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Abstract001

Recent advancements in large video-language002
models have revolutionized video understand-003
ing tasks. However, their efficiency is sig-004
nificantly constrained by processing high vol-005
umes of visual tokens. Existing token com-006
pression strategies apply a fixed compression007
ratio, ignoring the variability in semantic den-008
sity among different video clips. Conse-009
quently, this lead to inadequate representation010
of information-rich clips due to insufficient to-011
kens and unnecessary computation on static or012
content-poor ones. To address this, we propose013
LangDC, a Language-aware Dynamic Token014
Compressor. LangDC leverages a lightweight015
language model to describe video clips, con-016
verting them into soft caption tokens as visual017
representations. Trained with our proposed018
semantic density-aware supervision, LangDC019
aims to 1) cover key visual cues necessary for020
downstream task reasoning and 2) dynamically021
adjust compression ratios based on scene rich-022
ness, reflected by descriptions length. Our de-023
sign mimics how humans dynamically express024
what they see: complex scenes (seeing more)025
elicit more detailed language to convey nu-026
ances (saying more), whereas simpler scenes027
are described with fewer words. Experimental028
results show that our method reduces FLOPs029
by 49% compared to VideoGPT+ while main-030
taining competitive performance. Furthermore,031
qualitative results demonstrate our approach032
adaptively adjusts the token compression ratio033
based on video segment richness. Code will be034
released once acceptance.035

1 Introduction036

The field of video understanding has undergone a037

revolution thanks to recent advancements in large038

video-language models (LVLMs) (Liu et al., 2023,039

2024a; Li et al., 2023b; Chen et al., 2023a; Lin040

et al., 2023; Luo et al., 2023). By mapping vi-041

sual token features to the embedding space of large042

language models (LLMs) (Touvron et al., 2023a;043

Zheng et al., 2023; Touvron et al., 2023b; Chowdh- 044

ery et al., 2023; Chung et al., 2022; Ouyang et al., 045

2022), LVLMs provide a unified interface for video 046

understanding tasks, enabling the capture of inter- 047

task relationships and demonstrating exceptional 048

generalization and reasoning capabilities. These 049

breakthroughs pave the way for further progress in 050

artificial general intelligence. However, the high 051

computational cost of LVLMs, resulting from the 052

quadratic complexity of processing numerous vi- 053

sual tokens with billion-scale parameters, impedes 054

their real-world deployment. To alleviate this, con- 055

siderable efforts have been made to derive com- 056

pact, high-quality sets of visual tokens thorough 057

carefully designed multimodal resamplers. These 058

approaches include cross-attention-based methods 059

(e.g, Q-Former (Li et al., 2023a; Ren et al., 2024) 060

and Resampler (Alayrac et al., 2024; Li et al., 061

2023c, 2024c)), convolution-based techniques (e.g, 062

C-Abstractor (Cha et al., 2023) and LDP (Chu 063

et al., 2023, 2024)), and channel merging strate- 064

gies such as pixel shuffle (Ren et al., 2023; Chen 065

et al., 2023b) and adjacent concatenation (Bolya 066

et al., 2022; Song et al., 2024). 067

While effective for improving efficiency, exist- 068

ing methods share a critical limitation: they apply 069

a fixed compression ratio to visual tokens, disre- 070

garding variations in semantic density across video 071

segments. For example, Figure 1 (a) shows two 072

clips with significantly different semantic densities: 073

one is static, with each frame showing close-ups 074

of greenery, while the other is dynamic, showcas- 075

ing various characters, objects, and actions. De- 076

spite this difference, both clips are compressed into 077

the same number of visual tokens due to identi- 078

cal frame counts and resolutions. This uniform 079

compression paradigm fails to produce an effec- 080

tive compact token set, as it may under-represents 081

information-rich segments while wasting tokens on 082

less informative ones. 083

Inspired by the dynamic way of human language 084
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(a) Clips with different semantic density. (b) Existing token compressors. (c) Language-aware dynamic compressor.
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Figure 1: Comparison of LangDC and existing token compressors. (a) illustrates two video segments with
distinct information densities; the bottom segment contains richer visual cues. However, existing token compression
methods (b) represent both segments to the same number of tokens. In contrast, our proposed method (c) dynamically
allocates tokens based on semantic density, drawing on the sequence length awareness of language.

use in describing visual scenes, where simpler085

scenes are typically described with fewer words086

and information-rich scenes (“seeing more”) re-087

quire more detailed descriptions (“saying more”),088

we propose LangDC, a language-aware dynamic089

token compressor. LangDC employs a lightweight090

language model to describe video segments, and091

then uses soft caption tokens (, the hidden states of092

the predicted text tokens) as the compressed visual093

representation. To ensure the compressed token set094

size reflects visual richness, we propose semantic095

density-aware supervision. Specifically, a strong096

video captioner (Liu et al., 2024a) extracts key vi-097

sual cues from each segment, serving as targets098

for predictions of the lightweight language model.099

This explicit guidance enables LangDC to: 1) capi-100

talize on the inherent correspondence between lan-101

guage length and semantic density, facilitating the102

dynamic control of token compression ratio, and103

2) capture key visual clues that facilitating more104

compact representation, facilitating more compact105

representations that enhance reasoning capabilities106

across diverse downstream tasks.107

Experiments on diverse video understanding108

benchmarks validate our method’s effectiveness109

and efficiency. Results show that LangDC reduces110

the FLOPs by 49% while maintaining competi-111

tive performance compared to the strong baseline112

VideoGPT+ (Maaz et al., 2024b). This demon-113

strates that our method produces a more compact114

and semantically rich set of visual tokens. Addi-115

tionally, LangDC outperforms existing state-of-the-116

art token compression techniques at similar com-117

pression ratios. Qualitative results show that our118

approach adaptively adjusts the token compression119

ratio based on the scene richness of video segments.120

To summarize, our contributions are threefold: 121

1) We propose LangDC, a novel language-aware 122

token compression strategy. Using soft language 123

tokens for visual representation, it adaptively ad- 124

justs compression ratios, improving token utiliza- 125

tion over fixed-ratio techniques. 2) We propose 126

semantic density-aware supervision for the token 127

compressors. By explicitly providing reconstruc- 128

tion targets for token compression, we enable the 129

derivation of a more compact feature set that is 130

not only aware of information richness but also 131

preserves key visual cues. 3) Experimental results 132

demonstrate that our method reduces FLOPs by 133

49% relative to the strong baseline VideoGPT+, 134

while maintaining competitive performance. Ad- 135

ditional qualitative results show adaptive compres- 136

sion based on video clip semantic density. 137

2 Related Work 138

Large video-language models. Large video- 139

language models (LVLMs) (Liu et al., 2023; Li 140

et al., 2023b; Chen et al., 2023a; Lin et al., 2023; 141

Luo et al., 2023; Maaz et al., 2024b) have garnered 142

significant attention recently. Leveraging large 143

language models (LLMs) (Touvron et al., 2023a; 144

Zheng et al., 2023; Chowdhery et al., 2023; Chung 145

et al., 2022; Ouyang et al., 2022) as a unified task 146

interface, LVLMs adapt to diverse video under- 147

standing tasks through flexible language instruc- 148

tions. Typically, an LVLM comprises three core 149

components: a visual encoder to perceive frame- 150

level information, a multimodal connector to align 151

vision and language feature spaces, and an LLM 152

for understanding and generating language content. 153

Pretrained on large-scale visual-caption datasets 154

and fine-tuned on video instruction data, LVLMs 155
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Method Token Num.↓
Sub-tasks

Fine-grained Action Object Existence Moving Direction Scene Transition Moving Attribute Avg.

Source of Video – MiT V1 CLEVRER CLEVRER MoVQA CLEVRER –

AvgPooling 2× 2 3328 47.0 81.0 37.0 38.5 85.5 55.37
AvgPooling 4× 4 832 44.0 73.5 26.5 36.5 78.0 52.05
AvgPooling 8× 8 208 48.0 67.0 26.0 40.5 59.0 49.50
AvgPooling 16× 16 80 44.0 49.5 19.5 38.0 49.0 44.40

Oracle Performance – 63.0 96.5 64.0 91.0 96.5 72.4
Oracle Tokens – 260.3 274.3 757.8 156.5 514.0 354.48

Table 1: Performance comparison of LVLMs with varying compression ratios across multiple video under-
standing tasks. Here, Oracle denotes the ideal scenario where the highest compression ratio that yields the correct
response is selected for each test instance. Our key observations are: (1) The ideal number of visual tokens varies
significantly across different videos and tasks, and (2) an oracle model integrating multiple compression ratios
consistently achieves superior performance.

show superior performance over traditional task-156

specific models. Previous methods have enhanced157

LVLMs by: 1) collecting high-quality video in-158

struction tuning data for versatile understanding (Li159

et al., 2023b), 2) utilizing stronger video encoders160

to capture fine-grained dynamics (Li et al., 2024b),161

and 3) designing efficient connectors to improve162

efficiency (Li et al., 2024e). Our proposed method163

further improves multimodal connectors by enhanc-164

ing flexibility through dynamic token customiza-165

tion based on visual information density in videos.166

Visual token compressors. Compressing visual to-167

kens to enhance efficiency poses a crucial challenge168

in large vision-language models. Handling a sub-169

stantial number of tokens produced by long-context170

visual inputs, such as videos and high-resolution171

images, using LLMs substantially escalates mem-172

ory consumption and latency, thereby impeding173

real-world deployment. Various token compres-174

sion techniques (Chen et al., 2024) have been pro-175

posed to shorten visual sequences. For instance,176

Q-Former and Resampler introduce a set number177

of trainable tokens that interact with visual features178

via cross-attention layers to capture essential visual179

cues (Li et al., 2023a; Ren et al., 2024; Alayrac180

et al., 2024; Li et al., 2023c, 2024c). C-Abstractor181

and LDP downsample feature maps using convo-182

lutional layers, preserving spatial structure (Cha183

et al., 2023; Chu et al., 2024). Other approaches184

directly apply simple channel-wise merging oper-185

ations (e.g., mean-pooling, pixel-shuffle) follow-186

ing a multi-layer perceptron, effectively reducing187

model complexity while demonstrating strong gen-188

eralization capabilities (Ren et al., 2023; Chen189

et al., 2023b; Bolya et al., 2022; Song et al., 2024).190

Despite their effectiveness, these methods com-191

press visual tokens using a fixed, predefined ratio,192

limiting their ability to generalize across samples 193

with varying information density. In contrast, we 194

utilize a pre-trained captioner to evaluate informa- 195

tion density and generate soft caption tokens as 196

compressed visual tokens, enabling adaptation to 197

different visual inputs dynamically. 198

3 Motivation on Dynamic Compression 199

Intuitively, videos with varying information den- 200

sities require different compression ratio. To vali- 201

date this hypothesis, we conduct an in-depth anal- 202

ysis on 5 tasks of the MVBench (Li et al., 2024b). 203

This benchmark encompasses a wide range of sub- 204

tasks and diverse data sources, featuring videos 205

with different information densities. We train the 206

MLLM (Maaz et al., 2024b) with different visual 207

token compression ratio (adaptive average pooling 208

with different stride), and evaluate their optimal 209

trade-off between token count and model perfor- 210

mance. Specifically, we employ the oracle metric 211

following (Cai et al., 2024), which identifies the 212

highest compression ratio that yields the correct 213

response for each test instance, and subsequently 214

compute both the token count and performance 215

metrics. 216

As shown in Tab 1, higher compression ratio gen- 217

erally lead to reduced overall model performance. 218

However, the non-uniform distribution of oracle 219

token counts underscores the inherent variability in 220

video information density, revealing the limitations 221

of static token compression methods. Furthermore, 222

the sensitivity of different task videos to changes 223

in visual token counts varies significantly. For in- 224

stance, in more static videos (e.g, State Changes 225

from Prception Tests (Puatruaucean et al., 2023)), 226

reducing the token count from 3k to 80 results in 227

only a 2% drop in performance. Conversely, videos 228
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Figure 2: Overview of the proposed method. LangDC utilizes dual visual encoders to extract visual features,
followed by dynamic compression using CapPruner. The compressed features are combined with the base pruner’s
output and fed into the LLM. The training pipeline consists of three stages: Stage I involves cross-modal pretraining
with video/image-caption pairs, Stage II focuses on CapPruner pretraining using an information density-aware
captions corpus, and Stage III includes supervised fine-tuning with video instruction data.

rich in elements and motion (such as those used229

in Moving Count task) experience a steep decline230

in accuracy as token counts decrease. These ob-231

servations highlight the critical need for dynamic232

compression strategies adaptive to varying video233

content, suggesting this is the future direction for234

video compression.235

4 Methodology236

We introduce LangDC, a Language-aware237

Dynamic Token Compressor, designed to dy-238

namically compress visual content based on239

semantic richness. This capability is achieved240

through the integration of CapPruner, a lightweight241

language expert that transforms visual content242

into semantically rich token representations.243

Leveraging our proposed semantic density-aware244

supervision, CapPruner adaptively allocates the245

number of tokens according to the semantic246

density of the input. We start this section by first247

providing an overview of the LangDC’s pipeline.248

Next, we detail the architecture and functionality249

of CapPruner and the semantic density-aware250

supervision mechanism. Finally, we outline251

the progressive training strategy employed for252

LangDC.253

Overall architecture. We build our model based254

on VideoGPT+ (Maaz et al., 2024b). As illustrated255

in Figure 2, LangDC comprises dual visual en-256

coders for spatial-temporal perception, a projec- 257

tor for vision-language feature alignment, token 258

pruners for visual compression, and an LLM for 259

language understanding and generation. The to- 260

ken pruner module incorporates a lightweight lan- 261

guage expert, termed the dynamic token pruner 262

(CapPruner), alongside an adaptive mean pooler 263

serving as the base pruner. Given an input video, 264

we first divide it several segments and encode each 265

seperately. The resulting features are subsequently 266

passed through the projector and token pruners. 267

The CapPruner dynamically reduces the number 268

of visual tokens within each segment, producing 269

pruned tokens of variable lengths. These tokens 270

are then temporally aggregated and combined with 271

the output of the base pruner before being fed into 272

the LLM for auto-regressive training or inference. 273

4.1 Language-Aware Compression 274

Dynamic compression hinges upon the effective 275

capture of video semantics, which necessitating 276

the integration of a pre-trained language model. 277

However, departing from previous approaches (Ye 278

et al., 2024; Shu et al., 2025) that simply extract 279

visual tokens, our method leverages the language 280

expert to also determine the appropriate compres- 281

sion ratio. Therefore, language-aware dynamic 282

token compressor capitalizes on the autoregressive 283

nature of a language model, while simultaneously 284

learning concise segment-level semantic represen- 285
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tations from teacher model. This section details the286

training methodology and operational mechanism287

of the dynamic compressor.288

Captioner as pruner (CapPruner). The Cap-289

Pruner consists of a lightweight language model290

and two projection layers. In Figure 3, the language291

model’s transformer layers are utilized at various292

stages of training and inference to generate hidden293

states. The two projectors have distinct roles and294

are applied at different stages:295

• The language modeling head from the296

lightweight language model serves as one pro-297

jector. It maps the hidden state to the vocab-298

ulary, enabling supervised training based on299

important visual cues provided by a teacher300

model. This language modeling head is re-301

sponsible for generating tokens and control-302

ling their length. The "padding" token indi-303

cates that the compact visual representation304

are fully compressed.305

• The other projector, known as the post pro-306

jector, aligns the dimensions of the hidden307

state with embeddings from the LLM, facil-308

itating end-to-end instruction tuning and in-309

ference. Notably, CapPruner can select the310

optimal depth of hidden state for compressed311

visual features. In practice, hidden state from312

intermediate layers proves most effective, as313

shallower representations often lack sufficient314

semantic information, while deeper ones may315

exhibit excessive abstraction (Toneva and We-316

hbe, 2019). The detailed experimental results317

are provided in the supplementary materials.318

Semantic density-aware supervision. Effective319

visual semantic compression necessitates concise320

and dynamic supervision. Although manually an-321

notated captions offer high accuracy, they are sus-322

ceptible to annotator bias, resulting in discrepan-323

cies between caption length and the actual density324

of video information. Furthermore, manual anno-325

tations are resource-intensive, leading to limited326

dataset sizes and potential inconsistencies across327

datasets. To address these challenges, we leverage328

the consistent and descriptive capabilities of state-329

of-the-art vision-language models. Specifically,330

we employ LLaVA-OneVision (Li et al., 2024a)331

to extract crucial visual cues from each video seg-332

ment. By eliminating irrelevant and ambiguous lan-333

guage, we refine the supervisory signals to provide334

CapPruner with a focused stream that accentuates335

essential visual information. This approach en- 336

hances the representation of core visual semantics, 337

leading to more accurate compression results. The 338

detailed processing procedure is demonstrated in 339

the supplementary material. For a fair comparison 340

with VideoGPT+ (Maaz et al., 2024b), teacher de- 341

scriptions are constrained to video segments from 342

the instruction tuning dataset. This practice pre- 343

serves data consistency and isolates the influence 344

of dynamic compression. 345

Transformer layers

Visual Tokens

Language Modeling Head

Teacher Last hidden states

semantic density-aware supervision

LLM

Transformer layers

Post Projector

Selected hidden states

LM Head

Visual Tokens

LoRA

Length 
Control

(a) Teacher Model Supervises CapPruner.

(b) CapPruner enables dynamic compression.

CapPruner

CapPruner

Figure 3: Illustration of the dynamic compression
mechanism in CapPruner. (a) We use the captions
generated by a teacher (a strong captioner) to supervise
the training of CapPruner, facilitating it allocate tokens
according to scene richness. (b) By leveraging the hid-
den states of predicted captions as compact representa-
tion, CapPruner dynamically adjusts the compression
ratio according to the "end-of-sentence" token predic-
tion timing.

4.2 Training Recipe 346

Traditional practices for LVLMs suggest that a pro- 347

gressive training strategy is essential to reduce the 348

semantic gap between visual and linguistic repre- 349

sentations. Our proposed method, LangDC, incor- 350

porates a lightweight language expert with built- 351

in knowledge of the semantic space. This expert 352

module is crucial for establishing links between vi- 353

sual representations and language embeddings, re- 354

quiring a distinctive progressive training approach 355

that aligns spatial representations across different 356
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Models LLM
# Params # Frames SFT

# Pairs
Video-MME MVBench Efficiency

FLOPs↓w/o subs w/ subs

Video-LLaVA (Lin et al., 2024a) 7B 8 765K 39.9 41.6 – –
ST-LLM (Liu et al., 2024c) 7B 64 330K 37.9 42.3 54.8 –
VideoChat2 (Li et al., 2024b) 7B 16 2M 39.5 43.8 51.1 –
Chat-UniVi-V1.5 (Jin et al., 2024) 7B 64 649K 40.6 45.9 – –
VideoGPT+ (Maaz et al., 2024b) 3.8B 16 330K 44.5 49.9 58.7 49.85T
LangDC (ours) 3B 16 330K 44.3 51.3 57.1 25.15T

Table 2: Performance comparison with baselines on Video-MME and MVBench.

modalities. The training process comprises three357

sequential stages (shown in Fig. 2):358

Cross-modal pretraining. The pretraining phase359

aims to establish alignment between visual and tex-360

tual representations. Following (Liu et al., 2023),361

the projectors connecting the visual encoders to362

both the CapPruner and the LLM are trained, while363

all other model components remain frozen.364

CapPruner pretraining. We first train CapPruner365

with a base caption dataset to enable it to capture366

the fine-grained details of visual content. To fur-367

ther ensure that CapPruner follows the principle of368

"seeing more, saying more", further refinement is369

required. As explained in the previous section, a370

state-of-the-art LVLM assists the lightweight lan-371

guage expert in producing descriptions of variable372

lengths that match the information density of the373

video segments. During this training phase, both374

CapPruner and the associated visual encoder pro-375

jectors are engaged, using the generated captions376

as supervision signals. Subsequently, CapPruner is377

linked to the base LLM through a post-projector,378

which is initialized by the same data with the cross-379

modal pretraining stage.380

Supervised finetuning. During supervised fine-381

tuning, the model is trained to understand human382

instructions. The LoRA method with a rank of383

128 is implemented on LLM. The interconnect-384

ing projectors between the language expert and385

LLM are fully trained, while all other components386

are frozen. Furthermore, the Adapt Token Pruner387

utilizes a teacher forcing mechanism to improve388

training efficiency during this stage.389

5 Experiments390

5.1 Experiments Setup391

Implementation details. Following392

VideoGPT+ (Maaz et al., 2024b), we adopt393

a dual-encoder setup comprising an image encoder394

(CLIP-ViT-L/14-336 (Radford et al., 2021)) and a395

video encoder (InternVideo2-stage-2-1B (Wang 396

et al., 2024)). Unless otherwise noted, we apply 397

4 × 4 pooling as the BasePruner, initialize the 398

CapPruner with Qwen-2.5-0.5B and employ Qwen- 399

2.5-3B (Team, 2024) for the LLM. For cross-modal 400

pre-training, the CC-595K dataset (Liu et al., 401

2024b) is used to independently train the image 402

and video projectors. Supervised fine-tuning 403

follows the procedure in VideoGPT+, leveraging 404

two instruction-tuning datasets tailored for distinct 405

task formats. Additional details are provided in the 406

supplementary material. 407

Evaluation benchmarks. We evaluate LangDC 408

on both multiple-choice and open-ended VideoQA 409

tasks. For multiple-choice benchmarks, we use 410

MVBench (Li et al., 2024b) and VideoMME (Fu 411

et al., 2024). For open-ended VideoQA, we 412

evaluate our model on MSVD-QA (Xu et al., 413

2017), MSRVTT-QA, ActivityNet-QA and TGIF- 414

QA (Jang et al., 2019). Following prior work (Maaz 415

et al., 2024b), we utilize GPT-3.5-Turbo-0613 to 416

assess response accuracy, with scoring prompts de- 417

tailed in the supplementary material. 418

5.2 Main Results 419

Performance comparison. Table 2 shows 420

LangDC outperforms state-of-the-art LVLMs 421

while reducing computational costs. Compared 422

to VideoGPT +, LangDC reduces TFLOPs by 423

49% with only a performance drop of 1.6% on 424

MVBench. This highlights the efficiency of se- 425

mantic density-aware supervision in preserving 426

key visual information. On Video-MME, LangDC 427

achieves superior performance with fewer parame- 428

ters and less fine-tuning data. Notably, it drops only 429

0.2% without subtitles and exceeds VideoGPT+ 430

by 1.4% with subtitles, excelling especially on 431

long-video tasks which demonstrating CapPruner’s 432

strength in long-range understanding. 433

Table 3 shows that LangDC also surpasses 434

VideoGPT+ by 1.6% on MSVD-QA and 2.2% 435
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Models LLM MSVD-QA MSRVTT-QA TGIF-QA ActivityNet-QA

# Params Accuracy Score Accuracy Score Accuracy Score Accuracy Score

VideoChat (Li et al., 2023b) 7B 56.3 2.8 45.0 2.5 34.4 2.3 26.5 2.2
LLaMA Adapter (Zhang et al., 2024) 7B 54.9 3.1 43.8 2.7 - - 34.2 2.7
Video-LLaMA (Zhang et al., 2023) 7B 51.6 2.5 29.6 1.8 - - 12.4 1.1
Video-ChatGPT (Maaz et al., 2024a) 7B 64.9 3.3 49.3 2.8 51.4 3.0 35.2 2.8
ChatUniVi (Jin et al., 2024) 7B 65.0 3.6 54.6 3.1 60.3 3.4 45.8 3.2
LLaMA-VID (Li et al., 2024e) 7B 70.0 3.7 58.9 3.3 – – 47.5 3.3
Video-LLaVA (Lin et al., 2024b) 7B 70.7 3.9 59.2 3.5 70.0 4.0 45.3 3.3
VideChat2 (Li et al., 2024b) 7B 70.0 3.9 54.1 3.3 – – 49.1 3.3
VideoGPT+ (Maaz et al., 2024b) 3.8B 72.4 3.9 60.6 3.6 74.6 4.1 50.6 3.6
LongVLM (Weng et al., 2024) 7B 70.0 3.8 59.8 3.3 – – 47.6 3.3
LLAVA-Mini (Zhang et al., 2025) 7B 70.9 4.0 59.5 3.6 – – 53.5 3.5
LangDC (ours) 3B 74.0 4.0 59.9 3.6 76.8 4.2 50.3 3.5

Table 3: Performance comparison with baselines on four open-ended VideoQA benchmarks.

Models
Reference Metrics Efficiency

AS AP AA FA UA OE OI OS MD AL ST AC MC MA SC FP CO EN ER CI Avg. # Tokens↓

AvgPooling 2× 2 72.5 57.5 88.9 47.0 59.0 81.0 75.0 35.5 37.0 34.5 86.0 38.5 65.0 85.5 41.0 41.8 49.5 33.0 42.0 57.5 55.37 3328
AvgPooling 4× 4 67.5 54.0 73.7 44.0 57.0 73.5 70.5 35.0 26.5 35.0 85.5 36.5 54.5 78.0 40.0 40.5 43.0 34.0 40.0 52.5 52.05 832
AvgPooling 8× 8 66.0 52.5 76.8 48.0 53.5 67.0 69.5 40.0 26.0 34.0 79.0 40.5 50.0 59.0 39.5 37.0 38.5 33.5 36.0 44.0 49.50 208
AvgPooling 16× 16 57.5 45.0 69.7 44.0 49.5 49.5 68.5 33.0 19.5 28.0 80.0 38.0 47.0 49.0 39.0 34.5 33.0 32.0 35.5 36.0 44.40 80
LangDC (w/ AvgPooling) 68.5 51.5 88.5 49.5 57.0 79.5 65.5 34.0 37.5 31.5 87.5 42.5 67.0 76.5 41.0 39.5 47.5 30.5 39.5 56.0 54.52 1068†

LDPv2 (Chu et al., 2024) 65.5 56 82.3 45.5 57.5 69.0 68.5 36.5 25.0 32.5 83.0 39.5 51.5 61.5 37.5 36.5 37.5 32.5 38.5 50.5 50.29 512
LDPv2 (Chu et al., 2024) 71.0 54.5 84.8 48.0 58.0 79.5 75.5 35.5 31.5 34.5 82.0 43.5 59.5 79.5 39.0 42.0 36.5 33.5 36.5 57.0 54.08 1136
Resampler 67.0 51.5 79.8 43.5 54.0 62.0 70.5 29.0 26.0 30.5 85.0 46.0 49.5 54.0 42.0 40.0 38.5 31.5 35.0 45.0 49.0 832
C-Abstractor (Cha et al., 2024) 69.5 57.5 84.3 45.5 59.0 79.5 69.0 33.5 31.0 34.5 85.5 46.0 59.0 74.5 36.5 39.0 37.0 37.0 38.0 54.5 53.5 832
LangDC (w/ LDPv2) 66.0 55.5 86.0 46.5 57.0 74.0 72.0 37.5 36.5 35.0 86.5 43.5 63.0 74.0 40.5 40.0 44.5 33.0 40.0 51.5 54.13 748†

Table 4: Performance comparison of different token compressors on MVBench. w/ LDPv2 means LDPv2 is
utilized as base pruner. † indicates that the number of tokens varies across different test instances; we report the
average value across all samples.
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Figure 4: Comparison of GPU Memory and Latency.

on TGIF-QA, while remaining competitive on436

MSRVTT-QA and ActivityNet-QA. These results437

confirm CapPruner’s dynamic compression im-438

proves efficiency and preserves key semantic de-439

tails, boosting generalization in zero-shot settings.440

Efficiency analysis. LangDC compress visual to-441

kens from 3328 to approximately 1068, reducing442

computational cost from 49.85 TFLOPs to 25.15443

TFLOPs. As shown in Figure4, it also reduces444

GPU memory and latency compared to pooling,445

even with an added lightweight LLM. Notably,446

LangDC’s efficiency gains scale with larger base 447

LLMs. And table 4 presents the comparison results 448

with other compression methods. Compared to the 449

naive pooling compression strategy, LangDC per- 450

forms on par with a solution using three times the 451

token count and surpasses carefully designed com- 452

pression modules like LDPv2(Chu et al., 2024). Re- 453

placing BasePruner with LDPv2 further improves 454

efficiency, surpassing C-Abstractor and Resampler 455

by 0.6 and 5.1 points using 100 fewer tokens. All 456

methods use the same pretraining and tuning data 457

for fairness. 458

5.3 Ablation Studies 459

This section provides a comprehensive analysis of 460

CapPruner, exploring its dynamic characteristics, 461

training schemes, supervision signals and pruner 462

combinations. Qwen2.5-1.5B serves as the LLM. 463

Dynamic vs. fixed compression ratio. To high- 464

light the strength of dynamic compression, we com- 465

plement qualitative results in Figure 5, showing that 466

CapPruner allocates more tokens to visually rich or 467

action-intensive videos, and fewer to simpler ones. 468

Table 5 further confirms its ability. 469
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Question: What were doing Howard and Leonard when Sheldon entered in the 
room? (A) Howard and Leonard were jumping around.  (B) Howard and 
Leonard were fighting.  (C) Howard and Leonard cooking tacos.  (D) Howard 
and Leonard were playing Wii.  (E) Howard and Leonard were dreaming.

(D) Howard and Leonard were playing Wii.LangDC: 303 Tokens

Question: What unusual item is being received by the hand emerged from 
beneath the toilet door panel? (A) A set of keys. (B) A roll of tissue 
paper.  (C) Chopsticks and a spoon.  (D) A bottle of water.

LangDC: 135 Tokens (C) Chopsticks and a spoon.

LangDC: 281 Tokens LangDC: 122 Tokens

Question: what are the children s doing?

The children are getting off the bus 
and walking away from it.

Question: what does a monkey take easily form the hand of a man?

The monkey takes easily a piece of 
bread from the hand of a man.

Figure 5: Visualization of video QA examples alongside the corresponding number of allocated tokens.

Action Antonym Object Existence State Change Episodic Reasoning

143.2 184.7 249.1 257.2

Table 5: Comparison of exact token numbers of
LangDC across diverse tasks within MVBench.

BasePruner CapPruner Accuracy # Tokens FLOPs

✗ ✔ 51.50 236† 18.24T
AvgPooling 8× 8 ✗ 49.50 208 16.06T
AvgPooling 8× 8 ✔ 51.62 444† 19.51T
AvgPooling 4× 4 ✗ 52.05 832 17.57T
AvgPooling 4× 4 ✔ 54.52 1068† 21.38T

Table 6: Ablation of the combinations of BasePruner
and CapPruner on MVBench. † indicates that the #
tokens is not fixed.

Ablation of different pruners. Table 6 reports470

ablation results on MVBench with different com-471

binations of CapPruner and BasePruner. Using472

CapPruner alone yields 51.50% accuracy with 236473

tokens. In comparison, BasePruner with 8×8 pool-474

ing achieved lower accuracy of 49.50% with a sim-475

ilar token number, while 4× 4 pooling achieved a476

slightly higher but at the cost of significantly more477

tokens. Importantly, combining CapPruner with478

either pooling strategy consistently improves accu-479

racy. Furthermore, CapPruner is compatible with480

other compressors: as shown in Table 4, pairing it481

with LDPv2 yields substantial performance gains.482

Ablation of the training scheme. Table 7 under-483

scores the importance of CapPruner pretraining,484

boosting average accuracy from 45.40% to 54.52%.485

It also highlights the necessity of post-pretraining486

to optimize the connection between CapPruner and487

the LLM, yielding a further gain from 49.12% to488

54.52%.489

Impact of caption supervision signal. Table 8490

Training Schemes Accuracy

Full CapPruner Pretraining 54.52
w/o Post-Pretraining 49.12
w/o CapPruner-Pretraining 45.40

Table 7: Ablation of the training scheme on
MVBench.

Method Pooling 2× 2† Pooling 4× 4 LangDC

w/o captions 55.37 52.05 54.52
w/ caption 55.63 (↑0.26) 52.32 (↑0.27) 54.66 (↑0.14)

Table 8: Impact of caption supervision signal. † indi-
cates the same compression strategy as VideoGPT+.

highlights the role of caption supervision signals in 491

LangDC, particularly in controlling caption length. 492

Adding it to pretraining yields only a modest gain, 493

suggesting that its impact on overall pretraining is 494

limited. 495

6 Discussion and Conclusion 496

This study introduced LangDC, a language-aware 497

dynamic token compressor for video understand- 498

ing. Addressing the limitations of fixed compres- 499

sion ratios, which often fail to capture the vary- 500

ing semantic density of video content, LangDC 501

leverages CapPruner to generate soft caption to- 502

kens as compressed visual representations. Guided 503

by semantic-aware supervision, it effectively cap- 504

tures key visual cues while adjusting compression 505

dynamically. Extensive experiments across bench- 506

marks with varying semantic densities demonstrate 507

the superior performance-computation trade-off of- 508

fered by LangDC’s adaptive token allocation. This 509

strategy not only enhances efficiency but also sets 510

a foundation for future research into more sophisti- 511

cated, adaptive video understanding methods. 512
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Limitations513

While our dynamic compression mechanism514

demonstrates human-aligned linguistic patterns and515

significantly enhances computational efficiency,516

two critical limitations warrant attention. First,517

given current resource constraints, our experi-518

ments focus on 1.5B/3B LLM configurations, leav-519

ing open questions about architectural scaling ef-520

fects. Second, though the visual density-optimized521

compression strategy shows strong multi-turn dia-522

log compatibility, its single-ratio implementation523

may partially constrain adaptability for specialized524

video QA tasks.525
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A Additional Results830

Comparison of downsampling rates for pool-831

ing. Tab A1 confirms that different videos con-832

tain varying information densities, necessitating833

different token counts. We tested all subtasks of834

MVBench with pooling strategies of varying com-835

pression rates and calculated the Oracle, the sce-836

nario where the best tradeoff between visual tokens837

and performance is selected. The optimal num-838

ber of tokens fluctuates across different videos and839

tasks and the oracle model integrates multiple pool-840

ing strategies achieves superior performance.841

Tangible demonstration of dynamic capabilities.842

To investigate the dynamic characteristics of our843

video compression method, we analyzed the length844

distributions of both the supervision signals during845

training and the compressed tokens in inference on846

the MVBench. Fig A2 showcases these distribu-847

tions in two subplots. In subplot (a), we observe848

the distribution of supervision signal lengths for849

various video segments used in training, revealing850

insights into how the model learns to compress851

sequences of varying lengths. Moving to the infer-852

ence phase, subplot (b) illustrates the distribution853

of the final compressed token lengths for complete854

videos from MVBench. This analysis not only855

highlights the overall compression effectiveness of856

LangDC but also sheds light on its adaptability to857

diverse video content.
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858

Ablation study on depth of hidden state. There is859

an interesting phenomenon that among the variable-860

length tokens generated by CapPruner, it is not861

the last layer’s hidden states that perform the best862

as soft caption tokens. Figure A1 illustrates that863

among the depth of hidden states, the zeroth layer864

performs the worst due to its weaker semantic in-865

formation. Meanwhile, the middle layers exhibit866

slightly better performance than the last layer, pos-867

sibly because representations that are too closely868
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tied to the final classification task are more prone to 869

overfitting, which may weaken their general repre- 870

sentational capacity. In this ablation, we do not use 871

BasePruner and fix the LLM as Qwen-2.5-1.5B. 872

Effectiveness of semantic density-aware super- 873

vision. 874

To enhance CapPruner’s sensitivity to visual 875

information density, increased training with ex- 876

plicit supervision is essential. As shown in Ta- 877

ble A2, CapPruner trained without high-quality 878

vision-language pairs from the base caption dataset 879

fails to produce compact and effective visual rep- 880

resentations, resulting in poorer performance. Fur- 881

thermore, naive caption supervision is inadequate 882

and our semantic supervision is critical for achiev- 883

ing optimal results. For this ablation study, the 884

deepest hidden state was chosen as the compressed 885

representation. 886

B Implementation Details 887

Additional details for CapPruner pretraining. 888

To allow CapPruner to dynamically compress 889
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"The video features a person holding a bunch of small, green, 
unripe limes in their hands. The background includes a 
bedspread with a floral pattern and a plastic bag, with some 
limes scattered around. The person appears to be sorting or 
inspecting the limes."

Teacher LVLM

A person holding small, green, unripe limes in their hands, a bedspread with a floral pattern, a 
plastic bag, with some limes scattered around.

Semantic density-aware supervision

Remove unnecessary / connective words Remove associative parts

Video SegmentPrompt

You are a helpful assistant. Please provide a brief 
description of the video, focusing on the main 
subjects, their actions, the background scenes.

Figure B3: The complete process of obtaining semantic density-aware supervision includes using a powerful LVLM
as teacher to generate segment descriptions and a subsequent post-processing procedure.

Base Caption Dataset Semantic Supervision Accuracy

– ✗ 45.40

COCOrecap(Liet al., 2024d)
✗ 46.80 (↑1.40)
✔ 49.98 (↑4.98)

LLaVArecap(Liuet al., 2024a)
✗ 47.26 (↑1.86)
✔ 50.30 (↑4.90)

Table A2: Ablation of the choice of base caption
dataset and semantic density-aware supervision on
MVBench.

visual features, it is crucial to construct super-890

vision signals of appropriate length for effective891

guidance. This process begins with a powerful892

LVLM that describes the scene. We selecte LLaVA-893

OneVision (Liu et al., 2024a) as the teacher model894

to articulate the subjects, actions, and background895

in the video. However, these descriptions are often896

overly verbose. To refine the descriptions, we uti-897

lized a large language model, Qwen2.5-7B (Team,898

2024), to eliminate unnecessary words, connec- 899

tives, and speculative elements, resulting in seman- 900

tic density-aware supervision tailored for specific 901

segments, as shown in Fig B3. 902

Additional details for instruction tuning set. Fol- 903

low VideoGPT+ (Maaz et al., 2024b), supervised 904

fine-tuning uses two distinct instruction-tuning 905

datasets tailored for different task formats. For 906

Multiple-choice VQA, the model is trained on 907

the Kinetics-710 (Kay et al., 2017), Something- 908

Something-v2 (Goyal et al., 2017), conversations 909

from VideoChat (Li et al., 2023b), CLEVRER (Yi 910

et al., 2019), VQA dataset from WebVid (Bain 911

et al., 2021) and NExT-QA (Xiao et al., 2021) 912

datasets, totaling approximately 330K single-turn 913

conversations. For Open-ended VQA, the model is 914

trained on VideoInstruct100K (Maaz et al., 2024a), 915

VCG+ 112K (Maaz et al., 2024b), VideoChat (Li 916

et al., 2023b) conversation and caption data, and 917

Method
Efficiency Reference Metrics

Token Num.↓ AS AP AA FA UA OE OI OS MD AL ST AC MC MA SC FP CO EN ER CI Avg.

Pooling 2× 2 3328 72.5 57.5 88.9 47.0 59.0 81.0 75.0 35.5 37.0 34.5 86.0 38.5 65.0 85.5 41.0 41.8 49.5 33.0 42.0 57.5 55.37
Pooling 4× 4 832 67.5 54.0 73.7 44.0 57.0 73.5 70.5 35.0 26.5 35.0 85.5 36.5 54.5 78.0 40.0 40.5 43.0 34.0 40.0 52.5 52.05
Pooling 8× 8 208 66.0 52.5 76.8 48.0 53.5 67.0 69.5 40.0 26.0 34.0 79.0 40.5 50.0 59.0 39.5 37.0 38.5 33.5 36.0 44.0 49.50

Pooling 16× 16 80 57.5 45.0 69.7 44.0 49.5 49.5 68.5 33.0 19.5 28.0 80.0 38.0 47.0 49.0 39.0 34.5 33.0 32.0 35.5 36.0 44.40

Oracle Performance – 88.5 74.0 95.5 63.0 72.5 96.5 86.0 67.5 64.0 60.0 91.0 49.0 81.5 96.5 51.0 61.5 71.0 50.0 57.0 72.0 72.4
Oracle Tokens – 355.4 270.6 405.9 260.3 256.7 274.3 233.4 373.8 757.8 381.2 156.5 253.2 507.9 514.0 211.4 386.0 497.4 244.7 263.5 485.5 354.48

Table A1: A detailed examination of the performance comparison of pooling strategies with various compression
rates on the entire MVBench benchmark. Oracle denotes the case where the best tradeoff between visual tokens and
performance is picked. Videos across different tasks have varying information loads, with the ideal token count
differing significantly.
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VQA from WebVid (Bain et al., 2021), amounting918

to roughly 260K single-turn conversations.919

Hyperparameter setting. We report the detailed920

hyperparameter settings of LangDC in Tab. B3.921

During the training phase, each video is sampled922

into 16 frames and divided into 4 segments, with923

CapPruner compressing each segment to a maxi-924

mum of 128 tokens, due to the longest supervision925

signal not exceeding 100 tokens.926

LLM-Assisted evaluation. We utilize LLM-927

Assisted Evaluation for open-ended videoQA, fol-928

lowing (Maaz et al., 2024a). Each evaluation929

presents the LLM assistant (GPT-3.5) with the930

question, ground truth answer, and model predic-931

tion, prompting it to return a True or False judge-932

ment and a score (0-5). As depicted in Figure B4,933

this prompt uses roughly 250 tokens per question.934

Our baseline results for open-ended video question-935

answering are drawn from (Maaz et al., 2024b).936

Description Default Value

total frame number 16 frames
segment number 4 segments
max compressed token number 128 tokens ×4 segs
CapPruner hidden state layer 15

Table B3: Hyper-parameter settings of LangDC.

937

C Visualizations938

Figures C5 and C6 demonstrate the performance939

of LangDC and highlight how CapPruner adjusts940

the allocated token count based on the video con-941

tent. These visualizations illustrate the overall to-942

ken count after compression by CapPruner, along943

with video frames and question-answer pairs. This944

effectively showcases the intelligence and adapt-945

ability of our compression scheme, as well as its946

resulting superior performance.947
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# Compute the correctness score
openai.ChatCompletion.create(

model="gpt-3.5-turbo",
messages=[

{
"role": "system",
"content": (

“You are an intelligent chatbot designed for evaluating the correctness of  
            generative outputs for question-answer pairs. "

"Your task is to compare the predicted answer with the correct answer and determine 
            if they match meaningfully. Here's how you can accomplish the task:\n"

"------\n"
"##INSTRUCTIONS:\n"
"- Focus on the meaningful match between the predicted answer and the correct answer.\n"
"- Consider synonyms or paraphrases as valid matches.\n"
"- Evaluate the correctness of the prediction compared to the answer."

)
},
{

"role": "user",
"content": (

"Please evaluate the following video-based question-answer pair:\n\n"
f"Question: {question}\n"
f"Correct Answer: {answer}\n"
f"Predicted Answer: {pred}\n\n"
“Provide your evaluation only as a yes/no and score where the score is an integer value 

      between 0 and 5, with 5 indicating the highest meaningful match. "
"Please generate the response in the form of a Python dictionary string with keys 'pred ’

      and 'score', where value of 'pred' is a string of 'yes' or 'no' and value of 'score' is 
      in INTEGER, not STRING.\n"

"DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python           
      dictionary string.\n"

"For example, your response should look like this: {'pred': 'yes', 'score': 4}."
)

}
]

)

Figure B4: Prompt for ChatGPT in LLM-Assisted Evaluation for the open-ended video question-answering task.
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Token

Question

Answer / GT

What direction is the red sphere moving in within the video?

(A) The object is stationary.  (B) Down and to the right.

(C) Up and to the right.          (D) Up and to the left.

Answer: (A) The object is stationary.

GT:     (A) The object is stationary. 299

Are there any moving spheres when the video ends? 

(A) yes (B) not sure  (C) no

Answer: (A) yes

GT: (A) yes 173

Why is House so interested in learning why Arlene doesn‘t leave her husband when he’s 

questioning her about what she gets out of helping him?

(A) House wants to hurt her feelings   (B) House wants to hit on Arlene 

(C) House thinks her husband will die   (D) House isn't interested he's just fooling around with 

her   (E) House understands the rational, but struggles with the irrational

Answer: (E) House understands the rational, but         

         struggles with the irrational

GT:        (E) House understands the rational, but       

        struggles with the irrational

209

301

What was the price Joey was asking for the entertainment center after chandler said he 

was crazy?

(A) 1,000 dollars       (B) 200 dollars      (C) 5,000 dollers

(D) 1 million dollars   (E) 20 dollers

Answer:   (C) 5,000 dollers

GT:     (C) 5,000 dollers

Question

Answer / GT

Token

Question

Answer / GT

Token

Question

Answer / GT Token

Figure C5: More Cases.
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Token

Why does the presenter emphasize the affordability of the Coby 

Electronics tablet in comparison to the iPad?

Answer:  The presenter emphasizes the affordability of the Coby Electronics tablet to     

    highlight its cost-effectiveness and accessibility to a broader audience.

GT:     The presenter emphasizes the affordability to highlight that the Coby Electronics 

    tablet provides a cost-effective option, making it an attractive proposition for  

    consumers in comparison to the more expensive iPad.

314

Who is playing an acoustic guitar?

Answer:   The man with long hair is playing an acoustic guitar in the video.

GT:          Man.

144

What is a girl doing?

Answer:  The girl is playing with a soccer ball and a dog in the yard.

GT:         Play.

210

296What is demonstrated by the driver steering the Porsche GT3 

with one hand?

Answer:   The driver is shown steering the Porsche GT3 with one hand, showcasing his skill        

     and control over the vehicle.

GT: The driver navigating the Porsche GT3 with one hand demonstrates the car’s 

      precision and agility.

Question

Answer / GT

TokenQuestion

Answer / GT

Token

Question

Answer / GT

Token

Question

Answer / GT

Figure C6: More Cases.
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