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Abstract

The intrinsic capability to continuously learn a changing data stream is a desideratum of deep
neural networks (DNNs). However, current DNNs suffer from catastrophic forgetting, which
interferes with remembering past knowledge. To mitigate this issue, existing Continual
Learning (CL) approaches often retain exemplars for replay, regularize learning, or allocate
dedicated capacity for new tasks. This paper investigates an unexplored direction for CL
called Retrospective Feature Estimation (RFE). RFE learns to reverse feature changes by
aligning the features from the current trained DNN backward to the feature space of the
old task, where performing predictions is easier. This retrospective process utilizes a chain
of small feature mapping networks called retrospector modules. Empirical experiments on
several CL benchmarks, including CIFAR10, CIFAR100, and Tiny ImageNet, demonstrate
the effectiveness and potential of this novel CL direction compared to existing representative
CL methods.

1 Introduction

Humans exhibit the innate ability to incrementally learn new concepts while consolidating acquired knowl-
edge into long-term memories (Rasch & Born, 2007). More general Artificial Intelligence systems in real-world
applications would require a similar imitation to capture the dynamics of the changing data stream. These
systems need to acquire knowledge incrementally without retraining, which is computationally expensive
and exhibits a large memory footprint (Rebuffi et al., 2016). However, existing learning approaches cannot
match human learning in this so-called Continual Learning (CL) problem due to catastrophic forgetting
(McCloskey & Cohen, 1989). These systems encounter difficulty in balancing the capability of incorporating
new task knowledge while maintaining performance on learned tasks, or the plasticity-stability dilemma.

Representative CL approaches in the literature usually involve the use of a memory buffer for rehearsal (Rat-
cliff, 1990; Chaudhry et al., 2019a; Buzzega et al., 2020; Caccia et al., 2022; Bhat et al., 2023; Arani et al.,
2022; Prabhu et al., 2020), auxiliary loss term for learning regularization (Kirkpatrick et al., 2017; Ebrahimi
et al., 2020; Zenke et al., 2017; Schwarz et al., 2018), or structural changes such as model pruning, growing
or finding sub-networks (Rusu et al., 2016; Mallya & Lazebnik, 2018; Fernando et al., 2017; Yan et al., 2021;
Serra et al., 2018; Wortsman et al., 2020; Kang et al., 2022). These methods share the common objective of
discouraging the deviation of learned knowledge representation. Rehearsal-based methods allow the model
to revisit past exemplars to reinforce previously learned representations. Alternatively, regularization-based
methods prevent changes in parameter spaces by formulating additional loss terms. However, both ap-
proaches present shortcomings, including keeping a rehearsal buffer of all tasks during the model’s lifetime
or infusing ad hoc inductive bias into the regularization process. Meanwhile, structure-based methods utilize
the over-parameterization property of the model by pruning, masking, adding parameters, or finding suitable
sub-networks to reduce new task interferences.

This paper studies a novel approach for CL named Retrospective Feature Estimation (RFE), where we al-
low the model to “forget” knowledge of old tasks but then “correct” such “catastrophic forgetting” during
inference using a sequence of lightweight feature mapping networks. These networks, called retrospector
modules, help significantly reduce information loss in learned tasks by incrementally reversing changes in
the feature space. Specifically, for each new task, we add a small, simple, and inexpensive auxiliary unit
that aligns the feature from the current task to the previous task. Our method differs from many network
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expansion methods, in which additional parameters are allocated to minimize changes to the old parameters.
Instead, extra modules are used to iteratively recover past representations by propagating the current rep-
resentation backward through a series of mapping networks. With this mechanism, RFE allows the optimal
learning of a new task (plasticity) while separately mitigating catastrophic forgetting through retrospectors
(stability). RFE does not require saving past data to achieve strong performance, but can flexibly utilize past
data to further improve capability. In addition, different from several CL approaches that heavily modify
the training or network architecture, RFE imposes minimal changes to new task learning as modifications
are mainly performed after the training has been completed using auxiliary modules. Hence, RFE can be
easily integrated into existing CL pipelines.

Contributions. We propose a new direction for CL by sequentially correcting the current task’s represen-
tation into the past task’s representation using a chain of lightweight retrospector modules:

• We propose RFE, a novel approach to CL that separates catastrophic forgetting mitigation from
new task learning via a sequence of lightweight retrospector modules. The proposed retrospector
module, by compensating for information loss and reversing feature changes, can incrementally
mitigate catastrophic forgetting.

• To train the retrospector modules, we rely only on task t − 1’s feature extractor, and keeping past
data is optional to improve performance. At inference time, for the task-incremental setting, we
construct a chain of retrospector modules based on the provided task identity and forward the
current features to correct the feature space. For the class incremental setting, RFE forms the final
prediction from an average of predictions based on the reconstructed representations.

• We empirically evaluate our approach on three popular continual learning benchmarks (CIFAR10,
CIFAR100, and Tiny ImageNet) to demonstrate that our approach achieves comparable performance
with the existing representative CL directions.

This paper unfolds as follows. Section 2 discusses the literature on CL problems, and Section 3 describes
the proposed RFE method. Finally, Section 4 provides the empirical evidence for the effectiveness of our
proposed solution.

2 Related Work

Catastrophic forgetting is a critical concern in artificial intelligence and is arguably among the most promi-
nent questions to address for DNNs. This phenomenon presents significant challenges when deploying models
in different applications. Continual learning addresses this issue by enabling agents to learn throughout their
lifespans. This aspect has gained significant attention recently (Sun et al., 2022; Hu et al., 2021; Kirichenko
et al., 2021; Balaji et al., 2020). Considering a model well-trained on past tasks, we risk overwriting its past
knowledge by adapting it to new tasks. The problem of knowledge loss can be addressed using different
methods, as explored in the literature (Yin et al., 2021; Farajtabar et al., 2020; Kirkpatrick et al., 2017;
Li & Hoiem, 2018; Chaudhry et al., 2019a; Bhat et al., 2023; Rusu et al., 2016; Yan et al., 2021; Buzzega
et al., 2020; Caccia et al., 2022; Arani et al., 2022; Prabhu et al., 2020; Ebrahimi et al., 2020; Zenke et al.,
2017; Schwarz et al., 2018; Mallya & Lazebnik, 2018; Fernando et al., 2017; Serra et al., 2018; Wortsman
et al., 2020; Kang et al., 2022). These methods aim to mitigate knowledge loss and improve task perfor-
mance through three main approaches: (1) Rehearsal-based methods, which involve reminding the model of
past knowledge by using selective exemplars; (2) Regularization-based methods, which penalize changes in
past task knowledge through regularization techniques; (3) Parameter-isolation and Dynamic Architecture
methods, which allocate subnetworks or expand new subnetworks, respectively, for each task, minimizing
task interference and enabling the model to specialize for different tasks.

Rehearsal-based. Experience replay methods build and store a memory of the knowledge learned so far
(Rebuffi et al., 2016; Lopez-Paz & Ranzato, 2017; Shin et al., 2017; Riemer et al., 2018; Rios & Itti, 2019;
Zhang et al., 2020; Chaudhry et al., 2019a; Buzzega et al., 2020; Caccia et al., 2022; Bhat et al., 2023; Arani
et al., 2022; Prabhu et al., 2020). As an example, Averaged Gradient Episodic Memory (A-GEM) (Chaudhry
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et al., 2019a) builds an episodic memory of parameter gradients, while DER Buzzega et al. (2020) uses a
reservoir sampling method to maintain episodic memory. These methods have shown strong performance in
past studies, but they require a significant memory to store the examples.

Regularization-based. A popular early work using regularization is the elastic weight consolidation (EWC)
method (Kirkpatrick et al., 2017). Other methods (Zenke et al., 2017; Aljundi et al., 2018; Van et al., 2022;
Nguyen et al., 2018; Ahn et al., 2019; Ebrahimi et al., 2020) propose different criteria to measure the
“importance” of parameters. A later study showed that many regularization-based methods are variations
of Hessian optimization (Yin et al., 2021). These methods typically assume multiple optima in the updated
loss landscape in the new data distribution. One can find a good optimum for both the new and old data
distributions by constraining the deviation from the original model weights.

Parameter Isolation. Parameter isolation methods allocate different subsets of the parameters to each
task (Rusu et al., 2016; Jerfel et al., 2019; Rao et al., 2019; Li et al., 2019; Serra et al., 2018; Kang et al.,
2022). From the stability-plasticity perspective, these methods implement gating mechanisms that improve
stability and control plasticity by activating different gates for each task. Masse et al. (2018) proposes a
bio-inspired approach for a context-dependent gating that activates a non-overlapping subset of parameters
for any specific task. Supermask in Superposition (Wortsman et al., 2020) is another parameter isolation
method that starts with a randomly initialized, fixed base network and, for each task, finds a sub-network
(supermask) such that the model achieves good performance.

Dynamic Architecture. Different from Parameter Isolation, which allocates subnets for tasks in a fixed
main network, this approach dynamically expands the network structure. Yoon et al. (2018) proposes a
method that leverages the network structure trained on previous tasks to effectively learn new tasks, while
dynamically expanding its capacity by adding or duplicating neurons as needed. Other methods (Xu & Zhu,
2018; Qin et al., 2021) reformulate CL problems into reinforcement learning (RL) problems and leverage
RL methods to determine when to expand the architecture when learning new tasks. Yan et al. (2021)
introduces a two-stage learning method that first expands the previous frozen task feature representations
by a new feature extractor, then re-trains the classifier with current and buffered data.

An orthogonal direction of CL is adapting a frozen pre-trained model to a sequence of tasks (for example, by
learning new adapters), which share some similarities to our work but are not directly related. RFE assumes
a more challenging scenario with training from scratch and evolving model parameters.

3 Proposed Framework

Task N-1
representation

Task N-2
representation

Task t
representation

Feature extractor

Input

Representation
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Task N
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Unavailable at inference Available at infernece
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Figure 1: At task t, the feature extractor ft and classifier head wt are optimized on the dataset Dtrain
t . During

inference for a test sample from task t, we forward the input data x ∈ Dtest
t through the feature extractor

and classifier head to obtain the logits. After learning all N tasks, the DNN loses performance on task t
due to catastrophic forgetting. Therefore, the latent representation fN (x) is propagated through a series
of retrospector module rN , . . . , rt+1 to perform incremental latent rectification and obtained approximated
representations f̂N−1, . . . , f̂t. The logits can be obtained by passing the recovered representation to the
respective classifier head.
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We consider the task-incremental learning (TIL) and class-incremental learning (CIL) scenarios, where we
sequentially observe a set of tasks t ∈ {1, . . . , N}. The neural network comprises a single task-agnostic
feature extractor f and a classifier w with task-specific heads. The architecture of f is fixed; however, its
parameter set θf is gradually updated as new tasks arrive. At task t, the system receives the training dataset
Dtrain

t sampled from the data distribution Dt and learns the updated parameter sets θf , θw of the feature
extractor f and w. To ease the discussion, the feature extractor and the classifier obtained after learning
in task t are denoted as ft and wt, respectively. For an input-label pair (x, y) sampled from D, the logits
computed by w is denoted as z. Thus, after learning on task t, we obtain the evolved feature extractor ft

and the classifier wt. We call the latent space created by the feature extractor trained with Dtrain
t as the

t-domain. Catastrophic forgetting occurs as the feature extractor ft′ is updated into ft (t′ < t), which causes
the t′-domain to be overwritten by the t-domain. This domain shift degrades the model’s performance over
time.

To overcome catastrophic forgetting, we propose a new CL paradigm: learning a retrospective feature esti-
mation mechanism. This mechanism relies on a lightweight retrospector module rt that learns to align the
features from the t-domain to the (t − 1)-domain. Intuitively, this module “corrects” the feature change of a
sample from the old task t−1 due to the evolution of the feature extractor f when learning the newer task t.
These retrospector modules will establish a chain of corrections for the features of any task’s input, allowing
the model to predict the past features better. Fig. 1 provides a visualization of the inference process on a
task-t sample, after learning N tasks.

Learning the mechanism is central to our proposed framework. In general, each retrospector module should
be small compared to the size of the final model or the feature extractor f , and its learning process should
be resource efficient. The following sections present and describe our solution for learning this mechanism.

3.1 Learning the retrospector

As the training dataset Dtrain
t of task t arrives, we first update the feature extractor ft and the classifier

wt. The primary goal herein is to find (ft, wt) that has a high classification performance for task t, and
the secondary goal is to choose ft that can reduce the catastrophic forgetting on previous tasks. To combat
catastrophic forgetting, we will first discuss the objective function for learning the lightweight retrospector
module rt and the potential options for training data.

3.1.1 Feature Estimation Loss

The goal of rt is to reduce the discrepancy between task t’s representation ft(x) and the t−1’s representation
ft−1(x) for x ∼ Dt−1; i.e., rt(ft(x), x) ≈ ft−1(x). A simple choice is the l2 error between ft−1(x) and
rt(ft(x), x). Since the feature estimation loss will be reused multiple times in this paper, we define s to be
a function with parameter set θs that encodes an input x ∼ D into its respective features. More specifically,
s would serve as a placeholder for different functions in different training scenarios. We define the loss as:

LFE(θs; s, D, f) = Ex∼D
[
∥s(x) − f(x)∥2

2
]

(1)

For retrospector training, at task t, we set s(x) = rt(ft(x), x), and aim to minimize the difference between
s and ft−1; therefore, the objective function becomes

LFE(θrt ; rt, D, ft−1) = Ex∼D
[
∥rt(ft(x), x) − ft−1(x)∥2

2
]

(2)

3.1.2 Training Data

Training the retrospector rt to map the representation from the t-domain back to the (t−1)-domain requires
the representations in both domains (ft(x), ft−1(x)) as training data. Ideally, the best choice would be to
keep all the samples and the respective representations from task t − 1 to train the retrospector module.
However, it is impractical to keep all x ∼ Dtrain

t−1 due to efficiency, scalability, or privacy issues. A practical
approach is to only keep the previous task feature extractor ft−1 and use current task samples x ∼ Dtrain

t to

4



Under review as submission to TMLR

approximate the mapping of the representation space of the task t back to that of the task t − 1. Another
approach is to keep only a subset P ⊂ Dtrain

t−1 of the previous tasks’ samples and their respective representation.
Nonetheless, the second approach heavily relies on the number of samples |P| that could be saved. Therefore,
we opt for the first approach to train the retrospector. Keeping additional past data is optional and could
be used to further improve performance. In this paper, we evaluate three strategies to for training RFE.

Without past task’s data (RFE). RFE can effectively recover ft−1(x) from ft(x) without relying on
previous task’s data. By only keeping the previous task feature extractor ft−1 and using current task data
x ∼ Dtrain

t as an approximation for Dt−1, the retrospector module can learn to map from the t-domain to
the (t − 1)-domain. It is common for continual learning methods to exhibit performance degradation over
time. However, even without access to any past task data, RFE demonstrates comparable performance to
several rehearsal-based methods.

With a subset P of task t − 1’s samples (RFE-P). In addition to keeping ft−1, to improve rectification
performance, a small subset of task t − 1’s samples can also be saved together with their representation
ft−1(x). With the use of additional past samples, RFE can sustain classification performance even under
a long chain of retrospector modules. Therefore, RFE-P can be a good trade-off between performance and
privacy since data are only stored with the maximum life cycle of 2 tasks (task t − 1 and task t) rather than
indefinitely as in buffer-based methods. However, it is possible to generalize this approach to store data from
the past k tasks, where k = 1 corresponds to RFE-P, meaning only task t − 1’s samples are stored.

Table 1: At task t, different training data require stor-
ing different components of the training process, which
impose different trade-offs in terms of performance and
privacy.

Variation Keep
ft−1

Keep
P ⊆ Dtrain

t−1

Keep
B ⊆ ∪t

i=1Dtrain
i

RFE ✓ - -
RFE-P ✓ ✓ -
RFE-B ✓ - ✓

With a buffer B of all tasks’ samples (RFE-
B). Similar to many buffer-based methods, RFE can
also make use of a reservoir buffer for a subset of all
tasks’ samples to sustain performance under very
long retrospector module chaining. Instead of only
being used for training the new retrospector mod-
ule, these data samples can also be used to tune the
learned retrospector modules, ensuring a stable rec-
tification chain. On the other hand, unlike RFE and
RFE-P, RFE-B can not be used in scenarios where
privacy is a major concern.

3.2 Retrospective Feature Estimation

The retrospective feature estimation mechanism relies on a chain of task-specific retrospector modules (rt)N
t=2

that aims to correct the distortion of the feature space as the extractor f learns a new task.

3.2.1 Past Feature Estimation

For an input x at task t − 1, its representation under the feature extractor ft−1 is ft−1(x). One can
heuristically define the (t − 1)-domain as the representation space of the input under the feature extractor
ft−1. Unfortunately, the (t − 1)-domain is brittle under extractor update: as the subsequent task t arrives,
the feature extractor is updated to ft, and the corresponding features of the same input x will be shifted to
ft(x). Likely, the t-domain and the (t − 1)-domain do not coincide, and ft(x) ̸= ft−1(x).

The retrospector module rt aims to offset this representation shift. To do this, rt takes x, and its t-domain
representation ft(x) as input, and the module outputs the approximated features that satisfies

rt(ft(x), x) ≈ ft−1(x), (3)

With this formulation, we can effectively minimize the difference between the rectified features rt(ft(x), x)
and the original features ft−1(x).

3.2.2 Retrospector’s Architecture
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Figure 2: The retrospector module includes a weak auxil-
iary feature extractor ht, linear mappings af

t , ah
t , bt, and soft

gatings gf
t , gh

t . The joint information from the projected
representations from both ft and ht is used to compute the
gating value for the rectified representation.

The proposed retrospector module comprises
several trainable components: a weak auxiliary
feature extractor, soft gatings, and linear map-
pings. The size of the retrospector module in-
creases linearly with the number of tasks, sim-
ilar to the classification head. However, since
the retrospector module is lightweight, this is
trivial compared to the size of the full model.
Fig. 2 visualizes the module. The architec-
ture of the retrospector is described here, with
further implementation details included in the
supplementary materials.

Auxiliary feature extractor ht. Due to
catastrophic forgetting, the main feature ex-
tractor will gradually forget learned knowl-
edge. Therefore, the auxiliary feature extrac-
tor will partially compensate for this loss of information. For our experiment, we choose a simple and naive
design of an auxiliary feature extractor that has a low performance to demonstrate that the effectiveness
of RFE is based on retrospective feature estimation capability and not the auxiliary feature
extractor’s performance. The auxiliary feature extractor ht processes the input data x to generate a
simplified representation ht(x). ht is distilled from ft−1 to compress the knowledge of ft−1 into a more com-
pact, low-capacity parameter-efficient network. The weak auxiliary feature extractor is composed of only
two 3x3 convolution layers and two max pooling layers. For simplicity and efficiency, instead of processing
the full-size image, we use max-pooling to down-sample the input to 16x16 images before feeding it into ht.
The auxiliary feature extractor is a very small network compared to the main model.

Linear mappings af
t , ah

t , bt. To capture only relevant information and reduce noise from the main feature
extractor and auxiliary feature extractor, both representations will be linear projected down to a smaller
dimension space af

t ◦ ft(x) and ah
t ◦ ht(x), in which an element-wise multiplication is applied to combine

both representation information.

at(x, ft(x), ht(x)) =
(

af
t ◦ ft(x)

)
⊙

(
ah

t ◦ ht(x)
)

(4)

with dim(af ) = dim(ah) ≪ dim(ft) (dim is the dimension of the output layer).

On the other hand, as ht may have a representation of a different dimension compared to that of ft, another
linear projection bt is used to map from ht’s dimension to ft’s dimension as

h′
t(x) = bt ◦ ht(x) (5)

Soft gatings gf
t , gh

t . For the main feature extractor and auxiliary feature extractor representations ft(x)
and ht(x), an element-wise gating value gf

t (.) and gh
t (.) is computed from the encoded joint information

at(x, ft(x), ht(x)). As gf
t , gh

t , af
t , ah

t , bt, ht are components of the retrospector module, we compute the
rectified representation as a function of the input x and its current representation ft(x) :

rt(ft(x), x) =
(

gf
t ◦ at(x, ft(x), ht(x))

)
⊙ ft(x) +

(
gh

t ◦ at(x, ft(x), ht(x))
)

⊙ h′
t(x)

The gating mechanism is simply a linear layer followed by sigmoid activation.

Distiction from network-expansion approach. It could be argued that one can, instead, separately
train a weak feature extractor ht for each task, making it a network-expansion CL approach. However,
because ht is a small and low-capacity network, this approach is ineffective; specifically, our experiments
demonstrate that the task-incremental average accuracy across all tasks of this approach on CIFAR100 falls
below 53%. Furthermore, for network expansion approaches, the dedicated parameters are allocated for new
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task learning, which fundamentally differs from RFE’s objective to correct representation changes. The new
task’s knowledge is acquired by ft and wt with high plasticity.

3.3 Training Procedure

Network training. Similar to conventional DNN training, the performance of the feature extractor ft and
the classifier head wt is measured by the standard multi-class cross-entropy loss:

LCE(θft
∪ θwt

; wt ◦ ft, Dtrain
t ) = E(x,y)∼Dtrain

t

[
−

Mt∑
c=1

yc log(zc)
]

(6)

where Mt is the number of classes of task t, z is the probability-valued network output for the input x
that depends on the feature extractor ft and the classifier wt as z = wt ◦ ft(x). Since the retrospector will
correct feature changes back to the original feature space, classifier units that are learned from past tasks
are excluded (masked) and not updated to prevent mismatch due to gradient updates.

Furthermore, to reduce forgetting, and enable more effective rectification, we regularize (or distill) task t − 1
representation knowledge by using the approximated previous task’s representation from ft−1 (and additional
saved data in P or B if available) to train the current feature extractor ft. Let s(x) = ft(x), then we can
similarly use LFE in Eq. (1) with hyperparameter α:

LT(θft
∪ θwt

; Dtrain
t ∪ S) = LCE(θft

∪ θwt
; wt ◦ ft, Dtrain

t ) + αLFE(θft
; ft, Dtrain

t ∪ S, ft−1) (7)

where S can be the empty set, the set P, or the buffer B corresponding to RFE, RFE-P, or RFE-B,
respectively.

Retrospector training. Training the retrospector module follows two main steps: train the weak auxiliary
feature extractor ht at task t − 1 and then the remaining components at task t. The weak feature extractor
ht is distilled from ft−1 as task t − 1 training is completed using LFE(θht

; ht, Dtrain
t−1 , ft−1) as in Eq. (1) with

s(x) = ht(x). After training, ht parameters are frozen to prevent modifications. Similarly, after the training
of task t is completed, we train the remaining components using LFE(θrt\θht ; rt, Dtrain

t , ft−1) as in Eq. (1)
with s(x) = rt(ft(x), x). For the case of RFE-B, the representations ft(x) of input x ∈ B are rectified
to their corresponding domains i = {1, 2, ..., t − 1} and learned retrospector’s parameters ∪t−1

i=1θri
are also

optimized. Details of RFE’s training algorithm are provided in Algorithm 1.

RFE imposes minimal changes to the standard training process as the majority of the additional training
happens after the main (standard) training ends.

Algorithm 1 Training process at task t ∈ {1, 2, ..., N}.
let S be ∅, P,B for RFE , RFE-B, RFE-P, respectively
// main training starts
for i = 1, ..., max epochs do

optimize wt ◦ ft with LT(θft
∪ θwt

; Dtrain
t ∪ S)

end for
// main training ends
for j = 1, ..., max epochs do

optimize ht+1 with LFE(θht+1 ; ht+1, Dtrain
t , ft)

end for
freeze θht+1

if t > 1 then
for k = 1, ..., max epochs do

optimize rt with LFE(θrt
\θht

, rt, Dtrain
t ∪ S, ft−1)

end for
end if
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Table 2: Task-Incremental Average Accuracy across all tasks after CL training. Oracle: the upper bound
accuracy when jointly training on all tasks (i.e., multi-task learning). Finetuning: the lower bound accuracy
when learning without CL techniques. |B| is the buffer of all past task samples. |P| is the subset of task t−1
training data. params (training/inference) is the number of parameters used during training (first value)
and inference (second value) (lower is better), and accuracy is the average accuracy of all tasks (higher is
better).

Method Exemplars S-CIFAR10 S-CIFAR100 S-TinyImg
TIL params accuracy params accuracy params accuracy

Oracle - 11.17/11.17 98.37± 0.12 11.22/11.22 86.57± 0.38 11.27/11.27 81.47± 0.22

Finetuning 60.08± 2.13 24.90± 2.58 13.67± 0.37

AGEM

|B|=500

11.17/11.17

91.37± 0.40

11.22/11.22

65.50± 0.28

11.27/11.27

38.73± 1.23

ER 93.79± 0.96 66.88± 0.50 44.85± 0.99

DER++ 92.10± 0.74 68.65± 0.93 47.92± 0.73

ER-ACE 93.60± 0.61 67.97± 1.01 47.88± 0.61

ER-MKD 22.35/11.17 93.75± 0.39 22.44/11.22 70.63± 0.80 22.54/11.27 51.89± 0.24

TAMIL 22.68/11.51 94.56± 0.09 22.77/11.60 75.12± 0.25 23.20/12.03 63.28± 0.03

CLS-ER 33.52/11.17 94.99± 0.25 33.66/11.22 76.79± 0.47 33.81/11.27 50.28± 1.03

RFE-P |P| = 500 23.76/12.59 92.94± 0.52 23.81/12.64 80.57± 0.41 25.63/14.46 71.80± 0.51

RFE-B |B| = 500 91.35± 0.30 80.69± 0.41 69.91± 0.36

AGEM

|B| = 1000

11.17/11.17

90.26± 2.64

11.22/11.22

69.91± 0.62

11.27/11.27

45.58± 1.16

ER 94.91± 0.54 72.17± 0.42 53.98± 1.08

DER++ 93.35± 0.43 72.90± 0.31 57.17± 0.40

ER-ACE 94.93± 0.40 72.36± 0.68 56.96± 0.51

ER-MKD 22.35/11.17 95.28± 0.04 22.44/11.22 74.04± 0.43 22.54/11.27 57.55± 0.53

TAMIL 22.68/11.51 95.11± 0.31 22.77/11.60 77.94± 0.95 23.20/12.03 68.81± 0.85

CLS-ER 33.52/11.17 96.02± 0.16 33.66/11.22 79.82± 0.11 33.81/11.27 60.78± 0.40

RFE-P |P| = 1000 23.76/12.59 92.92± 0.92 23.81/12.64 80.64± 0.59 25.63/14.46 72.65± 0.56

RFE-B |B| = 1000 90.74± 1.85 81.06± 0.28 71.92± 0.34

RFE - 23.76/12.59 91.15± 0.11 23.81/12.64 79.54± 0.27 25.63/14.46 69.66± 0.17

3.4 Inference Procedure

We now describe how to stack multiple retrospector modules rt into a chain for inference. As a new task
arrives, our model dynamically extends an additional retrospector module, forming a sequence of retrospector
modules.

Task-Incremental. We consider a task-incremental learning setting where a test sample xi is coupled with
a task identity ti ∈ {1, . . . , N}. To classify x, we can recover f̂ti

(x) by forwarding the current representation
fN (x) through a chain of N − ti retrospector modules. We then pass this recovered latent variable through
classifier head wti

to make a prediction. The output ŷi is computed as

ŷi = wti(f̂ti(x)) (8)

where f̂ti
(x) = rti+1(f̂t+i(x), x) with ti < N, f̂N = fN .

Class-Incremental. RFE relies on the task identity to reconstruct the appropriate sequence of retrospector
modules for propagating the features to the original space. However, no identity is provided for the CL
method in the class-incremental learning setting. We instead provided a simple method for inference without
task identity, which demonstrates the method’s extension to class-incremental learning; however, more robust
task-identity inference methods could also be incorporated.

8
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We obtain the class-incremental probabilities by forming an average of the class probabilities over all do-
mains. For each domain, irrelevant classifier units (not belonging to the task) are excluded (masked) before
computing the softmax probability. From the current task t’s domain, we iteratively rectified the latent back
to task t − 1, task t − 2, ..., task 1’s domain. At each domain, we obtain the estimated representation cor-
responding to the domain, which we forward through the respective classifier. We then average the softmax
probabilities of each domain wi ◦ fi|ti=1.

4 Experiments

Our implementation is based partially on the Mammoth (Boschini et al., 2022; Buzzega et al., 2020), TAMiL
(Bhat et al., 2023), and CLS-ER (Arani et al., 2022) repositories.

4.1 Evaluation Protocol

Table 3: Class-Incremental Average Accuracy across all
tasks after CL training. The settings are similar to Table 2.

Method Exemplars S-CIFAR100 S-TinyImg

Oracle - 71.15± 0.68 58.23± 0.21

Finetuning 17.65± 0.10 7.73± 0.06

AGEM

|B| = 500

24.75± 0.98 9.30± 0.11

ER 28.60± 0.66 10.09± 0.08

DER++ 38.90± 1.20 13.50± 0.34

ER-ACE 40.18± 0.80 17.36± 0.08

ER-MKD 34.39± 1.16 12.64± 0.54

TAMiL 44.43± 1.94 20.48± 0.55

CLS-ER 50.68± 0.61 20.25± 0.43

RFE-P |P| = 500 45.53± 0.08 29.25± 0.56

RFE-B |B| = 500 45.85± 0.56 27.29± 0.50

AGEM

|B| = 1000

26.66± 1.69 9.73± 0.30

ER 34.77± 0.64 13.47± 0.68

DER++ 45.92± 2.05 20.14± 0.80

ER-ACE 46.88± 0.86 22.96± 0.44

ER-MKD 38.85± 0.90 16.09± 1.18

TAMiL 50.37± 1.00 28.21± 0.78

CLS-ER 56.18± 0.20 27.45± 0.69

RFE-P |P| = 1000 45.85± 0.56 30.58± 0.28

RFE-B |B| = 1000 46.01± 0.54 30.47± 0.51

RFE - 43.63± 1.29 26.59± 0.44

Datasets. We select three standard contin-
ual learning benchmarks for our experiments:
Sequential CIFAR10 (S-CIFAR10 ), Sequen-
tial CIFAR100 (S-CIFAR100 ), and Sequential
Tiny ImageNet (S-TinyImg). Specifically, we
divide S-CIFAR10 into 5 binary classification
tasks, S-CIFAR100 into 5 tasks with 20 classes
each, and S-TinyImg into 10 tasks with 20
classes each.

Baselines. We evaluate RFE against strong
rehearsal-based CL methods, including ER
(Chaudhry et al., 2019b), AGEM (Chaudhry
et al., 2019a), DER++ (Buzzega et al., 2020),
ER-ACE (Caccia et al., 2022), CLS-ER (Arani
et al., 2022), TAMiL (Bhat et al., 2023), and
ER-MKD Michel et al. (2024). We further pro-
vide an upper and lower bound for all methods
by joint training on all tasks’ data and fine-
tuning without catastrophic forgetting mitiga-
tion. We employ ResNet18 (He et al., 2016) as
the feature extractor for all benchmarks. The
classifier comprises a fixed number of linear
heads for each task.

Additional results and further details on
datasets, baselines, and hyperparameters are
provided in the supplementary materials.

4.2 Results

Task-incremental. Table 2 shows the performance of RFE, RFE-P, RFE-P, and other CL methods on
multiple sequential datasets, including S-CIFAR10, S-CIFAR100, and S-TinyImg. From the table, we see
that RFE-P and RFE-B achieve results comparable to the baselines on S-CIFAR10. On S-CIFAR100 and
S-TinyImg, RFE, without any past data, is equivalent to or outperforms all the baselines, including strong
rehearsal-based methods such as TAMiL and CLS-ER, indicating its ability to estimate feature representation
retrospectively. Notably, given either P or B, RFE-P and RFE-B outperform the baselines.

Class-incremental. Table 3 demonstrates the extension of RFE-P and RFE-B to class-incremental settings.
As the class-incremental probabilities are obtained through simple averaging, which may suffer from an
overconfident classifier, we can achieve performance comparable to other methods on S-CIFAR100. On S-
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TinyImg, RFE-P and RFE-B demonstrate an improvement over other methods. The performance can be
further optimized by integrating task identity prediction methods (i.e., OOD detection) Kim et al. (2022),
which are left as potential improvements to avoid complicating the method.

Long chaining. Continual learning methods, including rehearsal-based approaches, often experience per-
formance degradation over long task sequences. In Fig. 3, we demonstrate that RFE-P and RFE-B exhibit
less forgetting than several continual learning methods across the ten tasks of S-TinyImg. In Fig. 4, we
demonstrate the evolving average accuracies over 20 tasks of S-TinyImg, in which RFE is more stable and
consistently improves over other methods.
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Figure 3: The TIL accuracy with 1000 exemplars on 10 tasks of S-TinyImg (lighter color is better). The
vertical axis represents the task the model has been trained on. The horizontal axis represents the task
identity. The value in the cell is the task’s accuracy. RFE-P demonstrates a forgetting rate comparable to
or better than other methods without revisiting distant task samples. RFE-B performance is more stable
for long chaining.
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Figure 4: The evolving TIL average accuracies of CL methods with 1000 exemplars on 20 tasks of S-TinyImg.
RFE-P and RFE-B consistently improve over baseline.

Overhead. Further details on time and space overhead are in the supplementary materials.

Other architectures. Further results on ViT (Dosovitskiy et al., 2020) are in the supplementary materials.
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Figure 5: We employ PCA to visualize the rectified latent space after training on task t and predicting
task t′(t′ < t) of S-CIFAR100. By visualizing the original representation (ft′(x)), the drifted representation
(ft(x)), the rectified representation (f̂t′(x)), we demonstrate RFE effectiveness. The closer the rectified
representation and the original representation, the better the performance. For Eq. (7), we set α = 0 (no
regularization) to clearly visualize the catastrophic forgetting and retrospector module performance.

4.3 Retrospector Experiment

While the retrospector has several components, the core idea is to efficiently combine f(x) and h(x) to rectify
the representation using soft gating and linear layers for dimension mapping. Therefore, the components
are tightly integrated and cannot be easily decomposed for individual testing. We cannot remove ht(x) as
we cannot recover ft−1 with ft alone due to catastrophic forgetting. However, we can study the overall
effectiveness of the retrospector by visualizing the representation of the “catastrophic forgetting” network
and the rectified result by the retrospector. In Fig. 5, we utilize Principal Component Analysis (PCA)
to visualize the latent space. The new representations of past data (red) after learning new tasks change
significantly from the original representation (blue), which explains catastrophic forgetting. With RFE,
the rectified representations (green) align with the ‘true’ representations (blue), supporting the empirical
effectiveness of our framework. The RMSE between representations is also computed. Additional ablation
on alternative retrospector designs is in the supplementary materials.

5 Limitations

We have shown the potential and high utility of RFE’s continual learning mechanism in this paper. Neverthe-
less, RFE also has some limitations. Despite being lightweight, RFE still maintains additional parameters,
i.e., the retrospector module, which incurs an additional overhead as the number of tasks increases. Infer-
ence cost for a significantly long chain would be considerable, which can be improved with modified chaining
methods such as skipping (i.e., building a retrospector every two tasks). Additionally, since RFE relies on
the task identity to reconstruct the retrospector sequence, application to class-incremental learning requires
either inferring task identity or averaging predictions. The current approach might suffer from over-confident
classifiers. Class-incremental learning is still an open research area, where more effective adaptations of RFE
can be discovered.

6 Conclusion

This work proposes a new CL direction. RFE tackles catastrophic forgetting through its novel Retrospective
Feature Estimation mechanism that learns to align the newly learned representation of past data to their
past representations. Unlike existing CL methods, RFE can operate as a data-free method while achieving
comparable performance to rehearsal-based methods. Additional past data is optional and can be used to
improve performance. Furthermore, RFE imposes minimal modification to task learning, as most of the
training for rectification occurs after main task training.
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A Detailed Experimental Setup

A.1 Baselines

We evaluate RFE, RFE-P, RFE-B, ER, AGEM, DER++, ER-ACE, ER-MKD, CLS-ER, and TAMiL. More
specifically, ER, AGEM, DER++, and ER-ACE are common rehearsal baselines that utilize a simple buffer.
ER-MKD, TAMiL, and CLS-ER utilize additional exponential moving average (EMA) backbones for dis-
tillation. ER-MKD and TAMiL utilize 1 EMA backbone while CLS-ER utilizes 2 EMA backbones during
training, which explains the high parameter usage in Table 2. TAMiL further uses task-specific auto-encoders
during training and inference, which is also reflected in Table 2. RFE, RFE-P, RFE-B utilizes 1 additional
backbone (training-only) and retrospectors (training and inference).

Due to the usage of additional EMA backbones and biology-inspired design, TAMiL and CLS-ER are SOTA
rehearsal-based methods. Prior works that compare with CLS-ER and TAMiL often use the non-EMA
version, while we use the stronger EMA version for fair comparison against our methods.

For comparison, we provide RFE-B and rehearsal-based methods with a buffer B with a max capacity of
500 and 1,000 samples. For RFE-P, we also provide a set P consisting of task t − 1 data with 500 and 1,000
samples for fair evaluation.

For RFE-B, ER, DER++, ER-ACE, TAMiL, and CLS-ER, we employ the reservoir sampling strategy to
remove the reliance on task boundaries as in the original implementation. On the other hand, RFE, RFE-P,
RFE-B, AGEM, and TAMiL rely on the task boundary to learn the retrospector module, modify the buffer,
or add a new task-attention module, respectively. For ER-MKD, we perform standard augmentation instead
of multi-view augmentation. For TAMiL, we use the best-reported task-attention architecture. For CLS-ER,
we perform inference using the stable backbone per the original formulation.

A.2 Datasets

To demonstrate the effectiveness of our method, we perform empirical evaluations on three standard con-
tinual learning benchmarks: Sequential CIFAR10 (S-CIFAR10), Sequential CIFAR100 (S-CIFAR100), and
Sequential Tiny ImageNet (S-TinyImg). The datasets are split into 5, 5, and 10 tasks containing 2, 20, and
20 classes, respectively. The dataset of S-CIFAR10 and S-CIFAR100 each includes 60,000 32 × 32 images
split into 50,000 training images and 10,000 test images, with each task occupying 10,000 training images
and 2,000 testing images. The dataset S-TinyImg contains 110,000 64 × 64 images with 100,000 training
images and 10,000 test images divided into ten tasks with 10,000 training images and 1,000 test images
each. We augment the data using random horizontal flips and random image cropping for each training and
buffered image.

A.3 Training

We employ ResNet18 (He et al., 2016) as the feature extractor for all methods and benchmarks. By default,
the Resnet18’s output dimension is dim(f) = 512. For RFE’s retrospector, we set dim(h) = dim(af ) =
dim(ah) = 128.

The training set of each task is divided into 90%-10% for training and validation. All methods are optimized
by the Adam optimizer available in PyTorch with a learning rate of 5×10−4. As the validation loss plateaus
for three epochs, we reduce the learning rate by 0.1 times. Each task is trained for 40 epochs. For RFE, we
train ht and rt using the same formulation with Adam optimizer at a learning rate of 5×10−3 for 40 epochs.

A.4 Hyperparameter search

For all methods, experiments, and datasets, we perform a grid search over the following hyperparameters in
Table 4 using a validation set of 10% of the training data. Some hyperparameters are obtained directly from
their original paper or implementation to narrow the search range. The final results are the average over 3
runs with the best hyperparameter, with different random seeds.
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For RFE, a single value hyperparameter search is already sufficient in most cases.

Table 4: Hyperparameter search. See the original paper for each specific hyperparameter.

Method Hyperparameters
Search range Implementation name

Joint, Finetuning,
ER, AGEM, ER-ACE - -

DER++ α ∈ {0.2, 0.5} distill weight
β ∈ {0.5, 1.0} replay weight

CLS-ER

rp ∈ {0.5, 0.8} plastic frequency
rs ∈ {0.2, 0.5} stable frequency
αp ∈ {0.999} plastic alpha
αs ∈ {0.999} stable alpha
λ ∈ {0.2, 0.5} distill weight

γ ∈ {1.0} replay weight

TAMiL

α ∈ {0.5, 1} replay weight
β ∈ {0.2, 0.5} distill weight

λ ∈ {0.1} pairwise weight
γ ∈ {0.05} ema frequency
η ∈ {0.999} ema alpha

ER-MKD
λα ∈ {2, 4} distill weight
τ ∈ {2, 4} temperature

1 − α ∈ {0.99} ema alpha

RFE, RFE-P, RFE-B α ∈ {1} regularize weight

A.5 Retrospector module

Parameters. The total number of parameters for each retrospector module is 0.35 million, with 0.08 million
parameters occupied by the auxiliary feature extractor.

Auxiliary feature extractor. We provide the architecture of the auxiliary feature extractor ht in Table 5.
We chose a simple design of two 3x3 convolution layers and two max-pooling layers. Depending on the use
cases, a more robust feature extractor design can be used to improve performance and serve as a lower bound
for the RFE. Nonetheless, to demonstrate that RFE depends on the rectification capability and not only the
auxiliary feature extractor’s performance, we opt to use a low-performance design.

Table 5: Architecture of the auxiliary feature extractor ht. We use ReLU activation after each convolution.
Layer Channel Kernel Stride Padding Output size
Input 3 16 × 16

Conv 1 64 3 × 3 2 1 8 × 8
MaxPool 2 4 × 4
Conv 2 128 3 × 3 2 1 2 × 2

MaxPool 2 1 × 1
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B Additional Experimental Results

B.1 Time complexity

We report the training and inference time of the class-incremental setting on the S-TinyImg dataset in Table 6
to demonstrate the time overhead by the retrospector. For RFE, there is almost no overhead in training
compared to ER, while for RFE-P and RFE-B, the training time moderately increased. For inference,
the class-incremental setting represents the worst-case scenario for the RFE method, where features are
propagated through all 10 tasks. Nonetheless, the inference time only moderately increased compared to
other methods.

Table 6: Training and inference time for all 10 tasks on S-TinyImg dataset with CIL setting.
ER TAMIL CLSER RFE RFE-P RFE-B

Training (hours) 2.06 2.51 2.59 1.94 3.17 3.32
Testing (second) 7.36 7.42 7.71 11.54

B.2 Space complexity

Combining the buffer size and the parameters in Table 2 in the main paper reflects the memory footprint
of each method. During training, both the images and the params are loaded in the same float32 format.

Consider S-TinyImg, for buffer-only methods (AGEM, ER, ER-ACE, DER++), we save 1000 64×64 RGB
images, which is approximately equivalent to 12.28 M params. RFE (no data) adds slightly more at 14.36
M params for the previous backbone and retrospectors. However, RFE’s accuracy is 12.49%, higher than
buffer-only methods (DER++).

Similarly, RFE-P and RFE-B additionally utilize saved data, while ER-MKD, TAMiL, and CLS-ER ad-
ditionally utilize EMA backbone and/or auxiliary modules. Nonetheless, RFE-P outperforms TAMiL by
3.84% in average accuracy.

B.3 Ablation on alternative retrospector designs.

Table 7: TIL Average Accuracy across all tasks after CL training for retrospector variants on S-CIFAR100.
Type Average Accuracy Total Retrospectors’ Parameters
RFE 79.54± 0.27 1.42

MLP-Residual 78.53± 0.62 2.66
MLP-Projection 52.78± 6.29 2.66

A naive design is to map ft directly back to ft−1 by directly using an MLP without using ht. However,
due to catastrophic forgetting, there is no straightforward method to recover information loss of task t − 1
without an external source (ht).

A simple but inefficient alternative of the retrospector is to concatenate both ft(x) and ht(x), which are
then forwarded through a simple MLP. We use a two-layer MLP with an output dimension of 512 for both
layer and ReLU activation. The retrospector can then be used to learn the projection from task t back to
t − 1 (MLP-Projection):

rt(ft(x), x) = MLP([ft(x), ht(x)]) (9)

or learn the residual of such projection (MLP-Residual):

rt(ft(x), x) = MLP([ft(x), ht(x)]) + ft(x) (10)
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Nonetheless, this design results in very high parameter usage while only delivering similar or worse perfor-
mance than the gating design, as demonstrated in Table 7. The setting is similar to Table 2 in the main
paper, using the S-CIFAR100 dataset.

B.4 Generalization to other architectures

Table 8: TIL Average Accuracy across all tasks after CL training using VIT-S/16 backbone.
Method Exemplars S-CIFAR100

TIL params accuracy

Oracle - 21.91/21.91 96.93± 0.04

Finetuning 78.88± 7.84

AGEM

|B| = 500
21.91/21.91

92.73± 0.15

ER 91.70± 0.62

DER++ 91.42± 0.33

ER-ACE 93.26± 1.26

ER-MKD 43.83/21.91 92.07± 0.88

TAMiL 44.16/21.91 93.87± 0.23

CLS-ER 65.74/21.91 94.28± 0.28

RFE-P |P| = 500 45.19/23.28 95.58± 0.12

RFE-B |B| = 500 95.59± 0.18

RFE - 45.19/23.28 95.54± 0.01

We repeat a subset of the experiment for task-incremental learning with S-CIFAR100, but replacing the
backbone from Resnet18 to a ViT-S/16 (Dosovitskiy et al., 2020) pre-trained on ImageNet-21k and fine-
tuned on ImageNet-1k. The vision transformer backbone is followed by a linear layer with ReLU activation
to ensure compatible dimensions with ResNet18 backbone. Table 8 demonstrates the result of RFE using a
vision transformer backbone to fine-tune 5 tasks of S-CIFAR100, which shares high similarity with results
using a convolution neural network backbone. Each task is trained for 30 epochs with a learning rate of
10−5. Other training details are kept the same as in Section A.3.

B.5 Comparison with non-rehearsal methods

RFE can be compared with existing works using Kim et al. (2022) and Bhat et al. (2023).

In Kim et al. (2022), the comparable setting is T-10T (similar to S-TinyImg). We consider the following
methods: LwF (Li & Hoiem, 2018), HAT, (Serra et al., 2018), Sup (Wortsman et al., 2020), and HyperNet
(von Oswald et al., 2020). It should be noted that we use 0 (RFE) or 1000 (RFE-P, RFE-B) samples with
standard Resnet18, while methods in Kim et al. (2022) use 0 or 2000 samples with a larger Resnet18 that
has double the channels. Consider the task-incremental learning setting in Table 7 of [4], the best baselines
(both rehearsal and non-rehearsal) accuracy are 68.4, and the SOTA are HAT+CSI (72.4) and Sup+CSI
(74.1). RFE (69.66) without data outperforms all baselines. RFE-P (72.65) and RFE-B (71.92) are in the
same range of SOTA.

In Bhat et al. (2023), we consider PNN (Rusu et al., 2016), CPG (Hung et al., 2019), and PackNet (Mallya
& Lazebnik, 2017). In Figure 2 of Bhat et al. (2023), TAMiL is demonstrated to outperform all baseline
methods in task-incremental final average accuracy. In our experiments, RFE, RFE-B, and RFE-P out
performs TAMiL in both CIFAR100 and Tiny ImageNet dataset for the task-incremental setting.

C Versatility of RFE Framework

In RFE, as the tasks arrive, conventional fine-tuning or training on the new task happens with minimal
CL’s intervention. RFE only augments or adds to this process with a separate training of the retrospective
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feature estimation mechanism. The attractiveness of this framework is two-fold. First, RFE allows the
best adaptation on the new task to possibly achieve maximum plasticity, while the backward rectification
mechanism mitigates catastrophic forgetting. Second, unlike previous CL approaches that heavily modify
the sequential training process, RFE minimally changes the fine-tuning process, allowing the users to flexibly
incorporate this framework into their existing machine learning pipelines.

Relationship to Memory Linking. RFE’s process of mapping newly learned knowledge representa-
tion resembles the popular humans’ mnemonic memory-linking technique, which establishes associations of
fragments of information to enhance memory retention or recall. 1 As the model learns a new task, the
retrospector module establishes a mnemonic link from the new representation of the sample from the past
task to its past task’s correct representation.

1https://en.wikipedia.org/wiki/Mnemonic_link_system
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