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Abstract

Multi-spectral optoacoustic tomography (MSOT) relies on optical excitation of tissues with
subsequent detection of the generated ultrasound waves. Optimal image quality in MSOT
is achieved by detection of signals from a broad tomographic view. However, due to physical
constraints and other cost-related considerations, most imaging systems are implemented
with probes having limited tomographic coverage around the imaged object, such as lin-
ear array transducers often employed for clinical ultrasound (US) imaging. MSOT image
reconstruction from limited-view data results in arc-shaped image artifacts and disrupted
shape of the vascular structures. Deep learning methods have previously been used to
recover MSOT images from incomplete tomographic data, albeit poor performance was at-
tained when training with data from simulations or other imaging modalities. We propose
a two-step method consisting of i) style transfer for domain adaptation between simulated
and experimental MSOT signals, and ii) supervised training on simulated data to recover
missing tomographic signals in realistic clinical data. The method is shown capable of cor-
recting images reconstructed from sub-optimal probe geometries using only signal domain
data without the need for training with ground truth (GT) full-view images.

Keywords: Optoacoustics, Limited View Artifacts, Signal Domain Learning, Style Trans-
fer, Domain Adaptation.

1. Introduction

Multi-spectral optoacoustic tomography (MSOT) is a hybrid biomedical imaging modality
based on optical excitation (thermal expansion) of biological tissues followed by detection of
the generated ultrasound (US) waves. Interpretation and quantification of the MSOT data
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is often hampered by poor tomographic coverage provided by the common clinical imaging
system implementations. Optimal tomographic inversion in MSOT implies recording suffi-
cient information from the generated ultrasonic wave field with broad angular tomographic
coverage (Merčep et al., 2015). Yet, full tomographic coverage is generally not possible due
to physical constraints and other cost-related considerations.

The potential value of MSOT as a clinical imaging tool can be further enhanced when
combined with pulse-echo (reflection) US imaging, which provides important reference
anatomical information (Merčep et al., 2019; Lafci et al., 2020). However, such combination
is not straightforward cause MSOT and US imaging impose different, often contradictory,
constraints on the transducer array design, such as the pitch size or element directivity
in transmission and reception. Linear arrays are frequently used in commercial hand-held
US scanners and have further been suggested for implementation of hybrid optoacoustic-
ultrasound (OPUS) scanners (Jeng et al., 2021; Montilla et al., 2012). Linear arrays are easy
to manufacture and well-established guidelines exist for the interpretation of the generated
US images, offering clear advantages in the clinical setting. On the other hand, acqui-
sition of MSOT images with linear arrays typically results in elongated vessel structures
and arc-shaped limited-view artifacts, thus making image interpretation and quantification
difficult (Deán-Ben and Razansky, 2016). Recently, specialized transducer geometries have
been suggested for optimal implementation of hybrid OPUS scanners, such as multisegment
transducer arrays incorporating both linear and concave array segments. In this way, the
limited-view MSOT problem can be partially mitigated with image quality restored to a
certain degree (Fig. 1A) (Deán-Ben et al., 2017). In the multisegment configuration, the
linear part renders standard US images while all elements contribute to an increased angular
coverage for MSOT image reconstruction (Merčep et al., 2017). While providing optimal
image quality in both MSOT and US modes, the manufacturing process of an array of this
type is relatively complex. Furthermore, hand-held scanning of certain parts of the human
body is also hampered with this array geometry due to the need for a customized water
coupling approach (Merčep et al., 2018).

A possible approach to resolve these unavoidable trade-offs is to make use of the op-
timized multisegment array configuration for the development of learning-based methods
toward improving image quality in both MSOT and US imaging modes. In this work, we
approach the hybrid image reconstruction problem by considering the raw signal domain
data instead of dealing directly with the reconstructed images. With this, we aim to capture
spatial and temporal correlations between the transducer array elements in latent space. A
learning-based method trained on simulated data may be used to complete the missing view
angles in the linear array recordings. To this end, deep learning methods have been used to
partially restore quality of the MSOT images reconstructed from incomplete tomographic
data. However, poor performance was achieved when training with data from simulations
or other imaging modalities, which appears to be a result of the large domain gap between
simulated and experimental data (Davoudi et al., 2019). Thereby, we propose a two-step
approach consisting of i) style transfer for domain adaptation between simulated and exper-
imental MSOT signals, and ii) semi-supervised training on simulations from multisegment
array geometry and experimental data from linear array to recover missing signals in ex-
perimental multisegment array data. We formulate the domain adaptation problem as an
unpaired image translation between simulated and experimental signals. Signals detected
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Figure 1: Handheld MSOT imaging with linear and multisegment array configurations. A)
Schematic diagram of the array geometries. The excitation light beam and generated US
waves are represented with red arrows and dashed circles, respectively. B) Raw data (time-
resolved signals) along with the reconstructed MSOT images corresponding to a hand-held
scan of the human arm at 1064 nm excitation wavelength with the linear and multisegment
arrays, respectively. C) Simulated signals along with the reconstructed images for the linear
and multisegment arrays, respectively.

by elements of the concave segments are then estimated from the data provided by the lin-
ear part of the array using only simulated data after domain adaptation. Once the missing
parts have been recovered, the MSOT image reconstruction can be performed with standard
methods such as back-projection or model-based algorithms (Ozbek et al., 2013; Xu and
Wang, 2005; Ding et al., 2020). The main contributions of this paper with respect to prior
art are summarized as follows: i) the MSOT limited-view problem is tackled in the signal
domain instead of the image domain, ii) a method to reduce domain gap between simulated
and experimental data is proposed, and iii) a learning-based method is used for estimating
the signals from missing detection elements without the need for ground truth (GT) data
from sophisticated and costly array configurations (e.g. multisegment array). To the best
of our knowledge, this work constitutes the first attempt to address the limited-view MSOT
problem in the raw signal domain using simulated data.
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2. Methodology

2.1. Style Transfer Network

The first step of the proposed method represents the key component to reduce the domain
gap between simulated and experimental data. The main differences between simulated and
experimental domains result from difficulties in mimicking complicated acoustic pressure
wavefields corresponding to actual anatomical structures and from the lack of realistic noise
components in simulated data. Herein, we use a style transfer network to reduce the distance
between simulated and experimental datasets. The simulated and experimental domains
are denoted as X and Y, respectively. The corresponding training samples are denoted as
{xi}Ni=1, {yi}Mi=1 where N and M are the number of samples from simulated and experimental
data, respectively. The signals from both domains are combined into one dataset alongside
their labels, so that each signal is represented by a pair D = {(si, li)}N+M

i=1 , where si is the
signal itself and li is a label indicating if the signal belongs to the simulated (li = 0) or
experimental (li = 1) domains.

An encoder-decoder architecture was used with domain-adversarial training on the latent
space from fader networks (Lample et al., 2017) after minor modifications. As demonstrated
in Fig. 2A, the model consists of two convolutional neural networks; an encoder Eθenc and a
decoder Dθdec , a latent space discriminator and an additional fully connected discriminator
network Dθdisc for the adversarial training to ensure domain alignment. The encoder Eθenc

takes as input the signal 2D representation si and produces the latent representation zi =
Eθenc(si). The decoder Dθdec takes as input the latent invariant representation zi and
corresponding label of the input domain li to produce the reconstructed signal ŝi. We use
mean absolute error (MAE) as the reconstruction error as it is more suitable for medical
imaging problems since it produces sharper images:

ℓMAE =
1

N +M

∑
(s,l)∈D

∥Dθdec(Eθenc(s), l)− s∥1. (1)

The decoder takes as an input latent representation and a label. If the label is “experi-
mental”, a latent vector is sampled from a Gaussian distribution with mean and variance
parametrized by embedding layers in the decoder, and then a convolutional network is ap-
plied to it. If the label is “simulated”, another convolutional network is applied directly
to the latent representation without sampling. The latent discriminator Dθdisc is trained
to make this representation zi invariant to the domain via an adversarial loss as in GANs
(Goodfellow et al., 2014). In particular, this is achieved by a two-player game; the discrim-
inator is trained between two domains with a classification loss:

ℓlatent disc = −Ex∼Pexp [logDθdisc(Eθenc(x))]− Ey∼Psim [log(1−Dθdisc(Eθenc(y)))], (2)

and the parameters of the encoder are optimized through an additional adversarial loss:

ℓadv latent = −Es∼Ps [logDθdisc(Eθenc(s))], (3)

where Pexp and Psim are the experimental and simulated data distributions, and Ps is the
joint distribution of both experimental and simulated data.
Since adversarial training can be unstable (Arjovsky and Bottou, 2017; Bao et al., 2017;
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Figure 2: Summary of the proposed network architectures. A) Style network architecture
with loss functions defined by red labels. MAE - Mean Absolute Error, CCL – Cycle
Consistency Loss, FM – Feature matching loss, LDL – Latent Discriminator Loss, SDL –
Style Discriminator Loss. B) Training of side network with simulated data. C) Training of
side network using only experimental data from the linear part of the array.

Arjovsky et al., 2017), we additionally add feature matching to stabilize adversarial train-
ing(Bao et al., 2017):

ℓFM =
1

2
∥Ex∼Pexp [Eθenc(x)]− Ey∼Psim [Eθenc(y)]∥22. (4)

We opt for patchGAN discriminator (Zhu et al., 2017) as proposed by Lample et al. (2017)
to improve the quality and sharpness of the reconstructions where the discriminators are
trained by updating following two loss functions:

ℓsim = −Es∼Pexp [logDθdisc sim
(Dθdec(Eθenc(s), l = sim))], (5)

ℓexp = −Es∼Psim [logDθdisc exp
(Dθdec(Eθenc(s), l = exp))]. (6)

Patch discriminators Dθdisc sim
and Dθdisc exp

are trained by minimizing the following losses
respectively:

ℓsim disc = −Ex∼Psim [logDθdisc sim
(x)]− Ey∼Pexp [log(1−Dθdisc sim

(Dθdec(Eθenc(y), l = sim)))],
(7)

ℓexp disc = −Ex∼Pexp [logDθdisc exp
(x)]− Ey∼Psim [log(1−Dθdisc exp

(Dθdec(Eθenc(y), l = exp)))].
(8)

The overall training procedure consists in iteratively updating the generator networks via
minimization of the total loss

ℓtotal = ℓMAE + ℓadv latent + ℓCycle + ℓFM + ℓsim + ℓexp, (9)
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where ℓCycle is cycle consistency loss (Isola et al., 2017) and the discriminators are updated
every n epochs via minimizing losses from equations 3, 7, 8 separately. This combination
of losses was originally proposed in Lample et al. (2017), except the cycle loss, which was
proposed for domain adaptation in Hoffman et al. (2018). Such a particular combination
of losses is important for a good quality of predictions for domain adaptation task. We will
refer to this network as style network in the rest of this manuscript. The fully trained style
network will be denoted as SθStyle

with si,lin linear parts of a signal i and si,mul multisegment
array detection of this signal.

2.2. Side Network

After reducing the domain gap between simulated and experimental data, a second (side)
network of auto-encoders is suggested to overcome limited-view-associated problems and
yield geometrically corrected images. The main goal of this side network is to impute
virtual signals at the concave parts of the multisegment array (Fig. 1A) using side decoders.
Specifically, one encoder and three decoders are used in the auto-encoder architecture for
simulated signals Fig. 2B. It is important to note that only the central part of the network
(encoder and center decoder) is used in the training phase when the observation corresponds
to an experimental signal. By training the network on simulated data, this is optimized
to complete the concave sides of the imaging array. Accordingly, experimental signals are
included in the dataset for optimization of the encoder and center decoder. Training on
linear experimental signals helps to adapt network for experimental data distribution.

In a similar manner as in the style network, we propose an encoder-decoder architecture.
As in SθStyle

, the encoder takes the signal matrix corresponding to linear array from either
simulated or experimental images. The decoder, in contrast to SθStyle

, consists of three
convolutional networks, where the goals of each networks are to produce signals from i) linear
array (“center decoder”), ii) left concave segment, and iii) right concave segment. During
training, the network only sees linear parts of experimental signals and whole multisegment
array signals for simulated data. We use MAE loss to train the networks:

ℓsides =
1

N

∑
(slin,smul)∈Dsim

∥Dθdec(Eθenc(SθStyle
(slin)))− smul∥1+

1

M

∑
slin∈Dexp

∥Dθdec(Eθenc(SθStyle
(slin)))− slin∥1. (10)

3. Experiment and Results

3.1. Datasets description

The datasets used in this study include two main parts. The simulated dataset contains
a curved structure mimicking the skin surface and circular shapes similar to round vessel
structures in the human forearm. It has 5500 cross-sectional images with different position-
ing of structures and number of vessels. The simulations were drawn as acoustic pressure
maps in the spatial domain. Then, the corresponding signals were generated using the
MSOT forward model for the multisegment array geometry (Dean-Ben et al., 2012b). 32
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Figure 3: Results in the signal and image domains. A) Signal domain representation of
a test image. Left to right: multisegment ground truth (GT) signals, linear GT signals,
multisegment signals after style and side networks, multisegment signals after style and side
network with real center (RC). B) Images reconstructed with back-projection and model-
based elastic-net approach. Benchmark UNet result is added for comparison.

images were hold out for testing. The rest of the images were split into training and valida-
tion via 70/30 split. The second dataset was acquired from volunteers using a multisegment
ultrasound transducer array as shown in Fig. 1A and described in detail in (Merčep et al.,
2017). The corresponding simulated and experimental signals and images from the linear
and all parts of the multisegment arrays are shown in Fig. 1B and 1C, respectively. In to-
tal, 5565 cross-sectional experimental images were collected from 22 forearms. 5501 images
were allocated for training, 32 images for validation and 32 images for testing.

3.2. Results

The experimental signals acquired with the linear part were first processed with the style
network to generate their virtual simulated counterparts in order to reduce the domain
gap with actual simulated data. Then, these simulated signals were fed into the side net-
work to impute the missing concave parts. The signals from the side network and the GT
multisegment acquisitions were reconstructed using filtered back-projection and elastic-net
algorithms (Ozbek et al., 2013; Dean-Ben et al., 2012b; Zou and Hastie, 2005) to generate
the corresponding images. The comparison was made in the image domain because some of
the samples from signal domain are not used in reconstruction as they stay out of the FOV
or otherwise modified/filtered by pre-processing algorithms before reconstruction. Another
reason to evaluate the results in the image domain is that the main goal of this work is to
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enhance MSOT images by eliminating limited-view.
One example from test set is shown in Fig. 3. The third column in Fig. 3 shows the

output of both networks after style network and side network. We refer to this output as
”Sides impute” further in the paper. The linear part of this “Sides impute” output is fur-
ther replaced with experimental linear part (Fig. 3A - 4th column). We refer to it further
in the text as “Sides impute with RC” (RC stands for real center). The corresponding
reconstructed images for each signal are displayed in the same column. The network results
(side impute and side impute with RC) show clear improvement in round vessel structures
which are the most important features visualized in MSOT images. In contrast, benchmark
UNet is not able to correct the vessel shapes while further creating additional vessel-like
structures.

The quantitative results calculated on the test set are summarized in Table 1 and a com-
plete ablation study in Supplementary Tables 1, 2. Four different metrics were used to eval-
uate the proposed networks, namely structural similarity index (SSIM), mean squared error
(MSE), Pearson correlation coefficient (Pearson) and peak signal to noise ratio (PSNR).
The linear GT represents the images reconstructed from cropped multisegment signals;
i.e., excluding concave parts. Hence, the linear GT may outperform some of the metrics.
However, when the results are compared with the benchmark UNet, the proposed method
becomes superior in each evaluation metric.

Table 1: Reconstruction scores with respect to GT multisegment reconstructions for Elastic
Net (EN) with α = 1e− 5 and BackProjection (BP) methods. Best score is in bold.

SSIM MSE Pearson PSNR
EN BP EN BP EN BP EN BP

Linear GT 0.85 0.67 0.0019 0.0013 33.75 35.37 75.86 77.48
Ours 0.90 0.64 0.0013 0.0014 35.28 35.11 77.39 77.22
Unet 0.57 0.49 0.0026 0.0036 30.92 32.14 74.25 73.03

4. Conclusion

This work is the first to pursue a signal domain solution to overcome limited-view reconstruc-
tion artifacts in MSOT imaging. Style transfer network was shown to reduce the domain gap
between simulations and experimental signals, thus significantly improving quality of the
reconstructed images versus conventional learning-free methods, such as back-projection
or regularized model-based reconstruction. Previously-suggested methods trained exclu-
sively with simulated data in the image domain (e.g. benchmark UNet) have shown inferior
performance as compared to the domain adaptation networks proposed here. It was addi-
tionally demonstrated that, once the domain gap is reduced, training with simulated data
can be used for imputing missing signals over a broader tomographic angle, thus leading to
reduction of limited-view artifacts in backprojection-based reconstructions. However, the
proposed method yields slight improvements in backprojection reconstructions. The results
can be improved by using different architectures for the similar signal domain approach. Fu-
ture work will make use of different training invariant architectures or other reconstruction
methods.
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Elena Merčep, Gency Jeng, Stefan Morscher, Pai-Chi Li, and Daniel Razansky. Hybrid
optoacoustic tomography and pulse-echo ultrasonography using concave arrays. IEEE
transactions on ultrasonics, ferroelectrics, and frequency control, 62(9):1651–1661, 2015.
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Appendix A. Related Work

A.1. Domain Generalization and Adaptation

Domain adaptation and generalization address the problem of domain shift for settings
where the distribution of observations for training and testing differ substantially. A popu-
lar approach to address the co-variate shift problem is to minimize the domain gap between
two distributions in the latent space by minimizing maximum mean discrepancy (Muandet
et al., 2013; Ghifary et al., 2016, 2014; Long et al., 2017b), and adversarial feature align-
ment (Li et al., 2018; Long et al., 2015; Ganin et al., 2016; Long et al., 2017a; Tzeng et al.,
2017). Recently, several methods based on image-level translation for domain adaptation
and reduction of style bias have been proposed (Hoffman et al., 2018; Murez et al., 2018;
Nam et al., 2021). In particular, Hoffman et al. (2018) proposed using core concepts from
CycleGan (Zhu et al., 2017). Nam et al. (2021) used style-agnostic networks to reduce
domain shift by disentangling style encoding from class categories. Lample et al. (2017)
originally proposed using adversarial auto-encoder to swap attributes in the images, and
later Lotfollahi et al. (2021) demonstrated how a similar idea based on disentangling infor-
mation from different domains could be applied for out-of-distribution predictions of unseen
drug combinations. The method proposed herein combines aspects of these works in order
to find a fast and easy way to train networks on simulated data that can be subsequently
applied to experimental data.

A.2. Deep Learning in Optoacoustic Imaging

Several deep-learning-based methods have been used to enhance the MSOT imaging per-
formance. For example, densely-sampled data was recovered from sparse signal acquisitions
using supervised learning (Davoudi et al., 2019; Antholzer et al., 2019; Guan et al., 2020).
The inverse reconstruction problem has been tackled by learning the optimal regulariza-
tion in iterative methods (Hauptmann et al., 2018). A semantic segmentation network was
applied to hybrid OPUS images for delineating the mouse boundaries in preclinical data
(Lafci et al., 2021). MSOT images are also segmented using convolutional neural networks
(Gröhl et al., 2021; Chlis et al., 2020). Multi-modal images from MSOT and magnetic res-
onance imaging (MRI) systems were registered using segmentation and spatial transformer
networks (Hu et al., 2021). Spectral unmixing between different wavelengths in MSOT
images was performed using deep learning methods (Olefir et al., 2020; Gröhl et al., 2021).
Speed of sound values that are used in MSOT image reconstruction was corrected by a
learning based method (Jeon and Kim, 2020). Noise caused by electromagnetic interference
in MSOT imaging setups could be removed by means of signal domain learning approach
(Dehner et al., 2021). Bandwidth enhancement was also proposed in the signal domain
using supervised learning methods (Gutta et al., 2017). MSOT image and signal domain
data were combined in hybrid networks to reduce limited-view artifacts (Davoudi et al.,
2021; Lan et al., 2019), although signal data was only used as complementary information
for the image domain learning. The two-step method proposed herein solely operates in the
signal domain to solve limited-view-associated problems.
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Appendix B. Image Reconstruction Methods

Two different methods were used in this study to generate images from time domain signals,
namely back-projection and elastic-net (Zou and Hastie, 2005). Back-projection is a simple
and widely used method based on delaying and summing the US signals according to their
time of flight from the pixels on the reconstruction grid (Ozbek et al., 2013). It is applied
as follows: i) the signals are first band-pass filtered between 0.1 and 6 MHz, ii) the filtered
signals are normalized around zero mean, iii) the pre-processed signals are summed up based
on their time of flights. The field of view (FOV) was set to 25.6 mm (256x256 pixels). The
elastic-net method was also used for reconstructing the images (Zou and Hastie, 2005). It is
based on regularized inversion considering conventional model-based reconstruction (Dean-
Ben et al., 2012a). This regularization approach was chosen as it allows removing some
artifacts from the non-regularized version of the model-based algorithm and further enables
computationally comparing the effect of geometry correction in the signal domain. We used
a fixed parameter for the elastic net, α = 10−5. This value was empirically established for
providing an optimal quality of the reconstructed images with simulated and experimental
multisegment array data.

Appendix C. Benchmark UNet

For comparison purposes, we trained a UNet model on the simulated image domain that
learns how to map from MSOT reconstructions obtained with the linear part of the array to
those achieved with the full multisegment geometry. For this, an Adam optimizer and MAE
loss was used. As opposed to the original UNet (Ronneberger et al., 2015), we use batch
normalization (Ioffe and Szegedy, 2015) with zero padded convolutional layers in order to
keep resolution constant within a convolutional block. In addition, benchmark UNet has
a single residual connection from input to final model output (Jin et al., 2017) such that
only residual mapping needs to be learned, and start with 32 convolutional kernels at full
resolution instead of 64, going up to 512 instead of 1024 convolutional kernels at the coarsest
level, consisting of a total of four max pooling layers. Below, we show that this baseline
does not generalize well to experimental data.

Appendix D. Training

Two different network architectures were trained to reduce limited-view artifacts in the
signal domain. The networks were implemented in pyTorch (v1.9) using CUDA (v11) and
cuDNN (v8) libraries. Two NVIDIA Titan X GPUs were used in parallel for training. Both
networks were trained for 200 epochs using batch size of 16. Adam optimizer with learning
rate of 0.001 and weight decay of 10 were used for loss minimization. Style network was
trained by leveraging the combination of six different losses as described in methodology
section. The loss functions were weighted heuristically to arrange the effects of each loss.
Specifically, weights ℓadv Latent, ℓpatch sim and ℓpatch exp were set to 0.001. ℓFM and ℓCycle

were weighted with 0.1. ℓMAE was directly added with weight of 1. All discriminators are
trained with gradient clipping penalty proposed in Arjovsky et al. (2017) to mitigate the
potentially too strong of discriminator and poor convergence of the adversarial losses.
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Appendix E. Supplementary Results

Multi GT Linear GT ImpSide ImpSide-RC Unet       BM-1     BM-2       BM-3 Multi GT Linear GT ImpSide ImpSide-RC Unet       BM-1     BM-2       BM-3

BackProjection ElasticNet 1e-5

Supplementary Figure 1: Example of reconstructions on the test set (sample number 1-16).
Each row corresponds to a different input signal. Each column corresponds to a different
method (best viewed digitally). ”BM-1” - our sides network applied without prior style
transfer network and trained with both synthetic data and linear parts of experimental
data, ”BM-2” - our sides network applied without prior style transfer network trained only
on synthetic data, ”BM-3” - supervised sides network which predicts from linear part array
signal of concave parts.
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Multi GT Linear GT ImpSide  ImpSide-RC  Unet       BM-1       BM-2       BM-3

BackProjection ElasticNet 1e-5

Multi GT Linear GT ImpSide  ImpSide-RC  Unet       BM-1       BM-2       BM-3

Supplementary Figure 2: Example of reconstructions on the test set (sample number 17-32).
Each row corresponds to a different input signal. Each column corresponds to a different
method (best viewed digitally). ”BM-1” - our sides network applied without prior style
transfer network and trained with both synthetic data and linear parts of experimental
data, ”BM-2” - our sides network applied without prior style transfer network trained only
on synthetic data, ”BM-3” - supervised sides network which predicts from linear part array
signal of concave parts.
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Supplementary Table 1: Reconstruction scores with respect to ground truth (GT) multi-
segment reconstruction using Elastic Net (α = 10−5). ”BM-1” - our sides network applied
without prior style transfer network and trained with both synthetic data and linear parts
of experimental data, ”BM-2” - our sides network applied without prior style transfer net-
work trained only on synthetic data, ”BM-3” - supervised sides network which predicts from
linear part array signal of concave parts. Name of our main proposed method is in bold.

Dataset/Metrics SSIM MSE Pearson PSNR
Linear GT 0.85 ± 0.06 0.0019 ± 0.0010 33.75 ± 2.22 75.86 ± 2.22
Side impute 0.89 ± 0.04 0.0018 ± 0.0008 33.89 ± 1.93 76.00 ± 1.93
Side impute RC 0.90 ± 0.03 0.0013 ± 0.0006 35.28 ± 2.17 77.39 ± 2.17
Unet 0.57 ± 0.10 0.0026 ± 0.0009 32.14 ± 1.73 74.25 ± 1.73
BM-1 0.86 ± 0.05 0.0019 ± 0.0011 33.92 ± 2.26 76.03 ± 2.26
BM-2 0.85 ± 0.06 0.0025 ± 0.0014 32.76 ± 2.40 74.87 ± 2.40
BM-3 0.84 ± 0.05 0.0025 ± 0.0011 32.50 ± 2.02 74.61 ± 2.02

Supplementary Table 2: Reconstruction scores with respect to ground truth (GT) multi-
segment reconstruction using BackProjection (BP). ”BM-1” - our sides network applied
without prior style transfer network and trained with both synthetic data and linear parts
of experimental data, ”BM-2” - our sides network applied without prior style transfer net-
work trained only on synthetic data, ”BM-3” - supervised sides network which predicts from
linear part array signal of concave parts. Name of our main proposed method is in bold.

Dataset/Metrics SSIM MSE Pearson PSNR
Linear GT 0.67 ± 0.11 0.0013 ± 0.0007 35.37 ± 2.39 77.48 ± 2.39
Side impute 0.51 ± 0.13 0.0025 ± 0.0012 32.45 ± 2.02 74.56 ± 2.02
Side impute RC 0.64 ± 0.11 0.0014 ± 0.0008 35.11 ± 2.52 77.22 ± 2.52
Unet 0.49 ± 0.13 0.0036 ± 0.0018 30.92 ± 2.15 73.03 ± 2.15
BM-1 0.53 ± 0.13 0.0022 ± 0.0017 33.43 ± 2.74 75.54 ± 2.74
BM-2 0.50 ± 0.12 0.0025 ± 0.0024 32.93 ± 2.67 75.04 ± 2.67
BM-3 0.54 ± 0.13 0.0022 ± 0.0015 33.33 ± 2.75 75.44 ± 2.75
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