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Abstract
Although gradient descent with Polyak’s momentum is widely used in modern machine and deep
learning, a concrete understanding of its effects on the training trajectory remains elusive. In
this work, we empirically show that for linear diagonal networks and nonlinear neural networks,
momentum gradient descent with a large learning rate displays large catapults, driving the iterates
towards much flatter minima than those found by gradient descent. We hypothesize that the
large catapult is caused by momentum “prolonging” the self-stabilization effect [11]. We provide
theoretical and empirical support for our hypothesis in a simple toy example and empirical evidence
supporting our hypothesis for linear diagonal networks.

1. Introduction

Although momentum is one of the most widely used and crucial component for training modern
neural networks [42], our understanding of the effects of momentum on neural network training
dynamics is still lacking. Throughout the paper, for a loss function L(w), we consider Polyak’s
heavy-ball momentum (PHB; Polyak [40]) method given as follows:

wt+1 = wt − ηt∇L(wt) + β(wt −wt−1), (1)

where ηt denotes the learning rate that may change over time and β ∈ [0, 1) is the momentum
parameter where β = 0 for gradient descent (GD). From here on, we will refer to Polyak’s momentum
simply as “momentum” or “PHB”. For momentum, we are not even sure yet why and when it
accelerates (stochastic) gradient descent [14, 15, 25], and perhaps more importantly, how it changes
the implicit bias and thus the resulting model’s generalization capability [16, 23, 43, 44].

Many works consider training dynamics under the large learning rate regime. One such work
closely related to ours is the catapult mechanism introduced by Lewkowycz et al. [28]. Classical
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Figure 1: Experiments following the same setting as Nacson et al. [35]. In (a) and (b), "ℓ1 baseline"
and "ℓ2 baseline" respectively stand for the solution with the minimal ℓ1 norm and the solution with
the minimal ℓ2 norm to the regression problem. We use β = 0.9 for PHB.

optimization theory suggests that if the sharpness S := λmax(∇2L), defined as the maximum
eigenvalue of the Hessian of the training loss, is larger than a certain threshold, then training should
be unstable and divergent. We refer to this threshold as the maximum stable sharpness (MSS), and it
is equal to 2/η for GD and 2(1 + β)/η for momentum [18]. However, Lewkowycz et al. [28] show
that rather than diverging, GD initialized with a large learning rate η satisfying 2/S < η < 4/S
displays a loss spike and a simultaneous sharpness drop, which drives the iterates towards a flat
region with stable sharpness S < 2/η. Following this observation, throughout this paper, we define a
catapult as a drastic sharpness reduction coupled with a single spike in the training loss. For more
discussion on related works, please refer to Appendix A.

2. Large Catapults in Momentum Gradient Descent

2.1. Motivating Example: Linear Diagonal Networks

The linear diagonal network (LDN) is known to be one of the simplest non-linear models that display
rich and non-trivial implicit bias [47] while still being mathematically tractable; see Appendix A for
related work on the implicit bias of LDNs. Here, we focus on the depth-2 linear diagonal network
defined by

f(x;u,v) := ⟨u⊙ u− v ⊙ v,x⟩, x,u,v ∈ Rd, (2)

where x is the input vector, (u,v) are the trainable parameters, and w := u ⊙ u − v ⊙ v is the
linear coefficient vector. We investigate the implicit bias effect of momentum in LDNs in the sparse
regression experiment of Nacson et al. [35] over various initializations u0 = v0 = α1 and learning
rate warmups from ηi = 10−8 to ηf ; the precise setting is deferred to Appendix B.
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Results. Over the varying initialization scales α and (final) learning rates ηf , we report the final
resulting test losses in Figure 1. Compared to GD, whose final test loss saturates after some α as
reported in Nacson et al. [35] (Figure 1(a)), it is clear that PHB displays a fundamentally different
implicit bias in the large learning rate regime. For PHB, the final test loss initially increases
monotonically as α increases like GD. However, once α becomes larger than some threshold ᾱ(ηf )
(dependent on ηf ), the test loss sharply drops close to zero. We also note that ᾱ(ηf ) appears to
decrease as ηf increases.1

Momentum Induces Larger Catapults. To find the cause for our observed phenomena, we plot
the evolution of sharpness for PHB in Figure 1(e) at the α and η at which the test loss suddenly drops.
Note that as the warmup proceeds, the MSS decreases monotonically, and as soon as the sharpness
of the iterates “touches” the MSS curve, it goes through a rapid sharpness reduction, coupled with
a loss spike (Figure 1(f )), with the final sharpness being well below the MSS of the final learning
rate. This is in contrast to GD which goes through an incremental, step-wise sharpness reduction
(Figure 1(c)) with multiple loss spikes (Figure 1(d)), and the final sharpness stays just below the
MSS corresponding to the final learning rate; this phenomenon for SGD was also observed in Zhu
et al. [50]. Here, one could make an educated guess that momentum induces much larger catapults
that bias the solution towards flatter minima.

One observation of note is that the MSS 2(1+β)
η for PHB is higher than the MSS 2

η of GD with
the same η, so the α that causes a catapult for GD may not for PHB. With this observation in
mind, from this point on, whenever we compare GD and PHB starting from the same initialization,
we always match the MSS of GD and PHB by properly rescaling the momentum learning rates
ηPHB = (1 + β)ηGD for fair comparison. We only specify the GD learning rate in the text as η.

2.2. Nonlinear Neural Networks

To show that the phenomenon is not limited to LDNs, we also conduct experiments with narrow
and wide fully-connected networks (FCN) on 1k and 5k-datapoint subsets of CIFAR10 [27] for both
MSE and cross entropy (CE) losses. The results are shown in Figure 2. It is clear that the catapults
observed in PHB reduce the sharpness farther below the MSS than GD. Additional experiments,
including results for ResNet20 and for β = 0.99, can be found in Appendices E.3 and E.4.

3. Why Large Catapult? Because Momentum Prolongs Self-Stabilization

In this section, we propose a hypothesis for the mechanism that momentum causes the large catapults.
To do that, we first review the self-stabilization [11] mechanism of GD. We use wmax(θ⋆) to denote
the eigenvector corresponding to the sharpness S (leading eigenvalue of the training loss Hessian) at
some minimum θ⋆. Self-stabilization consists of four stages:
Stage 1 (Progressive Sharpening2). The sharpness of the iterates increases to reach the MSS.
Stage 2 (Blowup). Once the sharpness becomes larger than the MSS, the iterates oscillate and diverge
along wmax. Then, the loss starts to increase sharply, depending on the amount of divergence.
Stage 3 (Self-Stabilization). Simultaneously, the divergence along wmax induces a drift along the
direction of −∇S which decreases the sharpness.

1. In fact, we can see in Figure 1(b) that the final test loss slightly increases (in a noisy fashion) with α after the sharp
drop at ᾱ(ηf ). We attribute this phenomenon to overshooting; see Appendix E.2 for more discussion.

2. Although Damian et al. [11] assume that PS always occurs, it may not for simple settings [9, 50].
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Figure 2: Neural Networks trained on (a-c) 1k and (d-f) 5k subset of CIFAR10 [27]. For (a,b,d,e),
we use the MSE loss, and for (c,f) we the CE loss. All FCNs are 3-layer and use ReLU activation.
The shaded region is the linear warmup period.
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Figure 3: (Left) Trajectories of GD, PHB, GD→ PHB, PHB→ GD with β = 0.9, η = (2 + ϵ)/u20
where ϵ = 0.01, (u0, v0) = (10, 10−6), and no warmup. (Right) The self-stabilization stages for GD
are highlighted and labeled in the sharpness plot. The MSS is shown as the red dotted line.

Stage 4 (Return to Stability). When the sharpness drops below the MSS, the oscillation in the wmax

direction dampens, and dynamics become stable again.
One can draw a connection between self-stabilization and catapult by viewing a catapult as

a single round of self-stabilization (Stages 2–4). Drawing from known intuitions for momentum
dynamics [18, 34, 37], we propose the following hypothesis:

Hypothesis 1 Polyak’s momentum prolongs self-stabilization in the following sense:

1. As the iterates oscillate and diverge along wmax, the momentum in the direction of −∇S
“builds up” (Stages 2–3).

4



GRADIENT DESCENT WITH POLYAK’S MOMENTUM FINDS FLATTER MINIMA VIA LARGE CATAPULTS

2. Even after the sharpness drops below the MSS, momentum prolongs oscillation along wmax,
which in turn prolongs the movement in the −∇S direction (Stage 4).

3.1. Empirical Verification of Hypothesis 1 for ReLU Scalar Network

We now verify Hypothesis 1 in a simple ReLU scalar network by providing qualitative empirical
results and theoretical characterization of the sharpness reduction for GD and PHB. Here, we
consider the loss function L(u, v) = 1

2u
2v21[u ≥ 0], where 1[·] is the indicator function. We

consider constant learning rate (1 + β)η to simplify the analysis and initialize close to an unstable
minimum: (u0, v0) with u20 = (2+ϵ)/η for some small ϵ, |v0| ∈ (0, 1). In Appendix E.5, we provide
additional empirical evidence for our hypothesis in LDNs.

The GD dynamics (blue in Figure 3) show the interplay between oscillation and stabilization,
which is precisely the self-stabilization for GD [11]. The PHB dynamics (orange in Figure 3) shows
that momentum does not simply accelerate the GD dynamics but shows a qualitatively different
behavior, breaking the symmetry around (

√
2/η, 0) that was present for GD.

To further empirically validate our Hypothesis 1, we consider two additional settings: GD→
PHB and PHB→ GD, where A→ B means that we first run A, then switch to B once the sharpness
crosses the MSS. If Hypothesis 1.1 (resp. 2) holds, then due to the effect of momentum before
crossing the MSS, one would expect PHB→ GD (resp. GD→ PHB) to experience a larger sharpness
reduction than GD. As shown in Figure 3, in increasing order of sharpness reduction, we have GD <
PHB→ GD < GD→ PHB < PHB. This shows that although the effect of each part of our hypothesis
is sufficient to display a larger sharpness reduction, the combination of these two factors results in an
even larger sharpness reduction for PHB.

3.2. Theoretical Verification of Hypothesis 1 for ReLU Scalar Network

Let {(ut, vt)} be the GD/PHB iterates with learning rate η > 0 and momentum parameter β ∈ [0, 1).
The proofs for all the statements provided here are deferred to Appendix D.

For that, we first introduce the following quantities:

τu := inf

{
t ≥ 0 : u2t <

2− ϵ

η

}
, Cu :=

uτu − βuτu−1

1− β
, Cv :=

1 + β

1− β

∑∞
t=τu

v2t . (3)

The following theorem characterizes an upper bound on u∞:

Theorem 2 Suppose that inft≥0 ut ≥ 0 and ϵ, |v0| < 1. Then, u∞ = limt→∞ ut ≤ Cu
1+ηCv

=: u∞.

According to Theorem 2, the RHS decreases (i.e., larger displacement in the −u direction) with
larger Cv and smaller Cu. This observation lends support to Hypothesis 1 since Cu corresponds
to the “build up” of momentum in the −∇S direction from Stages 2-3 in Hypothesis 1.1, and Cv

measures the movement in the −∇S direction caused by divergence along wmax after the iterates
cross the MSS (Stage 4) which captures the “prolonging” effects of momentum. We show that for
our model, Theorem 2 is numerically tight; see Appendix D.4 for more discussions.

As a counterpart, we provide an asymptotic lower bound on u∞ for GD:

Theorem 3 (Informal) For GD (β = 0), suppose that inft≥0 ut ≥ 0, ϵ = o(1), v20 = O(ϵ), and

η = Θ(1). Then, we have that u∞ ≥
√

2
η −O(

√
ϵ).

For the significance of our theoretical results, we provide some discussions in Appendix D.5 and D.6.
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4. Conclusion
In this paper, for the first time, we show that PHB with large learning rate induces large catapults,
resulting in a much larger sharpness reduction than that of GD. We first provide empirical evidence
for this on linear diagonal networks (LDNs) and nonlinear neural networks. We then hypothesize
that the large catapult of PHB is caused by momentum prolonging self-stabilization [11]. We verify
our hypothesis for ReLU scalar networks and LDNs and rigorously prove that it holds. This opens
up numerous exciting future directions, which we defer to Appendix C.
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Appendix A. Related Works

Catapults in (S)GD. Lewkowycz et al. [28] are the first to describe the catapult mechanism of
GD, the phenomenon of momentary spikes in training loss resulting in lower sharpness. They then
analytically prove that catapults occur for f = d−1/2uTv, where u,v ∈ Rd, when d is sufficiently
large. Since then, the theoretical analysis of the catapult mechanism has been extended to other
models such as (neural) quadratic models [1, 32, 51] and matrix factorization [43, 45] (from the
perspective of “balancing” effect). On the empirical side, Zhu et al. [50] study the loss spikes that
occur during the catapults of SGD by decomposing the loss into components corresponding to
different eigenspaces of the neural tangent kernel (NTK; Jacot et al. [22]) and show that catapults
improve generalization through feature learning. Recent work by Kalra and Barkeshli [24] explores
the training dynamics of SGD for neural networks for various settings and uncovers four distinct
regimes controlled by critical values of the sharpness. Despite an abundance of works on the catapult
mechanism, to the best of our knowledge, we are the first to report the substantial differences in the
catapult mechanism and sharpness reduction between GD and PHB.

Edge of Stability. A phenomenon related to the catapult phenomenon that has garnered much
attention in recent years is the edge of stability or EoS phenomenon. Cohen et al. [9] report
two surprising phenomena that consistently occur during neural network training. First, when
the sharpness is below the MSS, the sharpness tends to increase due to a phenomenon known as
progressive sharpening (PS). Generally, progressive sharpening will increase the sharpness until
it is above the MSS. However, instead of diverging as classical optimization theory suggests, the
sharpness oscillates around the MSS while the training loss decreases non-monotonically. In a sense,
the EoS phenomenon can be viewed as a cycle of a catapult and PS: once PS drives the sharpness
above the MSS, a catapult occurs and decreases the sharpness below the MSS while the training loss
spikes. Once the sharpness is lower than the MSS, PS increases it again, and the cycle continues.
This cycle can be viewed together as sharpness oscillation and a non-monotonic decrease in training
loss as reported by Cohen et al. [9]. Subsequent works have formalized this intuition [1, 11].

Many works have been devoted to the theoretical analysis of PS and EoS [2, 3, 6, 11, 41, 46,
48, 49, 52] as well as their systematic empirical analyses [9, 10, 17]. Ahn et al. [3] rigorously
characterize the EoS phenomenon in a single-neuron network. They show that the single-neuron
training dynamics under the large learning rate regime display oscillatory “bouncing” behavior
accompanied by a decrease in sharpness so that the sharpness converges below the MSS. Song and
Yun [41] extend the results of Ahn et al. [3] to two-layer fully connected linear networks trained using
a single data point. Damian et al. [11] explain the EoS phenomenon by proving a “self-stabilization”
property in GD. By utilizing cubic Taylor expansions of the loss function, they prove that if the
sharpness is above the MSS, GD will begin to oscillate and diverge in the leading eigenvector
direction. However, the oscillations induce a “self-stabilization” effect which moves the iterates in
the −∇S direction thus reducing the sharpness and stabilizing the dynamics. This interplay between
the oscillations and self-stabilization result in the EoS behavior. There are also works explaining
the effect of optimization tricks by considering their interaction with EoS [14, 17]. Lastly, we note
that although the main focus of Cohen et al. [9] is on GD, the authors also include PHB experiments,
mostly in their Appendix N. Their experiments also display occasional larger catapults, but this
difference is not highlighted.
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Implicit Bias of LDNs. The training dynamics and implicit bias of the LDN have been rigorously
investigated in the literature. Still, most works focus on the continuous regime with vanishing
learning rate, such as the (stochastic) gradient flow [7, 33, 38, 39, 47]. Although [36] and [31] study
the impact of momentum on training dynamics, they also focus on the flow regime, which cannot
capture phenomena such as the edge of stability or catapults that are inherently unique to the large
learning rate regime. Recently, there has been some progress for (S)GD with finite step sizes [13, 35],
but they do not consider momentum at all.

Woodworth et al. [47] prove that for the sparse regression problem where the true w⋆ is assumed
to be sparse, the gradient flow for LDN initialized at u0 = v0 = α · 1 converges to the minimum
ℓ1-norm solution as α → 0 and minimum ℓ2-norm solution as α → ∞. It is well-known that the
minimum ℓ1-norm solution has a better generalization capability, due to sparsity of w⋆. Subsequently,
[35] show that GD with finite learning rate consistently recovers solutions with smaller test loss, even
for initializations with large α’s.

Role of Momentum in Generalization. Closely related works are Ghosh et al. [16], Jelassi and Li
[23], which also consider the positive effects of momentum for nonlinear neural networks. Jelassi
and Li [23] prove that a binary classification setting exists where PHB provably generalizes better
than GD for a one-hidden-layer convolutional network. Ghosh et al. [16] derive an implicit gradient
regularizer [8] for PHB that biases the solution towards flatter minima, and they showed that the
momentum regularizer term is stronger than that of GD by a factor of 1+β

1−β . In contrast, we report
that the behaviors of PHB and GD are fundamentally different.

Appendix B. Deferred Experimental Setting for Section 2.1 (LDN experiments)

The training set is {(xn,yn)}Nn=1 generated as xn ∼ N (µ, σ2Id) and yn = ⟨w⋆,xn⟩, where
N = 50, σ2 = 5, d = 100,µ = 5 · 1 and w⋆ = (δi≤5/

√
5)i. We use the mean squared error (MSE)

loss, and we initialize u0 = v0 = α · 1, where α ∈ [0, 0.3] is the initialization scale. Following
Nacson et al. [35], for each ηf , we use linear warmup (linearly increasing the learning rate) for the
first ηf · 106 steps, starting from ηi = 10−8. For the momentum parameter of PHB, we use β = 0.9.

Remark 4 (Learning Rate Warmup) Learning rate warmup is a standard practice in deep learn-
ing [20], with known benefits such as variance reduction [19, 29] and preconditioning [17]. We and
Nacson et al. [35] consider learning rate warmup to avoid possible instabilities from using large
learning rates.

Remark 5 (Role of Warmup in Large Catapults) Although we used linear warmup schedule in
the experiments, warmup is not a strict requirement for (large) catapults to occur. Indeed, we observe
that catapults consistently occur as long as (1) the iterate is initially close to a global minimum and
(2) the learning rate is large enough so that the sharpness is slightly above the MSS but small enough
so that the iterates do not completely diverge. Linear warmup provides a natural way to satisfy
these two criteria, whereas using large constant learning rates from the beginning usually results
in severe instability. We remark that one could use different scheduling to induce the catapults; see
Appendix E.1 for ablations on different warm-up schedules.
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Appendix C. Future Works

Firstly for PHB, we sometimes observe a lack of PS after the large catapults, as shown in Figure 2(a–
c). However, with larger datasets, PS appears to occur again, as shown in Figure 2(d–f). We conjecture
that the lack of PS in ReLU networks is due to catapults aggressively reducing the number of active
ReLU neurons [4, 30]; refer to Appendix E.2 for a detailed discussion. Understanding the presence
and absence of PS in different setups is an interesting direction. Secondly, although PHB drives
iterates towards flatter minima via the large catapults, we do not always observe better generalization.
Further exploring the connection between catapults and generalization is an interesting area for
future research and may contribute to the growing literature on the connection between flatness and
generalization [5, 12, 13, 21].
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Appendix D. Missing Proofs and Discussions for Section 3.1

Throughout, recall the following quantities:

τu := inf

{
t ≥ 0 : u2t <

2− ϵ

η

}
, Cu :=

uτu − βuτu−1

1− β
, Cv :=

1 + β

1− β

∞∑
t=τu

v2t . (4)

The following lemma states that for our dynamics, {ut} is monotone decreasing and convergent:

Lemma 6 u∞ := limt→∞ ut ≤ ut+1 ≤ ut for all t ≥ 0. Furthermore, if τ0 := inf {t ≥ 0 : ut < 0} <
∞, then we have that u∞ =

uτ0−βuτ0−1

1−β .

Notice that our experiments correspond to the τ0 =∞. So the question remains: how to characterize
u∞ when τ0 =∞, which is what Theorem 2 and 3 are doing.

D.1. Proof of Lemma 6

Recall the update rule for u-coordinate:

ut+1 − ut = β(ut − ut−1)− η(1 + β)utv
2
t 1[ut ≥ 0]. (5)

We proceed by induction. For t = 1, it is trivial. For 1 < t < τ0, we have that

ut+1 − ut = β(ut − ut−1)− η(1 + β)utv
2
t ≤ 0,

as ut ≤ ut−1 and ηutv
2
t > 0. If τ0 =∞, then by monotone convergence theorem, ut converges to

some u∞ ≥ 0. If not, then for t ≥ τ0, we can solve the recursion to obtain

ut = uτ0 +
β(uτ0−1 − uτ0)

1− β
(βt−τ0 − 1).

As uτ0 < uτ0−1 by the definition of τ0, ut also monotonically decreases for t ≥ τ0 (in a geometric
speed), and we conclude by again applying the monotone convergence theorem. □

D.2. Proof of Theorem 2

By telescoping, we have that for any t ≥ τu + 1,

ut − uτu = β(ut−1 − uτu−1)− η(1 + β)
t−1∑
k=τu

ukv
2
k.

First, let N ≥ τu be fixed and define Cv(N) := 1+β
1−β

∑N
t=τu

v2t . Then, for t ≥ N + 1,

ut − βut−1 = uτu − βuτu−1 − η(1 + β)

t−1∑
k=τu

ukv
2
k ≤ (1− β)Cu − η(1− β)Cv(N)ut.

We can rewrite the recursive inequality as

ut −
Cu

1 + ηCv(N)
≤ β

1 + η(1− β)Cv(N)

(
ut−1 −

Cu

1 + ηCv(N)

)
.
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To deal with possibly changing sign, we consider the first time in which the iterates pass another
point:

τ ′u(N) := inf

{
t ≥ N + 1 : ut <

Cu

1 + ηCv(N)

}
. (6)

If τ ′u(N) =∞, then we have that for all t ≥ N + 1,

ut ≤
Cu

1 + ηCv(N)
+

(
β

1 + η(1− β)Cv(N)

)t−N−1(
uN −

Cu

1 + ηCv(N)

)
. (7)

If not, then we have that for all t ≥ τ ′u(N),

ut ≤
Cu

1 + ηCv(N)
−
(

β

1 + η(1− β)Cv(N)

)t−τ ′u(N)( Cu

1 + ηCv(N)
− uτ ′u(N)

)
, (8)

In either case, we obtain the desired conclusion by taking the limit min{N, t} → ∞ with
t ≥ N + 1. □

D.3. Proof of Theorem 3

We start by providing a nonasymptotic version of Theorem 3:

Theorem 7 For sufficiently small 0 < v20 < ϵ≪ 1, we have that

lim
t→∞

ut ≥
√

2

η
−
√
Pτu exp

(
4η2u2τuPτu

ϵ(2− ϵ)

)
, (9)

where Pτu is a quantity satisfying

Pτu ≤
(
ϵ

η
+

1

2
v20

)
exp

(
2(2 + ϵ)

√
2 + ϵ

2− ϵ
+ 2(2 + ϵ)

√
2ϵ

2− ϵ

)
. (10)

Proof [Proof of Theorem 7] In contrast to the proof technique used for Theorem 2, we utilize an
energy argument that works for GD. Inspired by the empirical observation that the GD iterates
roughly form an ellipse centered around the point

(√
2
η , 0
)

, we consider the following “elliptical
energy” function:

Pt :=

(
ut −

√
2

η

)2

+
1

2
v2t . (11)

Note that P0 ≤ ϵ
η + 1

2v
2
0 . We will first prove that the elliptical energy is well-bounded and then use

that fact to lower bound u∞.
Let us first fix ϵ, v20 ∈ (0, 1). The following key lemma, whose proof is provided at the end of

this section, states that the energy is approximately well-bounded, given that ut is sufficiently lower
bounded:

Lemma 8 Pt+1 ≤ Pt exp
(
2η2u2t v

2
t

)
for any t ≥ 0 satisfying ut ≥ 1√

η .
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As u2t ≥ u2τu−1 ≥ 2−ϵ
η > 1

η for any t ≤ τu − 1 (due to Lemma 6), we have:

Pτu ≤
(
ϵ

η
+

1

2
v20

)
exp

(
2η2

τu−1∑
t=0

u2t v
2
t

)
(telescoping with Lemma 8)

≤
(
ϵ

η
+

1

2
v20

)
exp

(
2η2u20

τu−1∑
t=0

v2t

)
(Lemma 6)

=

(
ϵ

η
+

1

2
v20

)
exp

(
2(2 + ϵ)ηv2τu−1 + 2(2 + ϵ)

τu−2∑
t=0

ut − ut+1

ut

)
(u0 =

√
2+ϵ
η , ut − ut+1 = ηv2t ut)

≤
(
ϵ

η
+

1

2
v20

)
exp

(
2(2 + ϵ)ηv2τu−1 +

2
√
η(2 + ϵ)√
2− ϵ

τu−2∑
t=0

(ut − ut+1)

)
(u2t ≥ 2−ϵ

η for t ≤ τu − 1)

=

(
ϵ

η
+

1

2
v20

)
exp

(
2(2 + ϵ)ηv2τu−1 +

2
√
η(2 + ϵ)√
2− ϵ

(u0 − uτu−1)

)
≤
(
ϵ

η
+

1

2
v20

)
exp

(
2(2 + ϵ)ηv2τu−1 + 2(2 + ϵ)

√
2ϵ

2− ϵ

)
. (

√
a+ b−

√
b ≤ √a)

Also, we have that

v2τu−1 =
uτu−1 − uτu

ηuτu−1
≤ u0

η
√

2−ϵ
η

=

√
2 + ϵ

2− ϵ

1

η
. (12)

Thus, we have that

Pτu ≤
(
ϵ

η
+

1

2
v20

)
exp

(
2(2 + ϵ)

√
2 + ϵ

2− ϵ
+ 2(2 + ϵ)

√
2ϵ

2− ϵ

)
. (13)

We now claim that

ut ≥
1√
η

and Pt ≤ Pτu exp

(
4η2u2τuPτu

ϵ(2− ϵ)

)
, ∀t ≥ τu − 1, (14)

which then implies our desired statement.
We proceed by induction. The base case (t = τu−1) is trivial. For t′ ≥ τu, suppose the statement

holds for all t < t′. Again, using Lemma 8, we have that

Pt′ ≤ Pτu exp

(
2η2

t′−1∑
t=τu

u2t v
2
t

)
≤ Pτu exp

(
2η2u2τu

t′−1∑
t=τu

v2t

)
.

Let us now bound
∑t′−1

t=τu
v2t . For t ∈ [τu, t

′ − 1], we have that (ηu2t − 1)2 < (1 − ϵ)2 by the
induction hypothesis, and thus, v2t+1 < (1− ϵ)2v2t . This implies that

t′−1∑
t=τu

v2t < v2τu

t′−τu−1∑
t=0

(1− ϵ)2t ≤ v2τu

∞∑
t=0

(1− ϵ)2t =
v2τu

ϵ(2− ϵ)
≤ 2Pτu

ϵ(2− ϵ)
,
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and thus, we have that Pt′ ≤ Pτu exp
(
4η2u2

τu
Pτu

ϵ(2−ϵ)

)
. From the definition of our elliptical energy, this

then implies that

ut′ ≥
√

2

η
−
√
Pτu exp

(
4η2u2τuPτu

ϵ(2− ϵ)

)
. (15)

As Pτu = O(ϵ) for small ϵ and v20 = O(ϵ), with suitable choices we can conclude that ut′ ≥
√

1
η ,

and we are done.

Proof [Proof of Lemma 8] This is shown via a brute-force computation:

Pt+1 =

(
ut+1 −

√
2

η

)2

+
1

2
v2t+1

=

(
ut − ηutv

2
t −

√
2

η

)2

+
1

2

(
vt − ηvtu

2
t

)2 (GD update)

= Pt − 2ηutv
2
t

(
ut −

√
2

η

)
+ η2u2t v

4
t − ηv2t u

2
t +

η2

2
v2t u

4
t

= Pt + u2t v
2
t

(
η2v2t +

η2

2
u2t − 3η +

2
√
2η

ut

)
.

We then have the following helpful inequality, whose proof is deferred to the end:

Lemma 9 For z ≥ 1√
η , η2

2 z
2 − 3η + 2

√
2η
z ≤ 2η2

(
z −

√
2
η

)2
.

Using this and the given assumption that ut ≥ 1√
η , we then have the desired statement as follows:

Pt+1 ≤ Pt + u2t v
2
t

(
η2v2t + 2η2

(
ut −

√
2

η

)2
)

= (1 + 2η2u2t v
2
t )Pt.

Proof [Proof of Lemma 9] By reparametrizing z ← z/
√
η, it suffices to prove that for z ≥ 1,

1
2z

2 − 3 + 2
√
2

z ≤ 2
(
z −
√
2
)2

. By rearranging, this is equivalent to

f(z) ≜ 3z3 − 8
√
2z2 + 14z − 4

√
2 ≥ 0, ∀z ≥ 1.

This is then obvious, as f is a cubic function with f(0) > 0, the local minimum of (
√
2, 0) and the

local maximum of
(
7
√
2

9 , 8
√
2

243

)
.
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Figure 4: Numerical verification of Theorem 2.

D.4. Numerical Verification of Theorem 2

We show numerically that Theorem 2 is tight by rerunning the scalar ReLU network experiment
with PHB for varying β ∈ {0.0, 0.01, · · · , 0.99} for T = 105 iterations. In Figure 4(a), we plot Cu

and 1
1+ηCv

across β. We expect that both terms will decrease with increasing β, which turns out to
be true; this confirms Hypothesis 1 for the scalar ReLU network case. Connecting this observation
to our previous experiment in Figure 3, PHB→ GD corresponds to smaller Cu due to the effects
of momentum in stages 2-3 while GD→ PHB corresponds to larger Cv (hence a smaller 1

1+ηCv
)

due to momentum prolonging the oscillations in stage 4. Each of these terms explains the increased
sharpness reduction in PHB→ GD and GD→ PHB when compared to GD. The combined effect
of these two quantities is shown in Figure 4(b) where we plot the theoretical sharpness reduction
u20 − u2∞ and ∆S = u20 − u2T . Note that u20 − u2∞ is a tight lower bound on ∆S.

D.5. Comparisons to Prior Works

Our scalar ReLU network is essentially identical to the 1D uv-model analyzed in Kalra and Barkeshli
[24], Lewkowycz et al. [28]. However, neither work considers the PHB dynamics in the parameter
space (ut, vt). Furthermore, [28] additionally require NTK scaling with a finite but sufficiently large
width. Our characterization of the GD dynamics share many characteristics with the single-neuron
neural network described and analyzed by Ahn et al. [3], like the quasi-static principle (an ellipse-like
envelope) and final resulting sharpness being close to the MSS. However, their analysis cannot be
directly applied to our scenario, as ℓ(u) = 1

2u
2 does not satisfy their assumptions (ℓ is globally

Lipschitz and ℓ′(u)/u decays locally away from u = 0). Although we focus on a simple model, our
Theorems 2 and 3 provide a rigorous characterization of the parameter dynamics of GD/PHB with
large learning rates beyond the previously considered assumptions.

D.6. Tightness of Theorem 2 and 3

In Theorem 2, for GD (β = 0), we have that u∞ ≤ 1
1+O(1)

√
2−ϵ
η . This follows from the fact that

Cv = O(1) for GD, which we show in the process of proving Theorem 3. This then implies that
∆S∞ ≥ Ω(ϵ), off by a factor of

√
ϵ compared to Theorem 3. We leave extending Theorem 3 to PHB

for future work. The key difficulty is that the energy argument fails; this can be seen empirically in
the PHB trajectory (orange) in Figure 3.
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(a) Step warmup.
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(b) Terminating the warmup.

Figure 5: Ablations on the learning rate warmup. (a) Step warmup is used instead of linear warmup.
(b) The warmup period is initially set to 5000 iterations, but the warmup is terminated at iteration
2150 around the iteration where the sharpness crosses the MSS.

Appendix E. Additional Experimental Results

Additional Experimental Details Experiments on nonlinear networks were carried out using an
A6000. All other experiments were run locally on CPU. Experiments on nonlinear networks are
based on code from https://github.com/locuslab/edge-of-stability [9].

E.1. Is Linear Warmup Necessary?

Although we use linear warmup in our experiments, we emphasize that linear warmup is not necessary
to induce the catapults. As mentioned in the main text, we observe that the main criteria for inducing
the catapults are (1) for the iterates to be in a neighborhood of a stable minimum and (2) for the
current learning rate to be large enough that the minimum is unstable (in that the sharpness of the
minimum is above the MSS) but not so unstable that training diverges. Linear warmup satisfies these
two criteria by (1) stably moving the iterates towards a minimum under a low learning rate and (2)
automatically finding a suitably large learning rate (that does not lead to divergence) by gradually
increasing the learning rate. However, as long as the two criteria are met, catapults can be induced
without linear warmup.

Other Warmups in the LDN. To show that the specific form of the warmup is not essential in
inducing the catapults, we train an LDN using a step warmup scheduler. We use the learning rate
of 10−5 for the first 10000 iterations and then 0.0023 for the remaining 10000 iterations. Here, it
is necessary to use a sufficiently long warmup period to ensure that the pre-catapult training loss is
close to zero. As shown in Figure 5(a), this setting also induces a catapult despite not using linear
warmup. It should be noted that, unlike linear warmups, the final learning rate must be carefully
tuned to prevent training from diverging.

To show the effectiveness of the linear warmup in finding the appropriate scale of the learning
rate for inducing catapults, we terminate the warmup as soon as the sharpness crosses the MSS,
even before the prescribed warmup period ends. As shown in Figure 5(b), this is enough to induce
catapults for PHB, supporting our claim that linear warmup has the advantage of “smoothly” finding
a suitable learning rate for inducing catapults.
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Linear Warmup in the Toy Model. Conversely, although we use a fixed learning rate for the toy
model, we show in Figure 6 that catapults still occur even when using linear warmup.
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Figure 6: Training the toy model using linear learning rate warmup still induces a catapult

E.2. Effects of “Overshooting” by Larger Catapults

When the momentum parameter β is large, and an even larger catapult can happen and PHB may
carry the iterates farther than the flattest minima, resulting in “overshooting.” A good example can
be found in the simple LDN loss L(u, v) = 1

2(u
2 − v2 − 1)2. As shown in Figure 7(b), momentum

with β = 0.99 causes the iterates to move past the flattest minima (u, v) = (1, 0) and converge
at a sharper solution. Overshooting may also explain why the final sharpness increases again in
Figure 1(b) as α increases further: there is some optimal α for which momentum allows the iterate to
reach the flattest possible minima, but increasing α even further may result in overshooting.
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ness reduction based on toy ex-
ample theory. At β = 0.99,
∆S slightly decreases due to over-
shooting.
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(b) Trajectory plot for β =
0.99. The iterates over-
shoot past (u, v) =
(1, 0) which is the flat-
test minima.
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Figure 7: Overshooting in simple models
As the loss landscape and manifold of minima become increasingly complex, overshooting

may result in different outcomes, depending on the architectures. Another effect of overshooting
relates to the lack of progressive sharpening in some of the experiments. In some of our experiments
(Figures 2(a) and 2(b)), we observed an interesting phenomenon where PHB does not display
progressive sharpening after a few large catapults. We conjecture this lack of progressive sharpening
to be a result of large catapult inducing more dead neurons. Indeed, through a synthetic experiment
with ReLU FCN, we show that large catapults due to PHB induce more dead neurons than GD;
see Figure 8. Although seemingly unrelated, overshooting is one possible explanation as to why
momentum induces more dead neurons. To illustrate this point, consider the case of the ReLU scalar
network in Figure 7(c). Under certain settings, momentum can cause the iterates to overshoot the
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flattest possible minima (u = 0) and land in the region u < 0 which kills the ReLU neuron. A
similar phenomenon could occur in more realistic networks as well.

(a) Sharpness. (b) Number of active neurons.

Figure 8: 2-layer FCN of width 100 trained with MSE loss and rank-2 synthetic dataset [50],
generated as follows: {(xi, yi)}100i=1 with xi ∼ N3(0, I) and yi = (xi)1(xi)2.

E.3. More experiments on Nonlinear Neural Networks

E.3.1. ADDITIONAL FCN EXPERIMENTS

For the nonlinear neural network experiment in Figure 9, we follow the setting of Zhu et al. [50].
We train a fully-connected 3-layer ReLU network of width 64 on the synthetic rank-2 dataset. The
synthetic rank-2 dataset is generated by i.i.d. sampling data xxxi ∼ N (000, Id) and generating outputs
yi = xxx

(1)
i xxx

(2)
i (product of the first two coordinates of xxxi). A rank2-D-N dataset refers to the synthetic

rank-2 dataset generated using d = D whose training set consists of N data points; in our experiment,
we used a rank2-400-200 dataset. For both experiments, we used a momentum rate of β = 0.9 and
MSE loss.
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Figure 9: FCN trained on the Rank2-400-200 dataset, ηi = 0.02, ηf = 0.6.

E.3.2. RESNET20 EXPERIMENTS

In Figure 10, we provide additional experiments on deep neural networks using the ResNet20 archi-
tecture. We observe that large catapults also occur for ResNet20 as well.
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(a) 2-class 128 subset of CI-
FAR10, ηi = 0.01, ηf =
0.02
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(b) 1k subset of CIFAR10, ηi =
0.01, ηf = 0.1
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(c) 5k subset of CIFAR10, ηi =
0.01, ηf = 0.1

Figure 10: Results for ResNet20. The shaded region is the linear warmup period.

E.3.3. CROSS-ENTROPY LOSS EXPERIMENTS

We provide additional experiments showing that large catapults still occur for networks trained using
cross-entropy loss. As shown in Figure 11, for PHB, large catapults occur during early training
for FCN trained using Tanh activation and cross-entropy loss. Due to using cross-entropy loss, the
iterates also converge quickly to a minimum with near-zero sharpness after the catapult.

Furthermore, for PHB, the iterates quickly converge to a minimum with near-zero sharpness right
after the large catapult whereas for GD the iterates do not immediately converge to a flat minimum
after the catapult. Instead, the sharpness of GD iterates settles at the MSS after the catapult before
slowly converging towards flatter minima as training progresses.
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Figure 11: FCN Experiments using cross-entropy loss on CIFAR10-1k, with Tanh activation, width
100, ηi = 0.001, ηf = 0.4
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E.4. Additional Results for β = 0.99

We redo experiments with β = 0.99. Overall, the trend is the same, with the effect of momentum
more amplified. We provide the necessary details and some discussions for each experiment redone.

E.4.1. LINEAR DIAGONAL NETWORKS

Here, we redo the experiments of Section 2.1 with β = 0.99, where the results are reported in
Figure 12. Note how we expanded the range of α’s to see the effect of momentum, which seems to
be a bit “delayed”. But, at the same time, there is little instability in the trend in that once the curve
reaches zero test loss, it stays there; this is in contrast to our β = 0.9 experiment (Figure 1(b) of
Section 2.1), where there were some instabilities over α’s.
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Figure 12: Recall from Section 2.1 that “ℓ1 baseline” and “ℓ2 baseline” in Figure 12(a) stand for
the solution with the minimal ℓ1 norm and the solution with the minimal ℓ2 norm to the regression
problem, respectively.

E.4.2. SHALLOW NONLINEAR NEURAL NETWORKS

For nonlinear networks, momentum with β = 0.99 has very unstable training dynamics when trained
on a small dataset. Here, we show results for β = 0.99 on larger datasets. For the CIFAR10
experiments, we train on (1) a subset of CIFAR10 with 2 classes and 2000 training images and (2) a
larger subset of CIFAR10 with 10 classes and 5000 training images. Results for the 2-class CIFAR10
are shown in Figure 13, and results for the 5k subset of CIFAR10 are shown in Figure 14. An
additional observation is that although PS is exhibited after the large catapults when using β = 0.9,
no PS occurs after the large catapults when using β = 0.99 For the synthetic rank-2 dataset, we use a
Rank2-400-4000 dataset. Results for the synthetic rank-2 dataset are shown in Figure 15.
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Figure 13: 3-layer width-256 FCN trained on a 2k-datapoint subset of CIFAR10 with MSE loss,
ηi = 0.001, ηf = 0.01 and 9000 steps of warmup.
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(a) ηi = 0.001, ηf = 0.01
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(b) ηi = 0.001, ηf = 0.03
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(c) ηi = 0.001, ηf = 0.05

Figure 14: 3-layer width-200 FCN trained on a 5k-datapoint subset of CIFAR10 using MSE loss and
10000 steps of warmup
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Figure 15: Rank2-400-4000, width=128, MSE loss, ηi = 0.01, ηf = 0.2

E.4.3. RESNET20

The catapults are more pronounced when training ResNet20 using momentum with β = 0.99 as
shown in Figure 16.

0 2000 4000 6000 8000 10000
Iteration

10.0

7.5

5.0

2.5

0.0

lo
g 

tra
in

 lo
ss

GD
PHB, 0.9
PHB, 0.99

0 2000 4000 6000 8000 10000
Iteration

1.0

0.8

0.6

0.4

lo
g 

te
st

 lo
ss

GD
PHB, 0.9
PHB, 0.99

0 2000 4000 6000 8000 10000
Iteration

0

20

40

60

80

100

sh
ar

pn
es

s

GD
PHB, 0.9
PHB, 0.99
MSS

(a) ResNet20 trained on a 5k-datapoint subset of CIFAR10 with ηi = 0.01, ηf = 0.1, and 5000
steps of warmup

Figure 16: ResNet20 Experiments with β = 0.99
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(a) Sharpness of LDN for (1) GD, (2) PHB,
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(b) Numerical verification of Theorem 2 for
L(u, v) = 1

2(u
2 − v2 − 1)2.

Figure 17: Empirical Validation of Hypothesis 1 and theory using LDNs

E.5. Verifying the Hypothesis for LDNs

To show the potential of our verification of hypothesis extending beyond the scalar ReLU network,
we revisit the LDNs and perform similar experiments as in the ReLU scalar networks, i.e., we
plot the sharpness across 4 scenarios: GD, PHB, GD→ PHB, and PHB→ GD. This is to show
empirical evidence that Hypothesis 1 also holds for LDNs. We first initialize the weights close to a
minimum by running GD until the (MSE) loss is less than 0.001. We then run each scenario from
that same initialization using η = (2+ϵ)(1+β)

S0
(and adjusting the learning rates as needed after the

sharpness crosses the MSS) where ϵ = 0.03 and S0 is the sharpness of the initialization. As shown
in Figure 17(a), in increasing order of reduction, we again have GD < PHB→ GD < GD→ PHB <
PHB.

We now turn to the question of whether Theorem 2 can be extended to LDNs as well. For
a general loss function L(θ), consider running GD and PHB (with rescaled learning rate) from
initialization θ0 satisfying λmax(∇2L(θ0)) = 2+ϵ

η for some small ϵ ∈ (0, 1). Then, we extend the
definition of Cu and Cv (Eqn. (3)) as the following. For the GD/PHB iterates {θt}t≥0, we solve
gradient flow (GF) starting from θt to convergence, and obtain the solution θ∗

t , which can be viewed
as the global minimum “closest” to θt. Then, for τu := inf

{
t ≥ 0 : λmax(θ

∗
t ) <

2−ϵ
η

}
, define

Cu :=

√
S(θ∗

τu )−β
√

S(θ∗
τu−1)

1−β , Cv := 1+β
1−β

∑∞

t=τu
⟨wmax(θ

∗
t ),θt − θ∗

t ⟩2 , (16)

where wmax(θ
∗) is the leading eigenvector of ∇2L(θ∗). Once we calculate Eqn. (16), a “lower

bound” on the sharpness displacement can be derived from Theorem 2, although there is no theoretical
guarantee that this should indeed hold for the new L. Still, we can numerically calculate it and assess
the possibility of extending Theorem 2 to general functions.

However, running GF to convergence at every iteration is the biggest bottleneck of numerical
verification. As a proof of concept, we consider a simple function motivated by the LDN architecture:
L(u, v) = 1

2(u
2 − v2 − 1)2. This corresponds to the MSE loss of LDN for a single data point

(x, y) = (e1, 1), and has the nice property that the GF trajectory (u(t), v(t)) satisfies u(t)v(t) =
u(0)v(0) for all t ≥ 0 (see Appendix E.6 for the proof). Using this property, we can calculate θ∗

t for
any θt, hence calculating the desired lower bound. Starting from a θ0 = (u0, v0) with sharpness 2+ϵ

η ,
we ran GD/PHB for a range of β’s, calculated the actual sharpness displacement and its lower bound.
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Appendix E.6 contains further details on the experiment. The results are shown in Figure 17(b), which
shows a similar trend as in the scalar ReLU network. There is a small decrease in sharpness reduction
at β = 0.99, which can be attributed to overshooting; refer to Appendix E.2 for a discussion.

E.6. Experimental Details for Appendix E.5

In Appendix E.5, we discussed extending Theorem 2 to more general loss functions, and presented a
numerically computed “lower bound” on the sharpness decrease for a simple LDN loss L(u, v) =
1
2(u

2 − v2 − 1)2. This appendix provides more details of this process.
For L(u, v) = 1

2(u
2 − v2 − 1)2, its gradient and Hessian are given as

∇L(u, v) =
[
2(u2 − v2 − 1)u
−2(u2 − v2 − 1)v

]
, ∇2L(u, v) =

[
6u2 − 2v2 − 2 −4uv
−4uv 6v2 − 2u2 + 2

]
. (17)

Now consider running gradient flow (GF), whose dynamics is given as[
u̇(t)
v̇(t)

]
= −∇L(u(t), v(t)),

starting from (u(0), v(0)). From the gradient values, it can be checked that u(t)v(t) stays constant
throughout the GF trajectory:

d

dt
(u(t)v(t)) = u(t)v̇(t) + u̇(t)v(t) = 0.

Hence, the GF trajectory satisfies u(t)v(t) = u(0)v(0) for all t, from which we can exactly calculate
the solution of GF.

For simplicity, we focus on the case u(0) > 0 and L(u(0), v(0)) < 1/2. In this case, since
L(u(t), v(t)) is always non-increasing along the trajectory, the trajectory has to stay in the region
u(t) > 0 forever. In such a case, the limit of GF is given by solving

u(∞)2 − u(0)2v(0)2

u(∞)2
= 1,

which amounts to the solution

u(∞) =

√
1 +

√
1 + 4u(0)2v(0)2

2
, v(∞) =

u(0)v(0)

u(∞)
. (18)

Now, consider a global minimum θ∗ = (u∗, v∗) of L(u, v). The minimum necessarily satisfies
u2∗ = v2∗ + 1. Substituting this to the loss Hessian (17) gives

∇2L(u∗, v∗) =
[

4v2∗ + 4 −4v∗
√

v2∗ + 1

−4v∗
√
v2∗ + 1 4v2∗

]

= (8v2∗ + 4)


√

v2∗+1√
2v2∗+1

− v√
2v2∗+1

[ √v2∗+1√
2v2∗+1

− v√
2v2∗+1

]
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from which we can see that

S(θ∗) = 8v2∗ + 4, wmax(θ∗) =


√

v2∗+1√
2v2∗+1

− v√
2v2∗+1

 ,

which are the key quantities need for the calculation of Cu and Cv (16).
Based on this background, we draw Figure 17 using the following procedure. We start GD/PHB

from (u0, v0), whose GF solution (u∗0, v
∗
0) has sharpness 2+ϵ

η . Specifically, we choose η = 0.01
and ϵ = 0.004, and initialize at (u0, v0) ≈ (5.060, 4.950). Every time we update the iterates to get
θt = (ut, vt), we calculate the corresponding GF solution θ∗

t = (u∗t , v
∗
t ) using (18). From there, we

calculate the sharpness, and see if S(θ∗
t ) <

2−ϵ
η ; let τu be the first time step t that S(θ∗

t ) <
2−ϵ
η

happens; from this, we can calculate Cu and Cv as defined in (16) until convergence. In our
experiments, we observed that S(θ∗

t ) was monotonically non-increasing, so there was no subtlety
involved in calculating Cu and Cv. The monotone decrease of sharpness of GF solution is consistent
with Kreisler et al. [26].
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