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Abstract

In this paper, we leverage recent advancements in feature monosemanticity to ex-
tract interpretable features from deep multi-modal models, offering a data-driven
understanding of modality gaps. Specifically, we investigate CLIP (Contrastive
Language-Image Pretraining) (Radford et al., 2021), a prominent visual-language
representation model. Building upon interpretability tools developed for single-
modal models, we extend these methodologies to assess the multi-modal inter-
pretability of CLIP’s features. Additionally, we introduce the Modality Domi-
nance Score (MDS) to attribute the interpretability of each feature to its respective
modality. Next, we transform CLIP’s features into a more interpretable space, en-
abling us to categorize them into three distinct classes: vision features, language
features (both single-modal), and visual-language features (cross-modal). Our
findings reveal that this categorization aligns closely with human cognitive un-
derstandings of different modalities. These results indicate that large-scale multi-
modal models, equipped with advanced interpretability tools, offer valuable in-
sights into the key connections and distinctions between different data modalities.
This work not only bridges the gap between cognitive science and machine learn-
ing but also introduces new data-driven tools to advancing both fields.

1 Introduction

Multi-modal models have become foundational in the development of artificial intelligence systems,
enabling the processing and understanding of information from multiple data modalities, such as
vision and language (Radford et al., 2021; Kim et al., 2021; Lu et al., 2019). These models are
built on the premise that different data modalities share common, or cross-modal, features that can
be jointly learned (Ngiam et al., 2011). However, it is widely acknowledged that certain features
are modality-specific; for example, some emotions are difficult to visualize, while certain visual
experiences cannot be accurately described through language (Paivio, 1991).

The exploration of modality commonality and gaps has long been a focus in cognitive science, where
researchers have investigated how humans integrate and differentiate information across sensory
modalities (Spence, 2011). However, these studies are often human-centric and may not directly
translate to artificial systems due to fundamental differences in how information is processed and
represented (Calvert et al., 2004). Meanwhile, recent advances in interpretability methods, partic-
ularly in the area of monosemantic features, providing a promising path towards a more detailed
understanding of deep models (Elhage et al.; Bills et al., 2023; Gurnee et al., 2023; Yan et al., 2024).
Monosemantic features/neurons refer to model components that correspond to a single, interpretable
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concept or feature. By leveraging these methods, we can extract monosemantic, interpretable fea-
tures from deep learning models, providing a data-driven approach to exploring modality gaps.

In this paper, we focus on CLIP (Contrastive Language-Image Pretraining) (Radford et al., 2021),
a visual-language representation model trained on massive image-text pairs. We investigate the
modality association of features extracted from CLIP by introducing a modality metric that catego-
rizes these interpretable features into: vision, language and visual-language features.

Our study reveals that single-modal features align well with human cognition and highlight diverse
aspects of the visual-language modality gap. We find that visual-language features capture modality-
aligned semantics. These findings suggest that interpretability tools can enable deep models to
provide a systematic understanding of the similarities and distinctions between different modalities.

2 Towards Multi-modal Monosemanticity

In this section, we build a pipeline to extract monosemantic multi-modal features and evaluate in-
terpretability the these features. We also characterize the modality relevance in extracted features
with the proposed Monosemantic Relevance Score (MRS).

We consider two CLIP models, i.e., canonical ViT-B-32 CLIP model by OpenAI (Radford et al.,
2021) and a popular CLIP variant, DeCLIP (Li et al., 2022). Beyond multi-modal supervision
(image-text pairs), DeCLIP also integrates single-modal self-supervision (image-image pairs and
text-text pairs) for more efficient joint learning. We hypothesize that, with the incorporation of self-
supervision tasks, DeCLIP is able to extract more single-modal features from the data, enhancing its
interpretability and alignment with modality-specific characteristics.

2.1 Interpretability Tools for Multi-modal Monosemantic Feature Extraction

The features in deep models are observed to be quite polysemantic (Olah et al., 2020), in the sense
that activating samples along each feature dimension often contain multiple unrelated semantics.
Therefore, we first need to disentangle the CLIP features to have monosemantic features. Borrowing
from the recent progress in monosemanticity in self-supervised models, we study the two methods
to attain better multi-modal monosemanticity.

Multi-modal SAE. Sparse Autoencoders (SAEs) (Cunningham et al., 2023) are a new scalable in-
terpretability method, demonstrating success in multiple large language models (LLMs) (Templeton,
2024; Gao et al., 2024; Lieberum et al., 2024). Here, we train a multi-modal SAE (MSAE) g+ by
training one SAE model to reconstruct both image and text representations. Specifically, we adopt
a top-K SAE model (Makhzani & Frey, 2013; Gao et al., 2024), and train it with a multi-modal
reconstruction objective. In this way, the sparse latent feature z ∈ Rn can encode multi-modal
representations from both modalities.

Multi-modal NCL. Inspired by the interpretable self-supervised loss with non-negative constraint
(NCL) proposed by (Wang et al., 2024) to extract sparse features, we adapt it to enhance multi-modal
interpretability. A shared MLP network (of similar size to SAE) on top of the encoder outputs is
trained by a Multi-modal NCL loss.

2.2 Measures for Multi-modal Interpretability

Existing quantitative interpretability measures (Bills et al., 2023) often require access to high pricing
models (like GPT-4o) and suffer from poor scalability and poor precision (Gao et al., 2024), damping
the progress of open science. It motivates us to propose scalable measures as below.

Embedding-based Similarity. We propose a scalable measure based on embedding models that
work for both image and text.2 For each image/text feature z, we select the top m activated im-
age/text samples on this dimension, denoting their embeddings as Z+ ∈ Rm×d; similarly, K ran-
dom samples are encoded into Z− ∈ Rm×d as the baseline. Then, we calculate the inter-sample
similarity between the selected samples, S+ = Z+Z

⊤
+ ∈ Rm×m and S− = Z−Z

⊤
− ∈ Rm×m. Then

we measure the monosemanticity degree of z by calculating the relative difference between the two
2We use Vision Transformer (ViT-B-16-224-in21k) for image embeddings and Sentence Transformer (all-

MiniLM-L6-v2) for text embeddings.
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similarity scores: I(z) = 1
m(m−1)

∑
i ̸=j

(S+)ij−(S−)ij
(S−)ij

. A larger score indicates that the extracted
features have more consistent semantics on average.

WinRate. Since the representations obtained from different embedding models (e.g., vision and
text) are not directly comparable, we propose similarity WinRate, a binary version of the rela-
tive similarity score, by counting the percentage that the elements in S+ is larger than that in S−:
W (z) = 1

m(m−1)

∑
i̸=j 1[(S+)ij>(S−)ij ].

Model Similarity WinRate

Image Text Image Text |∆|(img − txt)

CLIP 0.113 0.451 0.652 0.594 0.058
DeCLIP 0.058 -0.073 0.615 0.457 0.158
CLIP+NCL 0.161 0.592 0.727 0.608 0.119
CLIP+SAE 0.120 0.244 0.667 0.540 0.127

Table 1: The average interpretability scores for features
extracted from the four models. A larger |∆| represents
that the features are more aligned with a single modality.

Results. From the results of interpretability
distribution of the features extracted in Ta-
ble 1, we observe: (1) Features in NCL have
the overall best monosemanticity (2) Com-
pared to CLIP, all other models have more
single-modality aligned features. We evalu-
ate the average interpretability, regardless of
their predominant modality. Next, we split
the neurons into different groups and study the
modality-specific features.

2.3 Grouping Modality in Multi-modal Representations

Modality Dominance Score (MDS). We propose a metric to assert the predominant modality of
each neuron. Specially, we feed m input-output pairs to CLIP and obtain the image features ZI ∈
Rm×n and text features ZT ∈ Rm×n. For each feature k ∈ [1, . . . , n], we calculate the relative
activation between image and text features over the m inputs, i.e., R(k) = 1

m

∑m
i=1

(ZI)ik
(ZI)ik+(ZT )ik

.

The ratio R(k) reflects the ratio of the kth feature k being activated in the image modality. Based on
this value, we split all n features into three groups according to their dominant modality, i.e., sigma
of the distribution: ImgD (Image Dominant):ri > µ+ σ; TextD (Text Dominant): ri <
µ− σ; CrossM (Cross Modality): µ− σ < ri < µ+ σ.

We anticipate that ImgD features are mostly activated by images and TextD features by text,
while CrossM features are simulatenously activated by both image and text when paired.
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Figure 1: MDS distributions for different Language-Vision Models. Left to
right: CLIP, DeCLIP, CLIP+NCL, CLIP+SAE.

Results of MDS in Fig 1.
Interestingly, we find that
CLIP, which is only trained
on image-text paired con-
trastive learning objective,
also contains a spectrum
of features with differ-
ent modality dominance.
DeCLIP features are less
skewed and less centered,

showing better coverage of both image-dominant, text-dominant, and cross-model features. There-
fore, it demonstrates from a mechanistic interpretability perspective that self-supervision extract
more modality-specific features that might be overlooked by pure visual-language contrastive mod-
els like CLIP. The extracted features from NCL and SAE are less skewed. SAE has a more balanced
distribution, indicating its better capability of extracting diverse monosemantic features.

3 Understanding Multi-modal Features in Different Modality Groups

With the protocol developed above, we have separated the the neurons into three groups, which
allows for a deeper quantitative and qualitative understanding of the connections and gaps between
different modalities in data-driven approach.

3.1 Multi-modal Interpretability Modality CLIP DeCLIP CLIP+NCL CLIP+SAE

Image 0.118 0.070 0.197 0.135
Text -0.07 -0.059 0.132 0.439

Table 2: The visual and textual monosemanticity.

A major implication of modality domain is its
influence on feature interpretability at different
modalities. Ideally, when fed with image sam-
ples, ImgD neurons should be more effective at
capturing concrete and consistent features than TextD neurons. Similar for input text samples.
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Therefore, we measure both visual and textual monosemanticity. Specially, for image inputs, we
calculate the visual monosemanticity by comparing the interpretability between ImagD and TextD,
i.e., EmbedSimi(ImgD)-EmbedSimi(TextD); for text inputs, we calculate textual monosemanticity
via EmbedSimi(TextD)-EmbedSimi(ImgD). We have the following observations from Table2: (1)
On image input, except for CLIP, all the other three models demonstrate positive visually monose-
manticity than the other two types of neurons. (2) On text input, both NCL and SAE capture better
monosemantic textual features than the other two models. (3) SAE is the best in capturing both
visual and textual monosemantic features.

3.2 Case Studies
In addition to quantification of the interpretability of neurons dominating different modalities, we
look closer to a few examples of captured features. ImgD neurons capture both coarse and fine-
grained visual features. Among ImgD neurons, we randomly select two neurons and display the
top5 activated images in Figure 2. The activated images can be concrete concept, i.e., the inner
living space, also the patterns and textures that are the basic patterns learnt in the lower layers by
image-only model. Moreover, Neuron668 is a monosemantic neuron to blue color. TextD neurons
capture abstract and semantic information that is less prevalent in visual representations. We
randomly select three neurons and display the top4 activated sentences in Table 3. Neuron45 focuses
on strong emotions by highlighting the text with ?, ! and strong emotion words. Neuron932 focuses
a happy and warm atmosphere, even though there are no common visual concepts.

Figure 2: Activated images by ImgD neurons. Top
to bottom: Patterns and textures; Water and aquatic
themes.

Neuron 45: Strong affection

sinkhole,most terrifying thing I have ever seen.
Alligators: what’s in my bag? gloves I need !
i never have to paint a mural again ! =)

Neuron 932: Moments of joy, warmth

Couple kissing in a gazebo.
Man with red jumper stand by a Christmas tree.
Funny summer background with the little girl.

Table 3: Activated sentences by TextD neurons.

Cross-Modality neurons capture common features between image and text. Different from
the TextD and ImgD, whose activated samples tend to contain modality-exclusive features, CrossM
neurons are more capable in capturing common features shared by the two modalities. We randomly
select two CrossM neurons and display their top activated images and texts, shown in Figure 3 and
Table 4. It is clear that Neuron6 activate male action related concepts in both modality and Neuron47
activate outdoor scenes.

Figure 3: Activated images by CrossM neurons. Top to
bottom: individuals engaged in various activities; out-
door scenes.

Neuron 6: Actions performed by males

Young man working on invention in a warehouse
Cricket player checks his bat in a training
Handsome man walks on ruins

Neuron 47: Outdoor scenes

A private chapel in the grounds
An open gate in a meadow
People look out over loch in the village

Table 4: Activated samples by the same set of CrossM
neurons.

4 Conclusion
In this study, we explored the monosemanticity of features within the CLIP model to elucidate the
commonalities and distinctions across visual and linguistic modalities. We successfully categorized
interpretable features according to their predominant modality, which demonstrate close correspon-
dence to human cognitive interpretations. Future work may extend these methodologies to other
multi-modal architectures and investigate their implications for cognitive science, ultimately foster-
ing the development of more interpretable and cognitively aligned AI systems.
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