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ABSTRACT

Lightweight speech recognition models have seen explosive demands owing to a
growing amount of speech-interactive features on mobile devices. Since designing
such systems from scratch is non-trivial, practitioners typically choose to compress
large (pre-trained) speech models. Recently, lottery ticket hypothesis reveals the
existence of highly sparse subnetworks that can be trained in isolation without
sacrificing the performance of the full models. In this paper, we investigate the
tantalizing possibility of using lottery ticket hypothesis to discover lightweight
speech recognition models, that are (1) robust to various noise existing in speech;
(2) transferable to fit the open-world personalization; and 3) compatible with
structured sparsity. We conducted extensive experiments on CNN-LSTM, RNN-
Transducer, and Transformer models, and verified the existence of highly sparse
“winning tickets” that can match the full model performance across those backbones.
We obtained winning tickets that have less than 20% of full model weights on
all backbones, while the most lightweight one only keeps 4.4% weights. Those
winning tickets generalize to structured sparsity with no performance loss, and
transfer exceptionally from large source datasets to various target datasets. Perhaps
most surprisingly, when the training utterances have high background noises,
the winning tickets even substantially outperform the full models, showing the
extra bonus of noise robustness by inducing sparsity. Codes are available at
https://github.com/VITA-Group/Audio-Lottery.

1 INTRODUCTION

End-to-end automatic speech recognition (ASR) (Wang et al., 2019; Hannun et al., 2014; Graves,
2012; Chorowski et al., 2015; Dong et al., 2018a) has become an indispensable technology in
consumer-interactive devices (e.g., smartphones, smart speakers, tablets) over the past few years (He
et al., 2019; Cohen, 2008; Schalkwyk et al., 2010). Conventional on-device ASR systems usually
require the involvement of servers, i.e., streaming the audio to servers and then streaming the results
back to the devices. By contrast, recent studies (He et al., 2019; McGraw et al., 2016; Kim et al.,
2019; Sim et al., 2019; Park et al., 2018; Waibel et al., 2003; Arık et al., 2017) have spurred the
success of ASR models fully run on devices, which can be advantageous in terms of computational
resources, latency, and user data privacy.

Developing on-device ASR models is challenging since the computational resources (e.g., CPU,
memory, battery) are typically very limited. A standard design approach to fit ASR model under
budget is through applying various neural network compression techniques to the larger ASR models,
such as network pruning (Takeda et al., 2017; Shangguan et al., 2019; Gao et al., 2020), knowledge
distillation (Li et al., 2018a), and parameter quantization (He et al., 2019; Sainath et al., 2020).
However, there always exists a trade-off between computational efficiency and the model performance,
and the efficiency improvements are usually at the cost of word error rate (WER). In most prior works,
we observed a non-negligible degradation of WER in compressed models.

*Equal Contribution. Shaojin Ding is now with Google. This work was finished when he was with Texas
A&M University.
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A new horizon emerges with the discovery of lottery tickets hypothesis (LTH) (Frankle & Carbin,
2019b). LTH empirically demonstrated the existence of highly sparse matching subnetworks (i.e.,
winning tickets) in full dense networks, that can be independently trained from scratch to match or
even surpass the performance of the latter. LTH was widely observed in various models in computer
vision (Liu et al., 2019b; Evci et al., 2019; Frankle et al., 2020c; Savarese et al., 2020; Wang et al.,
2020a; You et al., 2020; Ma et al., 2021; Girish et al., 2020) and natural language processing (Gale
et al., 2019; Yu et al., 2020; Prasanna et al., 2020; Chen et al., 2020b;c). Yet to our best knowledge, it
has not been studied nor utilized in the realm of speech processing and recognition .

This paper presents the �rst investigation on LTH for developing on-device ASR models. Despite the
rich literature of LTH in vision and language, a practically useful winning ticket for real-world ASR
would demand two unique properties:transferability , noise robustness.

• As one persistent challenges of ASR, each individual has a different voice and speaking style.
Unlike text or images, whose data are much more “standardized”, the spoken word varies greatly
based on regional dialects, speed, emphasis, even social class and gender. Therefore, scaling up
any ASR system has always been a signi�cant obstacle, since the testing utterances may have very
different distribution from the training utterances. That has made transferability a crucial demand
for ASR in the open world.

• In an ideal world, one would have to speak very clearly, slowly, and in an environment with no
background noise, for the sounds being recognized: that unfortunately will not happen in the
practice. In the real-world ASR applications, noise robustness is becoming another crucially
demanded technological factor since ASR is now expected to work in much more dif�cult acoustic
environments than in the past (Li et al., 2014). For example, the recognition of speech recorded
by distant microphones is challenged by acoustic interference such as noise, reverberation and
interference speakers (Kinoshita et al., 2020; Haeb-Umbach et al., 2019; Kinoshita et al., 2013).
Even in the standard ASR benchmark such as LibriSpeech (Panayotov et al., 2015), there are
signi�cant background noise in its “clean” subset (Zen et al., 2019).

More importantly, prior LTH studies mostly use unstructured sparsity during model pruning. However,
designing chips that speeds up unstructured sparse networks are much more complex than those for
structured sparsity (e.g., Block-Sparse GPU Kernels (Gray et al., 2017)). Together with the two
unique gaps, they make ASR no less challenging than visual recognition or text understanding, if not
more. They account for the prior arts' dif�culty to maintain a satisfactory balance between model
ef�ciency and recognition performance; and similarly, they question the applicability of LTH in ASR.

We provide an af�rmative, positive answer of LTH in ASR. As the subject of study, we choose
most commonly used ASR architectures in both research and products over the past few years:
1) CNN-LSTM with connectionist temporal classi�cation (CTC) (Graves et al., 2006); 2) RNN-
Transducer (Graves, 2012); and 3) Convolution-augmented Transformer (Gulati et al., 2020; Burchi
& Vielzeuf, 2021). We conducted extensive LTH experiments using these backbones on three
popular corpora: TED-LIUM (Rousseau et al., 2012), Common Voice (Ardila et al., 2020), and
LibriSpeech (Panayotov et al., 2015). Unlike most of existing LTH studies that only approached to
explaining and demonstrating the correctness of LTH theory, in this work, we make the �rst attempt
to apply LTH to real-world use cases. Namely, we investigate three unique properties that were rarely
studied in previous LTH research but are key to user-interactive ASR devices, bringing new insights
to both LTH theory and lightweight ASR research. Our main contributions are outlined below:

• We for the�rst time reveal the existence of winning tickets in the context of ASR by answering three
research questions regarding LTH theory. The most lightweight winning tickets from CNN-LSTM,
RNN-Transducer, and Conformer backbones only possess 21.0%, 10.7%, and 8.6% remaining
nonzero weights, respectively. We also show that winning tickets signi�cantly outperform other
state-of-the-art network pruning and knowledge distillation methods.

• We are the�rst to explore the use ofstructuredsparsity (i.e., block sparsity (Narang et al., 2017b))
in LTH, and successfully found highly sparse winning tickets (e.g., 4.4% remaining weights) that
have no performance degradation compared to usingunstructuredsparsity.

• Winning tickets have exceptional transferability across different datasets, which are notably better
than full models. Also, the winning tickets identi�ed from large source datasets transfer better.

• In the presence of various levels of background noise, the winning tickets consistently achieve
signi�cantly better WERs than full models. That indicates stronger noise robustness might be an
extra bonus of inducing sparsity, anda missing gemby previous LTH works.
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2 RELATED WORKS

End-to-End Automatic Speech Recognition. Previous mainstream ASR systems are mostly based
on hidden Markov model (HMM)-Gaussian mixture model (GMM) or HMM-Deep neural network
(DNN). These systems can achieve descent performance. However, such system is usually composed
of modules (e.g., acoustic model, language model, lexicon) that are needed to be trained separately,
which makes it hard to be optimize globally in products (Wang et al., 2019).

End-to-end ASR can directly transcribe an input audio sequence to a token (e.g., grapheme or
phoneme) sequence. Current end-to-end ASR frameworks can be generally categorized into three
types: CTC-based (Hannun et al., 2014; Amodei et al., 2016; Graves & Jaitly, 2014; Miao et al.,
2015; Eyben et al., 2009), RNN-transducer (Graves, 2012; Graves et al., 2013; Rao et al., 2017; Dong
et al., 2018b), sequence-to-sequence (Seq2Seq) model (Chorowski et al., 2015; Bahdanau et al., 2016;
Chan et al., 2016; Zhang et al., 2017; Chiu et al., 2018; Prabhavalkar et al., 2018), and Transformer
model (Gulati et al., 2020; Dong et al., 2018a; Wang et al., 2020b; Baevski et al., 2020).

CTC (Graves et al., 2006) is essentially a loss function, which maximizes the probability of all
the paths that correspond to the ground-truth token sequence, with an augmented blank token “-”
indicating no output. It avoids the need of segmental alignment/labels in training utterances, which
makes tons of speech materials usable without additional annotating effort and thus fully exploits
the modeling capacity of DNNs. RNN-transducer is composed of an encoder for the input audio
sequence, a prediction network to model the interdependencies in between the output token sequence,
and a joint network to align the input and output sequence and produce the prediction. Seq2Seq
model usually has an encoder-decoder structure, where the encoder maps the input audio sequence to
a hidden representation sequence and the decoder autogressively decodes the output token sequence.
An attention mechanism (Chorowski et al., 2015) is trained to learn the alignment between the input
and output sequences. Transformer models are similar to Seq2seq models but use multi-head attention
(MHA) (Vaswani et al., 2017) layers for encoders and decoders, which has been proven to achieve
the state-of-the-art ASR performance.

Lottery Tickets Hypothesis. The recently emerged LTH (Frankle & Carbin, 2019b) deviates from
the common wisdom of after-training pruning (Han et al., 2015), and demonstrates the existence
of highly sparse subnetworks that are independently trainable from scratch, calledwinning tickets.
Once trained, they are capable of matching or even surpassing the performance of their full models.
Follow-up efforts (Renda et al., 2020; Frankle et al., 2020b) introduce the effective weight rewinding
techniques to scale up LTH to large networks on large-scale datasets. LTH draws wide attention from
various deep learning �elds, and has been studied in image classi�cation (Liu et al., 2019b; Evci
et al., 2019; Frankle et al., 2020c; Savarese et al., 2020; Wang et al., 2020a; You et al., 2020; Ma
et al., 2021; Chen et al., 2021d; 2022a;b), natural language processing (Gale et al., 2019; Yu et al.,
2020; Prasanna et al., 2020; Chen et al., 2020b;c), object detection (Girish et al., 2020), generative
adversarial networks (Chen et al., 2021e; Kalibhat et al., 2020; Chen et al., 2021a), graph neural
networks (Chen et al., 2021b), reinforcement learning (Yu et al., 2020), and life-long learning (Chen
et al., 2021c). Several pioneer works (Mehta, 2019; Morcos et al., 2019; Desai et al., 2019; Chen
et al., 2020b;a) also investigate LTH transferability across datasets and downstream tasks.

Yet to the best of our knowledge, LTH in speech models remains untouched – and that would not
be a trivial extension for three aspects of reasons. On thetasklevel, ASR has unique demands for
individual user transferrability and noise robustness, which has been explained previously. On the
modellevel, compared to CV models, speech models are mostly based on RNN backbones (Hannun
et al., 2014; Chan et al., 2016), which contain recursive computational graphs and are notoriously
unstable to train. That makes the pruning of RNN-based models challenging too (Zhang & Stadie,
2019), and off-the-shelf methods developed for pruning CNNs are often found ineffective or even
inferior to random pruning, when applied to RNNs. Pruning methods customized for RNNs typically
call for special sparse structures or stability regularizations (Narang et al., 2017a;b; Kliegl et al.,
2017; Wen et al., 2018; Zhang & Stadie, 2019), and it is hence unclear whether IMP would remain
stable and effective for RNN-based models in ASR. On thedatalevel, compared to NLP models,
the sequence lengths of speech signals are usually signi�cantly larger than word embeddings (e.g.,
the spectrogram sequence length of a 10-second speech utterance extracted with 10ms shift is 1,000;
the number of words in a sentence is usually between 10 and 50), which also inevitably costs higher
computational complexity. Therefore, �nding sparse subnetworks that can maintain the full model
performance for ASR models is practically meaningful yet highly non-trivial.
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3 PRELIMINARIES AND SETUPS

Backbone Network. We investigate three ASR backbone networks that are widely used in both
academia and productions: 1) CNN-LSTM (Amodei et al., 2016) model with CTC loss (Graves et al.,
2006); 2) RNN-Transducer (Graves, 2012); and 3) Convolution-augmented Transformer with CTC
(Conformer) (Gulati et al., 2020). Please see Appendix A.1 for details of the backbones.

Datasets, Training, and Evaluations. We conducted experiments on three commonly used ASR
corpora: TED-LIUM (Rousseau et al., 2012) (118 hours), Common Voice (Ardila et al., 2020) (582
hours), and LibriSpeech (Panayotov et al., 2015) (960 hours). Note that LibriSpeech has two test
sets: test-clean – little noise inutterances; test-other – considerable noise in utterances. We test the
LibriSpeech model on the two test sets hereinafter. During training, we set the batch size to 32 and an
initial learning rate to0:0003, which is annealed down by a factor of1:1 at the end of each epoch. All
the models were trained for 16 epochs. To evaluate the performance, we consider two measurements:

� Word Error Rate.WER is the standard metric measuring the accuracy of ASR models. WER is
computed as:WER = ( S + I + D)=N, whereS, I , D , andN denote the number of substitutions,
insertions, deletions, and the total number of words, respectively.

� Number of Parameters.The number of parameters measures the complexity of a model. In our case,
since all subnetworks were pruned from the full models, we use the percentage ofRemaining Weights
as an alternative measurement. We de�neSparsityasSparsity(%) = 100%� Remaining Weights(%).

Subnetworks. For a dense modelf (x; � ), its subnetworks can be derived asf (x; m � � ) with a
binary pruning maskm 2 f 0; 1gd, where� is the element-wise product andd is the dimension
of pruneable model parameters. We useA D

t (f (x; � )) to represent the training algorithm (e.g.,
Adam (Kingma & Ba, 2017) with grid searched hyperparameters) that trains a networkf (x; � ) on a
datasetD (e.g., LibriSpeech) fort iterations. Let� 0 be the random initialized network weights.

Subnetwork Evaluation. To measure the generalization ability of obtained subnetworks, we de�ne
ED (A D

t (f (x; � ))) as the evaluation function of modelf returned fromA D
t on the datasetD. Then,

we further introduce:

? Matching subnetworks.Following the de�nition in (Frankle et al., 2020a; Chen et al., 2020b;a), a
subnetworkf (x; m � � ) is matchingif it satis�es the following condition that indicates matching
subnetworks achieveno worse performance thanits dense counterpart under the same training
algorithmA D

t and evaluation metricED : ED
�
A D

t (f (x; m � � ))
�

� E D
�
A D

t (f (x; � 0))
�
.

? Winning ticket.f (x; m � � ) is awinning ticketfor A D
t , if it is (i ) a matching subnetwork and (ii )

� = � 0 for A D
t .

? Transferable Winning ticket.A subnetworkf (x; m � � ) is transferableto target datasetsfD i gN
i =1

if and only if it is a winning ticket for eachA D i
t i

. The subnetworkf (x; m � � ) is derived from the
source datasetDs =2 fD i gN

i =1 .

Pruning Method for Subnetwork Searching. Iterative weight magnitude pruning (IMP) is the
widely used algorithm in previous LTH literature (Frankle & Carbin, 2019a; Frankle et al., 2020a;
Chen et al., 2020b). To identify subnetworksf (x; m � � ), IMP performs following three steps: (1)
training a unpruned dense network to completion on a datasetD (i.e., applyingA D

t ); (2) eliminating a
portion of insigni�cant weights with the globally smallest magnitudes (Han et al., 2015; Renda et al.,
2020) so that the model only hassi % of weights remaining (i.e., the sparsity); (3) rewinding model
weights to� (� = � 0, the original random initialization; or� = � pre , the weights from a pre-trained
model) and �netuning the subnetwork to converge by leveragingA D

t . Note that steps (2) and (3)
usually needs to be iteratively repeated for several rounds for �nding highly competitive winning
tickets. In all experiments, we setsi % = (1 � 0:8i ) � 100%, wherei is the number of iterations.

4 THE EXISTENCE OFWINNING TICKETS IN SPEECHRECOGNITION

In this section, we explore the existence of winning tickets in the three ASR backbones. Namely, we
would like to answer the following research questions from an empirical perspective:

• RQ1: Can we �nd winning ticketsf (x; mIMP � � ) for speech recognition model using
IMP? How much do they improve model complexity?
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Table 1:Performance of three backbones at theextremesparsity or at thebestperformance on LibriSpeech
test-cleansubset. The performance ontest-othersubset has a similar trend (see Appendix A.3).#Params full :
number of parameters in full model, in which we use Mega (� 106) as the unit;WER full : WER of full models;
WER ext : WER of the winning tickets at extreme sparsity;WER best : WER of the best performing winning
tickets. Remaining Weight (RW) is included as model complexity measurement.

Backbone #Params full WER full WERext RWext (#Params) WERbest RWbest (#Params)

CNN-LSTM 86.62M 8.02 7.98 21.0% (18.19M) 7.13 51.2% (44.34M)
RNN-Transducer 132.23M 5.90 5.71 10.7% (14.14M) 5.39 41.0% (54.21M)

Conformer 65.84M 2.55 2.49 16.8% (11.06M) 2.26 51.2% (33.71M)

Table 2:Performance of CNN-LSTM backbone (86.62M parameters) at theextremesparsity or at thebest
performance on TED-LIUM, CommonVoice, and LibriSpeech datasets.

Dataset WER full WERext RWext (#Params) WERbest RWbest (#Params)

TED-LIUM 15.93 15.70 4.4% (3.81M) 14.04 16.8% (14.55M)
CommonVoice 5.57 5.41 16.8% (14.55M) 4.17 64.0% (55.43M)

LibriSpeech (test-clean) 8.02 7.98 21.0% (18.19M) 7.13 51.2% (44.34M)
LibriSpeech (test-other) 20.59 20.53 21.0% (18.19M) 19.21 51.2% (44.34M)

• RQ2:Do winning tickets identi�ed by IMP have less complexities or better performance,
compared to random pruning/random tickets and other compression methods?

• RQ3: Instead of using randomized weights� 0 as the initialization of IMP, does it improve
the performance of winning tickets if we use weights� pre from a pre-trained model?

RQ1: Does winning tickets exist in speech recognition models?To answer the questions, we
conducted experiments on three backbones and three datasets. For each trial, we �rst run IMP to
extract a binary pruning mask at each sparsity. Then, we generate one subnetwork at each sparsity
by applying the corresponding mask to the model and reset the weights to the original random
initialization � 0. Finally, we train each subnetwork and computes their WER on the test set to
determine if they are winning tickets. All the training hyperparameters in training a subnetwork are
the same as those in training the full model.

As shown in Table 1, winning tickets can be identi�ed on all three backbones. The most lightweight
winning tickets on CNN-LSTM, RNN-Transducer, and Conformer have 21.0%, 10.7%, and 16.8%
remaining weights, respectively. In addition, we noticed that the RNN-Transducer subnetworks at
the extreme sparsity has less percentage of remaining weights than CNN-LSTM and Conformer
subnetworks, likely due to this model being more over-parameterized (RNN-Transducer: 132.23M;
CNN-LSTM: 86.62M parameters; Conformer: 65.84M). These results show that, for a �xed dataset,
the winning tickets extracted from larger models are sparser.

Similarly, winning tickets can also be identi�ed on all three datasets, as shown in Table 2. We also
found that the sparsity of a winning ticket is correlated to the size of the dataset. For example, TED-
LIUM has a relatively small size (118 hours) compared to CommonVoice (582 hours) and LibriSpeech
(960 hours). Accordingly, the remaining weights of TED-LIUM winning ticket are signi�cantly
lower than that of CommonVoice and LibriSpeech winning tickets. A possible explanation is models
become relatively more overparameterized for smaller training sets, which allows them to be more
amenable for sparsi�cation (Li et al., 2020). Similar observations can be found in (Chen et al., 2020b).

From Table 1 and 2, another interesting �nding is that the subnetworks with low sparsity (remain
most of the weights) always achieve preferable performance than the full model. We also provided a
visualization of the outputs from the full model, the most sparse subnetwork, and the best performing
subnetwork in Figure 1 (see Appendix A.4 for more examples.). Similarly, we observed larger
performance improvement on smaller datasets, possibly also due to the over parameterization issue.
Results indicate that LTH is also a potential research direction in improving overall ASR performance.

RQ2: Does IMP winning tickets have lower complexity or better performance than random
pruning/tickets and other compression methods? As suggested in previous studies (Frankle &
Carbin, 2019a; Chen et al., 2020b; 2021e; 2020a), the two key aspects for a winning ticket to achieve
the desired performance are: 1) initial weight� , and 2) mask generated from IMPmIMP . In this
subsection, we test if this argument hold in ASR winning tickets. To achieve this, we compare
the winning tickets against two baseline pruning approaches: random pruning and random tickets.
The subnetworks identi�ed with random pruning are initialized with� 0 but the masks are randomly
generatedmRAND . By contrast, the subnetworks identi�ed with random tickets are randomly
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