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Abstract

Recent advances in generative protein design, protein language models, and ge-
nomic language models have unlocked the ability to generate novel biomolec-
ular sequences with unprecedented efficiency. These systems promise major
breakthroughs in drug discovery, synthetic biology, and fundamental research
but also create a high-stakes national security challenge. Unlike general-purpose
language models designed for broad public use, these are highly specialized sys-
tems with capabilities that only a small community of researchers legitimately
needs. Unrestricted open-source release of such models lowers the expertise and
resource thresholds required to engineer pathogenic proteins or other hazardous
biomolecules, making them attractive tools for malicious actors. We argue that
safeguarding national security requires ensuring that high-risk models are available
only to trusted researchers and institutions with appropriate biosecurity capacity,
while maintaining broad support for open scientific progress in lower-risk do-
mains. We evaluate three approaches for constraining distribution: governmental
regulation, coordinated self-governance within the research community, and archi-
tectural or dataset-level interventions such as the targeted exclusion of pathogenic
sequences. By weighing the feasibility and limitations of each, we argue for proac-
tive safeguards that both protect national security and sustain a vibrant research
and innovation ecosystem.

1 Introduction

Generative artificial intelligence and molecular biology have converged to create highly specialized
tools capable of designing proteins and genomes with unprecedented precision [1–3]. Protein
language models, genomic design systems such as Evo 2, structure predictors, and generative design
platforms, like RFdiffusion, are transforming the biotechnology landscape [1, 4–6]. These systems
can generate novel enzymes, targeted vaccines, engineered antibodies, and synthetic genomes far
faster than traditional methods [2, 7, 8]. As a result, therapeutic development is accelerating, research
bottlenecks are shrinking, and solutions are emerging for biological challenges once considered
beyond reach [9, 10].

Artificial intelligence is now a central driver of biological discovery. Protein language models trained
on vast datasets can predict properties such as fitness, structural stability, and function, and can
generate entirely new proteins [6, 11]. In the fight against SARS-CoV-2, such models were used to
predict viral fitness, anticipate immune escape, accelerate vaccine and therapeutic development, and
model possible evolutionary pathways [12–14]. Their integration into research pipelines is enabling
breakthroughs across medicine, agriculture, and industrial biotechnology [15, 16].
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Yet the same capabilities that enable progress also create significant dual-use risks [10, 13, 17]. Unlike
general-purpose language models designed for wide public use, these biological design systems are
highly specialized, with applications relevant only to a narrow set of researchers. In the wrong hands,
they could lower the expertise, time, and cost required to engineer synthetic threats [10, 17]. Protein
language models can propose mutations that enhance transmissibility or resistance to treatment;
genomic design systems can generate optimized viral genomes; and structure-aware systems such as
RFdiffusion can refine and validate these sequences in silico [6, 18, 19]. This design–validation cycle
mirrors legitimate biomedical research, but for a malicious actor it could accelerate the creation of
dangerous agents, some capable of evading current detection systems [20].

Safeguards such as real-time sequence filtering, red-teaming to uncover misuse pathways, and
screening for pathogenic molecules are among the most practical tools for reducing the likelihood
of AI-enabled biological threats [10, 21]. Many defenses work by detecting homology to known
viruses or proteins, which can block most low-resource misuse by individuals or groups without
significant expertise [22, 23]. But this approach cannot yet reliably stop radically novel designs or
deter well-funded actors with access to custom models and synthesis infrastructure [10, 20, 23]. To
preserve the effectiveness of safeguards, it is our position that two conditions are essential. First,
high-risk protein and genomic design models must shift from open to closed-source access. Second,
their distribution must be limited to vetted institutions with demonstrated biosecurity capacity. Open
release of model weights or unrestricted code enables easy circumvention of safety controls, while
closed access allows developers and oversight bodies to adapt safeguards—such as inference-time
screening with BLAST or structural homology search—as models advance [23].

Securing model access must be complemented by safeguards at the synthesis stage. DNA synthesis
providers should screen orders not only for exact sequence matches but also for structural similarity to
dangerous proteins or genomes. This two-tiered approach—governing both the design and production
phases—would substantially raise barriers to malicious use while preserving the open scientific
ecosystem that drives legitimate progress.

It is critical to emphasize that these safeguards, while essential, are not sufficient on their own to fully
prevent future biosecurity risks. A resilience-based strategy, which focuses on the rapid development,
validation, and deployment of therapeutics, vaccines, and other countermeasures, must be pursued
alongside preventative measures [24, 25]. Effective biosecurity requires a multifaceted approach
that both limits the potential for misuse through controlled access and oversight and strengthens our
capacity to respond quickly to emerging threats.

We argue that high-risk biological design models, including those for proteins and genomes,
should not be openly released. Instead, access should be limited to trusted researchers and insti-
tutions under strict oversight. Striking this balance is essential: fostering a vibrant research and
innovation ecosystem while ensuring that these powerful technologies do not become tools for
creating the next generation of biological threats.

2 The Case for Closed-Source Models

Advanced protein and genomic design models present an unusually high biosecurity risk. These
systems can engineer viral proteins with enhanced immune escape, increased binding affinity, or
other pathogenic traits [10, 17]. Models and frameworks such as EVEscape, EVE-Vax, and VIRAL
can map mutational pathways to generate novel, high-risk variants of existing viruses [8, 13, 26].
Generative design platforms like RFdiffusion and ESM3 extend this further, producing entirely new
proteins that share little or no sequence similarity with known pathogens yet may act as structural
homologs [6, 10, 27]. Such designs could evade sequence-based diagnostics and detection systems,
creating substantial national security concerns if misused [20].

These models enable misuse in several technical ways. They can optimize protein sequences for sta-
bility, binding affinity, or immune evasion, effectively providing a “blueprint” for pathogenic proteins
[13, 28, 29]. They can explore mutational spaces far beyond natural evolution, revealing sequences
with enhanced virulence or resistance to existing therapeutics [12, 26, 30, 31]. Theoretically, model
latent-space manipulation can be exploited to create entirely novel proteins that retain functional
activity but remain invisible to homology-based screens. Even actors without full experimental
pipelines could identify high-risk candidates and outsource synthesis to third parties—underscoring
the need for preemptive safeguards [9, 10, 32].
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Open access to these models would substantially undermine existing protections. Controlled-access
deployment allows operators to implement inference-time safeguards such as keyword filtering,
homology screening, and embedding-based similarity detection. For example, the ESM3 API
automatically screens outputs against databases of viral and pathogenic proteins, blocking high-risk
sequences [33]. While not foolproof—particularly against radically novel designs or well-funded
state-level actors—such measures remain the most practical way to reduce misuse by lower-resource
or opportunistic groups [32, 34].

Closed-sourcing also enables monitoring and accountability. Outputs can be logged for review, and
suspicious users flagged for oversight [35, 36]. Software frameworks can maintain these logs even if
limited code or weights are shared with vetted researchers.

While critics contend that openness accelerates scientific progress, full release of model weights is
not necessary for reproducibility or legitimate research. Replication and validation can be supported
through controlled access mechanisms, such as vetted data sharing and audited compute environments.
The incremental scientific value of unrestricted weight release is minimal compared to the substantial
security risks, particularly in biological design, where generated sequences must undergo experimental
validation to assess clinical relevance [10, 29]. Moreover, the threat is not confined to state actors;
many malicious activities are undertaken by individuals or small groups with limited resources. By
increasing the cost and complexity of misuse, controlled access provides critical time for detection,
mitigation, and response.

Importantly, closed-sourcing does not preclude scientific progress. Advanced biological design still
requires substantial wet-lab and computational infrastructure [10, 37]. Secure APIs and restricted-
weight sharing—modeled on services like the AlphaFold Server or controlled ESM3 API—can
provide researchers with access while preserving screening protocols, audit logs, and inference-time
safeguards [33, 38]. Closed-source distribution ensures that as capabilities advance, safeguards
remain enforceable. Once model weights are openly released, they cannot be recalled or retroactively
regulated—an irreversible exposure of dual-use technology [39].

3 Strategies for Managing Closed-Source Protein Models

3.1 Federal Roles in Managing High-Risk Protein Models

Managing access to advanced protein and genomic design models requires safeguards that reduce
the risk of misuse without stifling scientific progress. Most biological and computational research
should remain entirely unaffected. But a narrow class of systems with unusually high capabilities
poses distinctive national security concerns, and the federal government has a central role to play
in ensuring they are managed responsibly. Oversight in this context should remain focused and
unobtrusive—designed to preserve innovation while creating meaningful barriers to misuse.

The first step is to define clearly which models fall into this category. Risk should be tied to
demonstrated capability rather than model size or training data. Systems that can reliably propose
immune-escape mutations, design functional toxins, or generate novel proteins that act as functional
or structural homologs of dangerous pathogens warrant special treatment. Developers of such models
should be expected to provide a concise description of the system’s capabilities, safeguards, and
intended use contexts. Such metadata, compiled in a simple federal registry, creates transparency
without forcing every new model through an onerous approval pipeline.

Access to these models should be limited to vetted researchers and institutions with appropriate
biosafety and governance infrastructure. Federal agencies are well placed to coordinate this process,
which should resemble familiar applications for grants or high-performance computing resources:
structured, documented, but not unduly burdensome. Once a laboratory demonstrates that it meets
baseline standards, it should be able to access multiple models without repeated applications. Tempo-
rary supervised access can be provided to peer reviewers, allowing reproducibility to be maintained
even when model weights are not openly distributed.

For commercial organizations, compliance would be minimal. Companies already monitor usage,
protect intellectual property, and restrict access to proprietary algorithms. Reporting on safeguards
such as red-teaming, filtering, and query logging is aligned with existing practice and does not require
new bureaucracy. Academic institutions face a different challenge, given their emphasis on open
science. Here the balance should be to continue publishing research findings freely, while ensuring
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that access to high-risk models occurs through secure APIs or supervised weight-sharing, with clear
records of institutional approval coordinated through federal channels.

Technical measures further reduce misuse risk while keeping research efficient. Hosted access allows
inference-time safeguards such as sequence and structure screening, anomaly detection, and query-
pattern monitoring. Logs of model outputs, preserved in tamper-evident form but with appropriate
privacy protections, create accountability and allow for after-the-fact review in the event of suspected
misuse. None of these measures are perfect, but together they raise the cost of malicious activity
while imposing minimal friction on legitimate research.

Oversight of model access should also be paired with safeguards at the synthesis stage. DNA synthesis
providers form the final barrier between a digital design and a physical organism. This approach
aligns with recent federal initiatives such as the Biden administration’s directives on DNA synthesis
screening and the Trump administration’s AI Action Plan, both of which emphasize responsible
innovation through integrated oversight mechanisms [40, 41]. Universal screening of orders for
both sequence and structural similarity to pathogens should become standard practice, integrated
into existing provider workflows. Compliance can be tied to funding eligibility and procurement
preferences rather than solely strict punitive measures, maintaining a considerate approach while
establishing clear expectations.

Because biotechnology and AI research are global, federal oversight must also be coordinated
internationally. Shared minimum standards for model access, safeguards, and synthesis screening can
prevent adversaries from exploiting regulatory gaps, while mutual recognition of vetted institutions
reduces duplicative bureaucracy across jurisdictions. To avoid unnecessary restrictions, well-qualified
laboratories in partner countries should be supported so that compliance costs do not exclude them
from legitimate research.

Oversight should remain adaptive, with requirements subject to periodic review and sunset clauses
that can be adjusted as evidence evolves. This form of collaborative governance ensures that rules
remain flexible and do not become rigid barriers that hinder scientific progress.

Essentially, a narrow set of biological design models should be treated as sensitive and subject to
controlled access under coordinated federal oversight. Researchers and institutions seeking to use
them would undergo a straightforward vetting process and then be permitted access through secure
channels with built-in safeguards. DNA synthesis providers would apply standardized screening,
and allies would coordinate internationally to avoid gaps and duplicative burdens. This approach
preserves an open and vibrant research ecosystem while ensuring that the most powerful biological
design tools are managed with the seriousness their national security implications demand.

3.2 Community-Led Standards and Consortia for Managing High-Risk Protein Models

An alternative to federal oversight is a community-led model in which universities, companies, and
research organizations voluntarily coordinate standards for responsible development and access.
Many commercial entities already have incentives to keep high-capability biological models closed
to protect intellectual property, but they should also be encouraged to adopt and publicize strong
safeguards. Because corporate incentives vary, complementary self-governance by the academic and
nonprofit research community is essential.

In this approach, a decentralized consortium of participating institutions would set baseline require-
ments that any high-risk biological design model must meet before dissemination or demonstration.
Crucially, the consortium would establish a strong expectation that such models remain closed-source,
with access mediated through secure APIs or supervised sharing with approved institutions.

To make compliance feasible, the consortium could coordinate funding to offset the costs of re-
sponsible hosting—maintaining secure portals, monitoring systems, and compute infrastructure. By
lowering the expense of secure deployment, well-resourced standards help make closed, responsible
access the easier choice.

Community accountability would also play a role. Participating institutions would be expected to log
and report suspicious or malicious activity, with responses handled through established academic or
institutional processes. The consortium could also coordinate with major funders and publishers so
that compliance becomes a condition of grant eligibility or publication. In practice, this would align
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incentives: responsible actors gain recognition and access, while persistent non-compliance carries
reputational and funding consequences.

Finally, the consortium should promote ongoing research into model evaluation and biosecure
benchmarking. Shared datasets, standardized protocols, and collaborative red-teaming would raise
the technical bar for responsible release and ensure that safety assessments are comparable and
reproducible.

This decentralized approach cannot guarantee perfect coverage. But by embedding the expectation of
closed access into professional norms, pooling resources for secure hosting, and aligning publishers
and funders around shared standards, the research community can significantly reduce risks while
preserving the openness and collaboration that drive innovation in the life sciences.

3.3 Pathogen Exclusion: A Dataset-Level Intervention

Achieving either comprehensive federal oversight or broad community concordance will take sus-
tained effort and time. As an interim measure, one practicable dataset-level intervention is to restrict
the open-sourcing of protein design models, protein language models, and genomic language models
trained on pathogenic or viral sequences.

By excluding such data—as in the open-source versions of ESM3 or Evo 2—the generative capacity
of models to produce hazardous proteins can be meaningfully reduced [4, 27, 31]. This safeguard is
not foolproof, since homologous proteins and shared domains may still present risks, but it represents
a narrower and more feasible step than wholesale regulation of all models, and one more likely to
attract community and policy support.

Under this approach, researchers could still develop internal models trained on comprehensive
datasets, including pathogenic proteins, but these would remain closed and accessible only through
secure portals or private hosting. Only models trained on non-pathogenic data would be eligible for
open-source release. This compromise preserves the benefits of transparency and collaboration for
the vast majority of biological research while lowering the likelihood that open-source systems could
be directly misused to design dangerous sequences.

4 Conclusion

The rapid advancement of generative protein design models, protein language models, and genomic
language models has brought the life sciences to a pivotal juncture. These systems offer transformative
opportunities for scientific discovery and biomedical innovation, yet their capacity to generate novel,
potentially pathogenic biomolecules introduces unprecedented biosecurity risks. Unrestricted open-
source dissemination of such models removes critical barriers to misuse, placing powerful capabilities
within reach of actors lacking the necessary oversight or accountability.

This paper has argued that some, and in certain cases all, high-capability biological design models
should remain closed-source to mitigate these risks. Through the examination of governmental
regulation, coordinated academic self-governance, and targeted exclusion of pathogenic data from
training sets, we have outlined multiple pathways for restricting access. While each carries limitations,
timely consensus and decisive action can ensure that the impact on legitimate research remains
minimal.

By implementing safeguards before dangerous capabilities become entrenched in the open domain,
the research community can protect the integrity of scientific progress while strengthening global
biosecurity. Swift, coordinated measures will not only reduce the risk of catastrophic misuse, but also
set a precedent for responsible governance in the age of powerful generative biological technologies.
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