
ReflectionCoder: Learning from Reflection Sequence for Enhanced One-off
Code Generation

Anonymous ACL submission

Abstract

Code generation plays a crucial role in vari-001
ous tasks, such as code auto-completion and002
mathematical reasoning. Previous work has003
proposed numerous methods to enhance code004
generation performance, including integrating005
feedback from the compiler. Inspired by this,006
we present ReflectionCoder, a novel approach007
that effectively leverages reflection sequences008
constructed by integrating compiler feedback009
to improve one-off code generation perfor-010
mance. Furthermore, we propose reflection011
self-distillation and dynamically masked dis-012
tillation to effectively utilize these reflection013
sequences. Extensive experiments on three014
benchmarks, i.e., HumanEval (+), MBPP (+),015
and MultiPl-E, demonstrate that models fine-016
tuned with our method achieve state-of-the-017
art performance. Beyond the code domain,018
we believe this approach can benefit other019
domains that focus on final results and re-020
quire long reasoning paths. Code and data021
are available at https://anonymous.4open.022
science/r/ReflectionCoder-DBBF.023

1 Introduction024

Code generation aims to automatically produce025

code based on natural language description, signifi-026

cantly saving developers time and reducing human027

error. In the past few decades, a lot of research028

has been conducted for code modeling, such as029

CodeBert (Feng et al., 2020), CodeT5 (Wang et al.,030

2021). Recently, Large Language Models (LLMs)031

have shown impressive modeling ability on nat-032

ural language that allows them to perform vari-033

ous difficult tasks (OpenAI, 2023). By training on034

code domain datasets, LLMs such as CodeGen (Ni-035

jkamp et al., 2023), StarCoder (Li et al., 2023),036

Code Llama (Rozière et al., 2023), and DeepSeek-037

Coder (Guo et al., 2024), which can accurately038

understand user intents and generate code, have039

shown better performance on code-related tasks.040

Leveraging this powerful capability, various works041

empower LLMs in complex tasks including solv- 042

ing mathematics problems and logic reasoning by 043

integrating code and its execution result as Chain- 044

of-Thoughts (CoTs), such as PAL (Gao et al., 2023) 045

and PoT (Chen et al., 2022). 046

Since code generation is important in various 047

code-related tasks and many reasoning tasks, many 048

previous studies focus on achieving better code 049

generation performance. Integrating feedback from 050

the compiler is an intuitive way to help the model 051

reflect on previous mistakes and generate better 052

code. For instance, Self-Debug (Chen et al., 2023) 053

suggested that code LLMs be instructed to gen- 054

erate code, execute it, and subsequently improve 055

the code quality based on its execution results. 056

Additionally, Print-Debug (Hu et al., 2024) pro- 057

posed to insert print statements to generate more 058

detailed logs for debugging purposes. Furthermore, 059

OpenCodeInterpreter (Zheng et al., 2024) incorpo- 060

rated simulated human feedback into the interac- 061

tion. These studies have demonstrated that incor- 062

porating reflection sequences of code generation, 063

execution, and analysis as CoTs can enhance the 064

performance of code LLMs. 065

Inspired by these works, we propose to leverage 066

the reflection sequences to guide the fine-tuning 067

of code LLMs. The proven effectiveness of re- 068

flection sequences as CoTs in enhancing the code 069

generation performance demonstrates their inher- 070

ent knowledge, which can guide model fine-tuning 071

and result in better one-off code generation per- 072

formance. However, at least two challenges must 073

be considered when using the reflection sequences 074

to guide the model fine-tuning. Firstly, the reflec- 075

tion sequences differ from the vanilla one-off code 076

generation. Most of the codes in the reflection 077

sequences are partly modified based on previous 078

codes, while all codes are completed in the infer- 079

ence stage. The gap between the training and in- 080

ference stages results in relatively low utilization 081

of the reflection sequence. Secondly, most of the 082

1

https://anonymous.4open.science/r/ReflectionCoder-DBBF
https://anonymous.4open.science/r/ReflectionCoder-DBBF
https://anonymous.4open.science/r/ReflectionCoder-DBBF

Write a Python function that solves the specified problem

with test cases using assert statements and execute it …

Reflection Instruction

Reflection Sequence

Instruction

def multiply_digits(n): …

Final Code

Execute an algorithm to generate …

def multiply_digits(n): ….

assert multiply_digits(999) == 9 * 9 * 9

Code Block

AssertionError Traceback (most recent call last) …

Execution Block

This indicates an issue with the function …

Analysis Block

def multiply_digits(n): …

assert multiply_digits(0) == 0

Generation Block

Test passed

Execution Block

The modified code has passed all the test cases …

Analysis Block

Figure 1: A sample of reflection sequence data contain-
ing four components: Reflection Instruction, Reflection
Sequences, Instruction, and Final code.

codes in reflection sequence are generated based on083

previous executions and analysis, whereas a one-084

off generation relies solely on a single instruction.085

This disparity makes it challenging to transition086

between such different prompts effectively.087

Based on these concerns, we proposed Reflec-088

tionCoder, a novel method to effectively lever-089

age reflection sequence to perform better in one-090

off code generation tasks. To bridge the gap be-091

tween the reflection sequences and the vanilla code092

generation, we propose reflection self-distillation.093

Specifically, we carefully design a two-stage094

prompt to obtain high-quality instruction answer095

pairs with the same format as one-off generations.096

We first employ an LLM to generate a reflection se-097

quence for an instruction with a compiler, and then098

task it to re-answer the instruction based on this se-099

quence. After that, as shown in Figure 1, we obtain100

two rounds of dialogue as [Reflection Instruction,101

Reflection Sequence, Instruction, Final code]. The102

second round dialogue is the same as the one-off103

generation but with higher quality, which can play104

the role of a teacher sample distilling knowledge 105

into one-off code generation. To effectively dis- 106

till knowledge from reflection sequence to one-off 107

generation, we design a novel distillation method, 108

namely dynamically masked distillation. Specifi- 109

cally, with a particular LLM, the teacher input is 110

the entire two-round dialogue, while the student 111

input is a partly masked first-round dialogue along 112

with an intact second-round dialogue. During the 113

training process, we gradually increase the mask- 114

ing rate to progressively enhance the difficulty of 115

generating the final code. In this way, LLM can 116

be distilled to generate the final code from easy to 117

difficult and achieve better performance. 118

Our contributions are summarised as follows: 119

• We propose to leverage reflection sequences 120

to improve the one-off code generation perfor- 121

mance of code LLMs, which can be generated 122

by LLMs and thus save annotation costs. 123

• On top of the idea, we propose two techniques, 124

namely reflection self-distillation and dynami- 125

cally masked distillation, which can effectively 126

utilize the reflection sequence to improve the 127

one-off code generation performance. 128

• Extensive experiments on HumanEval (+), 129

MBPP (+), MultiPl-E, APPs, LiveCodeBench, 130

ClassEval, and BigCodeBench demonstrate the 131

effectiveness of the proposed method on one- 132

off code generation. Notably, ReflectionCoder- 133

DeepSeek-Coder-33B reaches 82.9 (76.8) on 134

HumanEval (+) and 84.1 (72.0) on MBPP (+), 135

which is an on-par performance of Claude-3- 136

opus and surpasses early GPT-4. 137

2 Related Work 138

2.1 Large Language Models for Code 139

Large Language Models (Ouyang et al., 2022; 140

OpenAI, 2023; Anil et al., 2023b; Touvron et al., 141

2023a,b; Penedo et al., 2023; Yang et al., 2023; Bai 142

et al., 2023; Jiang et al., 2023, 2024; Anil et al., 143

2023a; Anthropic, 2024) have proven highly effec- 144

tive in general natural language processing (NLP) 145

tasks. For a specific domain such as code-related 146

tasks (Chen et al., 2021; Austin et al., 2021; Bavar- 147

ian et al., 2022; Muennighoff et al., 2023), train- 148

ing on large specific domain datasets can greatly 149

improve their efficacy. Recent studies have intro- 150

duced several LLMs for the code domain. Ope- 151

nAI introduced Codex (Chen et al., 2021), and 152

Google introduced PaLM-Coder (Chowdhery et al., 153

2

2023). However, these models are closed-source,154

and we can only access them via API without ac-155

cess to their parameters. There are also several156

open-source LLMs for the code domain, such as157

CodeGen (Nijkamp et al., 2023), Incoder (Fried158

et al., 2023), SantaCoder (Allal et al., 2023), Star-159

Coder (Li et al., 2023), StarCoder-2 (Lozhkov160

et al., 2024), CodeGeeX (Zheng et al., 2023),161

Code Llama (Rozière et al., 2023), and DeepSeek-162

Coder (Guo et al., 2024). In addition to vanilla code163

snippets, modification content of code with com-164

mit messages (Muennighoff et al., 2023) and code165

structure (Gong et al., 2024) are also proposed to be166

the pre-train corpus. After instruction tuning, some167

of these open-source models have outperformed168

several closed-source models (Luo et al., 2023).169

2.2 Instruction Tuning for Code170

The primary objective of instruction tuning is train-171

ing LLMs to align with human instructions by us-172

ing a large corpus of human instructions together173

with corresponding responses (Sanh et al., 2022;174

Wei et al., 2022; Ouyang et al., 2022; Longpre175

et al., 2023; Zhang et al., 2023). Fine-tuning upon176

this method, LLMs can directly follow user in-177

structions without extra demonstration and improve178

their generalization capacity. Its great value is also179

demonstrated in code-related applications. For ex-180

ample, Code Alpaca (Chaudhary, 2023) applied181

SELF-INSTRUCT (Wei et al., 2022) to fine-tune182

LLMs with ChatGPT-generated instructions. Wiz-183

ardCoder (Luo et al., 2023) proposed Code Evol-184

Instruct, which evolves Code Alpaca data using the185

ChatGPT to generate more complex and diverse186

datasets. PanGu-Coder2 (Shen et al., 2023) pro-187

posed Rank Responses to align Test&Teacher Feed-188

back framework, which uses ranking responses as189

feedback instead of the absolute value of a reward190

model. In addition to starting with instructions, a191

lot of work starts with existing source code. For192

example, MagiCoder (Wei et al., 2023), Wave-193

Coder (Yu et al., 2023), and InverseCoder (Wu194

et al., 2024) proposed some methods to make full195

use of source code.196

2.3 Iterative Generation and Refinement197

Iterative refinement approaches are often taken to198

improve the generation quality. Recently, Self-199

Refine (Madaan et al., 2023) and Reflexion (Shinn200

et al., 2023) demonstrated that LLMs can reflect on201

previous generations, generate feedback, and give202

better generations based on feedback. In the code203

domain, several tools can provide feedback for gen- 204

erated code, such as compiler, and other static tools. 205

Integrating feedback from these tools can help the 206

LLMs better reflect on themselves and generate 207

better codes. For example, Self-Debugging (Chen 208

et al., 2023) and Print-Debugging (Hu et al., 2024) 209

proposed to integrate the execution result of the 210

code as a feedback message to obtain better per- 211

formance. StepCoder (Dou et al., 2024) and 212

OpenCodeInterpreter (Zheng et al., 2024) involved 213

executing and iteratively refining code as multi- 214

turn interactions into instruction tuning, improving 215

the model’s debugging ability. Concurrently, Au- 216

toCoder (Lei et al., 2024) employed multi-turn in- 217

teraction to obtain high-quality instruction data and 218

then improve the one-off generation performance. 219

In contrast, our method method introduces the re- 220

flection sequence into the training stage instead of 221

just using it to filter the data. 222

3 Methodology 223

In this section, we present the methodological de- 224

tails of the proposed ReflectionCoder. We be- 225

gin with a vanilla distillation, followed by a care- 226

fully designed method that comprehensively ex- 227

tracts knowledge from the reflection sequences and 228

guides the model training. 229

3.1 Reflection Self-Distillation 230

Here, we present how to utilize the reflection se- 231

quences to enhance the fine-tuning of code LLMs. 232

As presented in Section 1, a piece of reflection se- 233

quence data includes four components: [Reflection 234

Instruction, Reflection Sequence, Instruction, Fi- 235

nal code], where the reflection sequence is divided 236

into three types of blocks, namely code block, ex- 237

ecution block, and analysis block. Their contents 238

are the generated executable code, the execution 239

results, and the code summary or error analysis, 240

respectively. 241

We construct two input samples for each re- 242

flection sequence to perform the reflection self- 243

distillation. The teacher sample is the entire re- 244

flection sequence, and the student sample consists 245

of [Instruction, Final Code], which is the same as 246

vanilla one-off code generation instruction tuning 247

data. The key distinction between them is that the 248

final code of the teacher sample can be generated 249

based on the reflection sequences with low perplex- 250

ity, while the student sample can only be generated 251

according to the instruction. The vanilla distillation 252

3

Distillation

Raw

reflection sequence data

Teacher Sample Student Sample

Reflection Instruction Reflection Sequence Re-answer Instruction All Mask Dynamic Mask

Dynamically masked

reflection sequence data

Reflection Coder

Figure 2: Overview of the proposed dynamically masked distillation.

loss can be formulated as253

Ls
d = KL (p(tc|tri, trs, ti) ∥ p(tc|ti)) , (1)254

where tc denotes tokens of the final code, tri de-255

notes tokens of the reflection instruction, trs de-256

notes tokens of the reflection sequence, and ti de-257

notes tokens of the instruction.258

This approach enables the distillation of knowl-259

edge from the sequence into a one-off generation.260

The absolute position of the tokens in [Instruction,261

Final Code] differs between the teacher sample and262

the student sample, while [Reflection Instruction,263

Reflection Sequence] exists in the teacher sample264

but not in the student sample. However, the rela-265

tive positions between the two tokens in [Instruc-266

tion, Final Code] are the same between the teacher267

sample and the student sample, which indicates268

that distillation is effective for models utilizing Ro-269

tary Position Embedding (Su et al., 2024), such as270

Llama (Touvron et al., 2023b).271

3.2 Dynamically Masked Distillation272

Although vanilla distillation can distill knowledge273

from reflection sequence to enhance the one-off274

code generation, it could be hindered by the neg-275

ative impact of contextual differences. Previous276

studies on distillation show that a student model277

distilled from a teacher with more parameters per-278

forms worse than the one distilled from a smaller279

teacher with a smaller capacity (Mirzadeh et al.,280

2020). This finding suggests that the difference281

between teacher and student should not be too282

large. However, a significant gap exists between283

our teacher-student sample pair, as the teacher sam-284

ple contains the entire reflection sequence while285

the student sample has no access to the reflection286

procedure. This discrepancy could lead to the poor287

performance of vanilla distillation.288

Inspired by Curriculum Learning (Bengio et al.,289

2009), we carefully design a dynamically masked290

distillation method. The overall procedure is pre- 291

sented in Figure 2. The initial student sample is 292

the same as the teacher sample. During the train- 293

ing process, we mask all tokens of the “Reflection 294

Instruction” and a portion of tokens of the “Reflec- 295

tion Sequence”. The number of masked tokens is 296

gradually increased to progressively enhance the 297

difficulty of generating the final code, thereby en- 298

abling the model to effectively learn the knowledge 299

encoded in the reflection sequence. Then the distil- 300

lation loss can be formulated as 301

Ld = KL (p(tc|tri, trs, ti) ∥ p(tc|tprs, ti)) , (2) 302

where tprs denoted tokens partly masked reflection 303

instruction. 304

As shown in Figure 3, we design three dynamic 305

masking strategies, namely random mask, sequen- 306

tial mask, and block mask. All of these strategies 307

adjust dynamically with the mask rate, a concept re- 308

lated to the training process, which can be defined 309

as “current step/max step”. The masking details 310

are illustrated below: 311

(1) Random mask selects blocks to mask based on 312

the mask rate randomly. This is an intuitive 313

strategy used by many previous studies in the 314

pre-training stage such as BERT (Devlin et al., 315

2019) and T5 (Raffel et al., 2020). 316

(2) Sequential mask selects the leftmost blocks to 317

mask and gradually expands the masked scope 318

according to the mask rate. The underlying 319

principle of this strategy is that later tokens are 320

usually more influential in generating the final 321

code since code generated after analysis tends to 322

be more accurate than those generated initially. 323

(3) Block mask selects some blocks according to 324

mask rates. Specifically, when the mask rate 325

exceeds 0, all execution blocks are masked. 326

When the mask rate exceeds 1/3, all generation 327

4

C E A C E A C E A C E A

Random Mask Sequential Mask Block Mask

C E A C E A

Training

Progress

Prevent

from

Attending

Figure 3: Overview of the proposed dynamic masking strategies. Here, a cell denotes a block, ‘C’ denotes the code
block, ‘E’ denotes the execution block, and ‘A’ denotes the analysis block.

blocks are additionally masked. When the mask328

rate exceeds 2/3, all analysis blocks are further329

masked. The core idea of this strategy is that the330

effectiveness of tokens is block-dependent. For331

instance, tokens in the execution block typically332

have the lowest impact.333

With these dynamically masked strategies, the334

learning difficulty gradually increases, contributing335

to better final one-off code generation performance.336

Similar to reflection self-distillation, the absolute337

position of tokens in the one-off code generation338

round differs between the training stage and the in-339

ference stage, while “Reflection Sequence” exists340

in the training stage but not in the inference stage.341

However, the relative positions of the two tokens in342

[Instruction, Final Code] remain the same between343

the training stage and the inference stage, which344

indicates that there is no gap between the training345

stage and the inference stage for models utilizing346

Rotary Position Embedding (Su et al., 2024).347

Training loss. We employ both the next token348

prediction loss and distillation loss to train the349

model. For the teacher sample, we perform the350

next token prediction task on “Final Code” and the351

text blocks and the code blocks of “Reflection Se-352

quence”, because both the queries of the user and353

the execution results do not need to be generated354

in the inference stage. For the student sample, we355

only perform the next token prediction task on “Fi-356

nal Code”. The final loss consists of the next token357

prediction loss of the teacher and student samples,358

and the distillation loss between the teacher and359

student sample.360

4 Experiments361

4.1 Experimental Setup362

Training Dataset. Our training dataset includes363

a vanilla code instruction tuning dataset, where364

each sample contains an instruction and corre-365

sponding code answer and the proposed reflection 366

sequence dataset. For the code instruction tun- 367

ing dataset, we use instruction answer pairs from 368

an open-source code instruction tuning dataset: 369

CodeFeedback-Filtered-Instruction1. For the reflec- 370

tion sequence dataset, we first randomly select 10k 371

instructions with Python code in the correspond- 372

ing answer to conduct two rounds of dialogue with 373

GPT-4 Code Interpreter2, obtaining the reflection 374

sequence dataset. Subsequently, we use the 10k 375

reflection sequence data and 156k code instruction 376

tuning data to fine-tune DeepSeek-Coder 33B (Guo 377

et al., 2024). Using this fine-tuned model, we gen- 378

erate additional 12k reflection sequence data. The 379

detailed data construction process is presented in 380

Appendix A. Finally, we fine-tune the target model 381

using 22k reflection sequence data and 156k code 382

instruction tuning data. 383

Test Dataset. We evaluate our method on Hu- 384

manEval (Chen et al., 2021) and MBPP (Austin 385

et al., 2021), two of the most widely used bench- 386

marks for code generation. Each task in these 387

benchmarks includes a task description as the 388

prompt and a handful of test cases to check the 389

correctness of the LLM-generated code. Consider- 390

ing the insufficiency of test cases in these bench- 391

marks, Liu et al. (2023) proposed HumanEval+ 392

and MBPP+, which contain 80×/35× more tests. 393

Following prior work (Liu et al., 2023; Wei et al., 394

2023; Zheng et al., 2024), we use greedy decod- 395

ing to generate one sample and focus on com- 396

paring the pass@1 metric. Due to the limited 397

space, we present evaluation experiments on more 398

code-related benchmarks in Appendix B, including 399

MultilPL-E (Cassano et al., 2022), DS1000 (Lai 400

et al., 2023), APPs (Hendrycks et al., 2021), Live- 401

CodeBench (Jain et al., 2024), ClassEval (Du et al., 402

2023), and BigCodeBench (Zhuo et al., 2024). 403

1CodeFeedback-Filtered-Instruction
2GPT-4 Code Interpreter

5

https://huggingface.co/datasets/m-a-p/CodeFeedback-Filtered-Instruction
https://platform.openai.com/docs/assistants/tools/code-interpreter

Method Base
Benchmark

Humaneval Humaneval+ MBPP MBPP+

Colsed-Source Models

GPT-4-Turbo (April 2024) (OpenAI, 2023) - 90.2 86.6 - -
GPT-4-Turbo (Nov 2023) (OpenAI, 2023) - 88.4 81.7 85.7 73.3
GPT-3.5-Turbo (Nov 2023) (Ouyang et al., 2022) - 76.8 70.7 82.5 69.7
Claude-3-opus (Mar 2024) (Anthropic, 2024) - 82.9 76.8 89.4 73.3
Claude-3-sonnet (Mar 2024) (Anthropic, 2024) - 70.7 62.8 83.6 69.3
Mistral Large (Mar 2024) (Jiang et al., 2023) - 70.1 62.8 72.8 59.5
Gemini Pro 1.0 (Anil et al., 2023a) - 63.4 55.5 75.4 61.4

Open-Source Models

WizardCoder (Luo et al., 2023) CL-7B 48.2 40.9 58.5 49.5
MagiCoder-S (Wei et al., 2023) CL-7B 70.7 66.5 70.6 60.1
OpenCodeInterpreter (Zheng et al., 2024) CL-7B 72.6 67.7 66.4 55.4
ReflectionCoder CL-7B 75.0 68.9 72.2 61.4

WizardCoder (Luo et al., 2023) CL-34B 73.2 64.6 75.1 63.2
OpenCodeInterpreter (Zheng et al., 2024) CL-34B 78.0 72.6 73.4 61.4
Speechless (Speechless, 2023) CL-34B 77.4 72.0 73.8 61.4
ReflectionCoder CL-34B 78.0 73.8 80.2 67.5

DeepSeek-Coder-Instruct (Guo et al., 2024) DS-6.7B 73.8 70.1 74.9 65.6
MagiCoder-S (Wei et al., 2023) DS-6.7B 76.8 70.7 69.4 69.0
OpenCodeInterpreter (Zheng et al., 2024) DS-6.7B 77.4 73.8 76.5 66.4
Artigenz-Coder (Artigenz-Coder, 2024) DS-6.7B 75.6 72.6 80.7 69.6
ReflectionCoder DS-6.7B 80.5 74.4 81.5 69.6

DeepSeek-Coder-Instruct (Guo et al., 2024) DS-33B 81.1 75.0 80.4 70.1
WizardCoder (Luo et al., 2023) DS-33B 79.9 73.2 81.5 69.3
OpenCodeInterpreter (Zheng et al., 2024) DS-33B 79.3 73.8 80.2 68.5
ReflectionCoder DS-33B 82.9 76.8 84.1 72.0

Table 1: Pass@1 accuracy on Humaneval(+) and MBPP(+). Here, ‘CL’ denotes Code Llama, and ‘DS’ denotes
DeepSeek-Coder. The best results of each base are in bold and results unavailable are left blank.

Implementation Details. We test our methods404

on Code Llama Python 7B/34B and DeepSeek-405

Coder 6.7B/33B. We finetune all models for 2406

epochs. We employ AdamW (Loshchilov and Hut-407

ter, 2019) optimizer with a learning rate of 5e-5408

for 6.7B/7B models and 2e-5 for 33B/34B mod-409

els, a 0.05 warm-up ratio, and a cosine scheduler.410

We set the batch size as 512 and the max sequence411

length as 4096. To efficiently train the computation-412

ally intensive models, we simultaneously employ413

DeepSpeed (Rajbhandari et al., 2020) and Flash At-414

tention (Dao, 2023). On 16 NVIDIA A800 80GB415

GPUs, the experiments on 7B models and 34B416

models take 3.5 hours and 25 hours, respectively.417

In the training process, we up-sample 22k re-418

flection sequence data by a factor of 2 and mix419

them with 156k code instruction tuning data. For420

samples in code instruction tuning data, we only421

employ the next token prediction as the training422

task. For samples in reflection sequence data, we423

use the proposed method to calculate the loss. We424

only use the block mask strategy in the order of425

execution block, analysis block, and code block.426

Although each strategy can bring benefits, mixing 427

them is no longer beneficial in the experiments. 428

4.2 Evaluation 429

Baselines. We compare ReflectionCoder with 430

previous state-of-the-art methods, including Wiz- 431

ardCoder (Luo et al., 2023), Speechless (Speech- 432

less, 2023), DeepSeek-Coder Instruct (Guo et al., 433

2024), Magicoder (Wei et al., 2023), and Open- 434

CodeInterpreter (Zheng et al., 2024). All the results 435

are consistently reported from the EvalPlus leader- 436

board3. The proposed method is an instruction 437

tuning method, so we do not present comparison 438

results for base models such as StarCoder (Li et al., 439

2023) and Code Llama (Rozière et al., 2023). 440

Results. Table 1 shows the pass@1 accuracy 441

of different method on Humaneval (+) and 442

MBPP (+). Based on the results, we have the 443

following findings: (1) For open-source meth- 444

ods with parameters ranging from 6.7B to 34B, 445

the proposed ReflectionCoder outperforms pre- 446

3EvalPlus Leaderboard

6

https://evalplus.github.io/leaderboard.html

vious state-of-the-art methods on all base mod-447

els, demonstrating its effectiveness. (2) Focusing448

on Code Llama, ReflectionCoder-CodeLlama-7B449

even surpasses WizardCode-CodeLlama-34B on450

HumanEval and HumanEval+. (3) Compared with451

OpenCodeInterpreter, ReflectionCoder performs452

better on various base models, which indicates453

that we take better advantage of the reflection se-454

quences. (4) Compared with closed-source mod-455

els, ReflectionCoder-DeepSeek-Coder-33B outper-456

forms Gemini Pro, Mistral Large, and Claude-3-457

sonnet on all four benchmarks. It is worth noting458

that ReflectionCoder-DeepSeek-Coder-33B also459

achieves the on-par performance of GPT-3.5-Turbo460

and Claude-3-opus.461

4.3 Detailed Analysis462

Here, We conduct some analytical experiments.463

Due to the limited space, more analytical exper-464

iments are presented in the Appendix B.465

4.3.1 Ablation Study466

Here, we check how each component contributes467

to the final performance. We prepare three group468

variants of our method: (1) The first group is re-469

lated to the high-level method, which has three470

variants. w/o Dynamically Mask denotes without471

any dynamically mask strategy, a.k.a., the vanilla472

distillation. w/o Distillation denotes without dis-473

tillation, a.k.a., only perform next token predic-474

tion on the reflection data. w/o Reflection Data475

denotes without reflection data, a.k.a., only train476

the model with code instruction tuning data. (2)477

The second group is related to the source of the re-478

flection data. w/o GPT-4 Data denotes only use the479

12k reflection data construct from the fine-tuned480

DeepSeek-Coder 33B. Note that the DeepSeek-481

Coder 33B is fine-tuned with reflection Data from482

GPT-4. w/o DS Data only use the 10k reflection483

data construct from GPT-4. (3) The third group is484

related to the masking strategy. w/ Random Mask485

and w/ Sequential Mask denote replacing the block486

mask with random and sequential masks, respec-487

tively. w/ Three Mask Strategies denotes randomly488

selecting a masking strategy in each step.489

Table 2 shows the pass@1 accuracy of different490

variants on HumanEval (+) and MBPP (+). As491

we can see, the performance ranking can be given492

as: w/o Reflection Data < w/o Distillation < w/o493

Dynamically Mask < ReflectionCoder. These re-494

sults indicate that all components are essential for495

improving performance. Additionally, both w/o496

Method HumanEval (+) MBPP (+)

ReflectionCoder 75.0 (68.9) 72.2 (61.4)

w/o Dynamic Mask 70.7 (65.2) 70.4 (58.5)
w/o Distillation 69.5 (63.4) 70.4 (59.0)
w/o Reflection Data 65.9 (62.2) 68.5 (57.9)

w/o GPT Data 71.3 (67.1) 70.1 (59.5)
w/o DS Data 68.9 (65.2) 69.6 (58.2)

w/ Random Mask 72.0 (66.5) 70.1 (59.0)
w/ Sequential Mask 72.6 (67.7) 71.3 (60.3)
w/ Three Strategies 73.2 (65.9) 71.7 (61.2)

Table 2: Ablation results on Humaneval(+) and
MBPP(+). The metric is Pass@1 accuracy, and all the
results are based on Code Llama 7B.

Method Humaneval (+) MBPP (+)

w/ EAC 75.0 (68.9) 72.2 (61.4)
w/ ECA 75.0 (68.9) 70.9 (59.5)
w/ ACE 72.0 (66.5) 70.6 (60.1)
w/ AEC 73.2 (65.9) 70.9 (59.5)
w/ CAE 71.3 (65.9) 70.4 (59.8)
w/ CEA 73.2 (67.1) 72.0 (60.8)

Table 3: Effect of masked order. The metric is Pass@1
accuracy, and all the results are based on Code Llama
7B. Here, ‘C’ denotes the code block, ‘E’ denotes the
execution block, and ‘A’ denotes the analysis block.
For example, ‘ECA’ denotes first mask execution block,
then mask code block, and finally mask analysis block.

GPT-4 Data and w/o DS Data perform worse than 497

ReflectionCoder. And w/o GPT-4 Data performs 498

better than w/o DS Data. A possible reason is that 499

we have carried out strict filtering on Reflection 500

Data from DS, which may impact the final perfor- 501

mance. Finally, w/ Random Mask, w/ Sequential 502

Mask, and w/ Three Mask Strategies perform better 503

than w/o Dynamically Mask but worse than Reflec- 504

tionCoder. This indicates that while the three strate- 505

gies are effective, they are not fully compatible with 506

each other. A possible reason is that mixing them 507

destroys the curricular nature of learning, leading 508

to reduced effectiveness. 509

4.3.2 Effect of Block Masked Order 510

As mentioned in Section 3, the block mask masks 511

block in a specific order. Here, we examine the 512

effect of masking order by preparing six variants 513

with all possible orders. 514

Table 3 shows the pass@1 accuracy of different 515

orders. As we can see, the two orders that mask 516

execution blocks first perform better than other or- 517

ders, indicating that tokens in execution blocks are 518

generally less effective, which is intuitive. Sim- 519

7

Model GPT 33B 6.7B HumanEval (+) MBPP (+)

33B ! % % 80.5 (73.8) 80.7 (69.0)
33B ! ! % 82.9 (76.8) 84.1 (72.0)

6.7B ! ! % 80.5 (74.4) 81.5 (69.6)
6.7B ! % ! 79.3 (76.2) 80.7 (68.8)
6.7B % ! % 80.5 (75.0) 81.0 (68.3)
6.7B % % ! 81.1 (76.2) 80.4 (68.3)

Table 4: Effect of data source. The metric is Pass@1
accuracy. Here, “33B” denotes Deepseek-Coder-33B
and “6.7B” denotes Deepseek-Coder-6.7B.

ilarly, the two orders that mask code blocks last520

also perform better, suggesting that tokens in code521

blocks are more effective.522

4.3.3 Effect of Data Source523

As mentioned in Section 4.1, our reflection se-524

quence dataset is constructed from GPT-4 and fine-525

tuned Deepseek-Coder-33B. Here, we construct526

three sets of experiments to check the effectiveness527

of our method with different other data sources.528

Firstly, we compared the ReflectionCoder-529

Deepseek-Coder-33B with the Deepseek-Coder-530

33B fine-tuned only with data from GPT-4, which531

is used to construct more data in our main experi-532

ments. As shown in the first group of Table 4, the533

intermediate model performs worse than the final534

model, which shows that the model can generate535

its training data and improve itself based on our536

method after only a small amount of training data537

from GPT-4.538

Then, we employ the Deepseek-Coder-6.7B to539

act as the intermediate model. As shown in the sec-540

ond group of Table 4, show that the data generated541

by the DeepSeek-Coder 6.7B can still bring bene-542

fits. Surprisingly, for HumanEval, the Deepseek-543

Coder 6.7B fine-tuned with self-generated reflec-544

tion sequence data achieves better performance.545

The results also show that GPT-4 data is not the546

key to improving model performance. As long as547

the model learns how to reflect based on execution548

results, it can generate a reflection sequence for the549

model to improve itself.550

4.3.4 Autonomous Enhancement551

To completely exclude the factor of GPT-4, we552

employ an open-source model (Llama-3.1-8B-553

Instruct (Dubey et al., 2024)) that can generate re-554

flection sequences without any training to act as the555

data source. We first employ reflection in testing556

as the reference, which first tasks the Llama-3.1-557

Model Humaneval (+) MBPP (+)

Llama-3.1-8B-Instruct 70.1 (62.2) 72.5 (59.3)
w/ reflection 76.2 (64.7) 74.2 (62.2)
w/ reflection distillation 74.4 (68.3) 73.0 (63.0)

Table 5: Experiment on Llama-3.1-8B-Instruct. The
metric is Pass@1 accuracy. Here, “w/ reflection” de-
notes performing reflection while testing on Llama-3.1-
8B-Instruct. “w/ reflection distillation” denotes the one-
off generation performance of the model that is fine-
tuned with our method on the self-generated reflection
sequence data.

8B-Instruct to generate the reflection sequence and 558

then tasks the model to generate the final code in 559

the test stage. Then, we task the model to generate 560

the reflection sequence data and use the generated 561

data to fine-tune itself with the proposed method. 562

As shown in Table 5, although Llama-3.1-8B- 563

Instruct has undergone multiple rounds of post- 564

training (including SFT and multi-turn DPO), our 565

method can still further improve its performance 566

and only rely on the data generated by itself. Sur- 567

prisingly, on the plus dataset, the proposed method 568

even outperforms w/ reflection. The reason is that 569

the expected answers directly generated by the 570

model have a high error rate, making it difficult 571

to cover boundary data and more difficult data. 572

Meanwhile, the data used for training has been 573

strictly filtered (the filtered details are presented in 574

Appendix A), so the quality of the data used for 575

training is relatively high. The filter pass rate (only 576

17%) also shows that the quality of the generated 577

data is relatively low. 578

5 Conclusion 579

In this paper, we proposed ReflectionCoder, a novel 580

method to effectively leverage the reflection se- 581

quence constructed by integrating feedback from 582

the compiler to achieve better one-off code gen- 583

eration performance. We proposed two training 584

techniques to effectively utilize the reflection se- 585

quences data, namely reflection self-distillation and 586

dynamically masked distillation. The reflection 587

self-distillation aims to distillation from reflection 588

sequence to one-off code generation, and the dy- 589

namically masked distillation aims to utilize the 590

reflection sequence to achieve better performance 591

effectively. In the future, we plan to improve this 592

method to dynamically reduce unnecessary reason- 593

ing paths for domains that need to show reasoning 594

paths to simplify the model output. 595

8

Limitations596

The primary limitation of this study is its reliance597

on a powerful model, such as the GPT-4 code in-598

terpreter, for constructing reflection sequence data.599

While this method ensures high precision and ef-600

ficiency, it also incurs significant computational601

costs, which may limit its accessibility and scala-602

bility, particularly in resource-constrained environ-603

ments. However, as large language models con-604

tinue to evolve, open-source models like Llama605

3.1 are beginning to exhibit similar capabilities.606

We anticipate that this limitation will diminish as607

these models become more advanced and widely608

available. Furthermore, the reliance on Rotary Po-609

sition Embedding introduces an additional restric-610

tion. While effective within the specific context611

of this study, it may limit the method’s generaliz-612

ability and adaptability to different architectures or613

alternative embedding strategies.614

Ethics Statement615

The models utilized in this paper, StarCoder (Li616

et al., 2023), Code Llama (Rozière et al., 2023),617

Deepseek-Coder (Guo et al., 2024) and Llama-618

3.1 (Dubey et al., 2024), are licensed for academic619

research purposes. Furthermore, the data employed620

in this study, Code Instruction Tuning Dataset4, is621

collected from Magicoder-OSS-Instruct5, Python622

code subset of ShareGPT6, Magicoder-Evol-623

Instruct7, and Evol-Instruct-Code8. All of these624

datasets are constructed from GPT-3 or GPT-4,625

while OpenAI permit on research access9 and all626

theses datasets are licensed for research purposes.627

References628

Loubna Ben Allal, Raymond Li, Denis Kocetkov,629
Chenghao Mou, Christopher Akiki, Carlos Muñoz630
Ferrandis, Niklas Muennighoff, Mayank Mishra,631
Alex Gu, Manan Dey, Logesh Kumar Umapathi,632
Carolyn Jane Anderson, Yangtian Zi, Joel Lamy-633
Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry634
Abulkhanov, Manuel Romero, Michael Lappert,635

4https://huggingface.co/datasets/m-a-p/
CodeFeedback-Filtered-Instruction

5https://huggingface.co/datasets/ise-uiuc/
Magicoder-OSS-Instruct-75K

6https://huggingface.co/datasets/ajibawa-2023/
Python-Code-23k-ShareGPT

7https://huggingface.co/datasets/ise-uiuc/
Magicoder-Evol-Instruct-110K

8https://huggingface.co/datasets/nickrosh/
Evol-Instruct-Code-80k-v1

9https://openai.com/policies/

Francesco De Toni, Bernardo García del Río, Qian 636
Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue 637
Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab 638
Mangrulkar, David Lansky, Huu Nguyen, Danish 639
Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, 640
Yacine Jernite, Sean Hughes, Daniel Fried, Arjun 641
Guha, Harm de Vries, and Leandro von Werra. 2023. 642
Santacoder: don’t reach for the stars! CoRR, 643
abs/2301.03988. 644

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean- 645
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan 646
Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Mil- 647
lican, David Silver, Slav Petrov, Melvin Johnson, 648
Ioannis Antonoglou, Julian Schrittwieser, Amelia 649
Glaese, Jilin Chen, Emily Pitler, Timothy P. Lilli- 650
crap, Angeliki Lazaridou, Orhan Firat, James Molloy, 651
Michael Isard, Paul Ronald Barham, Tom Henni- 652
gan, Benjamin Lee, Fabio Viola, Malcolm Reynolds, 653
Yuanzhong Xu, Ryan Doherty, Eli Collins, Clemens 654
Meyer, Eliza Rutherford, Erica Moreira, Kareem 655
Ayoub, Megha Goel, George Tucker, Enrique Pi- 656
queras, Maxim Krikun, Iain Barr, Nikolay Savinov, 657
Ivo Danihelka, Becca Roelofs, Anaïs White, Anders 658
Andreassen, Tamara von Glehn, Lakshman Yagati, 659
Mehran Kazemi, Lucas Gonzalez, Misha Khalman, 660
Jakub Sygnowski, and et al. 2023a. Gemini: A fam- 661
ily of highly capable multimodal models. CoRR, 662
abs/2312.11805. 663

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin John- 664
son, Dmitry Lepikhin, Alexandre Passos, Siamak 665
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng 666
Chen, Eric Chu, Jonathan H. Clark, Laurent El 667
Shafey, Yanping Huang, Kathy Meier-Hellstern, Gau- 668
rav Mishra, Erica Moreira, Mark Omernick, Kevin 669
Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao, 670
Yuanzhong Xu, Yujing Zhang, Gustavo Hernández 671
Ábrego, Junwhan Ahn, Jacob Austin, Paul Barham, 672
Jan A. Botha, James Bradbury, Siddhartha Brahma, 673
Kevin Brooks, Michele Catasta, Yong Cheng, Colin 674
Cherry, Christopher A. Choquette-Choo, Aakanksha 675
Chowdhery, Clément Crepy, Shachi Dave, Mostafa 676
Dehghani, Sunipa Dev, Jacob Devlin, Mark Díaz, 677
Nan Du, Ethan Dyer, Vladimir Feinberg, Fangxi- 678
aoyu Feng, Vlad Fienber, Markus Freitag, Xavier 679
Garcia, Sebastian Gehrmann, Lucas Gonzalez, and 680
et al. 2023b. Palm 2 technical report. CoRR, 681
abs/2305.10403. 682

Anthropic. 2024. The claude 3 model family: Opus, 683
sonnet, haiku. 684

Artigenz-Coder. 2024. Artigenz-coder-ds-6.7b. 685

Jacob Austin, Augustus Odena, Maxwell I. Nye, 686
Maarten Bosma, Henryk Michalewski, David Dohan, 687
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, 688
and Charles Sutton. 2021. Program synthesis with 689
large language models. CoRR, abs/2108.07732. 690

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, 691
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei 692
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, 693
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, 694

9

https://huggingface.co/datasets/m-a-p/CodeFeedback-Filtered-Instruction
https://huggingface.co/datasets/m-a-p/CodeFeedback-Filtered-Instruction
https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K
https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K
https://huggingface.co/datasets/ajibawa-2023/Python-Code-23k-ShareGPT
https://huggingface.co/datasets/ajibawa-2023/Python-Code-23k-ShareGPT
https://huggingface.co/datasets/ise-uiuc/Magicoder-Evol-Instruct-110K
https://huggingface.co/datasets/ise-uiuc/Magicoder-Evol-Instruct-110K
https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1
https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1
https://openai.com/policies/
https://doi.org/10.48550/ARXIV.2301.03988
https://doi.org/10.48550/ARXIV.2312.11805
https://doi.org/10.48550/ARXIV.2312.11805
https://doi.org/10.48550/ARXIV.2312.11805
https://doi.org/10.48550/ARXIV.2305.10403
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://huggingface.co/Artigenz/Artigenz-Coder-DS-6.7B
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732

Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,695
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong696
Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang697
Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian698
Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi699
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang,700
Yichang Zhang, Zhenru Zhang, Chang Zhou, Jin-701
gren Zhou, Xiaohuan Zhou, and Tianhang Zhu. 2023.702
Qwen technical report. CoRR, abs/2309.16609.703

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak,704
John Schulman, Christine McLeavey, Jerry Tworek,705
and Mark Chen. 2022. Efficient training of language706
models to fill in the middle. CoRR, abs/2207.14255.707

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,708
and Jason Weston. 2009. Curriculum learning. In709
Proceedings of the 26th Annual International Con-710
ference on Machine Learning, ICML 2009, Montreal,711
Quebec, Canada, June 14-18, 2009, volume 382 of712
ACM International Conference Proceeding Series,713
pages 41–48. ACM.714

Federico Cassano, John Gouwar, Daniel Nguyen, Syd-715
ney Nguyen, Luna Phipps-Costin, Donald Pinckney,716
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,717
Molly Q. Feldman, Arjun Guha, Michael Greenberg,718
and Abhinav Jangda. 2022. A scalable and extensible719
approach to benchmarking nl2code for 18 program-720
ming languages. CoRR, abs/2208.08227.721

Sahil Chaudhary. 2023. Code alpaca: An instruction-722
following llama model for code generation. https:723
//github.com/sahil280114/codealpaca.724

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,725
Henrique Pondé de Oliveira Pinto, Jared Kaplan,726
Harrison Edwards, Yuri Burda, Nicholas Joseph,727
Greg Brockman, Alex Ray, Raul Puri, Gretchen728
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-729
try, Pamela Mishkin, Brooke Chan, Scott Gray,730
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz731
Kaiser, Mohammad Bavarian, Clemens Winter,732
Philippe Tillet, Felipe Petroski Such, Dave Cum-733
mings, Matthias Plappert, Fotios Chantzis, Eliza-734
beth Barnes, Ariel Herbert-Voss, William Hebgen735
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie736
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,737
William Saunders, Christopher Hesse, Andrew N.738
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan739
Morikawa, Alec Radford, Matthew Knight, Miles740
Brundage, Mira Murati, Katie Mayer, Peter Welinder,741
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya742
Sutskever, and Wojciech Zaremba. 2021. Evaluat-743
ing large language models trained on code. CoRR,744
abs/2107.03374.745

Wenhu Chen, Xueguang Ma, Xinyi Wang, and746
William W. Cohen. 2022. Program of thoughts747
prompting: Disentangling computation from rea-748
soning for numerical reasoning tasks. CoRR,749
abs/2211.12588.750

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and751
Denny Zhou. 2023. Teaching large language models752
to self-debug. CoRR, abs/2304.05128.753

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, 754
Maarten Bosma, Gaurav Mishra, Adam Roberts, 755
Paul Barham, Hyung Won Chung, Charles Sutton, 756
Sebastian Gehrmann, Parker Schuh, Kensen Shi, 757
Sasha Tsvyashchenko, Joshua Maynez, Abhishek 758
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin- 759
odkumar Prabhakaran, Emily Reif, Nan Du, Ben 760
Hutchinson, Reiner Pope, James Bradbury, Jacob 761
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, 762
Toju Duke, Anselm Levskaya, Sanjay Ghemawat, 763
Sunipa Dev, Henryk Michalewski, Xavier Garcia, 764
Vedant Misra, Kevin Robinson, Liam Fedus, Denny 765
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, 766
Barret Zoph, Alexander Spiridonov, Ryan Sepassi, 767
David Dohan, Shivani Agrawal, Mark Omernick, An- 768
drew M. Dai, Thanumalayan Sankaranarayana Pil- 769
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, 770
Rewon Child, Oleksandr Polozov, Katherine Lee, 771
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark 772
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy 773
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, 774
and Noah Fiedel. 2023. Palm: Scaling language mod- 775
eling with pathways. J. Mach. Learn. Res., 24:240:1– 776
240:113. 777

Tri Dao. 2023. Flashattention-2: Faster attention with 778
better parallelism and work partitioning. CoRR, 779
abs/2307.08691. 780

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 781
Kristina Toutanova. 2019. BERT: pre-training of 782
deep bidirectional transformers for language under- 783
standing. In Proceedings of the 2019 Conference of 784
the North American Chapter of the Association for 785
Computational Linguistics: Human Language Tech- 786
nologies, NAACL-HLT 2019, Minneapolis, MN, USA, 787
June 2-7, 2019, Volume 1 (Long and Short Papers), 788
pages 4171–4186. Association for Computational 789
Linguistics. 790

Shihan Dou, Yan Liu, Haoxiang Jia, Limao Xiong, Enyu 791
Zhou, Wei Shen, Junjie Shan, Caishuang Huang, 792
Xiao Wang, Xiaoran Fan, Zhiheng Xi, Yuhao Zhou, 793
Tao Ji, Rui Zheng, Qi Zhang, Xuanjing Huang, and 794
Tao Gui. 2024. Stepcoder: Improve code generation 795
with reinforcement learning from compiler feedback. 796
CoRR, abs/2402.01391. 797

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, 798
Junwei Liu, Yixuan Chen, Jiayi Feng, Chaofeng 799
Sha, Xin Peng, and Yiling Lou. 2023. Classeval: A 800
manually-crafted benchmark for evaluating llms on 801
class-level code generation. CoRR, abs/2308.01861. 802

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 803
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 804
Akhil Mathur, Alan Schelten, Amy Yang, Angela 805
Fan, et al. 2024. The llama 3 herd of models. arXiv 806
preprint arXiv:2407.21783. 807

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi- 808
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin, 809
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code- 810
bert: A pre-trained model for programming and nat- 811
ural languages. In Findings of the Association for 812

10

https://doi.org/10.48550/ARXIV.2309.16609
https://doi.org/10.48550/ARXIV.2207.14255
https://doi.org/10.48550/ARXIV.2207.14255
https://doi.org/10.48550/ARXIV.2207.14255
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.48550/ARXIV.2208.08227
https://doi.org/10.48550/ARXIV.2208.08227
https://doi.org/10.48550/ARXIV.2208.08227
https://doi.org/10.48550/ARXIV.2208.08227
https://doi.org/10.48550/ARXIV.2208.08227
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://doi.org/10.48550/ARXIV.2211.12588
https://doi.org/10.48550/ARXIV.2211.12588
https://doi.org/10.48550/ARXIV.2211.12588
https://doi.org/10.48550/ARXIV.2211.12588
https://doi.org/10.48550/ARXIV.2211.12588
https://doi.org/10.48550/ARXIV.2304.05128
https://doi.org/10.48550/ARXIV.2304.05128
https://doi.org/10.48550/ARXIV.2304.05128
http://jmlr.org/papers/v24/22-1144.html
http://jmlr.org/papers/v24/22-1144.html
http://jmlr.org/papers/v24/22-1144.html
https://doi.org/10.48550/ARXIV.2307.08691
https://doi.org/10.48550/ARXIV.2307.08691
https://doi.org/10.48550/ARXIV.2307.08691
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.48550/ARXIV.2402.01391
https://doi.org/10.48550/ARXIV.2402.01391
https://doi.org/10.48550/ARXIV.2402.01391
https://doi.org/10.48550/ARXIV.2308.01861
https://doi.org/10.48550/ARXIV.2308.01861
https://doi.org/10.48550/ARXIV.2308.01861
https://doi.org/10.48550/ARXIV.2308.01861
https://doi.org/10.48550/ARXIV.2308.01861
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139

Computational Linguistics: EMNLP 2020, Online813
Event, 16-20 November 2020, volume EMNLP 2020814
of Findings of ACL, pages 1536–1547. Association815
for Computational Linguistics.816

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,817
Eric Wallace, Freda Shi, Ruiqi Zhong, Scott Yih,818
Luke Zettlemoyer, and Mike Lewis. 2023. Incoder:819
A generative model for code infilling and synthesis.820
In The Eleventh International Conference on Learn-821
ing Representations, ICLR 2023, Kigali, Rwanda,822
May 1-5, 2023. OpenReview.net.823

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,824
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-825
ham Neubig. 2023. PAL: program-aided language826
models. In International Conference on Machine827
Learning, ICML 2023, 23-29 July 2023, Honolulu,828
Hawaii, USA, volume 202 of Proceedings of Machine829
Learning Research, pages 10764–10799. PMLR.830

Linyuan Gong, Mostafa Elhoushi, and Alvin Che-831
ung. 2024. AST-T5: structure-aware pretraining832
for code generation and understanding. CoRR,833
abs/2401.03003.834

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai835
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,836
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-837
feng Liang. 2024. Deepseek-coder: When the large838
language model meets programming - the rise of code839
intelligence. CoRR, abs/2401.14196.840

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-841
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,842
Samir Puranik, Horace He, Dawn Song, and Jacob843
Steinhardt. 2021. Measuring coding challenge com-844
petence with APPS. In Proceedings of the Neural845
Information Processing Systems Track on Datasets846
and Benchmarks 1, NeurIPS Datasets and Bench-847
marks 2021, December 2021, virtual.848

Xueyu Hu, Kun Kuang, Jiankai Sun, Hongxia Yang,849
and Fei Wu. 2024. Leveraging print debugging to850
improve code generation in large language models.851
CoRR, abs/2401.05319.852

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia853
Yan, Tianjun Zhang, Sida Wang, Armando Solar-854
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-855
codebench: Holistic and contamination free eval-856
uation of large language models for code. CoRR,857
abs/2403.07974.858

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-859
sch, Chris Bamford, Devendra Singh Chaplot, Diego860
de Las Casas, Florian Bressand, Gianna Lengyel,861
Guillaume Lample, Lucile Saulnier, Lélio Re-862
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,863
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-864
thée Lacroix, and William El Sayed. 2023. Mistral865
7b. CoRR, abs/2310.06825.866

Albert Q. Jiang, Alexandre Sablayrolles, Antoine867
Roux, Arthur Mensch, Blanche Savary, Chris Bam-868
ford, Devendra Singh Chaplot, Diego de Las Casas,869

Emma Bou Hanna, Florian Bressand, Gianna 870
Lengyel, Guillaume Bour, Guillaume Lample, 871
Lélio Renard Lavaud, Lucile Saulnier, Marie- 872
Anne Lachaux, Pierre Stock, Sandeep Subramanian, 873
Sophia Yang, Szymon Antoniak, Teven Le Scao, 874
Théophile Gervet, Thibaut Lavril, Thomas Wang, 875
Timothée Lacroix, and William El Sayed. 2024. Mix- 876
tral of experts. CoRR, abs/2401.04088. 877

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, 878
Ruiqi Zhong, Luke Zettlemoyer, Wen-Tau Yih, 879
Daniel Fried, Sida I. Wang, and Tao Yu. 2023. DS- 880
1000: A natural and reliable benchmark for data sci- 881
ence code generation. In International Conference 882
on Machine Learning, ICML 2023, 23-29 July 2023, 883
Honolulu, Hawaii, USA, volume 202 of Proceedings 884
of Machine Learning Research, pages 18319–18345. 885
PMLR. 886

Bin Lei, Yuchen Li, and Qiuwu Chen. 2024. Autocoder: 887
Enhancing code large language model with aiev- 888
instruct. CoRR, abs/2405.14906. 889

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas 890
Muennighoff, Denis Kocetkov, Chenghao Mou, 891
Marc Marone, Christopher Akiki, Jia Li, Jenny 892
Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue 893
Zhuo, Thomas Wang, Olivier Dehaene, Mishig 894
Davaadorj, Joel Lamy-Poirier, João Monteiro, Oleh 895
Shliazhko, Nicolas Gontier, Nicholas Meade, Armel 896
Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi, 897
Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, 898
Zhiruo Wang, Rudra Murthy V, Jason Stillerman, 899
Siva Sankalp Patel, Dmitry Abulkhanov, Marco 900
Zocca, Manan Dey, Zhihan Zhang, Nour Moustafa- 901
Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam 902
Singh, Sasha Luccioni, Paulo Villegas, Maxim Ku- 903
nakov, Fedor Zhdanov, Manuel Romero, Tony Lee, 904
Nadav Timor, Jennifer Ding, Claire Schlesinger, Hai- 905
ley Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, 906
Alex Gu, Jennifer Robinson, Carolyn Jane Ander- 907
son, Brendan Dolan-Gavitt, Danish Contractor, Siva 908
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jer- 909
nite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas 910
Wolf, Arjun Guha, Leandro von Werra, and Harm 911
de Vries. 2023. Starcoder: may the source be with 912
you! CoRR, abs/2305.06161. 913

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling- 914
ming Zhang. 2023. Is your code generated by chatgpt 915
really correct? rigorous evaluation of large language 916
models for code generation. In Advances in Neural 917
Information Processing Systems 36: Annual Confer- 918
ence on Neural Information Processing Systems 2023, 919
NeurIPS 2023, New Orleans, LA, USA, December 10 920
- 16, 2023. 921

Shayne Longpre, Le Hou, Tu Vu, Albert Webson, 922
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V. Le, 923
Barret Zoph, Jason Wei, and Adam Roberts. 2023. 924
The flan collection: Designing data and methods for 925
effective instruction tuning. In International Con- 926
ference on Machine Learning, ICML 2023, 23-29 927
July 2023, Honolulu, Hawaii, USA, volume 202 of 928

11

https://openreview.net/pdf?id=hQwb-lbM6EL
https://openreview.net/pdf?id=hQwb-lbM6EL
https://openreview.net/pdf?id=hQwb-lbM6EL
https://proceedings.mlr.press/v202/gao23f.html
https://proceedings.mlr.press/v202/gao23f.html
https://proceedings.mlr.press/v202/gao23f.html
https://doi.org/10.48550/ARXIV.2401.03003
https://doi.org/10.48550/ARXIV.2401.03003
https://doi.org/10.48550/ARXIV.2401.03003
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://doi.org/10.48550/ARXIV.2401.05319
https://doi.org/10.48550/ARXIV.2401.05319
https://doi.org/10.48550/ARXIV.2401.05319
https://doi.org/10.48550/ARXIV.2403.07974
https://doi.org/10.48550/ARXIV.2403.07974
https://doi.org/10.48550/ARXIV.2403.07974
https://doi.org/10.48550/ARXIV.2403.07974
https://doi.org/10.48550/ARXIV.2403.07974
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2401.04088
https://doi.org/10.48550/ARXIV.2401.04088
https://doi.org/10.48550/ARXIV.2401.04088
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://doi.org/10.48550/ARXIV.2405.14906
https://doi.org/10.48550/ARXIV.2405.14906
https://doi.org/10.48550/ARXIV.2405.14906
https://doi.org/10.48550/ARXIV.2405.14906
https://doi.org/10.48550/ARXIV.2405.14906
https://doi.org/10.48550/ARXIV.2305.06161
https://doi.org/10.48550/ARXIV.2305.06161
https://doi.org/10.48550/ARXIV.2305.06161
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
https://proceedings.mlr.press/v202/longpre23a.html
https://proceedings.mlr.press/v202/longpre23a.html
https://proceedings.mlr.press/v202/longpre23a.html

Proceedings of Machine Learning Research, pages929
22631–22648. PMLR.930

Ilya Loshchilov and Frank Hutter. 2019. Decoupled931
weight decay regularization. In 7th International932
Conference on Learning Representations, ICLR 2019,933
New Orleans, LA, USA, May 6-9, 2019. OpenRe-934
view.net.935

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-936
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,937
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,938
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur939
Zucker, Younes Belkada, Zijian Wang, Qian Liu,940
Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-941
Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue942
Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade,943
Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su,944
Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai,945
Niklas Muennighoff, Xiangru Tang, Muhtasham946
Oblokulov, Christopher Akiki, Marc Marone, Cheng-947
hao Mou, Mayank Mishra, Alex Gu, Binyuan Hui,948
Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas949
Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten950
Scholak, Sebastien Paquet, Jennifer Robinson, Car-951
olyn Jane Anderson, Nicolas Chapados, Mostofa Pat-952
wary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz953
Ferrandis, Lingming Zhang, Sean Hughes, Thomas954
Wolf, Arjun Guha, Leandro von Werra, and Harm955
de Vries. 2024. Starcoder 2 and the stack v2: The956
next generation. CoRR, abs/2402.19173.957

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-958
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,959
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:960
Empowering code large language models with evol-961
instruct. CoRR, abs/2306.08568.962

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler963
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,964
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,965
Shashank Gupta, Bodhisattwa Prasad Majumder,966
Katherine Hermann, Sean Welleck, Amir Yazdan-967
bakhsh, and Peter Clark. 2023. Self-refine: Itera-968
tive refinement with self-feedback. In Advances in969
Neural Information Processing Systems 36: Annual970
Conference on Neural Information Processing Sys-971
tems 2023, NeurIPS 2023, New Orleans, LA, USA,972
December 10 - 16, 2023.973

Seyed-Iman Mirzadeh, Mehrdad Farajtabar, Ang974
Li, Nir Levine, Akihiro Matsukawa, and Hassan975
Ghasemzadeh. 2020. Improved knowledge distilla-976
tion via teacher assistant. In The Thirty-Fourth AAAI977
Conference on Artificial Intelligence, AAAI 2020, The978
Thirty-Second Innovative Applications of Artificial979
Intelligence Conference, IAAI 2020, The Tenth AAAI980
Symposium on Educational Advances in Artificial In-981
telligence, EAAI 2020, New York, NY, USA, February982
7-12, 2020, pages 5191–5198. AAAI Press.983

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai984
Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam985
Singh, Xiangru Tang, Leandro von Werra, and986
Shayne Longpre. 2023. Octopack: Instruction tuning987
code large language models. CoRR, abs/2308.07124.988

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan 989
Wang, Yingbo Zhou, Silvio Savarese, and Caiming 990
Xiong. 2023. Codegen: An open large language 991
model for code with multi-turn program synthesis. In 992
The Eleventh International Conference on Learning 993
Representations, ICLR 2023, Kigali, Rwanda, May 994
1-5, 2023. OpenReview.net. 995

OpenAI. 2023. GPT-4 technical report. CoRR, 996
abs/2303.08774. 997

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 998
Carroll L. Wainwright, Pamela Mishkin, Chong 999
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, 1000
John Schulman, Jacob Hilton, Fraser Kelton, Luke 1001
Miller, Maddie Simens, Amanda Askell, Peter Welin- 1002
der, Paul F. Christiano, Jan Leike, and Ryan Lowe. 1003
2022. Training language models to follow instruc- 1004
tions with human feedback. In Advances in Neural 1005
Information Processing Systems 35: Annual Confer- 1006
ence on Neural Information Processing Systems 2022, 1007
NeurIPS 2022, New Orleans, LA, USA, November 28 1008
- December 9, 2022. 1009

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, 1010
Ruxandra Cojocaru, Hamza Alobeidli, Alessandro 1011
Cappelli, Baptiste Pannier, Ebtesam Almazrouei, and 1012
Julien Launay. 2023. The refinedweb dataset for fal- 1013
con LLM: outperforming curated corpora with web 1014
data only. In Advances in Neural Information Pro- 1015
cessing Systems 36: Annual Conference on Neural 1016
Information Processing Systems 2023, NeurIPS 2023, 1017
New Orleans, LA, USA, December 10 - 16, 2023. 1018

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 1019
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 1020
Wei Li, and Peter J. Liu. 2020. Exploring the limits 1021
of transfer learning with a unified text-to-text trans- 1022
former. J. Mach. Learn. Res., 21:140:1–140:67. 1023

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, 1024
and Yuxiong He. 2020. Zero: memory optimizations 1025
toward training trillion parameter models. In Pro- 1026
ceedings of the International Conference for High 1027
Performance Computing, Networking, Storage and 1028
Analysis, SC 2020, Virtual Event / Atlanta, Georgia, 1029
USA, November 9-19, 2020, page 20. IEEE/ACM. 1030

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten 1031
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 1032
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom 1033
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man- 1034
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori, 1035
Wenhan Xiong, Alexandre Défossez, Jade Copet, 1036
Faisal Azhar, Hugo Touvron, Louis Martin, Nico- 1037
las Usunier, Thomas Scialom, and Gabriel Synnaeve. 1038
2023. Code llama: Open foundation models for code. 1039
CoRR, abs/2308.12950. 1040

Victor Sanh, Albert Webson, Colin Raffel, Stephen H. 1041
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine 1042
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, 1043
M Saiful Bari, Canwen Xu, Urmish Thakker, 1044
Shanya Sharma Sharma, Eliza Szczechla, Taewoon 1045
Kim, Gunjan Chhablani, Nihal V. Nayak, Debajyoti 1046

12

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.48550/ARXIV.2402.19173
https://doi.org/10.48550/ARXIV.2402.19173
https://doi.org/10.48550/ARXIV.2402.19173
https://doi.org/10.48550/ARXIV.2306.08568
https://doi.org/10.48550/ARXIV.2306.08568
https://doi.org/10.48550/ARXIV.2306.08568
https://doi.org/10.48550/ARXIV.2306.08568
https://doi.org/10.48550/ARXIV.2306.08568
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
https://doi.org/10.1609/AAAI.V34I04.5963
https://doi.org/10.1609/AAAI.V34I04.5963
https://doi.org/10.1609/AAAI.V34I04.5963
https://doi.org/10.48550/ARXIV.2308.07124
https://doi.org/10.48550/ARXIV.2308.07124
https://doi.org/10.48550/ARXIV.2308.07124
https://openreview.net/pdf?id=iaYcJKpY2B_
https://openreview.net/pdf?id=iaYcJKpY2B_
https://openreview.net/pdf?id=iaYcJKpY2B_
https://doi.org/10.48550/ARXIV.2303.08774
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/fa3ed726cc5073b9c31e3e49a807789c-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/fa3ed726cc5073b9c31e3e49a807789c-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/fa3ed726cc5073b9c31e3e49a807789c-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/fa3ed726cc5073b9c31e3e49a807789c-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/fa3ed726cc5073b9c31e3e49a807789c-Abstract-Datasets_and_Benchmarks.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.48550/ARXIV.2308.12950

Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han1047
Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong,1048
Harshit Pandey, Rachel Bawden, Thomas Wang, Tr-1049
ishala Neeraj, Jos Rozen, Abheesht Sharma, An-1050
drea Santilli, Thibault Févry, Jason Alan Fries, Ryan1051
Teehan, Teven Le Scao, Stella Biderman, Leo Gao,1052
Thomas Wolf, and Alexander M. Rush. 2022. Multi-1053
task prompted training enables zero-shot task gener-1054
alization. In The Tenth International Conference on1055
Learning Representations, ICLR 2022, Virtual Event,1056
April 25-29, 2022. OpenReview.net.1057

Bo Shen, Jiaxin Zhang, Taihong Chen, Daoguang Zan,1058
Bing Geng, An Fu, Muhan Zeng, Ailun Yu, Jichuan1059
Ji, Jingyang Zhao, Yuenan Guo, and Qianxiang1060
Wang. 2023. Pangu-coder2: Boosting large lan-1061
guage models for code with ranking feedback. CoRR,1062
abs/2307.14936.1063

Noah Shinn, Federico Cassano, Ashwin Gopinath,1064
Karthik Narasimhan, and Shunyu Yao. 2023. Re-1065
flexion: language agents with verbal reinforcement1066
learning. In Advances in Neural Information Pro-1067
cessing Systems 36: Annual Conference on Neural1068
Information Processing Systems 2023, NeurIPS 2023,1069
New Orleans, LA, USA, December 10 - 16, 2023.1070

Speechless. 2023. speechless-codellama-34b-v2.0.1071

Jianlin Su, Murtadha H. M. Ahmed, Yu Lu, Shengfeng1072
Pan, Wen Bo, and Yunfeng Liu. 2024. Roformer: En-1073
hanced transformer with rotary position embedding.1074
Neurocomputing, 568:127063.1075

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier1076
Martinet, Marie-Anne Lachaux, Timothée Lacroix,1077
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal1078
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard1079
Grave, and Guillaume Lample. 2023a. Llama: Open1080
and efficient foundation language models. CoRR,1081
abs/2302.13971.1082

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-1083
bert, Amjad Almahairi, Yasmine Babaei, Nikolay1084
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti1085
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-1086
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,1087
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,1088
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-1089
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan1090
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,1091
Isabel Kloumann, Artem Korenev, Punit Singh Koura,1092
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-1093
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-1094
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-1095
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-1096
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,1097
Ruan Silva, Eric Michael Smith, Ranjan Subrama-1098
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-1099
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,1100
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,1101
Melanie Kambadur, Sharan Narang, Aurélien Ro-1102
driguez, Robert Stojnic, Sergey Edunov, and Thomas1103
Scialom. 2023b. Llama 2: Open foundation and1104
fine-tuned chat models. CoRR, abs/2307.09288.1105

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun 1106
Luo, Weikang Shi, Renrui Zhang, Linqi Song, 1107
Mingjie Zhan, and Hongsheng Li. 2023. Mathcoder: 1108
Seamless code integration in llms for enhanced math- 1109
ematical reasoning. CoRR, abs/2310.03731. 1110

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven 1111
C. H. Hoi. 2021. Codet5: Identifier-aware unified 1112
pre-trained encoder-decoder models for code under- 1113
standing and generation. In Proceedings of the 2021 1114
Conference on Empirical Methods in Natural Lan- 1115
guage Processing, EMNLP 2021, Virtual Event / 1116
Punta Cana, Dominican Republic, 7-11 November, 1117
2021, pages 8696–8708. Association for Computa- 1118
tional Linguistics. 1119

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin 1120
Guu, Adams Wei Yu, Brian Lester, Nan Du, An- 1121
drew M. Dai, and Quoc V. Le. 2022. Finetuned 1122
language models are zero-shot learners. In The Tenth 1123
International Conference on Learning Representa- 1124
tions, ICLR 2022, Virtual Event, April 25-29, 2022. 1125
OpenReview.net. 1126

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and 1127
Lingming Zhang. 2023. Magicoder: Source code is 1128
all you need. CoRR, abs/2312.02120. 1129

Yutong Wu, Di Huang, Wenxuan Shi, Wei Wang, 1130
Lingzhe Gao, Shihao Liu, Ziyuan Nan, Kaizhao 1131
Yuan, Rui Zhang, Xishan Zhang, Zidong Du, Qi Guo, 1132
Yewen Pu, Dawei Yin, Xing Hu, and Yunji Chen. 1133
2024. Inversecoder: Unleashing the power of 1134
instruction-tuned code llms with inverse-instruct. 1135
CoRR, abs/2407.05700. 1136

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, 1137
Ce Bian, Chao Yin, Chenxu Lv, Da Pan, Dian Wang, 1138
Dong Yan, Fan Yang, Fei Deng, Feng Wang, Feng 1139
Liu, Guangwei Ai, Guosheng Dong, Haizhou Zhao, 1140
Hang Xu, Haoze Sun, Hongda Zhang, Hui Liu, 1141
Jiaming Ji, Jian Xie, Juntao Dai, Kun Fang, Lei 1142
Su, Liang Song, Lifeng Liu, Liyun Ru, Luyao Ma, 1143
Mang Wang, Mickel Liu, MingAn Lin, Nuolan Nie, 1144
Peidong Guo, Ruiyang Sun, Tao Zhang, Tianpeng 1145
Li, Tianyu Li, Wei Cheng, Weipeng Chen, Xian- 1146
grong Zeng, Xiaochuan Wang, Xiaoxi Chen, Xin 1147
Men, Xin Yu, Xuehai Pan, Yanjun Shen, Yiding 1148
Wang, Yiyu Li, Youxin Jiang, Yuchen Gao, Yu- 1149
peng Zhang, Zenan Zhou, and Zhiying Wu. 2023. 1150
Baichuan 2: Open large-scale language models. 1151
CoRR, abs/2309.10305. 1152

Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang, 1153
Can Xu, Yishujie Zhao, Wenxiang Hu, and Qiufeng 1154
Yin. 2023. Wavecoder: Widespread and versatile 1155
enhanced instruction tuning with refined data genera- 1156
tion. CoRR, abs/2312.14187. 1157

Ziyin Zhang, Chaoyu Chen, Bingchang Liu, Cong Liao, 1158
Zi Gong, Hang Yu, Jianguo Li, and Rui Wang. 2023. 1159
A survey on language models for code. CoRR, 1160
abs/2311.07989. 1161

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan 1162
Wang, Yufei Xue, Lei Shen, Zihan Wang, Andi Wang, 1163

13

https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://doi.org/10.48550/ARXIV.2307.14936
https://doi.org/10.48550/ARXIV.2307.14936
https://doi.org/10.48550/ARXIV.2307.14936
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
https://huggingface.co/uukuguy/speechless-codellama-34b-v2.0
https://doi.org/10.1016/J.NEUCOM.2023.127063
https://doi.org/10.1016/J.NEUCOM.2023.127063
https://doi.org/10.1016/J.NEUCOM.2023.127063
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2310.03731
https://doi.org/10.48550/ARXIV.2310.03731
https://doi.org/10.48550/ARXIV.2310.03731
https://doi.org/10.48550/ARXIV.2310.03731
https://doi.org/10.48550/ARXIV.2310.03731
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.685
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.685
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.685
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.685
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.685
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://doi.org/10.48550/ARXIV.2312.02120
https://doi.org/10.48550/ARXIV.2312.02120
https://doi.org/10.48550/ARXIV.2312.02120
https://doi.org/10.48550/ARXIV.2407.05700
https://doi.org/10.48550/ARXIV.2407.05700
https://doi.org/10.48550/ARXIV.2407.05700
https://doi.org/10.48550/ARXIV.2309.10305
https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.48550/ARXIV.2311.07989

Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023.1164
Codegeex: A pre-trained model for code generation1165
with multilingual benchmarking on humaneval-x. In1166
Proceedings of the 29th ACM SIGKDD Conference1167
on Knowledge Discovery and Data Mining, KDD1168
2023, Long Beach, CA, USA, August 6-10, 2023,1169
pages 5673–5684. ACM.1170

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu,1171
Bill Yuchen Lin, Jie Fu, Wenhu Chen, and Xiang1172
Yue. 2024. Opencodeinterpreter: Integrating code1173
generation with execution and refinement. CoRR,1174
abs/2402.14658.1175

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun1176
Luo, Zipeng Qin, Shaoqing Lu, Anya Jia, Linqi Song,1177
Mingjie Zhan, and Hongsheng Li. 2023. Solving1178
challenging math word problems using GPT-4 code1179
interpreter with code-based self-verification. CoRR,1180
abs/2308.07921.1181

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu,1182
Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani1183
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon1184
Brunner, Chen Gong, Thong Hoang, Armel Randy1185
Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kad-1186
dour, Ming Xu, Zhihan Zhang, Prateek Yadav, Na-1187
man Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu,1188
Qian Liu, Zijian Wang, David Lo, Binyuan Hui,1189
Niklas Muennighoff, Daniel Fried, Xiaoning Du,1190
Harm de Vries, and Leandro von Werra. 2024. Big-1191
codebench: Benchmarking code generation with di-1192
verse function calls and complex instructions. CoRR,1193
abs/2406.15877.1194

14

https://doi.org/10.1145/3580305.3599790
https://doi.org/10.1145/3580305.3599790
https://doi.org/10.1145/3580305.3599790
https://doi.org/10.48550/ARXIV.2402.14658
https://doi.org/10.48550/ARXIV.2402.14658
https://doi.org/10.48550/ARXIV.2402.14658
https://doi.org/10.48550/ARXIV.2308.07921
https://doi.org/10.48550/ARXIV.2308.07921
https://doi.org/10.48550/ARXIV.2308.07921
https://doi.org/10.48550/ARXIV.2308.07921
https://doi.org/10.48550/ARXIV.2308.07921
https://doi.org/10.48550/ARXIV.2406.15877
https://doi.org/10.48550/ARXIV.2406.15877
https://doi.org/10.48550/ARXIV.2406.15877
https://doi.org/10.48550/ARXIV.2406.15877
https://doi.org/10.48550/ARXIV.2406.15877

Appendix1195

A Data Construction1196

As mentioned in Section 4.1, our reflection se-1197

quence data is constructed from GPT-4 Code inter-1198

preter and fine-tuned Deepseek-Coder-33B. Here,1199

we present details of data construction.1200

A.1 GPT-4 Code Interpreter1201

Previous studies (Zhou et al., 2023; Wang et al.,1202

2023) have revealed that GPT-4 Code Interpreter 101203

can write and run Python code in a sandbox exe-1204

cution environment to solve challenging code and1205

math problems. It can iterate on the incorrect code1206

it had previously generated by analyzing the cause1207

of the failure and regenerating the code until it ex-1208

ecutes successfully. Based on its capability, we1209

designed a two-stage method to prompt the GPT-1210

4 Code Interpreter to construct the reflection se-1211

quence dataset.1212

In the first stage, we task the GPT-4 Code Inter-1213

preter to generate code to solve the given problem1214

and test the code with assert statements. If the code1215

fails any of these tests, the GPT-4 Code Interpreter1216

will analyze the reasons for failure and regenerate1217

the code with necessary corrections automatically.1218

In this way, we get a reflection sequence of code1219

generation, execution, and analysis, as presented in1220

the blue blocks in Figure 1. The prompt detail is1221

shown below:1222

The first round prompt

Here is a programming problem for you to
tackle:

(1) Write a Python function that solves
the specified problem with craft test cases
using assert statements and execute it. Pay
special attention to edge cases to thoroughly
validate your solution’s correctness.

(2) If your code fails any of the tests,
carefully examine the root cause of the
failure. Make the necessary corrections to
your code and then retest to confirm the
fixes.

Note: At this phase, your primary
1223

10https://platform.openai.com/docs/assistants/
tools/code-interpreter

goal is to ensure the reliability of your
code. There’s no need to delve into
in-depth problem analysis or strive for code
optimization.

Programming Problem
{problem}

1224

In the second stage, we task the GPT-4 Code 1225

Interpreter to generate the entire code based on 1226

the preceding reflection sequence. Additionally, 1227

we instruct the model to refrain from using any 1228

words related to the preceding reflection sequence, 1229

effectively simulating the one-off code generation. 1230

In this way, we get the high-quality code answer, 1231

as presented in the green block in Figure 1. The 1232

prompt detail is shown below: 1233

The second round prompt

Then, your task is to create a precise solu-
tion for the given programming problem.

Your answer should be complete and
standalone, avoiding references to external
resources or past exercises, and omit
phrases such as "correct version".

There is no requirement to execute
the code or provide any test/usage example.
Just present the code for the given problem
between "```python" and "```".

1234

A.2 Deepseek-Coder-33B 1235

Due to the high cost of calling the GPT-4 Code 1236

Interpreter, we only construct 10k reflection se- 1237

quence data using the prompt provided in Sec- 1238

tion 3. To generate more reflection sequence data, 1239

as described in Section 4, We first fine-tune the 1240

DeepSeek-Coder 33B (Guo et al., 2024) model us- 1241

ing 10k reflection sequence data and 156k code 1242

instruction tuning data, which endows it with the 1243

capability to generate code and interpret feedback 1244

from the compiler. Then, we use this fine-tuned 1245

model to construct more reflection sequence data. 1246

In the constructing stage, we randomly select 1247

another 70k instructions, whose corresponding an- 1248

swers contain Python code, to prompt the fine- 1249

tuned model. The following steps are performed to 1250

implement the reflection process. 1251

15

https://platform.openai.com/docs/assistants/tools/code-interpreter
https://platform.openai.com/docs/assistants/tools/code-interpreter

Model Base Java JavaScript C++ PHP Swift Rust

StarCoder SC-15B 28.5 31.7 30.6 26.8 16.7 24.5
WizardCoder SC-15B 35.8 41.9 39.0 39.3 33.7 27.1

Code Llama-Python CL-7B 29.3 31.7 27.0 25.1 25.6 25.5
MagiCoder CL-7B 36.4 45.9 36.5 39.5 33.4 30.6
MagiCoder-S CL-7B 42.9 57.5 44.4 47.6 44.1 40.3
ReflectionCoder CL-7B 53.2 62.1 47.9 53.6 49.1 50.6

Code Llama-Python CL-34B 39.5 44.7 39.1 39.8 34.3 39.7
WizardCoder CL-34B 44.9 55.3 47.2 47.2 44.3 46.2
ReflectionCoder CL-34B 61.4 70.7 63.2 65.7 55.8 64.0

Table 6: Pass@1 accuracy results on MulitiPL-E. The best results of each base are in bold. Here, ‘SC’ denotes
StarCoder, and ‘CL’ denotes Code Llama.

Model Base C++ Java PHP TS C# Bash JavaScript

DS Instruct DS-6.7B 63.4 68.4 68.9 67.2 72.8 36.7 72.7
ReflectionCoder DS-6.7B 69.5 65.8 65.2 70.8 69.6 42.4 72.0

DS Instruct DS-33B 68.9 73.4 72.7 67.9 74.1 43.0 73.9
ReflectionCoder DS-33B 70.8 70.9 72.0 72.3 74.7 45.6 73.9

Table 7: Pass@1 accuracy results on MulitiPL-E. The best results of each base are in bold. Here, ‘DS’ denotes
DeepSeek-Coder.

• First, we prompt the fine-tuned model to gener-1252

ate a code block, which contains code and test1253

samples.1254

• Then, we employ a Jupyter Client to execute the1255

code and concatenate the execution result to the1256

prompt as an execution block.1257

• After that, the model generates an analysis block1258

for the cause if the code sample fails any of the1259

tests.1260

• The model will repeat the code generation and1261

analyzing process until there is no error or it1262

reaches a maximum of eight iterations.1263

We filter out 38k samples whose generated codes1264

contain I/O operations that can be identified by1265

keyword matching (e.g., "open," "dump," "pip")1266

or fail to resolve all errors within the maximum1267

of eight iterations limitation. After that, we filter1268

out samples that only contain one iteration, i.e., the1269

first generated code passes all test cases, whose test1270

samples may be too simple to ensure the correct-1271

ness of the final code. In this stage, we filter out an1272

additional 20k samples from the 32k samples gen-1273

erated in the previous stage and ultimately retain1274

12k high-quality samples.1275

To sum up, we first select 70k instructions to1276

iteratively construct reflection data, where 38k sam-1277

ples are discarded as they contain I/O operations or1278

exceed the maximum iteration limitation. Finally,1279

we filter out 20k samples with only one round of1280

reflection, which may have some errors in the final 1281

code, and retain 12k high-quality samples. 1282

B Additional Experiments 1283

B.1 MultiPL-E 1284

Following MagiCoder (Wei et al., 2023), we evalu- 1285

ate six wide languages, i.e., Java, JavaScirpt, C++, 1286

PHP, Swift, and Rust, using MultiPL-E (Cassano 1287

et al., 2022) benchmark. We employ StarCoder (Li 1288

et al., 2023), WizardCoder (Luo et al., 2023), Code 1289

Llama (Rozière et al., 2023), and MagiCoder (Wei 1290

et al., 2023) as baselines. For this comparison, we 1291

follow MagiCoder and WizardCoder to set tem- 1292

perature = 0.2, top_p = 0.95, max_length = 512, 1293

and num_samples = 50. As shown in Table 6, the 1294

proposed ReflectionCoder outperforms the previ- 1295

ous state-of-the-art methods on both Code Llama 1296

7B and Code Llama 34B. It shows that reflection 1297

sequence in Python is also helpful to other lan- 1298

guages. Surprisingly, ReflectionCoder Code Llama 1299

7B even surpassed WizardCoder Code Llama 34B, 1300

which further demonstrates the effectiveness of the 1301

proposed method. 1302

In addition, we compare our method to 1303

DeepSeek-Coder Instruct (Guo et al., 2024) on 1304

seven languages, which are reported in the 1305

DeepSeek-Coder paper, i.e., C++, Java, PHP, TS, 1306

C#, Bash, and JavaScript. For this comparison, 1307

we adopted a greedy search approach following the 1308

DeepSeek-Coder Instruct. As shown in Table 7, the 1309

16

Model Base plt np pd py scp sk tf All

Incoder 6B 28.3 4.4 3.1 4.4 2.8 2.8 3.8 7.4
CodeGen-Mono 16B 31.7 10.9 3.4 7.0 9.0 10.8 15.2 11.7
Code-Cushman-001 - 40.7 21.8 7.9 12.4 11.3 18.0 12.2 18.1

StarCoder SC-15B 51.7 29.7 11.4 21.4 20.2 29.5 24.5 26.0
WizardCoder SC-15B 55.2 33.6 16.7 26.2 24.2 24.9 26.7 29.2

Code LLama CL-7B 55.3 34.5 16.4 19.9 22.3 17.6 28.5 28.0
WizardCoder CL-7B 53.5 34.4 15.2 25.7 21.0 24.5 28.9 28.4
MagiCoder CL-7B 54.6 34.8 19.0 24.7 25.0 22.6 28.9 29.9
MagiCoder-S CL-7B 55.9 40.6 28.4 40.4 28.8 35.8 37.6 37.5

ReflectionCoder CL-7B 56.2 43.1 24.5 46.7 23.1 45.5 35.6 37.8
w/o Relfexion Data CL-7B 56.0 42.7 23.0 43.6 26.7 45.8 35.6 37.4

Table 8: Pass@1 accuracy results on DS-1000 (Completion format). The best results of each base are in bold. Here,
‘SC’ denotes StarCoder, ‘CL’ denotes Code Llama.

Method APPs LiveCodeBench
ClassEval

BigCodeBench
Class Level Func Level

MagiCoderS-DS-6.7B 12.8 17.6 20.0 43.4 47.6
OpenCodeInterpreter-DS-6.7B 11.5 17.6 19.0 42.6 44.6
ReflectionCoder-DS-6.7B 14.1 18.4 25.0 44.0 47.9

OpenCodeInterpreter-DS-33B 17.5 22.3 26.0 43.4 51.0
ReflectionCoder-DS-33B 20.2 22.7 28.0 50.4 52.9

Table 9: Pass@1 accuracy on APPs, LiveCodeBench, ClassEval, and BigCodeBench.

proposed ReflectionCoder outperforms DeepSeek-1310

Coder Instruct in most languages. Note that the1311

DeepSeek-Coder Instruct is trained with 2B tokens,1312

while our models are trained with 300M tokens,1313

which also shows the effectiveness of our meth-1314

ods. Our method outperforms DeepSeek-Coder1315

Instruct in three languages on DeepSeek-Coder-1316

6.7B and five languages on DeepSeek-Coder-33B,1317

which shows that the larger model has a greater1318

transfer ability.1319

B.2 DS-10001320

We also evaluate our method on the DS-10001321

dataset (Lai et al., 2023), which contains 1K dis-1322

tinct data science coding issues, ranging from 71323

popular Python data science libraries. We employ1324

Incoder (Fried et al., 2023), CodeGen (Nijkamp1325

et al., 2023), StarCoder (Li et al., 2023), Wizard-1326

Coder (Luo et al., 2023), Code Llama (Rozière1327

et al., 2023), and MagiCoder (Wei et al., 2023) as1328

baselines. For this comparison, we follow Magi-1329

Coder to set temperature = 0.2, top_p = 0.95,1330

max_length = 512, and num_samples = 40.1331

As shown in Table 8, our model outperforms1332

all baselines on average score. However, when1333

comparing our method with and without Reflec-1334

tion Data, where the latter is trained exclusively1335

with 156k one-off code generation data points, our 1336

method does not significantly improve the DS-1000 1337

dataset. A key factor contributing to this outcome 1338

is the limited representation of data related to these 1339

seven libraries in our training set, primarily due 1340

to constraints in computational resources. For in- 1341

stance, the need for substantial GPU resources re- 1342

stricts our ability to fully leverage TensorFlow and 1343

PyTorch, while the requirement for multi-modal 1344

capabilities limits our utilization of Matplotlib. De- 1345

spite these limitations, it is noteworthy that our 1346

method does not adversely affect the performance 1347

of tasks associated with these libraries. 1348

B.3 Other Test Set 1349

Here, we check the effectiveness of our method on 1350

more diverse tasks, such as APPs (Hendrycks et al., 1351

2021) and LiveCodeBench (Jain et al., 2024), Clas- 1352

sEval (Du et al., 2023) and BigCodeBench (Zhuo 1353

et al., 2024). We construct experiments based on 1354

Deepseek-Coder-7B and Deepseek-Coder-33B. We 1355

employ MagiCoder (Wei et al., 2023) and Open- 1356

CodeInterpreter (Zheng et al., 2024) as baselines, 1357

which used similar fine-tuning data as our mod- 1358

els. We use greedy sampling to obtain the results 1359

in a zero-shot setting for both baselines and our 1360

method. Note that for LiveCodeBench, we report 1361

17

1 2 3 4 5
The factor of up-sample

66

68

70

72

74

76

P
as

s@
1

HumanEval

HumanEval +

(a) HumanEval (+).

1 2 3 4 5
The factor of up-sample

56

58

60

62

64

66

68

70

72

74

P
as

s@
1

MBPP

MBPP +

(b) MBPP (+).

Figure 4: Effect of the factor of up-sample. The metric
is Pass@1 accuracy, and all the results are based on
Code Llama 7B.

the result after 2023-09-01, which is the release1362

date of Deepseek-Coder.1363

As shown in Table 9, our proposed method im-1364

proves model accuracy on the four datasets, al-1365

though there are no relative instructions in the train-1366

ing data. The results show that our method has1367

better generalization.1368

B.4 Effect of the Factor of Up-sample1369

As mentioned in Section 4, we up-sample the re-1370

flection data and mix it with the code instruction1371

tuning data. Here, we examine the effect of the up-1372

sampling factor. Specifically, we vary the factor in1373

the set {1, 2, 3, 4, 5}. As shown in Figures 4(a) and1374

4(b), a factor of 2 results in optimal performance1375

for most benchmarks. Due to the limited samples1376

in HumanEval, the pass@1 fluctuates significantly.1377

While a factor of 4 is optimal for HumanEval+,1378

a factor of 2 remains optimal for HumanEval. A1379

possible reason is that when the factor is too large,1380

the reflection sequence data is repeated excessively,1381

leading to overfitting and a consequent decrease in1382

performance.1383

Method HumanEval (+) MBPP (+)

Code Llama 7B

ReflectionCoder 75.0 (68.9) 72.2 (61.4)
w/o Reflection Data 65.9 (62.2) 68.5 (57.9)

Star Coder 7B

ReflectionCoder 68.3 (63.4) 64.3 (55.6)
w/o Reflection Data 67.7 (62.8) 66.7 (54.8)

Table 10: Effect of Rotary Position Embedding. The
metric is Pass@1 accuracy.

Method HumanEval (+) MBPP (+)

Random Mask 72.0 (66.5) 70.1 (59.0)
w/ Token Level 71.3 (66.5) 68.8 (58.2)

Sequential Mask 72.6 (67.7) 71.3 (60.3)
w/ Token Level 71.3 (67.1) 68.5 (59.0)

Table 11: Compare block-level mask strategies and
token-level mask strategies. The metric is Pass@1 accu-
racy, and all the results are based on Code Llama 7B.

B.5 Effect of Rotary Position Embedding 1384

As mentioned in Section 3, our method is effective 1385

for models utilizing Rotary Position Embedding 1386

because the absolute positions of the tokens of the 1387

answers in the teacher sample and the student sam- 1388

ple are different, but the relative positions remain 1389

the same. Here, we construct an experiment to 1390

check the effect of Rotary Position Embedding on 1391

our method. Specifically, we perform our method 1392

and w/o Reflection Data on StarCoder, which uses 1393

an Absolute Position Embedding. 1394

Table 10 shows the results on both Code Llama 1395

7B (w/ Rotary Position Embedding) and StarCoder 1396

15B (w/ Absolute Position Embedding). As shown 1397

in the table, our method can effectively improve 1398

the performance of Code Llama 7B, but it is not so 1399

effective for StarCoder 15B. The primary reason 1400

is that the absolute positions of the tokens of the 1401

final answers are different for the training stage and 1402

the inference stage, which results in the distillation 1403

being biased. 1404

B.6 Token-level Dynamic Masking Strategy 1405

In Section 3, we proposed three block-level dy- 1406

namic masking strategies, namely random mask, 1407

sequential mask, and block mask. Here, we test 1408

our method with another two token-level dynamic 1409

masking strategies: 1410

(1) Random Token mask selects tokens to mask 1411

based on the mask rate randomly. 1412

18

(2) Sequential Token mask selects the leftmost to-1413

kens to mask and gradually expands the masked1414

scope according to the mask rate.1415

Table 11 shows the results on both block-level1416

masking strategies and token-level masking strate-1417

gies. The block-level masking strategies signifi-1418

cantly outperform token-level masking strategies.1419

Because the token-level masking strategies may1420

destroy the integrity of texts or codes.1421

C Training Sample1422

Here, we present how to organize training sam-1423

ples. Following chat templates of most models,1424

we use two special tokens to wrap the message of1425

user and assistant, i.e., “<|user|>”, “<|assistant|>”,1426

and “<|endofmessage|>”. Furthermore, we use1427

two special tokens to wrap the content of different1428

blocks, i.e., “<|text|>”, “<|code|>”, “<|execution|>”,1429

and “<|endofblock|>”. Then, we concatenate all1430

messages directly to form a piece of training data.1431

Note that the user message and execution block are1432

masked when calculating the loss because the en-1433

vironment provides the two contents during actual1434

use. Here is an example:1435

Reflection Instruction

<|user|>
<|text|>
Here is a programming challenge for you to
tackle:
(1) Write a Python function that solves
the specified problem with craft test cases
using assert statements and execute it. Pay
special attention to edge cases to thoroughly
validate your solution’s correctness.
(2) If your code fails any of the tests,
carefully examine the root cause of the
failure. Make the necessary corrections to
your code and then retest to confirm the
fixes.

Problem
Execute an algorithm to generate the
numerical multiplication of individual
integer components encapsulated within a
larger numeric figure.
n = 145
<|endofblock|>

1436

<|endofmessage|>
1437

Reflection Sequence

<|assistant|>
<|code|>
def multiply _digits(n):

"""
This function takes an integer n and

returns the product of its digits.
"""
product = 1
while n > 0:

product *= n % 10
n //= 10

return product

Test cases
assert multiply _digits(145) == 4 * 5 * 1
assert multiply _digits(123) == 1 * 2 * 3
assert multiply _digits(999) == 9 * 9 * 9
assert multiply _digits(0) == 0
assert multiply _digits(10) == 1 * 0
<|endofblock|>
<|execution|>
—————————————————
————————
AssertionError Traceback
(most recent call last)
Cell In[1], line 15

13 assert multiply _digits(123) == 1 * 2
* 3

14 assert multiply _digits(999) == 9 * 9
* 9
—> 15 assert multiply _digits(0) == 0

16 assert multiply _digits(10) == 1 * 0

AssertionError:
<|endofblock|>
<|text|>
The assertion ‘assert multiply _digits(0) ==
0‘ failed. This indicates an issue with the
function when handling the case where ‘n‘
is 0.

1438

19

In the current implementation, when
‘n‘ is 0, the while loop is never entered,
and thus the function returns the initial
value of ‘product‘, which is 1. How-
ever, the correct behavior should be to
return 0, as the product of the digits of 0 is 0.

I’ll correct the function to handle this
special case and retest the code.
<|endofblock|>
<|code|>
def multiply _digits(n):

"""
This function takes an integer n and

returns the product of its digits.
"""
if n == 0:

return 0

product = 1
while n > 0:

product *= n % 10
n //= 10

return product

Retesting with the original test cases and
the corrected case
assert multiply _digits(145) == 4 * 5 * 1
assert multiply _digits(123) == 1 * 2 * 3
assert multiply _digits(999) == 9 * 9 * 9
assert multiply _digits(0) == 0
assert multiply _digits(10) == 1 * 0
<|endofblock|>
<|execution|>
<|endofblock|>
<|text|>
The modified code has passed all the test
cases, including the previously failed case
for ‘n = 0‘. The function ‘multiply _digits‘
now correctly handles all tested scenarios.
<|endofblock|>
<|endofmessage|>

1439

Instruction

<|user|>
<|text|>
Execute an algorithm to generate the nu-
merical multiplication of individual integer
components encapsulated within a larger nu-
meric figure.
n = 145
<|endofblock|>
<|endofmessage|>

1440

Final Answer

<|assistant|>
<|text|>
```python
def multiply _digits(n):

"""
This function takes an integer n and

returns the product of its digits.
"""
if n == 0:

return 0

product = 1
while n > 0:

product *= n % 10
n //= 10

return product
```
<|endofblock|>
<|endofmessage|>

1441

D Test Prompt 1442

Here, we present the test prompt for each test set 1443

to facilitate reproduction. 1444

For HumanEval, we add “Write a complete 1445

Python function for the problem” before the origi- 1446

nal prompt from EvalPlus (Liu et al., 2023) to make 1447

the model follow the instructions better. 1448

Test Prompt for HumanEval

<|user|><|text|>Write a complete Python

function for the problem.

1449

20

{prompt}<|endofblock|><|endofmessage|>

<|assistant|><|text|>```python
1450

For MBPP, we follow WizardCoder (Luo et al.,1451

2023) and Magicoder (Wei et al., 2023) to re-1452

construct the source problem from EvalPlus (Liu1453

et al., 2023) with some additional prompts.1454

Test Prompt for MBPP

<|user|><|text|> {prompt}

Your code should satisfy the following as-

sertion:

```python

{test sample}

```<|endofblock|><|endofmessage|>

<|assistant|><|text|>```python
1455

For MultiPL-E, we put the source prompts in1456

both the user message and the beginning of the1457

assistant message to ensure that the model does not1458

modify the prompt and only completes it.1459

Test Prompt for MultiPL-E

<|user|><|text|>Write a complete {language}

function for the problem.

{prompt}<|endofblock|><|endofmessage|>

<|assistant|><|text|> ```{language}

{prompt}
1460

For APPs and LiveCodeBench, we add “Write1461

a complete Python script for the question, Please1462

note that you need to handle the stdin input, e.g. t1463

= int(input()).” before the original prompt to make1464

the model follow the instructions better.1465

Test Prompt for APPs / LiveCodeBench

<|user|><|text|>Write a complete Python

script for the question, Please note that

you need to handle the stdin input, e.g. t =

int(input()).

{prompt}<|endofblock|><|endofmessage|>

<|assistant|><|text|> ```python
1466

For ClassEval, we add “Please complete the 1467

class {class name} in the following code.” before 1468

the original prompt to make the model follow the 1469

instructions better. 1470

Test Prompt for ClassEval

<|user|><|text|>Please complete the class

{class name} in the following code.

{prompt}<|endofblock|><|endofmessage|>

<|assistant|><|text|> ```python
1471

For DS-1000 and LiveCodeBench, we directly 1472

use the source prompts. 1473

21

	Introduction
	Related Work
	Large Language Models for Code
	Instruction Tuning for Code
	Iterative Generation and Refinement

	Methodology
	Reflection Self-Distillation
	Dynamically Masked Distillation

	Experiments
	Experimental Setup
	Evaluation
	Detailed Analysis
	Ablation Study
	Effect of Block Masked Order
	Effect of Data Source
	Autonomous Enhancement

	Conclusion
	Data Construction
	GPT-4 Code Interpreter
	Deepseek-Coder-33B

	Additional Experiments
	MultiPL-E
	DS-1000
	Other Test Set
	Effect of the Factor of Up-sample
	Effect of Rotary Position Embedding
	Token-level Dynamic Masking Strategy

	Training Sample
	Test Prompt

