (6) for privacy protection. We propose to adapt the variational
upper bound CLUB proposed in (Cheng et al., 2020). Specifically,

I(z;u) ≤ IvCLUB(z;u) = Ep(z,u)[log qΨ(u|z)]− Ep(z)p(u)[log qΨ(u|z)], (11)

where qΨ(u|z) is an auxiliary posterior distribution of p(u|z) and it needs to satisfy the condition:
KL(p(z, u)||qΨ(z, u)) ≤ KL(p(z)p(u)||qΨ(z, u)). To achieve this, we need to minimize:

min
Ψ

KL(p(z, u)||qΨ(z, u)) = min
Ψ

KL(p(u|z)||qΨ(u|z))

= min
Ψ

Ep(z,u)[log p(u|z)]− Ep(z,u)[log qΨ(u|z))] ⇐⇒ max
Ψ

Ep(z,u)[log qΨ(u|z)], (12)

where we use that Ep(z,u)[log p(u|z)] is irrelevant to Ψ.
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Finally, our Goal 1 for privacy protection is reformulated as solving the min-max objective function:

min
f

min
Ψ

IvCLUB(z;u) ⇐⇒ min
f

max
Ψ

Ep(z,u)[log qΨ(u|z)]. (13)

Remark. We note that Equation (13) can be interpreted as an adversarial game between: (1) an adversary qΨ
(i.e., attribute inference classifier) who aims to infer the private attribute u from the representation z; and (2) a
defender (i.e., the representation learner f ) who aims to protect the private attribute u from being inferred.

Maximizing lower bound MI in Equation (7) for utility preservation. We adopt the MI estimator proposed
in Nowozin et al. (2016) to estimate the lower bound of the MI Equation (7). Specifically,

I(x; z|u) = H(x)−H(x|z, u)
= H(x) + Ep(x,z,u)[log p(x|z, u))]
= H(x) + Ep(x,z,u)[log qΩ(x|z, u))] + Ep(x,z,u)[KL(p(·|z, u)||qΩ(·|z, u))]
≥ H(x) + Ep(x,z,u)[log qΩ(x|z, u)], (14)

where qΩ is an arbitrary auxiliary posterior distribution that aims to maintain the information x in the representa-
tion z conditioned on the private u.

Since H(x) is a constant, our Goal 2 can be rewritten as the below max-max objective function:

max
f

I(x; z|u) ⇐⇒ max
f,Ω

Ep(x,z,u) [log qΩ(x|z, u)] . (15)

Remark. We note that Equation (15) can be interpreted as a cooperative game between the representation learner
f and qΩ who aim to preserve the utility collaboratively.

Maximizing the worst-case MI in Equation (9) for adversarial robustness. To solve Equation (9), one needs
to first find the perturbed data x′ ∈ Bp(x, ϵ) that minimizes MI I(x′; z′|u), and then maximizes this MI by
training the representation learner f . As claimed in Zhu et al. (2020); Zhou et al. (2022), minimizing the MI on
the worst-case perturbed data is computational challenging. An approximate solution (Zhou et al., 2022) is first
performing a strong white-box attack, e.g., the projected gradient descent (PGD) attack (Madry et al., 2018),
to generate a set of adversarial examples, and then selecting the adversarial example that has the smallest MI.
Assume the strongest adversarial example is xa = argminx′∈Bp(x,ϵ) I(x

′; z′|u). The next step is to maximize
the MI maxf I(x

a; za|u). Zhu et al. (2020) used the MI Neural Estimation (MINE) method (Belghazi et al.,
2018) to estimate this MI. Specifically,

I(xa; za|u) ≥ IΛ(x
a; za|u) = Ep(xa,za,u)[tΛ(x

a, za, u)]− logEp(xa)p(za)p(u)[exp(tΛ(x
a, za, u))], (16)

where tΛ : X ×Z ×{0, 1} → R can be any family of neural networks parameterized with Λ. More details about
calculating the MI are referred to Section 4.3.

Objective function of ARPRL. By using the above MI bounds, the objective function of ARPRL is as follows:

max
f

(
αmin

Ψ
− E

p(x,u)
[log qΨ(u|f(x))] + βmax

Λ
IΛ(x

a; za|u) + (1− α− β)max
Ω

E
p(x,u)

[log qΩ(x|f(x), u)]
)
. (17)

where α, β ∈ [0, 1] tradeoff between privacy and utility, and robustness and utility, respectively. That is, a
larger/smaller α indicates a stronger/weaker attribute privacy protection and a larger/smaller β indicates a
stronger/weaker robustness against adversarial perturbations.

4.3 IMPLEMENTATION IN PRACTICE VIA TRAINING PARAMETERIZED NEURAL NETWORKS

𝐈𝐧𝐩𝐮𝐭 𝐱

𝐑𝐞𝐩. 𝐫

𝐏𝐫𝐢𝐯𝐚𝐭𝐞
𝐚𝐭𝐭𝐫𝐢𝐛𝐮𝐭𝐞

𝐮

𝐑𝐞𝐩𝐫𝐞𝐬𝐞𝐧𝐭𝐚𝐭𝐢𝐨𝐧 𝐥𝐞𝐚𝐫𝐧𝐞𝐫 𝐟𝚯

𝐔𝐭𝐢𝐥𝐢𝐭𝐲 𝐏𝐫𝐞𝐬𝐞𝐫𝐯𝐚𝐭𝐢𝐨𝐧 𝐍𝐞𝐭𝐰𝐨𝐫𝐤 𝐡𝛀

𝐏𝐫𝐢𝐯𝐚𝐜𝐲 𝐏𝐫𝐨𝐭𝐞𝐜𝐭𝐢𝐨𝐧 𝐍𝐞𝐭𝐰𝐨𝐫𝐤 𝐠𝛙

𝐦𝐚𝐱 𝐈(𝐱; 𝐫|𝐮)

𝐦𝐢𝐧 𝐈(𝐫; 𝐮)

𝐀𝐝𝐯𝐞𝐫𝐬𝐚𝐫𝐢𝐚𝐥𝐥𝐲 𝐑𝐨𝐛𝐮𝐬𝐭
𝐍𝐞𝐭𝐰𝐨𝐫𝐤 𝐭𝚲

𝐦𝐚𝐱𝐦𝐢𝐧(𝐱′; 𝐫!|𝐮)

𝐱′

𝐩𝐞𝐫𝐭. 𝛅
𝐱′

𝐑𝐞𝐩. 𝐫’

Figure 1: Overview of ARPRL.

In practice, Equation (17) is solved via training four neural net-
works, i.e., the representation learner fΘ (parameterized with
Θ), privacy-protection network gΨ associated with the auxiliary
distribution qΨ, robustness network tΛ associated with the MINE
estimator, and utility-preservation network hΩ associated with
the auxiliary distribution qΩ, on a set of training data.

Suppose we have collected a set of samples {(xj , yj , uj)} from
the dataset distribution D. We can then approximate each term
in Equation (17). Specifically, we approximate the expectation
associated with the privacy-protection network network gΨ as

Ep(u,x) log qΨ(u|f(x))) ≈ −
∑

j
CE(uj , gΨ(f(xj))),

where CE(·) means the cross-entropy loss function.
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Further, we approximate the expectation associated with the utility-preservation network hΩ via the Jensen-
Shannon (JS) MI estimator (Hjelm et al., 2019). That is,

E
p(x,u)

log qΩ(x|f(x), u) ≈ I
(JS)
Θ,Ω (x; f(x), u) = E

p(x,u)
[−sp(−hΩ(x, f(x), u)]− E

p(x,u,x̄)
[sp(hΩ(x̄, f(x), u)],

where x̄ is an independent and random sample from the same distribution as x, and the expectation can be
replaced by the samples {xi

j , x̄
i
j , u

i
j}. sp(z) = log(1 + exp(z)) is the softplus function.

Regarding the MI related to the robustness network tΛ, we can adopt the methods proposed in Zhu et al. (2020);
Zhou et al. (2022). For instance, Zhu et al. (2020) proposed to avoid searching the whole ball, and restrict
the search space to be the set of empirical distributions with, e.g., m samples: Sm(ϵ) = { 1

m

∑m
i=1 δx′

i
: x′

i ∈
Bp(xi, ϵ),∀i ∈ [m]}. Then it estimates the MI minx′∈Bp(x,ϵ) I(x

′; f(x′)|u) as

min
x′

I
(m)
Λ (x′; f(x′)|u) s.t. x′ ∈ Sm(ϵ), (18)

where I
(m)
Λ (x′; f(x′)|u) = 1

m

∑m
i=1 tΛ(xi, f(xi), ui)− log[ 1m

∑m
i=1 e

tΛ(x̄i,f(xi),ui)], where {x̄i} are indepen-
dent and random samples that have the same distribution as {xi}.

Zhu et al. (2020) propose an alternating minimization algorithm to solve Equation (18). Specifically, it alterna-
tively performs gradient ascent on Λ to maximize I

(m)
Λ (x′; f(x′)|u) given Sm(ϵ), and then searches for the set

of worst-case perturbations on {x′
i : i ∈ [m]} given Λ based on, e.g., projected gradient descent. More details of

solving Equation (18) are referred to Zhu et al. (2020).

Figure 1 overviews our ARPRL. Algorithm 1 in Appendix details the training of ARPRL.

4.4 THEORETICAL RESULTS

We mainly consider binary private attributes and binary classification. We will leave it as future work to generalize
our results to multi-value attributes and multi-class classification.2 All proofs are in Appendix A.

Robustness vs. Representation Vulnerability. We first show the relationship between adversarial risk (or
robustness) and representation vulnerability in ARPRL.
Theorem 2. Let all binary task classifiers be C = {C : Z → Y}. Then for any representation learner
f : X → Z , we have

inf
C∈C

AdvRiskϵ(C ◦ f) ≥ 1

log 2

(
RVϵ(f |u)− I(x; z|u)

)
. (19)

Remark. Similar to Theorem 1, Theorem 2 shows a smaller representation vulnerability RVϵ(f |u) indicates a
smaller adversarial risk, which means better robustness. In addition, a larger MI I(x; z|u) (Goal 2 for utility
preservation) produces a smaller adversarial risk, also implying better robustness.

Utility vs. Privacy Tradeoff. The following theorem shows the tradeoff between utility and privacy:
Theorem 3. Let z = f(x) be with a bounded norm R (i.e., maxz∈Z ∥z∥ ≤ R), and A be the set of all binary
inference classifiers that take z as an input. Assume the task classifier C is CL-Lipschitz, i.e., ∥C∥L ≤ CL. Then,
we have the below relationship between the standard risk and the advantage:

Risk(C ◦ f) ≥ ∆y|u − 2R · CL · AdvD(A), (20)

where ∆y|u = |PrD(y = 1|u = 0)− PrD(y = 1|u = 1)| is a dataset-dependent constant.
Remark. Theorem 3 says that any task classifier using learnt representations incurs a risk on at least a private
attribute value. Specifically, the smaller the advantage AdvD(A) (meaning less attribute privacy is leaked), the
larger the lower bound risk, and vice versa. Note that the lower bound is independent of the adversary, meaning
it covers the worst-case attribute inference adversary. Hence, Equation (20) reflects an inherent tradeoff between
utility preservation and attribute privacy leakage.

Robustness vs. Privacy Tradeoff. Let D′ be a joint distribution over the adversarially perturbed input x′,
sensitive attribute u, and label y. By assuming the representation space is bounded by R, the perturbed
representations also satisfy maxz′∈Z ∥z′∥ ≤ R, where z′ = f(x′). Following Equation 5, we have an associated
adversary advantage AdvD′(A) with respect to the joint distribution D′. Similarly, AdvD′(A) = 1 means an
adversary can completely infer the privacy attribute u through the learnt adversarially perturbed representations
z′, and AdvD′(A) = 0 implies an adversary only obtains a random guessing inference performance. Then we
have the following theorem:

2Zhao et al. (2020) that also has theoretical results of privacy protection against attribute inference attacks. The differences
between theirs and our theoretical results are discussed in Appendix A.4.
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(a) Raw circle data (b) α = 0, β = 0.5 (c) α = 0.1, β = 0.5

Figure 2: 2D representations learnt by ARPRL. (a) Raw data; (b) only robust representations (privacy acc: 99%,
robust acc: 88%, test acc: 99%); and (c) robust + privacy preserving representations (privacy acc: 55%, robust
acc: 75%, test acc: 85%). red vs. blue: binary private attribute values; cross × vs. circle ◦: binary task labels.

Theorem 4. Let z′ = f(x′) be the learnt representation for x′ ∈ B(x, ϵ) with a bounded norm R (i.e.,
maxz′∈Z ∥z′∥ ≤ R), and A be the set of all binary inference classifiers. Under a CL-Lipschitz task classifier C,
we have the below relationship between the adversarial risk and the advantage:

AdvRiskϵ(C ◦ f) ≥ ∆y|u − 2R · CL · AdvD′(A). (21)

Remark. Likewise, Theorem 4 states that, any task classifier using adversarially learnt representations has to
incur an adversarial risk on at least a private attribute value. Moreover, the lower bound covers the worst-case
adversary. Equation (21) hence reflects an inherent tradeoff between adversarial robustness and privacy.

Guaranteed Attribute Privacy Leakage. The attribute inference accuracy induced by the worst-case adversary
is bounded in the following theorem:
Theorem 5. Let z be the learnt representation by Equation (17). For any attribute inference adversary
A = {A : Z → U = {0, 1}}, Pr(A(z) = u) ≤ 1− H(u|z)

2 log2(6/H(u|z)) .

Remark. Theorem 5 shows that when the conditional entropy H(u|z) is larger, the inference accuracy induced
by any adversary is smaller, i.e., less attribute privacy leakage. From another perspective, as H(u|z) =
H(u)− I(u; z), achieving the largest H(u|z) implies minimizing I(u; z) (note that H(u) is a constant)—This
is exactly our Goal 1 aims to achieve.

5 EVALUATIONS

We evaluate ARPRL on both synthetic and real-world datasets. The results on the synthetic dataset is for
visualization and verifying the tradeoff purpose.

5.1 EXPERIMENTAL SETUP

We train the neural networks via Stochastic Gradient Descent (SGD), where the local batch size is 100 and
we use 10 local epochs and 50 global epochs in all datasets. The learning rate in SGD is set to be 1e−3. The
detailed network architecture is shown in Table 2 in Appendix B.2. The hyperparameters used in the adversarially
robust network are following Zhu et al. (2020). We also discuss how to choose the hyperparameters α and
β in real-world datasets in Appendix B.3. Without loss of generality, we consider the most challenging l∞
perturbation. Following Zhu et al. (2020), we use the PGD attack (Madry et al., 2018) for both generating
adversarial perturbations in the estimation of worst-case MI and evaluating model robustness3. We implement
ARPRL in PyTorch and use the NSF Chameleon Cloud GPUs (Keahey et al., 2020) (CentOS7-CUDA 11 with
Nvidia Rtx 6000) to train the model. We evaluate ARPRL on three metrics: utility preservation, adversarial
robustness, and privacy protection. Our source code will be publicly available upon paper acceptance.

5.2 RESULTS ON A TOY EXAMPLE

We generate 2 2D circles with the center (0.0, 0.0) and (1.0, 0.0) respectively, and the radius 0.25, and data points
are on the circumference. Each circle indicates a class and has 5,000 samples, where 80% of the samples are for
training and the remaining 20% for testing. We define the binary private attribute value for each data point as
whether the y-value is above or below the x-axis. The network architectures are shown in Table B.2 in Appendix.
We use an l∞ perturbation budget ϵ = 0.01 and 10 PGD attack steps with step size 0.1. We visualize the learnt

3Note that our goal in this paper is not to design the best adversarial attack, i.e., generating the optimal adversarial
perturbation. Hence, the achieved adversarial robustness might not the optimal. We also test CelebA against the CW
attack (Carlini & Wagner, 2017), and the robust accuracy is 85%, which close to 87% with the PGD attack.
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(a) CelebA (Gender): R. (b) CelebA (Gender): R.+P.P. (c) Loans (Race): R. (d) Loans (Race): R.+P.P.

(e) Adult (Gender): R. (f) Adult (Gender): R.+P.P. (g) Adult (Marital): R. (h) Adult (Marital): R.+P.P.

Figure 3: 2D t-SNE representations learnt by ARPRL. Left: only learning robust representations; Right: learning
robust + privacy preserving representations (under the best tradeoff in Table 1). Colors indicate attribute values,
while point patterns mean labels.

representations via 2D t-SNE (Van der Maaten & Hinton, 2008) in Figure 2. We can see that: by learning
only robust representations, the 2-class data can be well separated, but their private attribute values can be also
completely separated–almost 100% privacy leakage. In contrast, by learning both robust and privacy-preserving
representations, the 2-class data can be separated, but their private attributes are mixed—only 55% inference
accuracy. Note that the optimal random guessing inference accuracy is 50%. We also notice a tradeoff among
robustness/utility and attribute privacy, as demonstrated in our theorems. That is, a more robust/accurate model
leaks more attribute privacy, and vice versa.

5.3 RESULTS ON THE REAL-WORLD DATASETS

Datasets and setup. We use three real-world datasets from different applications, i.e., the widely-used
CelebA (Liu et al., 2015) image dataset (150K training images and 50K for testing) to study attribute pri-
vacy protection (Li et al., 2021), the Loans (Hardt et al., 2016), and Adult Income (Dua & Graff, 2017) datasets.
For the CelebA dataset, we treat binary ‘gender’ as the private attribute, and detect ‘gray hair’ as the primary
(binary classification) task, following Li et al. (2021); Osia et al. (2020b). For the Loans dataset, the primary task
is to accurately predict the affordability of the person asking for the loan while protecting their race. Finally, for
the Adult Income dataset, predicting whether the income of a person is above $50,000 or not is the primary task.
The private attributes are the gender and the marital status. For l∞ perturbations, we set the budget ϵ = 0.01 for
Loans and Adults, and 0.1 for CelebA. We use 10 PGD attack steps with step size 0.1.

Results. Tables 1 shows the results on the three datasets, where we report the robust accuracy (under the l∞
attack), normal test accuracy, and attribute inference accuracy (as well as the gap to random guessing). We have
the following observations: 1) When α = 0, it means ARPRL only focuses on learning robust representation
(similar to (Zhu et al., 2020)) and obtains the best robust accuracy. However, the inference accuracy is rather
high, indicating a serious privacy leakage. 2) Increasing α can progressively better protect the attribute privacy,
i.e., the inference accuracy is gradually reduced and finally close to random guessing (note different datasets have
different random guessing value). 3) α and β together act as the tradeoff among robustness, utility, and privacy.
Particularly, a better privacy protection (i.e., larger α) implies a smaller test accuracy, indicating an utility and
privacy tradeoff, as validated in Theorem 3. Similarly, a better privacy protection also implies a smaller robust
accuracy, indicating a robustness and privacy tradeoff, as validated in Theorem 4.

Visualization. We further visualize the learnt representations via t-SNE in Figure 3. We can see that: When only
focusing on learning robust representations, both the data with different labels and with different attribute values
can be well separated. On the other hand, when learning both robust and privacy-preserving representations,
the data with different labels can be separately, but they are mixed in term of the attribute values—meaning the
privacy of attribute values is protected to some extent.

Runtime. We only show runtime on the largest CelebA (150K training images). In our used platform, it took
about 5 mins each epoch (about 15 hours in total) to learn the robust and privacy-preserving representation for
each hyperparameter setting. The computational bottleneck is mainly from training robust representations (where
we adapt the source code from Zhu et al. (2020)), which occupies 60% of the training time (e.g., 3 mins out of 5
mins in each epoch). Training the other neural networks is much faster.
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Table 1: Test accuracy, robust accuracy, vs. inference accuracy (and gap w.r.t. the optimal random guessing)
on the considered three datasets and private attributes. Note that some datasets are unbalanced, so the random
guessing values are different. Larger α means more privacy protection, while larger β means more robustness
against adversarial perturbation. α = 0 means no privacy protection and only focuses on robust representation
learning, same as (Zhu et al., 2020; Zhou et al., 2022).

CelebA
Private attr.: Gender (binary), budget ϵ = 0.1

α β Rob. Acc Test Acc Infer. Acc (gap)
0 0.50 0.87 0.91 0.81 (0.31)
0.1 0.45 0.84 0.88 0.75 (0.25)
0.5 0.25 0.79 0.85 0.62 (0.12)
0.9 0.05 0.71 0.81 0.57 (0.07)

Loans
Private attr.: Race (binary), budget ϵ = 0.01

α β Rob. Acc Test Acc Infer. Acc (gap)
0 0.50 0.45 0.74 0.92 (0.22)
0.05 0.475 0.42 0.69 0.75 (0.05)
0.10 0.45 0.40 0.68 0.72 (0.02)
0.15 0.425 0.39 0.66 0.71 (0.01)

Adult income
α β Rob. Acc Test Acc Infer. Acc (gap)

Private attr.: Gender (binary), budget ϵ = 0.01

0 0.5 0.63 0.68 0.88 (0.33)
0.05 0.475 0.57 0.67 0.72 (0.17)
0.10 0.45 0.55 0.65 0.59 (0.04)
0.20 0.4 0.53 0.63 0.55 (0.00)

Adult income
α β Rob. Acc Test Acc Infer. Acc (gap)
Private attr.: Marital status (7 values), budget ϵ = 0.01

0 0.5 0.56 0.71 0.70 (0.14)
0.001 0.495 0.55 0.65 0.60 (0.04)
0.005 0.49 0.52 0.60 0.59 (0.03)
0.01 0.45 0.47 0.59 0.57 (0.01)

5.4 COMPARING WITH THE STATE-OF-THE-ARTS

Comparing with task-known privacy-protection baselines. We compare ARPRL with two recent task-known
methods for attribute privacy protection on CelebA: DPFE (Osia et al., 2020b) that also uses mutual information
(but in different ways) and Deepobfuscator (Li et al., 2021) that is adversarial training based defense. Specifically,
we ensure the three methods have the same test accuracy 0.88, and compare the attribute inference accuracy. For
fair comparison, we do not consider adversarial robustness in our ARPRL. The attribute inference accuracy of
DPFE and Deepobfuscator are 0.79 and 0.70, respectively, and our ARPRL’s is 0.71. First, DPFE performs much
worse because it assumes the distribution of the learnt representation to be Gaussian (which could be inaccurate),
while Deepobfuscator and ARPRL do not have any assumption on the distributions; Second, Deepobfuscator
performs slightly better than ARPRL. This is because both ARPRL and Deepobfuscator involve adversarial
training, Deepobfuscator uses task labels, but ARPRL is task-agnostic, hence slightly sacrificing privacy.

Comparing with task-known adversarial robustness baselines. We compare ARPRL with the state-of-the-
art task-known adversarial training based TRADES (Zhang et al., 2019) and test on CelebA, under the same
adversarial perturbation and without privacy-protection (i.e., α = 0). For task-agnostic ARPRL, its robust
accuracy is 0.87, which is slightly worse than TRADES’s is 0.89. However, when ARPRL also includes
task labels during training, its robust accuracy increases to 0.91—This again verifies that adversarially robust
representations based defenses outperform the classic adversarial training based method.

Comparing with task-known TRADES + Deepobfuscator for both robustness and privacy protection.
A natural solution to achieve both robustness and privacy protection is by combining the SOTAs that are
individually adversarially robust or privacy-preserving. Here, we test TRADES + Deepopfuscator on CelebA.
By tuning the tradeoff hyperparameters, we obtain the best utility, privacy, and robustness tradeoff of TRADES
+ Deepopfuscator as: (Robust Acc, Test Acc, Infer. Acc) = (0.79, 0.84, 0.65). In contrast, the best tradeoff of
ARPRL in Table 1 is (Robust Acc, Test Acc, Inference Acc) = (0.79, 0.85, 0.62), which is slightly better than
TRADES + Deepopfuscator, though they both know the task labels. The results imply that simply combining
SOTA robust and privacy-preserving methods is not the best option. Instead, our ARPRL learns both robust and
privacy-preserving representations under the same information-theoretic framework.

6 CONCLUSION AND FUTURE WORK

In this paper, we aim to ensure machine learning models to be robust against adversarial examples and protect
sensitive attributes in the data. We achieve the goal by proposing ARPRL, which learns adversarially robust,
privacy preserving, and utility preservation representations under a unified information-theoretic framework.
We also derive theoretical results that show the inherent tradeoff between robustness/utility and privacy and
guarantees of attribute privacy against the worst-case attribute inference adversary. ARPRL is also shown to
outperform the state-of-the-arts via empirical evaluations.

Future works include 1) generalizing the results to other well-known security attacks such as data poisoning
attack and backdoor attack, and other well-known privacy attacks such as membership inference attack and data
reconstruction attack; 2) evaluating ARPRL on other data modalities such as audio, speech, and natural language;
3) generalizing theoretical results to multi-value attributes and provable robustness guarantees.
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Algorithm 1 Adversarially robust and privacy-preserving representation learning (ARPRL)

Input: A dataset D = {xi, yi, ui}, perturbation budget ϵ, α, β ∈ [0, 1], λ > 0, learning rates lr1, lr2, lr3, lr4, lr5;
#global epochs I , #local gradient steps J ;
Output: Representation learner parameters Θ.

1: Initialize Θ,Ψ,Ω,Λ for the representation learner fΘ, privacy protection network gΦ, utility preservation network hΩ,
and adversarially robust network tΛ;

2: for t = 0; t < T ; t++ do
3: L1 =

∑
i CE(ui, gΨ(f(xi)));

4: L2 = 1
|D|

∑
i tΛ(xi, fΘ(xi), ui)− log[ 1

|D|
∑

i e
tΛ(x̄i,fΘ(xi),ui)];

5: L3 = I
(JS)
Θ,Ω (x; f(x), u);

6: for i = 0; i < I; i++ do
7: for j = 0; j < J ; j ++ do
8: Ψ← Ψ− lr1 · ∂L1

∂Ψ
;

9: Λ← Λ + lr2 · ∂L2
∂Λ

;
10: Ω← Ω+ lr3 · ∂L3

∂Ω
;

11: end for
12: Θ← Θ+ lr4 · ∂(αL1+βL2+(1−α−β)L3)

∂Θ
;

13: end for
14: end for

=0

A PROOFS

A.1 PROOF OF THEOREM 2

Theorem 2. Let all binary task classifiers be C = {C : Z → Y}. Then for any representation learner
f : X → Z , we have

inf
C∈C

AdvRiskϵ(C ◦ f) ≥ 1

log 2

(
RVϵ(f |u)− I(x; z|u)

)
. (19)

Proof. Replacing I(x; z) and RVϵ(f) in Theorem 1 with I(x; z|u) and RVϵ(f |u), and setting |Y| = 2, we reach
Theorem 2.

A.2 PROOF OF THEOREM 3

We first introduce the following definitions and lemmas that will be used to prove Theorem 3.

Definition 1 (Lipschitz function and Lipschitz norm). We say a function f : A → Rm is L-Lipschitz continuous,
if for any a, b ∈ A, ∥f(a) − f(b)∥ ≤ L · ∥a − b∥. Lipschitz norm of f , i.e., ∥f∥L, is defined as ∥f∥L =

max ∥f(a)−f(b)∥L

∥a−b∥L
.

Definition 2 (Total variance (TV) distance). Let D1 and D2 be two distributions over the same sample space Γ,
the TV distance between D1 and D2 is defined as: dTV (D1,D2) = maxE⊆Γ |D1(E)−D2(E)|.
Definition 3 (1-Wasserstein distance). Let D1 and D2 be two distributions over the same sample space Γ, the
1-Wasserstein distance between D1 and D2 is defined as W1(D1,D2) = max∥f∥L≤1 |

∫
Γ
fdD1 −

∫
Γ
fdD2|,

where ∥ · ∥L is the Lipschitz norm of a real-valued function.

Definition 4 (Pushforward distribution). Let D be a distribution over a sample space and g be a function of the
same space. Then we call g(D) the pushforward distribution of D.

Lemma 1 (Contraction of the 1-Wasserstein distance). Let g be a function defined on a space and L be constant
such that ∥g∥L ≤ CL. For any distributions D1 and D2 over this space, W1(g(D1), g(D2)) ≤ CL ·W1(D1,D2).

Lemma 2 (1-Wasserstein distance on Bernoulli random variables). Let y1 and y2 be two Bernoulli random
variables with distributions D1 and D2, respectively. Then, W1(D1,D2) = |Pr(y1 = 1)− Pr(y2 = 1)|.
Lemma 3 (Relationship between the 1-Wasserstein distance and the TV distance (Gibbs & Su, 2002)). Let g be
a function defined on a norm-bounded space Z , where maxz∈Z ∥z∥ ≤ R, and D1 and D1 are two distributions
over the space Z . Then W1(g(D1), g(D2)) ≤ 2R · dTV (g(D1), g(D2)).

Lemma 4 (Relationship between the TV distance and advantage Liao et al. (2021)). Given a binary attribute
u ∈ {0, 1}. Let Du=a be the conditional data distribution of D given u = a over a sample space Γ. Let AdvD(A)
be the advantage of adversary. Then for any function f , we have dTV (f(Du=0), f(Du=1)) = AdvD(A).
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We now prove Theorem 3, which is restated as below:

Theorem 3. Let z = f(x) be with a bounded norm R (i.e., maxz∈Z ∥z∥ ≤ R), and A be the set of all binary
inference classifiers that take z as an input. Assume the task classifier C is CL-Lipschitz, i.e., ∥C∥L ≤ CL. Then,
we have the below relationship between the standard risk and the advantage:

Risk(C ◦ f) ≥ ∆y|u − 2R · CL · AdvD(A), (20)

where ∆y|u = |PrD(y = 1|u = 0)− PrD(y = 1|u = 1)| is a dataset-dependent constant.

Proof. We denote Du=a as the conditional data distribution of D given u = a, and Dy|u as the conditional
distribution of label y given u. cf is denoted as the (binary) composition function of c ◦ fΘ. As c is binary
task classifier on the learnt representations, it follows that the pushforward cf(Du=0) and cf(Du=1) induce two
distributions over the binary label space Y = {0, 1}. By leveraging the triangle inequalities of the 1-Wasserstein
distance, we have

W1(Dy|u=0,Dy|u=1)

≤ W1(Dy|u=0, cf(Du=0)) +W1(cf(Du=0), cf(Du=1)) +W1(cf(Du=1),Dy|u=1) (22)

Using Lemma 2 on Bernoulli random variables y|u = a:

W1(Dy|u=0,Dy|u=1) = |PrD(y = 1|u = 0)− PrD(y = 1|u = 1)| = ∆y|u. (23)

Using Lemma 1 on the contraction of the 1-Wasserstein distance and that ∥c∥L ≤ CL, we have

W1(cf(Du=0), cf(Du=1)) ≤ CL ·W1(f(Du=0), f(Du=1)). (24)

Using Lemma 3 with maxz ∥z∥ ≤ R , we have

W1(f(Du=0), f(Du=1)) ≤ 2R · dTV (f(Du=0), f(Du=1)) = 2R · AdvD(A), (25)

where the last equation is based on Lemma 4.

Combing Equations 24 and 25, we have

W1(cf(Du=0), cf(Du=1)) ≤ 2R · CL · AdvD(A).

Furthermore, using Lemma 2 on Bernoulli random variables y and cf(x), we have

W1(Dy|u=a, cf(Du=a))

= |PrD(y = 1|u = a)− PrD(cf(x) = 1|u = a))|
= |ED[y|u = a]− ED[cf(x)|u = a]|
≤ ED[|y − cf(x)||u = a]

= PrD(y ̸= cf(x)|u = a)

= Risku=a(c ◦ f). (26)

Hence, W1(Dy|u=0, cf(Du=0)) +W1(Dy|u=1, cf(Du=1)) ≤ Risk(c ◦ f).
Finally, by combining Equations (22) - (26), we have:

∆y|u ≤ Risk(c ◦ f) + 2R · CL · AdvD(A), (27)

thus Risk(c ◦ f) ≥ ∆y|u − 2R · CL · AdvD(A), completing the proof.

A.3 PROOF OF THEOREM 4

We follow the way as proving Theorem 3. We first restate Theorem 4 as below:

Theorem 4. Let z′ = f(x′) be the learnt representation for x′ ∈ B(x, ϵ) with a bounded norm R (i.e.,
maxz′∈Z ∥z′∥ ≤ R), and A be the set of all binary inference classifiers. Under a CL-Lipschitz task classifier C,
we have the below relationship between the adversarial risk and the advantage:

AdvRiskϵ(C ◦ f) ≥ ∆y|u − 2R · CL · AdvD′(A). (21)
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Proof. Recall that D′ is a joint distribution of the perturbed input x′, the label y, and private attribute u. We
denote D′

u=a as the conditional perturbed data distribution of D′ given u = a, and D′
y|u as the conditional

distribution of label y given u. Also, the pushforward cf(D′
u=a) induces two distributions over the binary label

space Y = {0, 1} with a = {0, 1}. Via the triangle inequalities of the 1-Wasserstein distance, we have
W1(D′

y|u=0,D
′
y|u=1)

≤ W1(D′
y|u=0, cf(D

′
u=0)) +W1(cf(D′

u=0), cf(D′
u=1)) +W1(cf(D′

u=1),D′
y|u=1) (28)

Using Lemma 2 on Bernoulli random variables y|u = a:
W1(D′

y|u=0,D′
y|u=1) = |PrD′(y = 1|u = 0)− PrD′(y = 1|u = 1)|

= |PrD(y = 1|u = 0)− PrD(y = 1|u = 1)| = ∆y|u, (29)

where we use that the perturbed data and clean data share the same label y condition on u.

Then following the proof of Theorem 3, we have:
W1(cf(D′

u=0), cf(D′
u=1)) ≤ CL ·W1(f(D′

u=0), f(D′
u=1)); (30)

W1(f(D′
u=0), f(D′

u=1)) ≤ 2R · dTV (f(D′
u=0), f(D′

u=1)). (31)

We further show dTV (f(D′
u=0), f(D′

u=1)) = AdvD′(A):
dTV (f(D′

u=0), f(D′
u=1))

= max
E

|Prf(D′
u=0)

(E)− Prf(D′
u=1)

(E)|

= max
AE∈A

|Prz′∼f(D′
u=0)

(AE(z
′) = 1)− Prz′∼f(D′

u=1)
(AE(z) = 1)|

= max
AE∈A

|Pr(AE(z
′) = 1|u = 0)− Pr(AE(z

′) = 1|u = 1)|

= AdvD′(A), (32)
where the first equation uses the definition of TV distance, and AE(·) is the characteristic function of the event
E in the second equation.

With Equations (30) - (32), we have
W1(cf(D′

u=0), cf(D′
u=1)) ≤ 2R · CL · AdvD′(A).

Furthermore, using Lemma 2 on Bernoulli random variables y and cf(x), we have
W1(D′

y|u=0, cf(D
′
u=0)) +W1(D′

y|u=1, cf(D
′
u=1))

= |PrD′(y = 1|u = 0)− PrD′(cf(x′) = 1|u = 0))|+ |PrD′(y = 1|u = 1)− PrD′(cf(x′) = 1|u = 1))|
= |ED′ [y|u = 0]− ED′ [cf(x′)|u = 0]|+ |ED′ [y|u = 1]− ED′ [cf(x′)|u = 1]|
≤ ED′ [|y − cf(x′)||u = 0] + ED′ [|y − cf(x′)||u = 1]

= PrD′(y ̸= cf(x′)|u = 0) + PrD′(y ̸= cf(x′)|u = 1)

= PrD′(y ̸= cf(x′))

= PrD[∃x′ ∈ B(x, ϵ), s.t. cf(x′) ̸= y]

= AdvRiskϵ(c ◦ f). (33)

Finally, by combining Equations (28) - (33), we have:
∆y|u ≤ AdvRiskϵ(c ◦ f) + 2R · CL · AdvD′(A)

Hence, AdvRiskϵ(c ◦ f) ≥ ∆y|u − 2R · CL · AdvD′(A), completing the proof.

A.4 PROOF OF THEOREM 5

We first point out that Zhao et al. (2020) also provide the theoretical result in Theorem 3.1 against attribute
inference attacks. However, there are two key differences between theirs and our Theorem 5: First, Theorem
3.1 requires an assumption I(Â;A|Z) = 0, while our Theorem 5 does not need extra assumption; 2) The proof
for Theorem 3.1 decomposes an joint entropy H(A, Â, E), while our proof decomposes a conditional entropy
H(s, u|A(z)). We note that the main idea to prove both theorems is by introducing an indicator and decomposing
an entropy in two different ways.

The following lemma about the inverse binary entropy will be useful in the proof of Theorem 5:
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Lemma 5 ((Calabro, 2009) Theorem 2.2). Let H−1
2 (p) be the inverse binary entropy function for p ∈ [0, 1], then

H−1
2 (p) ≥ p

2 log2(
6
p )

.

Lemma 6 (Data processing inequality). Given random variables X , Y , and Z that form a Markov chain in
the order X → Y → Z, then the mutual information between X and Y is greater than or equal to the mutual
information between X and Z. That is I(X;Y ) ≥ I(X;Z).

With the above lemma, we are ready to prove Theorem 5 restated as below.
Theorem 5. Let z be the learnt representation by Equation (17). For any attribute inference adversary
A = {A : Z → U = {0, 1}}, Pr(A(z) = u) ≤ 1− H(u|z)

2 log2(6/H(u|z)) .

Proof. Let s be an indicator that takes value 1 if and only if A(z) ̸= u, and 0 otherwise, i.e., s = 1[A(z) ̸= u].
Now consider the conditional entropy H(s, u|A(z)) associated with A(z), u, and s. By decomposing it in two
different ways, we have

H(s, u|A(z)) = H(u|A(z)) +H(s|u,A(z)) = H(s|A(z)) +H(u|s,A(z)). (34)

Note that H(s|u,A(z)) = 0 as when u and A(z) are known, s is also known. Similarly,

H(u|s,A(z)) = Pr(s = 1)H(u|s = 1,A(z)) + Pr(s = 0)H(u|s = 0,A(z))

= 0 + 0 = 0, (35)

because when we know s’s value and A(z), we also actually knows u.

Thus, Equation 34 reduces to H(u|A(z)) = H(s|A(z)). As conditioning does not increase entropy, i.e.,
H(s|A(z)) ≤ H(s), we further have

H(u|A(z)) ≤ H(s). (36)

On the other hand, using mutual information and entropy properties, we have I(u;A(z)) = H(u)−H(u|A(z))
and I(u; z) = H(u)−H(u|z). Hence,

I(u;A(z)) +H(u|A(z)) = I(u; z) +H(u|z). (37)

Notice A(z) is a random variable such that u ⊥ A(z)|z. Hence, we have the Markov chain u → z → A(z).
Based on the data processing inequality in Lemma 6, we know I(u;A(z)) ≤ I(u; z). Combining it with
Equation 37, we have

H(u|A(z)) ≥ H(u|z). (38)

Combing Equations (36) and (38), we have H(s) = H2(Pr(s = 1)) ≥ H(u|z), which implies

Pr(A(z) ̸= u) = Pr(s = 1) ≥ H−1
2 (H(u|z)),

where H2(t) = −t log2 t− (1− t) log2(1− t).

Finally, by applying Lemma 5, we have

Pr(A(z) ̸= u) ≥ H(u|z)
2 log2(6/H(u|z))

.

Hence the attribute privacy leakage is bounded by Pr(A(z) = u) ≤ 1− H(u|z)
2 log2(6/H(u|z)) .

B DATASETS AND NETWORK ARCHITECTURES

B.1 DETAILED DATASET DESCRIPTIONS

CelebA dataset (Liu et al., 2015). CelebA consists of more than 200K face images with size 32x32. Each face
image is labeled with 40 binary facial attributes. In the experiments, we use 150K images for training and 50K
images for testing. We treat binary ‘gender’ as the private attribute, and detect ‘gray hair’ as the primary (binary
classification) task.

Loans dataset (Hardt et al., 2016). This dataset is originally extracted from the loan-level Public Use Databases.
The Federal Housing Finance Agency publishes these databases yearly, containing information about the
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Table 2: Network architectures for the used datasets. Note that utility preservation network is the same as robust
network.

Representation
Learner

Robust Network Privacy Network Utility Network

CelebA
conv1-64 conv3-64 linear-32 conv3-64

MaxPool
conv64-128 conv64-128 linear-#priv. attri. val-

ues
conv64-128

linear-1024 conv128-256 conv128-256
linear-64 conv2048-2048 conv2048-2048

Loans and Adult Income
linear-12 linear-64 linear-16 linear-64
linear-3 linear-3 linear-#priv. attri. val-

ues
linear-3

Toy dataset
linear-10 linear-64 linear-5 linear-64
linear-2 linear-2 linear-#priv. attri. val-

ues
linear-2

Enterprises’ single family and multifamily mortgage acquisitions. Specifically, the database used in this project
is a single-family dataset and has a variety of features related to the person asking for a mortgage loan. All the
attributes in the dataset are numerical, so no preprocessing from this side was required. On the other hand, in
order to create a balanced classification problem, some of the features were modified to have a similar number of
observations belonging to all classes. We use 80% data for training and 20% for testing.

The utility under this scope was measured in the system accurately predicting the affordability category of
the person asking for a loan. This attribute is named Affordability, and has three possible values: 0 if the
person belongs to a mid-income family and asking for a loan in a low-income area, 1 if the person belongs to
a low-income family and asking for a loan in a low-income area, and 2 if the person belongs to a low-income
family and is asking for a loan not in a low-income area. The private attribute was set to be binary Race, being
White (0) or Not White (1).

Adult Income dataset (Dua & Graff, 2017). This is a well-known dataset available in the UCI Machine
Learning Repository. The dataset contains 32,561 observations each with 15 features, some of them numerical,
other strings. Those attributes are not numerical were converted into categorical using an encoder. Again, we use
the 80%-20% train-test split.

The primary classification task is predicting if a person has an income above $50,000, labeled as 1, or below,
which is labeled as 0. The private attributes to predict are the Gender, which is binary, and the Marital Status,
which has seven possible labels: 0 if Divorced, 1 if AF-spouse, 2 if Civil-spouse, 3 if Spouse absent, 4 if Never
married, 5 if Separated, and 6 if Widowed.

B.2 NETWORK ARCHITECTURES

The used network architectures for the three neural networks are in Table 2.

B.3 HOW TO CHOOSE α AND β

Assume we reach the required utility with a (relatively large) value 1−α−β (e.g., 0.7, 0.8; note its regularization
controls the utility). Then we have a principled way to efficiently tune α and β based on their meanings:

1) We will start with three sets of (α1, β1), (α2, β2), (α3, β3), where one is with α1 = β1, one is with a larger
α2 > α1 (i.e., better privacy), and one is with a larger β3 > β1 (better robustness), respectively.

2) Based on the three results, we know whether a larger α or β is needed to obtain a better privacy-robustness
tradeoff and set their values via a binary search. For instance, if needing more privacy protection, we can set a
larger α4 = α1+α2

2 ; or needing more robustness, we can set a larger β4 = β1+β3
2 .

Step 2) continues until finding the optimal tradeoff α and β.
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