BoFire: Bayesian Optimization Framework Intended for Real Experiments

Johannes P. Diirholt! Thomas S. Asche! Johanna Kleinekorte! Gabriel Mancino-Ball! Benjamin Schiller !
Simon Sung! Julian Keupp? Aaron Osburg® Toby Boyne* Ruth Misener* Rosona Eldred >
Chrysoula Kappatou® Robert M. Lee® Dominik Linzner> Wagner Steuer Costa® David Walz>
Niklas Wulkow > Behrang Shafei’

Abstract

Our open-source Python package BoFire com-
bines Bayesian Optimization (BO) with other de-
sign of experiments (DoE) strategies focusing on
developing and optimizing new chemistry. Pre-
vious BO implementations, for example as they
exist in the literature or software, require sub-
stantial adaptation for effective real-world de-
ployment in chemical industry. BoFire provides
a rich feature-set with extensive configurability
and realizes our vision of fast-tracking research
contributions into industrial use via maintainable
open-source software. Owing to quality-of-life
features like JSON-serializability of problem for-
mulations, BoFire enables seamless integration
of BO into RESTful APIs, a common architec-
ture component for both self-driving laboratories
and human-in-the-loop setups. This paper dis-
cusses the differences between BoFire and other
BO implementations and outlines ways that BO
research needs to be adapted for real-world use
in a chemistry setting.

1. Introduction

Once a chemist has outlined a possible reaction for creating
a new chemical, or proposed a formulation or process for
a new product, the focus in industrial chemistry shifts to-
wards optimization. There are lots of questions that need to
be answered. For example: How, by changing the tempera-
ture and pressure of the reaction, can we maximize the yield
and the purity of the desired chemical? How, by changing
the chemical formulation, can we minimize environmental
impact and maximize safety? Given a set of thousands of

"Evonik Operations GmbH, DE ZBoehringer Ingelheim
Pharma GmbH & Co. KG, DE *Heidelberg University, DE
“Imperial College London, UK *BASF SE, DE. Correspondence
to: Johannes P. Diirholt <johannespeter.duerholt@evonik.com>.

Proceedings of the ICML 2025 Workshop on Championing
Open-source Development in Machine Learning (CODEML °25).
Copyright 2025 by the author(s).

candidate molecules, which should be tested in the labora-
tory when only limited resources are available?

To answer these questions, the most common approach in
industry is still human intuition, trial-and-error, or expen-
sive mechanistic models. However, Bayesian optimization
(BO) and design of experiments (DoE) offer great possi-
bilities to the chemical industry: treating chemical exper-
iments as black-box functions and optimizing them in the
most efficient manner or uncovering the sources of varia-
tion under relevant conditions, respectively (Coley et al.,
2017; Hase et al., 2018; Shields et al., 2021; Thebelt et al.,
2022; Frazier, 2018).

Software tools have been introduced to enhance the ap-
plication of BO, for instance Ax (Bakshy et al., 2018)
and BayBE (Fitzner et al., 2022), building on foundational
machine learning software like BoTorch (Balandat et al.,
2020). Other BO tools include Dragonfly (Kandasamy
et al., 2020), NEXTorch (Wang et al., 2021), and SMAC3
(Lindauer et al., 2022). The BO tools are complemented
by software with cheminformatics capabilities, for example
providing representations of molecules, such as SMILES
(Landrum, 2006; Moriwaki et al., 2018; Griffiths et al.,
2023).

However, in industrial chemistry, existing BO and active
learning software require substantial adaptation prior to de-
ployment. Further, as experiments grow in scale and com-
plexity, coordinating between lab components becomes
challenging: inconsistent data handling makes implement-
ing standalone software into a larger pipeline infeasible.
Following the needs in chemical industry, we have devel-
oped (and continue developing) the open-source software
package Bayesian Optimization Framework Intended for
Real Experiments or BoFire! . Our companies deploy
BoFire in both self-driving labs and human-in-the-loop
applications. BoF1ire also supports serialization, whereby
all of its components can be translated into a RESTful for-
mat, providing an API out of the box and simplifying im-
plementation in existing systems. By making the algo-

"https://github.com/experimental-design/
bofire

https://github.com/experimental-design/bofire
https://github.com/experimental-design/bofire

BoFire: Bayesian Optimization Framework Intended for Real Experiments

rithmic component of our software open-source, we seek
to give machine learning researchers a path towards fast-
tracking their research ideas into practice and to provide an
easy to use tool for industrial practitioners.

1.1. Practical uptake.

There has been substantial BoFire uptake at the three com-
panies (BASF, Boehringer Ingelheim, and Evonik) repre-
sented in our author list, for example hundreds of em-
ployees at both BASF and Evonik use BoFire. Four addi-
tional companies have contributed employee time towards
BoFire: Agilent Technologies (link), Bayer (link), Radical
Al (link), and SOLVE (link).

Dr Jose Folch of SOLVE explains: At SOLVE we are look-
ing for ways of making experimentation as efficient, repro-
ducible, and automated as possible. This has led us to con-
tribute to BoFire as a tool that will be important for provid-
ing efficient experimentation while being able to save JSON
method files for each experiment.

Dr Lukas Hebing of Bayer writes: Bayesian Optimization
has emerged as a crucial method at Bayer across various
application fields, including chemistry, biotechnology, and
formulation technology. Scientists in our laboratories uti-
lize our in-house tool, which is built on BoFire. BoFire
offers an intuitive interface and effective solutions for our
optimization challenges.

1.2. Comparison to related work.

Our key strengths over similar frameworks are serializa-
tion, DoE strategies, and chemistry-specific utilities. Com-
bined, these enable BoFire to be deployed in real-world
labs - information can be easily transferred between the
systems within a self-driving lab, supporting powerful data
validation.

The frameworks most similar to BoFire are Ax (Bak-
shy et al., 2018) and BayBE (Fitzner et al., 2022). Com-
pared to Ax, BoFire offers chemoinformatics capabili-
ties, classical DoE approaches and serialization via Pydan-
tic (Colvin, 2024), which enables easy FastAPI integra-
tion compared to unstructured JSON. Compared to BayBE,
BoFire offers DoE strategies, serialization via Pydan-
tic, output constraints including path-based constraints
(Paulson et al., 2023) and categorical outputs, and other
application-relevant features such as outlier detection and
hyper parameter optimization. Compared to GAUCHE,
BoFire offers BO and DoE capabilities out-of-the-box,
with an opinionated API to make deployment of such algo-
rithms more streamlined. We developed BoFire to meet
the BO and DoE needs of industrial chemists in a single
package.

2. Integrating experimental design into
real-world labs

We take an experimentalist-first approach to the soft-
ware architecture, implementing features that are indus-
trially useful and focusing on easy user deployment. A
real-world example motivates this section (with corre-
sponding code in Listing 1 in the appendix and visualiza-
tion in Figure 1) and our GitHub repository features other
examples in Jupyter notebooks, as well as documentation
listing the available classes for each component.

Domains. In BoFire, a Domain consists of Inputs,
Outputs, and optionally Constraints. BoFire al-
lows the user to define an input space X = z1Rz2...Qzp
where the input features z; can be continuous, discrete,
molecular or categorical.

BoFire supports the following constraints: (non)linear
(in)equality, NChooseK, and interpoint equality. The pack-
age also provides support for learning black-box inequality
constraints.

A chemist designs a paint using a selection of
20 different compounds, each of which has a
continuously-varying concentration. They use an
NChooseK constraint to limit each test-paint mix-
ture to at most 5 compounds. For a batch of multi-
ple mixtures, all paints are tested at the same tem-
perature, requiring an InterpointEquality
constraint which keeps the temperature fixed dur-
ing the batch of experiments.

Objectives. In BoFire, objectives are defined sepa-
rately from the outputs on which they operate. This allows
us to define outputs in a physically meaningful way. Here,
minimization, maximization, close-to-target and sigmoid-
type objectives are supported.

For multi-objective optimization, BoFire supports two
schemes: a linearization approach, in which the user spec-
ifies an additive or multiplicative weighting of each objec-
tive; and a Pareto front approach, where the optimizer ap-
proximates the Pareto front of all optimal compromises for
subsequent decision-making. The latter is implemented via
gqParEGO (Knowles, 2006) and g (1og) (N) EHVT strate-
gies (Daulton et al., 2020; 2021; Ament et al., 2023). Both
can be used in combination with black box constraints.

The chemist wants to achieve a target viscos-
ity, while maximising hydrophobicity. = They
define the measurements as Outputs, and
use the CloseToTargetObjective and
MaximizeObjective respectively to drive the
optimization.

https://github.com/experimental-design/bofire/pulls?q=is%3Apr+is%3Aclosed+author%3Achrihaas
https://github.com/experimental-design/bofire/pulls?q=is%3Apr+is%3Aclosed+author%3ALukasHebing
https://github.com/experimental-design/bofire/pulls?q=is%3Apr+is%3Aclosed+author%3ACompRhys
https://github.com/experimental-design/bofire/pulls?q=is%3Apr+is%3Aclosed+author%3Ajpfolch

BoFire: Bayesian Optimization Framework Intended for Real Experiments

Strategy
,,,,,, Domain ______ T
1 | BayesOpt
: CE{HQC:O,©,"-} I : ayesOp
. T e20°0,90°0] DoE

Surrogate

u Experiments <«

<4

Figure 1. BoFire enables defining and solving optimization problems in the lab. All objects in the loop (candidates, strategies, surro-

gates, and proposals) are serializable.

Strategies. Given a Domain, the user selects a
Strategy to generate experimental proposals. Classi-
cal DoE based strategies can generate (fractional)-factorial,
space-filling (via sobol-, uniform- or latin-hypercube sam-
pling), and D-,E-,A-,G-, or K-optimal designs. Compared
to commercial software (e.g. Modde, JMP), BoFire sup-
ports designs over constrained mixed-type input spaces.

Alternatively, predictive strategies use Surrogates to
model the data-generating process and perform BO. Many
of these strategies are built on BoTorch (Balandat et al.,
2020) and provide numerous acquisition functions. They
are easily extendable and allow users to define custom
strategies and surrogates, for instance as we did with ENT-
MOQOT (Thebelt et al., 2021).

The initial paint experiments should be se-
lected using a SpaceFillingDesign, then
use a PredictiveStrategy to suggest op-
timal experiments. The chemist uses the
StepwiseStrategy interface to seamlessly
transition between strategies.

3. Library Philosophy
3.1. Fully serializable.

BoFire is industry-ready for self-driving labs. In this set-
ting, communication is key: many systems pass data and
information between each other, and data integrity is es-
sential.

BoFire is natively usable with a RESTful Application
Programming Interface (API) and structured JSON-based,
document-oriented databases, via the use of the popular
data-validation library Pydantic allowing for seamless in-
tegration into FastAPI (Ramirez, 2024). We separate all
Strategies and Surrogates into data models, and
functional components. Data models are fully JSON-
(de)serializable classes built on Pydantic, which hold com-

plete information regarding the search space, surrogates
and strategies.

This clear distinction allows for a minimal BoF ire instal-
lation consisting only of the data models. This is especially
useful in scenarios where a process orchestration layer
(POL) is involved as the middle layer between a cen-
trally deployed planner using BoFire, and closed-loop
equipment. One can then communicate between these
subsystems using an API; we support FastAPI since it is
both fast and automatically validates data via the Pydantic
data models. 2

3.2. Modularization.

BoFire is both easy to use and highly customizable with
respect to its strategies and surrogates. Each component of
BoFire is modular - problem definitions are independent
of the strategies used to solve them, which are in turn inde-
pendent of the surrogates used to model the observed data.
This separation of responsibility enables a ‘plug-and-play’
approach. By building BoFire using the BoTorch library,
we can leverage the wide range of software written in the
BoTorch ecosystem.

4. Discussion & Conclusion

This paper has presented BoFire, our open-source BO
and DoE python package. Representing several companies
in the chemical industry, we deploy BoF i re daily to bring
BO and DoE into our companies. Each individual con-
tributing company could have easily developed their own
bespoke package, but we joined forces to create BoFire
because of our vision of catalyzing machine learning re-
search. BoFire exemplifies our collaboration goals with
researchers, for example those working in academia, for

2For an example, see https://github.com/
experimental-design/bofire-candidates—-api

https://github.com/experimental-design/bofire-candidates-api
https://github.com/experimental-design/bofire-candidates-api

BoFire: Bayesian Optimization Framework Intended for Real Experiments

example current work on practical multi-fidelity modeling
(Bonilla et al., 2007; Folch et al., 2023) and tree kernels
(Boyne et al., 2025). Through BoFire, we offer the pos-
sibility for researchers to use our platform to translate new
strategies and surrogates into practice.

References

Ament, S., Daulton, S., Eriksson, D., Balandat, M., and
Bakshy, E. Unexpected improvements to expected im-
provement for Bayesian optimization. In NeurlPS, vol-
ume 36, pp. 20577-20612, 2023.

Bakshy, E., Dworkin, L., Karrer, B., Kashin, K., Letham,
B., Murthy, A., and Singh, S. Ae: A domain-
agnostic platform for adaptive experimentation. In
NeurIPS Systems for ML Workshop, 2018. URL
http://learningsys.org/nipsl8/assets/
papers/87CameraReadySubmissionAE%$20-%
20NeurIPS%202018.pdf.

Balandat, M., Karrer, B., Jiang, D. R., Daulton, S., Letham,
B., Wilson, A. G., and Bakshy, E. BoTorch: A Frame-
work for Efficient Monte-Carlo Bayesian Optimization.
In NeurIPS, 2020.

Bonilla, E. V., Chai, K., and Williams, C. Multi-task Gaus-
sian process prediction. NIPS, 20, 2007.

Boyne, T., Folch, J. P., Lee, R. M., Shafei, B., and Mis-
ener, R. BARK: A fully Bayesian tree kernel for black-
box optimization. Proceedings of the 42nd International
Conference on Machine Learning, 2025.

Coley, C. W,, Barzilay, R., Jaakkola, T. S., Green, W. H.,
and Jensen, K. F. Prediction of organic reaction out-
comes using machine learning. ACS Central Science,
3(5):434-443, 2017.

Colvin, S. Pydantic, June 2024. URL https://
github.com/pydantic/pydantic.

Daulton, S., Balandat, M., and Bakshy, E. Differen-
tiable expected hypervolume improvement for parallel
multi-objective Bayesian optimization. In NeurIPS, vol-
ume 33, pp. 9851-9864, 2020.

Daulton, S., Balandat, M., and Bakshy, E. Parallel
Bayesian optimization of multiple noisy objectives with
expected hypervolume improvement. In NeurIPS, vol-
ume 34, pp. 2187-2200, 2021.

Fitzner, M., goéi’c, A., Hopp, A., and Lee, A. BayBE —
a Bayesian back end for design of experiments, 2022.
URL https://github.com/emdgroup/baybe.
Accessed: 2024-02-22.

Folch, J. P, Lee, R. M., Shafei, B., Walz, D., Tsay, C.,
van der Wilk, M., and Misener, R. Combining multi-
fidelity modelling and asynchronous batch Bayesian op-
timization. Computers & Chemical Engineering, 172:
108194, 2023.

Frazier, P. I. A tutorial on Bayesian optimization. arXiv
preprint arXiv:1807.02811, 2018.

Griffiths, R.-R., Klarner, L., Moss, H., Ravuri, A., Truong,
S. T.,, Du, Y., Stanton, S. D., Tom, G., Rankovié, B.,
Jamasb, A. R., Deshwal, A., Schwartz, J., Tripp, A.,
Kell, G., Frieder, S., Bourached, A., Chan, A. J., Moss,
J., Guo, C., Diirholt, J. P., Chaurasia, S., Park, J. W.,
Strieth-Kalthoff, F., Lee, A., Cheng, B., Aspuru-Guzik,
A., Schwaller, P., and Tang, J. GAUCHE: A library for
Gaussian processes in chemistry. In NeurIPS, 2023.

Hase, F., Roch, L. M., Kreisbeck, C., and Aspuru-Guzik,
A. Phoenics: a Bayesian optimizer for chemistry. ACS
Central Science, 4(9):1134-1145, 2018.

Kandasamy, K., Vysyaraju, K. R., Neiswanger, W., Paria,
B., Collins, C. R., Schneider, J., Poczos, B., and Xing,
E. P. Tuning hyperparameters without grad students:
Scalable and robust Bayesian optimisation with Drag-
onfly. Journal of Machine Learning Research, 21(81):
1-27, 2020.

Knowles, J. ParEGO: A hybrid algorithm with on-line
landscape approximation for expensive multiobjective
optimization problems. IEEE transactions on evolution-
ary computation, 10(1):50-66, 2006.

Landrum, G. RDKit: Open-source cheminformatics, 2006.
URL https://www.rdkit.org.

Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp,
A., Deng, D., Benjamins, C., Ruhkopf, T., Sass, R.,
and Hutter, F. Smac3: A versatile Bayesian optimiza-
tion package for hyperparameter optimization. Journal
of Machine Learning Research, 23(54):1-9, 2022.

Moriwaki, H., Tian, Y.-S., Kawashita, N., and Takagi, T.
Mordred: a molecular descriptor calculator. Journal of
cheminformatics, 10(1):1-14, 2018.

Paulson, J. A., Sorouifar, F., Laughman, C. R., and
Chakrabarty, A. LSR-BO: Local search region con-
strained Bayesian optimization for performance opti-
mization of vapor compression systems. In 2023 Amer-
ican Control Conference (ACC), pp. 576-582. IEEE,
2023.

Ramirez. Fastapi, June 2024. URL "https://
github.com/tiangolo/fastapi’.

http://learningsys.org/nips18/assets/papers/87CameraReadySubmissionAE%20-%20NeurIPS%202018.pdf
http://learningsys.org/nips18/assets/papers/87CameraReadySubmissionAE%20-%20NeurIPS%202018.pdf
http://learningsys.org/nips18/assets/papers/87CameraReadySubmissionAE%20-%20NeurIPS%202018.pdf
https://github.com/pydantic/pydantic
https://github.com/pydantic/pydantic
https://github.com/emdgroup/baybe
https://www.rdkit.org
'https://github.com/tiangolo/fastapi'
'https://github.com/tiangolo/fastapi'

BoFire: Bayesian Optimization Framework Intended for Real Experiments

Shields, B. J., Stevens, J., Li, J., Parasram, M., Damani,
F., Alvarado, J. I. M., Janey, J. M., Adams, R. P,, and
Doyle, A. G. Bayesian reaction optimization as a tool
for chemical synthesis. Nature, 590(7844):89-96, 2021.

Thebelt, A., Krongvist, J., Mistry, M., Lee, R. M.,
Sudermann-Merx, N., and Misener, R. ENTMOOT: A
framework for optimization over ensemble tree models.
Computers & Chemical Engineering, 151:107343, 2021.

Thebelt, A., Wiebe, J., Kronqvist, J., Tsay, C., and Misener,
R. Maximizing information from chemical engineering
data sets: Applications to machine learning. Chemical
Engineering Science, 252:117469, 2022.

Wang, Y., Chen, T.-Y., and Vlachos, D. G. NEXTorch: a
design and Bayesian optimization toolkit for chemical
sciences and engineering. Journal of Chemical Informa-
tion and Modeling, 61(11):5312-5319, 2021.

BoFire: Bayesian Optimization Framework Intended for Real Experiments

Listing 1 Defining the domain of the paint problem in Section 2.

compounds = [f"compound_{i}" for i in range (20)]
inputs = [
ContinuousInput (key="temp", bounds=[20, 90], unit="°C"),
* (ContinuousInput (key=comp, bounds=[0, 1]) for comp in compounds)
1
outputs = [

ContinuousOutput (

key="viscosity",

objective=CloseToTargetObjective (target_value=0.5, exponent=2)
),
ContinuousOutput (

key="hydrophobicity",

objective=MaximizeObjective ()

constraints = [
NChooseKConstraint (
features=compounds, min_count=1, max_count=5,
)

InterpointEqualityConstraint (feature="temp")

domain = Domain.from_lists(
inputs, outputs, constraints

	Introduction
	Practical uptake.
	Comparison to related work.

	Integrating experimental design into real-world labs
	Library Philosophy
	Fully serializable.
	Modularization.

	Discussion & Conclusion

