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Abstract—Foreseeing detailed vehicle future trajectories collec-
tively enables a large scope of urban applications such as route
planning and commercial advertising. Existing methods focused
on predicting future trajectories of urban vehicles with their
own fine-grained historical trajectories. Unfortunately, in real-
world scenarios, fine-grained trajectories provided by GPS are
limited to obtain due to privacy issues and business competitions.
In this paper, our solution enables the ubiquitous but coarse-
grained location-based surveillance information to predict the
fine-grained trajectories of all vehicles with limited number of
fine-grained trajectories. We first capture the vectorized semantic
representation of trajectories by training the spatiotemporal
embedding in large coarse trajectory set. Then, we propose a
new measurement to calculate the trajectory similarity, which
combines the vehicles’ historical behavior similarity and short-
term trajectory similarity. The obtained trajectory similarity is
then seamlessly embedded into the dynamic graph convolution
network in the manner of spatial attention. The dynamic graph
convolution sequence-to-sequence module and the fully-connected
layer are devised to generate final sequential trajectory predic-
tions. The whole process is to train in a multi-task framework.
Extensive experiments on real-world datasets show the excellent
performance of our method.

Index Terms—Spatiotemporal data, trajectory prediction, ur-
ban computing.

I. INTRODUCTION

Foreseeing future trajectories for all types of vehicles in

a city is of great significance for intelligent transportation

applications, e.g., commercial advertisement pushing [15] and

hit-and-run vehicle capturing [18].

Existing studies mostly focus on forecasting future trajec-

tory of an individual vehicle with analyzing its own fine-

grained historical trajectories in time series. We can summarize

existing works into two categories, machine learning based
methods [5], [12], [13], [16] and deep learning based meth-
ods [1], [3], [4], [7], [10]. Machine learning-based methods

calculate the possibilities of all possible future trajectories for

individual urban vehicles by analyzing their own historical

trajectories with probabilistic models and eventually predict

the future trajectories for these vehicles. Nevertheless, such

predictions are implemented based on long-term data accu-

mulations of the fine-grained historical position information

� Prof. Yang Wang is the corresponding author: angyan@ustc.edu.cn.

of these predicted vehicles which cannot be well-obtained in

most real scenarios. Deep learning-based methods analyze and

extract the trajectory patterns of individual urban vehicles in

time series by feeding their own historical trajectories into

deep neural networks, and then predict future trajectories of

individual urban vehicles with corresponding trained neural

networks. Without exception, due to the lacking of fully

addressing non-linear and interactive influences among tra-

jectories, road networks, and individual driving preferences,

these deep learning-based methods can only predict future

trajectories of urban vehicles at the same granularity of their

own historical trajectories.

In summary, previous works on vehicle future trajectory

forecasting assume the pre-deployment of dash-mounted GPS

and networking devices, and so as the availability of fine-

grained historical position information of predicted vehicles.

It is not clear how to take advantage of limited detailed

trajectories to enable fine-grained future trajectory predictions

with large-scale sparse surveillance information. In this work,

to tackle these challenges, we propose a novel multi-task

learning framework, TrajForesee, with a novel trajectory sim-

ilarity measurement inspired by Natural Language Processing

(NLP) strategies and a dynamic Graph Convolution Network

(GCN) based Sequence2Sequence framework. Specifically, we

first generate a semantic word embedding dictionary with

for all urban intersections by feeding all fine-grained vehicle

trajectories into an NLP model, and with the generated dictio-

nary, we embed all coarse-grained trajectories in both spatial

and temporal perspectives. After that, we propose a novel

similarity measurement to measure the overall similarities

among coarse-grained trajectories with considering both the

similarities among trajectories themselves and the behavior

similarities among the corresponding vehicles that generate

these trajectories. Next, A novel Dynamic GCN based Se-

quence2Sequence (DGCS2S) framework is proposed to predict

fine-grained future trajectories for urban vehicles.

To our best knowledge, this is the first work for fine-grained

urban vehicle trajectory prediction by taking full advantages

of large-scale sparse position-based information and very

limited detailed GPS trajectories with well-designed learnable

similarities. The technique proposed in this paper offers a new

perspective to make full use of large-scale sparse and low-
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quality urban sensing data to benefit a series of spatiotemporal

analysis and calculations.

II. RELATED WORK

Machine learning based methods: [13] uses a two-years

trace of the mobility patterns of over 6,000 users within a cam-

pus to evaluate the future trajectory prediction performances of

several traditional location predictors, and discovers that low-

order Markov predictor performed as well or better than some

more complex compression-based predictors with a smaller

space-consuming. [16] and [12] utilize different Gaussian

mixture models to approximate historical moving patterns of

moving objects, and subsequently evaluate the probabilities of

different future possible trajectories, then regressively predict

the maximum likely future trajectories of moving objects by

using Gaussian process. [5] constructs a Bayesian model based

spatio-temporal model to approximate historical trajectories

and predict future trajectories with considering both the spatial

correlations and the temporal periodic patterns of historical

trajectories. Coincidentally, this kind of machine learning

based methods relies on the assumption of the known of

fine-grained historical trajectories of predicted vehicles which

cannot well-obtained in real scenario due to privacy issues.

Deep Learning based methods: [7] feeds the sequence of

vehicles’ coordinates obtained from sensor measurements to

the LSTM network to analyze the temporal behaviors of urban

vehicles and produces the probabilistic information on the fu-

ture location of the vehicles to offer good estimations of future

trajectories. [10] employs the encoder-decoder architecture

which analyzes the pattern underlying in the fine-grained past

trajectories of urban vehicles with an LSTM-based encoder

and generates several most likely future trajectory candidates

of corresponding vehicles. [4] leverages an LSTM network

to anticipate the individual vehicles’ driving patterns with

their own sequential historical trajectories and the factors

such as lane division, road structure, traffic lights’ status and

motion characteristics of vehicle detector real-time perception,

and the learned patterns are then used to guide a low-

level optimization-based context reasoning process for future

trajectory prediction. [1] proposes an LSTM model to learn

general human movement and predict their future trajectories

based on their own fine-grained past position information.

Nevertheless, none of the existing deep learning based methods

makes prediction with coarse-grained historical trajectories,

thus fall short in forecasting the future trajectories for all urban

vehicles with only sparse stationary road surveillance systems.

III. PROBLEM DEFINITION

We formally define the basic concepts as well as the

problem studied in this work.

Definition 1 (Road network): Urban road network can be
formalized as a directed graph G(V, E) where vertex vi ∈ V
corresponds to an urban intersection vi and edge eij ∈ E
denotes the directed road segment from intersection vi to vj .

Definition 2 (Coarse-grained trajectory set): The coarse-
grained trajectory set is defined as coarse-grained trajectories

of all urban vehicles. This kind of trajectory is captured
and generated by the stationary road surveillance systems,
and can be denoted as C = {C1, C2, · · · , CN} where
N is the total number of all urban vehicles. Here Ci =
{ci1, · · · , ciM} indicates all historical coarse-grained trajec-
tories of the ith urban vehicle, cij indicates the jth coarse-
grained historical trajectory of the ith urban vehicle, and cij =

{(vi,j1 , ti,j1 ), · · · , (vi,jK , ti,jK )} where vi,jp ∈ Vs(p ∈ {1, · · · ,
K}) and ti,jp indicates the time that the ith urban vehicle goes
through intersection vi,jp in trajectory cij .

Definition 3 (Detailed trajectory set): The detailed trajec-
tory set is defined as fine-grained trajectories of paritial urban
vehicles. This kind of trajectory is captured and uploaded
by the dash-mounted GPS and networking devices of these
vehicles, and can be denoted as F = {F1, F2, · · · , Fn}
where n is the total number of GPS device equipped urban
vehicles. Here Fi = {f i

1, · · · , f i
m} indicates all historical fine-

grained trajectories of the ith GPS device equipped urban
vehicle, f i

j indicates the jth fine-grained historical trajectory
of the ith GPS device equipped urban vehicle, and f i

j =

{(vi,j1 , ti,j1 ), · · · , (vi,jk , ti,jk )} where vi,jp ∈ V(p ∈ {1, · · · , k}),
vi,jp and vi,jp+1 are directly connected with a road segment, and
ti,jp indicates the time that the ith GPS device equipped urban
vehicle goes through intersection vi,jp in trajectory f i

j .
Assuming the i1th GPS device equipped vehicle is the i2th

urban vehicle, we have |Ci2 | = |Fi1 | and ci2j ⊆ f i1
j . If we

denote the coarse-grained trajectory set of all GPS equipped

vehicles and the rest GPS free vehicles as CG and CG, these

two sets should satisfy CG

⋂
CG = ∅ and CG

⋃
CG = C.

Definition 4 (Vehicle trajectory prediction): Given the
coarse-grained historical trajectory set C of all urban vehicle
and the fine-grained trajectory set F of partial vehicles,
our task is to predict fine-grained future q-step trajectory
f̂ i∗ = {(v̂i,∗1 , t̂i,∗1 ), · · · , (v̂i,∗q , t̂i,∗q )} for any urban vehicle as
accurate as possible.

IV. FUTURE VEHICLE TRAJECTORY

PREDICTIONS WITH COARSE-GRAINED

SURVEILLANCE INFORMATION

The overview of the proposed solution is illustrated in Fig-

ure 1, which consists of four major parts: i) spatiotemporal em-

bedding for historical trajectories, ii) similarity measurement

of trajectories, iii) dynamic GCN based sequence2sequence

framework for trajectory prediction, and iv) multi-task learning

framework for DGCS2S training.

A. Spatiotemporal embedding for historical trajectories

1) Word embedding with limited fine-grained historical
trajectories: We find there exists obvious inverse phenomenon

between the appearing frequency and the frequency ranking

of individual segments which obeys the Zipf’s Law [9] in

NLP 1. So we employ the Skipgram [2] model, which aims

1Zipf’s law says that, the appearing frequency ranking of a word is inversely
proportional to the appearing frequency itself of this word in a natural
language corpus.
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Fig. 1. Solution overview

at achieving context prediction in NLP by generating corre-

sponding vectors for each individual words, to generate a word

embedding dictionary for all urban intersections by learning

all context features from fine-grained historical trajectories.

Specifically, inspired by [11], the main target of utilizing

Skipgram here is to find a vector space Φ that maximizes

the probability of any intersection appearing in the trajectory

context. If we consider the appearance of each individual road

segment as an independent event, and given any road segment

vi, the optimization problem can be written as,

min
Φ
{−logPr ({vi−w, · · · vi+w} \ vi|Φ(vi))} (1)

where Φ demotes the projection function which maps all road

intersections into a word embedding vector, and w is the

length of context. With all historical fine-grained trajectories

and the above mentioned optimization target, we then train the

optimized project function Φ, and we have S = Φ(V).
2) Spatial embedding for coarse-grained historical trajec-

tories: With the learned word embedding dictionary S for all

urban intersections, the coarse-grained trajectories also can be

embedded as spatial embedded vectors.

3) Temporal embedding for coarse-grained historical tra-
jectories: The coarse-grained trajectories of vehicles can

exhibit significant weekly patterns. Considering this kind of

weekly and daily patterns in coarse-grained trajectories, we

first construct a time grid for each day of the week. Given a

node in this grid, the left and right neighbors of this node in

a same row correspond to the time points that are one minute

before and after the time point of this point respectively,

and the above and under neighbors of this node in a same

column are the time points that are one week before and after

the time point of this point respectively. Intuitively, we can

generate 7 different time grids for each day of the week, and

for one specific day, we can generate a random number of

different routes by selecting a random start and walking a

random number of random-direction steps iteratively. Based

on all generated routes, we can also project all time points of

7 different days of the week into a word embedding dictionary

R = {r1, · · · , r10080} where 10080 indicates the number of

time points in 7 days 2.

2Each time point corresponds to one single minute in real circumstance. For
7 days of the week, the total number of time points is 60×24×7 = 10080.

B. Trajectory similarity measurement
1) Measurement of vehicle behavior similarity: We here

introduce Term Frequency-Inverse Document Frequency (TF-

IDF) [17] method to help evaluate the similarity among two

vehicles based on their historical coarse-trajectories. Given the

ith and jth urban vehicles and their historical coarse-grained

trajectories, we first consider all their historical trajectories

as two independent corpora and globally calculate p-crucial

intersections for these two coarse-trajectories as cru(i) and

cru(j) respectively, and then calculate the behavior similarity

among two vehicles by
Simveh(i, j) = cos {Φ (cru(i)) ,Φ (cru(j))} (2)

2) Measurement of individual trajectory similarity: Simi-

larly, we also consider each individual trajectory cα and cβ as

two independent corpora, and then the similarity between them

can be measured by cosine similarity of their spatiotemporal

embedded Ψ(Φ(cα)) and Ψ(Φ(cβ)) ,
Simtraj (cα, cβ) = cos{Ψ(Φ(cα)),Ψ(Φ(cβ))} (3)

3) Measurement of overall similarities of urban trajectory:
Given αth coarse-grained trajectory of ith vehicle and βth

coarse-grained trajectory of jth vehicle, the overall similarity

between them can be written as,

Simall(c
i
α, c

j
β) = γSimveh(i, j) + τSimtraj (c

i
α, c

j
β) (4)

where γ and τ are the adjustable weights of both vehicle

behavior and individual trajectory similarities.

C. Dynamic GCN based Sequence2Sequence framework for
future trajectory prediction

To fully extract all spatial correlations in urban road net-

work, we modify all traditional convolution operations in the

Convolution Sequence2-Sequence framework [6] with a novel

dynamic GCN. The particular architecture of our DGCS2S is

illustrated in Figure 2.
1) Seq2Seq Framework for future trajectory prediction:

Encoder: We first combine a spatiotemporal embedded

coarse-grained trajectory with the sequence embedded vec-

tors 3. Given the jth coarse-grained trajectory of the ith urban

3Given the jth coarse-grained trajectory of the ith urban vehicle, cij =

{(vi,j1 , ti,j1 ), · · · , (vi,jK , ti,jK )} where vi,jp ∈ Vs(p ∈ {1, · · · ,K}), the cor-
responding sequence embedded vector can be denote as G = {g1, · · · , gK}
where gp is the embedded sequence number of intersection vi,jp (p ∈
{1, · · · ,K}).
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Fig. 2. Architecture of DGCS2S framework

vehicle and its corresponding sequence embedded vecor G,

the final embedded vector can be formalized by Z = {((si,j1 +
g1), r

i,j
1 ), · · · , ((si,jK +gK), ri,jK )}. Next, we utilize K Dynamic

GCNs (DGCN) and K Gated Linear Unit (GLU) activation

functions to extract features from the inputted sequence Z ,

and the output of the encoder component can be denoted as

E = {ε1, · · · , εK}. Notice that the number of DGCNs and

GLUs in the encoder component equals to the number of the

former step K in the inputted coarse-grained trajectory.

Decoder: We use the output previous-round-predicted tra-

jectory as the input of the decoder component, and the frame-

work predicts in an iterative manner. For the first round, the

input of the decoder component is initialized by a padding of

specific symbols. Notice that the number of DGCNs and GLUs

in the decoder component equals to the number of the subse-

quent step q in the predicted future trajectory. The output of

the Decoder component can be denoted as D = {d1, · · · , dq}.
Attention: To investigate the weight of each element within

the inputted sequence by executing dot product for the outputs

of both the encoder and decoder components, we generate an

attention matrix AIO ∈ Rq×K , where aij =
exp(di·εj)∑K

p=1 exp(di·εp) .

Output: The output is the predicted future q-step sequence,

we only select the first step vi,jq1 in this q-step sequence

as the predicted next step, and iteratively predict the future

trajectory by using the {(vi,j2 , ti,j2 ), · · · , (vi,jK , ti,jK ), (vi,jq1 , t
i,j
q1 )}

as the input.

2) Dynamic GCN: The future trajectory of an urban vehicle

is strongly related with its K previous step trajectory, the

current intersection and the driving behavior pattern of the

corresponding vehicle. For a prediction of an urban vehicle

with specific historical coarse-grained trajectory at a specific

intersection, we can calculate the transition probabilities for

all possible intersections by using the overall similarities

and the attention mechanism to map historical coarse-grained

trajectories to fine-grained trajectories, and then calculate the

dynamic adjacent matrix for DGCN.

Considering the spatiotemporal embedded Ψ
(
Φ(cij)

)
=

{(si,j1 , ri,j1 ), · · · , (si,jK , ri,jK )} of the jth coarse-grained trajec-

tory of the ith urban vehicle cij , we filter all trajectories

which include intersection vi,jK from CG and denote all se-

lected trajectories as C
vi,j
K

G . For each coarse-grained individual

trajectory in C
vi,j
K

G , we calculate the similarities among this

trajectory and all other coarse-grained trajectories in CG,

and subsequently calculate the transition probabilities for all

neighboring intersections of vi,jK in each trajectory in CG. We

carry out this transition probability updating process for each

individual trajectory in C
vi,j
K

G , and we then obtain the final

transition probabilities for urban road network with regard

to a specific vehicle and a specific historical coarse-grained

trajectory at intersection vi,jK .

After dynamically updating all corresponding values in A,

we then generate the normalized transition probability matrix

T̃M and Θ = I|V|+ T̃M , where I|V| is the identity matrix in

the same dimension of Θ. Finally we calculate the adjacent

matirx L = P−
1
2ΘP−

1
2 by using a symmetric normalization

on Θ, where P is a diagonal matrix, and pii is the sum of all

elements in the ith row of matrix Θ. After finishing a future

step and updating the inputted trajectory, we then dynamically

update the matrix L for predicting the subsequent future steps.

D. Multi-task learning framework for trajectory prediction

For task-wise regularization and enhance the overall perfor-

mance, we settle the trajectory prediction as the main task,

and the arrival time as the auxiliary one.

Accuracy loss for trajectory prediction: The trajectory

loss for ith urban vehicle can be evaluated by the cross entropy

(CE) between its real future trajectory f i
∗ and predicted one

f̂ i∗ spatiotemporal embedded vectors by,

Losstraj = CE(STEmbed(f i
∗), STEmbed(f̂ i∗)) (5)

Arrival time loss for trajectory prediction: The arrival

time loss can be defined by,

Losstime =

q∑
j=1

∣∣∣∣t̂i,∗j − ti,∗j

∣∣∣∣ (6)

where t̂i,∗j and ti,∗j are the time that the ith urban vehicle

arrives at the jth intersection in the predicted future trajectory

and the actual trajectory respectively. The overall loss can be

formalized as,

Loss = λ1Losstraj + λ2Losstime (7)

V. EXPERIMENTS

A. Dataset

We collect the urban traffic-related records during 2017

from traffic adminstrative agencies of SIP and Shenzhen. For

training and testing splits, we use the dataset during January

and February for training, and datasets in March for testing.

For evaluation, these records are divided into two perspectives

in our experiments as follows.

• Fine-grained trajectory. We utilize the GPS records of

running taxis as the fine-grained trajectory. In SIP and

Shenzhen, these records only include the GPS information

of 4,367 and 8,572 taxicabs with the average sampling rate

of 20 seconds, respectively.

• Coarse-grained trajectory. We obtain traffic surveillance

records of all camera-equipped intersections in SIP and
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Shenzhen as the coarse-grained trajectory data. This kind

of information is more comprehensive and reliable with

all-type vehicles incorporated. We also divide taxis in our

datasets into two parts: taxis with fine-grained trajectories

known, and taxis with fine-grained trajectories unknown.

B. Baseline

Task-related baselines:
(1) TR-TP: This an alternative solution which combines a

trajectory recovery method Sharededge [19] and our DGCS2S

component in TrajForesee.

(2) LSTM-ED: An LSTM-based encoder-decoder model

proposed in [10].

(3) SimTrack-CNN: A sequence to sequence prediction

which is based on CNN proposed in [6].

(4) GMTP: A prediction method based on Gaussian mixture

model with excellent performance in [12].

Ablative variants baselines:
(1) SimTrack-GCN: We replace the convolution method

DGCN in DGCS2S model with a plain GCN proposed in [8]

to test whether DGCN is more suitable for the current problem.

(2) OtherSim-DGCN: The trajectory measurement in Traj-

Forese is replaced with the linear weighted similarity in spatial

and temporal perspectives [14]. It is designed to verify the

effectiveness of our vehicle trajectory similarity measurement.

C. Hyperparameter setting

The dimensions of temporal embedding and spatial embed-

ding are 15 and 25, respectively. In LSTM-ED, the hidden

dimensions of LSTM for encoder and decoder are both 256.

The convolution layers of encoder and decoder in SimTrack-

CNN are both 5, and the width of convolution kernel is

set as 3. In the similarity measurement module, we fix the

number of crucial intersections p as 20. We fine-tune these

hyperparameters carefully but omit here for space limitation.

D. Performance metrics

Assuming the ith urban vehicle real future trajectory is f i
∗ =

{(vi,∗1 , ti,∗1 ), · · · , (vi,∗q , ti,∗q )} and the predicted one is f̂ i∗ =

{(v̂i,∗1 , t̂i,∗1 ), · · · , (v̂i,∗q , t̂i,∗q )}, the accuracy of future trajectory

prediction can be evaluated by the metrics of Accuracy by

Number (AN) and Accuracy by Length (AL),

AN(f i
∗, f̂ i∗) =

∑q
j=1 σj

q
(8)

AL(f i
∗, f̂ i∗) =

∑q−1
j=0 σjσj+1length(ej(j+1))∑q−1

j=1 length(ej(j+1))
(9)

where σj equals 1 if vi,∗j = v̂i,∗j , otherwise it is 0;

length(ej(j+1)) represents the length of road segment ej(j+1).

E. Experimental result

Comparison results on metrics of both AN and AL are illus-

trated in Table I-IV. Overall, we observe that our framework

can consistently outperform both task-related baselines and

ablative variant methods on all time steps. Our work targets

bridging the gap between the coarse-grained and fine-grained

trajectories for future prediction by taking advantage of the

similarity patterns among coarse-grained trajectories.

AN: The AN values of TrajForesee on SIP dataset in

Table I are 9.4%-12.9% and 7%-7.9% higher than that of

SimTrack-CNN and SimTrack-GCN, respectively. It reveals

that our integrated framework can perform better than original

CNN and GCN. The AN values of TrajForesee are 2.6% -

6.7% higher than those of OtherSim-DGCN in SIP, which

demonstrates our similarity measurement is superior to others’.

TABLE I
AN UNDER DIFFERENT PREDICTION STEPS IN SIP

Prediction steps 1 3 5 10 20
TR-TP 0.62 0.45 0.21 0.130 0.02

LSTM-ED 0.746 0.54 0.414 0.282 0.199
SimTrack-CNN 0.814 0.606 0.506 0.334 0.275

GMTP 0.712 0.503 0.388 0.251 0.144
SimTrack-GCN 0.838 0.649 0.539 0.366 0.304

TrajForesee 0.908 0.718 0.611 0.463 0.375
otherSim-DGCN 0.841 0.673 0.545 0.435 0.349

TABLE II
AN UNDER DIFFERENT PREDICTION STEPS IN SHENZHEN

Prediction steps 1 3 5 10 20
TR-TP 0.657 0.469 0.291 0.144 0.09

LSTM-ED 0.752 0.577 0.473 0.291 0.203
SimTrack-CNN 0.824 0.641 0.574 0.391 0.288

GMTP 0.734 0.512 0.391 0.283 0.169
SimTrack-GCN 0.840 0.701 0.577 0.401 0.359

TrajForesee 0.913 0.744 0.620 0.482 0.399
otherSim-DGCN 0.859 0.688 0.560 0.445 0.350

AL: Compared with the best task-related basline, our

method obtains an increase of 9.4%-14.9% in SIP and 8.9%-

16.4% in Shenzhen on AL metric, and it also significantly

outperforms its own ablative variants from Table III and IV.

TABLE III
AL UNDER DIFFERENT PREDICTION STEPS IN SIP

Prediction steps 1 3 5 10 20
TR-TP 0.62 0.404 0.168 0.063 0.008

LSTM-ED 0.746 0.484 0.360 0.213 0.131
SimTrack-CNN 0.814 0.561 0.465 0.277 0.221

GMTP 0.712 0.463 0.346 0.199 0.113
SimTrack-GCN 0.838 0.613 0.507 0.318 0.248

TrajForesee 0.908 0.692 0.589 0.426 0.341
OtherSim-DGCN 0.841 0.657 0.523 0.389 0.315

Running time: The models based on convolutions run faster

than RNN-based LSTM-ED in Figure 3(a) on SIP dataset. This

is because the convolution based framework can parallelly

extract input features, while the RNN-based model operates

serially. With the increase of prediction steps, the difference
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TABLE IV
AL UNDER DIFFERENT PREDICTION STEPS IN SHENZHEN

Prediction steps 1 3 5 10 20
TR-TP 0.657 0.435 0.192 0.093 0.021

LSTM-ED 0.752 0.497 0.377 0.221 0.149
SimTrack-CNN 0.824 0.579 0.469 0.285 0.250

GMTP 0.734 0.471 0.359 0.201 0.129
SimTrack-GCN 0.840 0.637 0.512 0.343 0.260

TrajForesee 0.913 0.717 0.601 0.449 0.381
OtherSim-DGCN 0.859 0.676 0.540 0.406 0.342

between the two types of models is increasing, this is because

convolution-based models have one more processes to calcu-

late the trajectory similarity and LSTM-ED uses the serial

mode to extract features, leading to a linear time complexity

with the increase of prediction steps. Moreover, SimTrack-

CNN (GCN) is more effective due to dynamic GCN for

extracting similarity every round.

(a) Running time under different steps (b) AN under different known proportions

Fig. 3. Tests of running time and robustness

Robustness: We also test the robustness of our TrajForesee

with regard to different proportions of involved known fine-

grained trajectory vehicles. It can be seen that the AN values

of TrajForesee and GMTP do not fluctuate much while other

baselines vary greatly with the growth of the known part

proportion in Figure 3 (b), indicating that it is very important

to comprehensively understand the historical trajectory of the

vehicle for predicting the future trajectory.

VI. CONCLUSION

In this paper, our solutions enable large-scale sparse traffic

information to forecast fine-grained vehicle trajectories with

limited detailed trajectories. Specifically, we first propose a

spatiotemporal trajectory embedding technique to learn high-

quality trajectory mapping functions to refine coarse-grained

trajectory. Then we design a novel overall similarity measure-

ment to simultaneously extract the similarities of both long-

term behavior and short-term individual patterns from ubiqui-

tous coarse-grained trajectories. With similarity measuring, we

propose a novel encoder-decoder structure DGCS2S to fore-

cast following fine-grained trajectories, where the embedded

DGCN dynamically learns the attention scores between future

fine-grained trajectories and embedded coarse-grained trajec-

tories. Finally, we introduce some auxiliary tasks to regularize

our learning process and further boost the performance of the

main task. Extensive experiments on two real-world datasets

demonstrate our TrajForesee can exactly outperform all base-

lines and improve the efficiency of trajectory forecasting tasks.
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