Under review as submission to TMLR

Retrospective Feature Estimation for Continual Learning

Anonymous authors
Paper under double-blind review

Abstract

The intrinsic capability to continuously learn a changing data stream is a desideratum of deep
neural networks (DNNs). However, current DNNs suffer from catastrophic forgetting, which
interferes with remembering past knowledge. To mitigate this issue, existing Continual
Learning (CL) approaches often retain exemplars for replay, regularize learning, or allocate
dedicated capacity for new tasks. This paper investigates an unexplored direction for CL
called Retrospective Feature Estimation (RFE). RFE learns to reverse feature changes by
aligning the features from the current trained DNN backward to the feature space of the
old task, where performing predictions is easier. This retrospective process utilizes a chain
of small feature mapping networks called retrospector modules. Empirical experiments on
several CL benchmarks, including CIFAR10, CIFAR100, and Tiny ImageNet, demonstrate
the effectiveness and potential of this novel CL direction compared to existing representative
CL methods.

1 Introduction

Humans exhibit the innate ability to incrementally learn new concepts while consolidating acquired knowl-
edge into long-term memories (Rasch & Born, 2007). More general Artificial Intelligence systems in real-world
applications would require a similar imitation to capture the dynamics of the changing data stream. These
systems need to acquire knowledge incrementally without retraining, which is computationally expensive
and exhibits a large memory footprint (Rebuffi et al., 2016). However, existing learning approaches cannot
match human learning in this so-called Continual Learning (CL) problem due to catastrophic forgetting
(McCloskey & Cohen, 1989). These systems encounter difficulty in balancing the capability of incorporating
new task knowledge while maintaining performance on learned tasks, or the plasticity-stability dilemma.

Representative CL approaches in the literature usually involve the use of a memory buffer for rehearsal (Rat-
cliff, 1990; Chaudhry et al., 2019a; Buzzega et al., 2020; Caccia et al., 2022; Bhat et al., 2023; Arani et al.,
2022; Prabhu et al., 2020), auxiliary loss term for learning regularization (Kirkpatrick et al., 2017; Ebrahimi
et al., 2020; Zenke et al., 2017; Schwarz et al., 2018), or structural changes such as model pruning, growing
or finding sub-networks (Rusu et al., 2016; Mallya & Lazebnik, 2018; Fernando et al., 2017; Yan et al., 2021;
Serra et al., 2018; Wortsman et al., 2020; Kang et al., 2022). These methods share the common objective of
discouraging the deviation of learned knowledge representation. Rehearsal-based methods allow the model
to revisit past exemplars to reinforce previously learned representations. Alternatively, regularization-based
methods prevent changes in parameter spaces by formulating additional loss terms. However, both ap-
proaches present shortcomings, including keeping a rehearsal buffer of all tasks during the model’s lifetime
or infusing ad hoc inductive bias into the regularization process. Meanwhile, structure-based methods utilize
the over-parameterization property of the model by pruning, masking, adding parameters, or finding suitable
sub-networks to reduce new task interferences.

This paper studies a novel approach for CL named Retrospective Feature Estimation (RFE), where we al-
low the model to “forget” knowledge of old tasks but then “correct” such “catastrophic forgetting” during
inference using a sequence of lightweight feature mapping networks. These networks, called retrospector
modules, help significantly reduce information loss in learned tasks by incrementally reversing changes in
the feature space. Specifically, for each new task, we add a small, simple, and inexpensive auxiliary unit
that aligns the feature from the current task to the previous task. Our method differs from many network

Under review as submission to TMLR

expansion methods, in which additional parameters are allocated to minimize changes to the old parameters.
Instead, extra modules are used to iteratively recover past representations by propagating the current rep-
resentation backward through a series of mapping networks. With this mechanism, RFE allows the optimal
learning of a new task (plasticity) while separately mitigating catastrophic forgetting through retrospectors
(stability). RFE does not require saving past data to achieve strong performance, but can flexibly utilize past
data to further improve capability. In addition, different from several CL approaches that heavily modify
the training or network architecture, RFE imposes minimal changes to new task learning as modifications
are mainly performed after the training has been completed using auxiliary modules. Hence, RFE can be
easily integrated into existing CL pipelines.

Contributions. We propose a new direction for CL by sequentially correcting the current task’s represen-
tation into the past task’s representation using a chain of lightweight retrospector modules:

e We propose RFE, a novel approach to CL that separates catastrophic forgetting mitigation from
new task learning via a sequence of lightweight retrospector modules. The proposed retrospector
module, by compensating for information loss and reversing feature changes, can incrementally
mitigate catastrophic forgetting.

e To train the retrospector modules, we rely only on task t — 1’s feature extractor, and keeping past
data is optional to improve performance. At inference time, for the task-incremental setting, we
construct a chain of retrospector modules based on the provided task identity and forward the
current features to correct the feature space. For the class incremental setting, RFE forms the final
prediction from an average of predictions based on the reconstructed representations.

o We empirically evaluate our approach on three popular continual learning benchmarks (CIFARI10,
CIFAR100, and Tiny ImageNet) to demonstrate that our approach achieves comparable performance
with the existing representative CL directions.

This paper unfolds as follows. Section 2 discusses the literature on CL problems, and Section 3 describes
the proposed RFE method. Finally, Section 4 provides the empirical evidence for the effectiveness of our
proposed solution.

2 Related Work

Catastrophic forgetting is a critical concern in artificial intelligence and is arguably among the most promi-
nent questions to address for DNNs. This phenomenon presents significant challenges when deploying models
in different applications. Continual learning addresses this issue by enabling agents to learn throughout their
lifespans. This aspect has gained significant attention recently (Sun et al., 2022; Hu et al., 2021; Kirichenko
et al., 2021; Balaji et al., 2020). Considering a model well-trained on past tasks, we risk overwriting its past
knowledge by adapting it to new tasks. The problem of knowledge loss can be addressed using different
methods, as explored in the literature (Yin et al., 2021; Farajtabar et al., 2020; Kirkpatrick et al., 2017;
Li & Hoiem, 2018; Chaudhry et al., 2019a; Bhat et al., 2023; Rusu et al., 2016; Yan et al., 2021; Buzzega
et al., 2020; Caccia et al., 2022; Arani et al., 2022; Prabhu et al., 2020; Ebrahimi et al., 2020; Zenke et al.,
2017; Schwarz et al., 2018; Mallya & Lazebnik, 2018; Fernando et al., 2017; Serra et al., 2018; Wortsman
et al., 2020; Kang et al., 2022). These methods aim to mitigate knowledge loss and improve task perfor-
mance through three main approaches: (1) Rehearsal-based methods, which involve reminding the model of
past knowledge by using selective exemplars; (2) Regularization-based methods, which penalize changes in
past task knowledge through regularization techniques; (3) Parameter-isolation and Dynamic Architecture
methods, which allocate subnetworks or expand new subnetworks, respectively, for each task, minimizing
task interference and enabling the model to specialize for different tasks.

Rehearsal-based. Experience replay methods build and store a memory of the knowledge learned so far
(Rebuffi et al., 2016; Lopez-Paz & Ranzato, 2017; Shin et al., 2017; Riemer et al., 2018; Rios & Itti, 2019;
Zhang et al., 2020; Chaudhry et al., 2019a; Buzzega et al., 2020; Caccia et al., 2022; Bhat et al., 2023; Arani
et al., 2022; Prabhu et al., 2020). As an example, Averaged Gradient Episodic Memory (A-GEM) (Chaudhry

Under review as submission to TMLR

et al., 2019a) builds an episodic memory of parameter gradients, while DER Buzzega et al. (2020) uses a
reservoir sampling method to maintain episodic memory. These methods have shown strong performance in
past studies, but they require a significant memory to store the examples.

Regularization-based. A popular early work using regularization is the elastic weight consolidation (EWC)
method (Kirkpatrick et al., 2017). Other methods (Zenke et al., 2017; Aljundi et al., 2018; Van et al., 2022;
Nguyen et al., 2018; Ahn et al., 2019; Ebrahimi et al., 2020) propose different criteria to measure the
“importance” of parameters. A later study showed that many regularization-based methods are variations
of Hessian optimization (Yin et al., 2021). These methods typically assume multiple optima in the updated
loss landscape in the new data distribution. One can find a good optimum for both the new and old data
distributions by constraining the deviation from the original model weights.

Parameter Isolation. Parameter isolation methods allocate different subsets of the parameters to each
task (Rusu et al., 2016; Jerfel et al., 2019; Rao et al., 2019; Li et al., 2019; Serra et al., 2018; Kang et al.,
2022). From the stability-plasticity perspective, these methods implement gating mechanisms that improve
stability and control plasticity by activating different gates for each task. Masse et al. (2018) proposes a
bio-inspired approach for a context-dependent gating that activates a non-overlapping subset of parameters
for any specific task. Supermask in Superposition (Wortsman et al., 2020) is another parameter isolation
method that starts with a randomly initialized, fixed base network and, for each task, finds a sub-network
(supermask) such that the model achieves good performance.

Dynamic Architecture. Different from Parameter Isolation, which allocates subnets for tasks in a fixed
main network, this approach dynamically expands the network structure. Yoon et al. (2018) proposes a
method that leverages the network structure trained on previous tasks to effectively learn new tasks, while
dynamically expanding its capacity by adding or duplicating neurons as needed. Other methods (Xu & Zhu,
2018; Qin et al., 2021) reformulate CL problems into reinforcement learning (RL) problems and leverage
RL methods to determine when to expand the architecture when learning new tasks. Yan et al. (2021)
introduces a two-stage learning method that first expands the previous frozen task feature representations
by a new feature extractor, then re-trains the classifier with current and buffered data.

An orthogonal direction of CL is adapting a frozen pre-trained model to a sequence of tasks (for example, by
learning new adapters), which share some similarities to our work but are not directly related. RFE assumes
a more challenging scenario with training from scratch and evolving model parameters.

3 Proposed Framework

Unavailable at inference Available at infernece

=
train B E Dtram
Input z €Dy
1
. A
\ y
Feature extractor * fi(-) Tii1 TN-1 : fn() ;
N --- v
Y
Representation fi(x) fve 2(13 fv 1($
Task t Task N-2 Task N-1 Task N
Classifier representation representation representation representation

Figure 1: At task ¢, the feature extractor f; and classifier head w; are optimized on the dataset D™, During
inference for a test sample from task ¢, we forward the input data € D** through the feature extractor
and classifier head to obtain the logits. After learning all N tasks, the DNN loses performance on task ¢
due to catastrophic forgetting. Therefore, the latent representation fy(x) is propagated through a series
of retrospector module 7y, ...,r:41 to perform incremental latent rectification and obtained approximated
representations fN_l, cee ft. The logits can be obtained by passing the recovered representation to the
respective classifier head.

Under review as submission to TMLR

We consider the task-incremental learning (TIL) and class-incremental learning (CIL) scenarios, where we
sequentially observe a set of tasks t € {1,...,N}. The neural network comprises a single task-agnostic
feature extractor f and a classifier w with task-specific heads. The architecture of f is fixed; however, its
parameter set 6 is gradually updated as new tasks arrive. At task ¢, the system receives the training dataset
Dirin gampled from the data distribution D; and learns the updated parameter sets 6y, 0, of the feature
extractor f and w. To ease the discussion, the feature extractor and the classifier obtained after learning
in task ¢ are denoted as f; and wy, respectively. For an input-label pair (x,y) sampled from D, the logits
computed by w is denoted as z. Thus, after learning on task ¢, we obtain the evolved feature extractor f;
and the classifier w;. We call the latent space created by the feature extractor trained with D™ as the
t-domain. Catastrophic forgetting occurs as the feature extractor fi is updated into f; (¢’ < t), which causes
the #’-domain to be overwritten by the ¢-domain. This domain shift degrades the model’s performance over
time.

To overcome catastrophic forgetting, we propose a new CL paradigm: learning a retrospective feature esti-
mation mechanism. This mechanism relies on a lightweight retrospector module r; that learns to align the
features from the ¢-domain to the (¢ — 1)-domain. Intuitively, this module “corrects” the feature change of a
sample from the old task t — 1 due to the evolution of the feature extractor f when learning the newer task ¢.
These retrospector modules will establish a chain of corrections for the features of any task’s input, allowing
the model to predict the past features better. Fig. 1 provides a visualization of the inference process on a
task-t sample, after learning IV tasks.

Learning the mechanism is central to our proposed framework. In general, each retrospector module should
be small compared to the size of the final model or the feature extractor f, and its learning process should
be resource efficient. The following sections present and describe our solution for learning this mechanism.

3.1 Learning the retrospector

As the training dataset D™ of task t arrives, we first update the feature extractor f; and the classifier
we. The primary goal herein is to find (f;, w;) that has a high classification performance for task ¢, and
the secondary goal is to choose f; that can reduce the catastrophic forgetting on previous tasks. To combat
catastrophic forgetting, we will first discuss the objective function for learning the lightweight retrospector
module r; and the potential options for training data.

3.1.1 Feature Estimation Loss

The goal of r; is to reduce the discrepancy between task t’s representation f;(x) and the ¢ —1’s representation
fi—1(x) for ® ~ Dy_q; ie., ri(fi(x),x) ~ fi—1(x). A simple choice is the Iy error between f;_1(x) and
r¢(fi(x),). Since the feature estimation loss will be reused multiple times in this paper, we define s to be
a function with parameter set 8, that encodes an input & ~ D into its respective features. More specifically,
s would serve as a placeholder for different functions in different training scenarios. We define the loss as:

Lre(0s;5,D, f) = Eonp [[Is(x) — f(2)|3] (1)

For retrospector training, at task ¢, we set s(x) = r(f;(x),x), and aim to minimize the difference between
s and f;_1; therefore, the objective function becomes

Lru(6r,;7, D, fi—1) = Egrp [[Ire(fe(z), @) — fi1(z)|3] (2)

3.1.2 Training Data

Training the retrospector r; to map the representation from the t-domain back to the (¢t —1)-domain requires
the representations in both domains (fi(x), fi—1(x)) as training data. Ideally, the best choice would be to
keep all the samples and the respective representations from task ¢ — 1 to train the retrospector module.
However, it is impractical to keep all & ~ D3 due to efficiency, scalability, or privacy issues. A practical
approach is to only keep the previous task feature extractor f;_; and use current task samples & ~ D0 to

Under review as submission to TMLR

approximate the mapping of the representation space of the task ¢ back to that of the task ¢ — 1. Another
approach is to keep only a subset P C D1 of the previous tasks’ samples and their respective representation.
Nonetheless, the second approach heavily relies on the number of samples |P| that could be saved. Therefore,
we opt for the first approach to train the retrospector. Keeping additional past data is optional and could
be used to further improve performance. In this paper, we evaluate three strategies to for training RFE.

Without past task’s data (RFE). RFE can effectively recover f;_i(x) from f;(x) without relying on
previous task’s data. By only keeping the previous task feature extractor f;_; and using current task data
x ~ D™ a5 an approximation for D;_1, the retrospector module can learn to map from the t-domain to
the (¢ — 1)-domain. It is common for continual learning methods to exhibit performance degradation over
time. However, even without access to any past task data, RFE demonstrates comparable performance to
several rehearsal-based methods.

With a subset P of task t — 1’s samples (RFE-P). In addition to keeping f;_1, to improve rectification
performance, a small subset of task ¢ — 1’s samples can also be saved together with their representation
fi—1(x). With the use of additional past samples, RFE can sustain classification performance even under
a long chain of retrospector modules. Therefore, RFE-P can be a good trade-off between performance and
privacy since data are only stored with the maximum life cycle of 2 tasks (task ¢ — 1 and task ¢) rather than
indefinitely as in buffer-based methods. However, it is possible to generalize this approach to store data from
the past k tasks, where k = 1 corresponds to RFE-P, meaning only task ¢t — 1’s samples are stored.

With_ a buffer B of all tasks’ samples (RFE- Tuple 1. At task t, different training data require stor-
B). Similar to many buffer-based methods, RFE can ing different components of the training process, which

also make use of a reservoir buffer for a subset of all impose different trade-offs in terms of performance and
tasks’ samples to sustain performance under very pyivacy.

long retrospector module chaining. Instead of only

being used for training the new retrospector mod- Variation Keep Keeﬁam Kteep train
ule, these data samples can also be used to tune the ficr PCD BCU,_ D
learned retrospector modules, ensuring a stable rec- RFE v - -
tification chain. On the other hand, unlike RFE and RFE-P v v -
RFE-P, RFE-B can not be used in scenarios where RFE-B v - v

privacy is a major concern.

3.2 Retrospective Feature Estimation

The retrospective feature estimation mechanism relies on a chain of task-specific retrospector modules () ,
that aims to correct the distortion of the feature space as the extractor f learns a new task.

3.2.1 Past Feature Estimation

For an input x at task ¢ — 1, its representation under the feature extractor f;_; is f;—1(¢). One can
heuristically define the (¢ — 1)-domain as the representation space of the input under the feature extractor
fi—1. Unfortunately, the (¢ — 1)-domain is brittle under extractor update: as the subsequent task ¢ arrives,
the feature extractor is updated to f;, and the corresponding features of the same input & will be shifted to
fi(x). Likely, the t-domain and the (¢t — 1)-domain do not coincide, and fi(x) # fi—1(x).

The retrospector module r; aims to offset this representation shift. To do this, r; takes @, and its t-domain
representation fi(x) as input, and the module outputs the approximated features that satisfies

re(fe(x), ®) = fi-1(x), (3)

With this formulation, we can effectively minimize the difference between the rectified features r:(fi(x), x)
and the original features f;_1(x).

3.2.2 Retrospector’s Architecture

Under review as submission to TMLR

The proposed retrospector module comprises

Trainable Frozen
several trainable components: a weak auxiliary module module

feature extractor, soft gatings, and linear map- z z |
pings. The size of the retrospector module in- v
creases linearly with the number of tasks, sim- () ||
) A : -

ilar to the classification head. However, since v
the retrospector module is lightweight, this is z ft(vw) r(fu(@), =) lL
trivial compared to the size of the full model. > Laﬁgn/ D)

Fig. 2 visualizes the module. The architec-
ture of the retrospector is described here, with
further implementation details included in the
supplementary materials.

Figure 2: The retrospector module includes a weak auxil-
iary feature extractor h;, linear mappings af , a?, by, and soft
gatings gtf ,g". The joint information from the projected
Auxiliary feature extractor h;. Due to representations from both f; and h; is used to compute the

catastrophic forgetting, the main feature ex- gating value for the rectified representation.
tractor will gradually forget learned knowl-

edge. Therefore, the auxiliary feature extrac-

tor will partially compensate for this loss of information. For our experiment, we choose a simple and naive
design of an auxiliary feature extractor that has a low performance to demonstrate that the effectiveness
of RFE is based on retrospective feature estimation capability and not the auxiliary feature
extractor’s performance. The auxiliary feature extractor h; processes the input data = to generate a
simplified representation h;(x). h; is distilled from f;_; to compress the knowledge of f;_; into a more com-
pact, low-capacity parameter-efficient network. The weak auxiliary feature extractor is composed of only
two 3x3 convolution layers and two max pooling layers. For simplicity and efficiency, instead of processing
the full-size image, we use max-pooling to down-sample the input to 16x16 images before feeding it into h;.
The auxiliary feature extractor is a very small network compared to the main model.

Linear mappings atf ,al b;. To capture only relevant information and reduce noise from the main feature
extractor and auxiliary feature extractor, both representations will be linear projected down to a smaller
dimension space af o fy(x) and a o hy(x), in which an element-wise multiplication is applied to combine
both representation information.

ai(@, fu(@), hi(@)) = (af o fu(@)) © (af o hi(a)) 4)

with dim(a’) = dim(a") < dim(f;) (dim is the dimension of the output layer).

On the other hand, as h; may have a representation of a different dimension compared to that of f;, another
linear projection b; is used to map from h;’s dimension to f;’s dimension as

hi(x) = by © h() (5)

Soft gatings gf ,g". For the main feature extractor and auxiliary feature extractor representations f;(x)
and hy(z), an element-wise gating value gf (.) and g/(.) is computed from the encoded joint information
ai(x, fi(x), he(x)). As gl gl al al by, hy are components of the retrospector module, we compute the
rectified representation as a function of the input @ and its current representation f;(x) :

rfule),w) = (of o oo, filw), h(@) © fil) + (o 0 an(a, fu(), hu(a) © i ()

The gating mechanism is simply a linear layer followed by sigmoid activation.

Distiction from network-expansion approach. It could be argued that one can, instead, separately
train a weak feature extractor h; for each task, making it a network-expansion CL approach. However,
because h; is a small and low-capacity network, this approach is ineffective; specifically, our experiments
demonstrate that the task-incremental average accuracy across all tasks of this approach on CIFAR100 falls
below 53%. Furthermore, for network expansion approaches, the dedicated parameters are allocated for new

Under review as submission to TMLR

task learning, which fundamentally differs from RFE’s objective to correct representation changes. The new
task’s knowledge is acquired by f; and w; with high plasticity.

3.3 Training Procedure

Network training. Similar to conventional DNN training, the performance of the feature extractor f; and
the classifier head w; is measured by the standard multi-class cross-entropy loss:

M;
[.:CE (Hft @] 0wt ;W © ft7 D;rain) = E(w,y)NDzmi" [— Z Ye log(zc)] (6)
c=1

where M; is the number of classes of task t, z is the probability-valued network output for the input x
that depends on the feature extractor f; and the classifier w; as z = w; o fi(x). Since the retrospector will
correct feature changes back to the original feature space, classifier units that are learned from past tasks
are excluded (masked) and not updated to prevent mismatch due to gradient updates.

Furthermore, to reduce forgetting, and enable more effective rectification, we regularize (or distill) task ¢ — 1
representation knowledge by using the approximated previous task’s representation from f;_; (and additional
saved data in P or B if available) to train the current feature extractor fi. Let s(x) = fi(x), then we can
similarly use Lpg in Eq. (1) with hyperparameter «:

LT(aft U gwt; Dzrain U 8) = ["’CE(Gft U eu’t ;we o ft, D;rain) + a[’FE(aft i Jts D;rain us, ft—l) (7)

where S can be the empty set, the set P, or the buffer B corresponding to RFE, RFE-P, or RFE-B,
respectively.

Retrospector training. Training the retrospector module follows two main steps: train the weak auxiliary
feature extractor h; at task ¢ — 1 and then the remaining components at task ¢. The weak feature extractor
hy is distilled from f;_; as task t — 1 training is completed using Lrg(04,; he, D4R £, 1) as in Eq. (1) with
s(x) = hy(x). After training, h; parameters are frozen to prevent modifications. Similarly, after the training
of task t is completed, we train the remaining components using Lrg (6., \O,; e, D", fi_1) as in Eq. (1)
with s(x) = r¢(f:(x),x). For the case of RFE-B, the representations f:(x) of input @ € B are rectified
to their corresponding domains ¢ = {1,2,...,t — 1} and learned retrospector’s parameters Uf;%@n are also
optimized. Details of RFE’s training algorithm are provided in Algorithm 1.

RFE imposes minimal changes to the standard training process as the majority of the additional training
happens after the main (standard) training ends.

Algorithm 1 Training process at task ¢ € {1,2,..., N}.

let S be (), P,B for RFE , RFE-B, RFE-P, respectively
// main training starts
for i =1, ..., max epochs do
optimize w; o f; with L1(6y, U 0,,,; D" U S)
end for
// main training ends
for j = 1,..., max epochs do
optimize ht+1 with EFE(QhHrl y ht+1, Dgrain’ ft)
end for
freeze 0, ,
if t > 1 then
for k =1, ..., max epochs do
optimize r; with Lrg(0,,\0h,,r:, DI US, fi_1)
end for
end if

Under review as submission to TMLR

Table 2: Task-Incremental Average Accuracy across all tasks after CL training. Oracle: the upper bound
accuracy when jointly training on all tasks (i.e., multi-task learning). Finetuning: the lower bound accuracy
when learning without CL techniques. |B]| is the buffer of all past task samples. |P| is the subset of task t —1
training data. params (training/inference) is the number of parameters used during training (first value)
and inference (second value) (lower is better), and accuracy is the average accuracy of all tasks (higher is
better).

Method S-CIFAR10 S-CIFAR100 S-TinyImg
Exemplars
TIL params accuracy ‘ params accuracy ‘ params accuracy
Oracle 98.37+ 0.12 86.57+ 0.38 81.47+ 0.22
Finetuning) 1L17/11.17 60.08+ 2.13 11.22/11.22 24.90+ 2.58 11.27/11.27 13.67+ o.37
AGEM 91.37+ 0.40 65.50+ 0.28 38.73+ 1.23
ER 93.79+ 0.96 66.88+ 0.50 44.85+ 0.99
DER++ 11.17/11.17 92.10+ 0.74 11.22/11.22 68.65+ 0.93 11.27/11.27 47.92+ 0.73
ER-ACE |B|=500 93.60+ 0.61 67.97+ 1.01 47.88+ 0.61
ER-MKD 22.35/11.17 93.75+ 0.39 22.44/11.22 70.63+ 0.s0 22.54/11.27 51.89+ 0.24
TAMIL 22.68/11.51 94.56+ 0.09 22.77/11.60 75.12+ 0.25 23.20/12.03 63.28+ 0.03
CLS-ER 33.52/11.17 94.991 o.25 | 33.66/11.22 76.79+ 0.47 33.81/11.27 50.28+ 1.03
RFE-P |7)| =500 92.94+ 0.52 80.57+ 0.41 71.80+ o.51
RFE-B |B| = 500 23.76/12.59 91.35+ 0.30 23.81/12.64 80.69+ 0.41 25.63/14.46 69.91+ 0.36
AGEM 90.26+ 2.6 69.91+ 0.62 45.58+ 1.16
ER 94.91+ 0.54 72.17+ 0.42 53.98+ 1.08
DER++ 1L17/11.17 93.35+ 0.43 11.22/11.22 72.90+ 0.31 11.27/11.27 57.17+ 0.40
ER-ACE |B| = 1000 94.93+ 0.40 72.36+ 0.68 56.96+ 0.51
ER-MKD 22.35/11.17 95.28+ 0.04 22.44/11.22 74.04+ 0.43 22.54/11.27 57.55+ 0.53
TAMIL 22.68/11.51 95.11+ 0.31 22.77/11.60 77.94+ 0.95 23.20/12.03 68.81+ 0.85
CLS-ER 33.52/11.17 96.02+ o0.16 | 33.66/11.22 79.82+ 0.11 33.81/11.27 60.784 0.40
RFE-P |P| = 1000 92.92+ 0.02 80.64+ 0.59 72.65+ o.56
RFE-B |B| = 1000 23.76/12.59 90.74+ 1.85 23.81/12.64 81.06+ o0.28 25.63/14.46 71.92+ 0.34
RFE | - | 23.76/12.59 9115+ 011 | 23.81/12.64 79.54:x 027 | 25.63/14.46 69.66+ 017
3.4 Inference Procedure

We now describe how to stack multiple retrospector modules r; into a chain for inference. As a new task
arrives, our model dynamically extends an additional retrospector module, forming a sequence of retrospector
modules.

Task-Incremental. We consider a task-incremental learning setting where a test sample x; is coupled with
a task identity t; € {1,..., N}. To classify @, we can recover fti (z) by forwarding the current representation
fn(x) through a chain of N — t; retrospector modules. We then pass this recovered latent variable through
classifier head wy, to make a prediction. The output g; is computed as

(8)

where ftz(m) = rti+1(ft+i(x)ax) with ¢; < N, fN = fN'

Class-Incremental. RFE relies on the task identity to reconstruct the appropriate sequence of retrospector
modules for propagating the features to the original space. However, no identity is provided for the CL
method in the class-incremental learning setting. We instead provided a simple method for inference without
task identity, which demonstrates the method’s extension to class-incremental learning; however, more robust
task-identity inference methods could also be incorporated.

Under review as submission to TMLR

We obtain the class-incremental probabilities by forming an average of the class probabilities over all do-
mains. For each domain, irrelevant classifier units (not belonging to the task) are excluded (masked) before
computing the softmax probability. From the current task ¢’s domain, we iteratively rectified the latent back
to task t — 1, task t — 2, ..., task 1’s domain. At each domain, we obtain the estimated representation cor-
responding to the domain, which we forward through the respective classifier. We then average the softmax
probabilities of each domain w; o f;|t_;.

4 Experiments

Our implementation is based partially on the Mammoth (Boschini et al., 2022; Buzzega et al., 2020), TAMiL
(Bhat et al., 2023), and CLS-ER (Arani et al., 2022) repositories.

4.1 Evaluation Protocol

Datasets. We select three standard contin- Table 3: Class-Incremental Average Accuracy across all
ual learning benchmarks for our experiments: tasks after CL training. The settings are similar to Table 2.

Sequential CIFARI0 (5-CIFARI0), Sequen- pNethod | Exemplars | S-CIFAR100 | S-TinyImg
tial CIFAR100 (S-CIFAR100), and Sequential
Tiny ImageNet (S-Tinylmg). Specifically, we Oracle } 71152 0.6 58.23+ 0.21
divide S-CIFARI10 into 5 binary classification Finetuning 17.65+ 0.10 7.73+ 0.06
tasks, S-CIFAR100 into 5 tasks with 20 classes AGEM 24754 008 0.30+ 0.11
each, and S-Tinylmg into 10 tasks with 20 ER 98.60+ 0.66 10.09+ 0.08
classes each. DER++ 38.90+ 1.20 13.50+ 0.34
Baselines. We evaluate RFE against strong EP}:-_QEED |B] = 500 gg;gi jfz ggii ZZE
rehearsal-based CL methods, including ER TAMIL 44434 104 20.48+ 055
(Chaudhry et al., 2019b), AGEM (Chaudhry CLS-ER 50.68+ 0.61 20.25+ 0.43
et al., 2019a), DER++ (Buzzega et al., 2020),
ER-ACE (Caccia et al., 2022), CLS-ER (Arani 1 F0 |7;| SO0 | iS58soee | 2925k oo
et al., 2022), TAMIL (Bhat et al., 2023), and - |51 = 500 585+0s | 2729+ 0t
ER-MKD Michel et al. (2024). We further pro- AGEM 26.66+ 1.09 9.73+ 0.30
vide an upper and lower bound for all methods ER 34.77+ 0.6a 13.47+ o.68
by joint training on all tasks’ data and fine- DER++ 45.92+ 2.0 20.14+ 080
tuning without catastrophic forgetting mitiga- ER-ACE |B| = 1000 46.88+ 0.56 22.96+ 0.4
tion. We employ ResNet18 (He et al., 2016) as ER-MKD 38.85+ 0.00 16.09: 1.8
the feature extractor for all benchmarks. The TAMIL 50372 1.00 28.21+ 078
classifier comprises a fixed number of linear CLS-ER 56.18: 020 2745+ 000
heads for each task. RFE-P |P| = 1000 45.85+ 0.56 30.58+ 0.28
RFE-B |B| = 1000 46.01+ 0.54 30.47+ 0.51

Additional results and further details on
datasets, baselines, and hyperparameters are RFE | - 43.63+ 120 26.59+ 0.44
provided in the supplementary materials.

4.2 Results

Task-incremental. Table 2 shows the performance of RFE, RFE-P, RFE-P, and other CL methods on
multiple sequential datasets, including S-CIFAR10, S-CIFAR100, and S-TinyImg. From the table, we see
that RFE-P and RFE-B achieve results comparable to the baselines on S-CIFAR10. On S-CIFAR100 and
S-Tinylmg, RFE, without any past data, is equivalent to or outperforms all the baselines, including strong
rehearsal-based methods such as TAMiL and CLS-ER, indicating its ability to estimate feature representation
retrospectively. Notably, given either P or B, RFE-P and RFE-B outperform the baselines.

Class-incremental. Table 3 demonstrates the extension of RFE-P and RFE-B to class-incremental settings.
As the class-incremental probabilities are obtained through simple averaging, which may suffer from an
overconfident classifier, we can achieve performance comparable to other methods on S-CIFAR100. On S-

Under review as submission to TMLR

Tinylmg, RFE-P and RFE-B demonstrate an improvement over other methods. The performance can be
further optimized by integrating task identity prediction methods (i.e., OOD detection) Kim et al. (2022),
which are left as potential improvements to avoid complicating the method.

Long chaining. Continual learning methods, including rehearsal-based approaches, often experience per-
formance degradation over long task sequences. In Fig. 3, we demonstrate that RFE-P and RFE-B exhibit
less forgetting than several continual learning methods across the ten tasks of S-Tinylmg. In Fig. 4, we
demonstrate the evolving average accuracies over 20 tasks of S-Tinylmg, in which RFE is more stable and
consistently improves over other methods.

Train TO DER++
Train T1
Train T2
Train T3
Train T4
Train T5
Train T6
Train T7
Train T8
Train T9

CLS-ER TAMIL

60 61 64 70 75
59 60 62 68 6280
56 58 60 64 56 65 74
54 5558 61 53 60 6179
54 54 56 60 52 57 55 62|75
53 54 54 58 49 56 5159 62 77

68 67 7176 73
67 65 68 74 68 77
63 62 66 70 62 73 71
60 60 64 69 60 68 65 74
60 59 62 67 57 63 61 69 68
56 58 60 65 55 60 57 64 63 71

68 68 7175 76
67 67 70 74 68 82
66 66 69 73 67 7577
66 67 6773 65 73 70 82
65 65 6871 63 70 67 73 79
65 65 6671 63 70 64 70 7281

Train TO
Train T1
Train T2
Train T3
Train T4
Train T5
Train T6
Train T7
Train T8
Train T9

O -H N M<T N O~ 0O O - N M<IT N O™~ 0O O = N M<T N © I~ 0 O
= [= = = -

T T T
03003 3B003 IV LLIY VL IBOQ DB
gEgggegegee LR e e 2o eeQe0R

Figure 3: The TIL accuracy with 1000 exemplars on 10 tasks of S-Tinylmg (lighter color is better). The
vertical axis represents the task the model has been trained on. The horizontal axis represents the task
identity. The value in the cell is the task’s accuracy. RFE-P demonstrates a forgetting rate comparable to
or better than other methods without revisiting distant task samples. RFE-B performance is more stable
for long chaining.

0.80
oy
@ 0.75 1
=}
° —— RFE-P
<0701 — RFEB
& — TAMIL
0 0.651 — RFE
<
—— DER++
0.60 +— .
1

2 345 6 7 8 91011121314 151617 18 19 20
After Task

Figure 4: The evolving TIL average accuracies of CL methods with 1000 exemplars on 20 tasks of S-TinyImg.
RFE-P and RFE-B consistently improve over baseline.

Overhead. Further details on time and space overhead are in the supplementary materials.

Other architectures. Further results on ViT (Dosovitskiy et al., 2020) are in the supplementary materials.

10

Under review as submission to TMLR

20

Task 2 rectified to Task 1 Task 3 rectified to Task 1 Task 4 rectified to Task 1 Task 5 rectified to Task 1

15

10

2nd PC
o

e Original
e Drifted
e Rectified

e Original Original
e Drifted Drifted
e Rectified . . ® Rectified

-10 Original
e Drifted

e Rectified

-15

=20
-20-15-10 -5 0 5 10 15 20 -20-15-10 -5 0 5 10 15 20 -20-15-10 -5 O 5 10 15 20 -20-15-10 -5 O 5 10 15 20

1st PC 1st PC 1st PC 1st PC

‘ Drifted to Original ‘Rectified to Original‘ ‘ Drifted to Original ‘Rectified to Original‘ ‘ Drifted to Original ‘Rectified to Original‘ ‘ Drifted to Original ‘Rectified to Original‘
[RMsE| 0.97 \ 0.50 | 114 \ 0.57 | 1.21 \ 0.63 | 1.29 \ 0.63 |

Figure 5: We employ PCA to visualize the rectified latent space after training on task ¢ and predicting
task t'(¢t" < t) of S-CIFAR100. By visualizing the original representation (f (x)), the drifted representation
(fi(x)), the rectified representation (fy (x)), we demonstrate RFE effectiveness. The closer the rectified
representation and the original representation, the better the performance. For Eq. (7), we set @« = 0 (no
regularization) to clearly visualize the catastrophic forgetting and retrospector module performance.

4.3 Retrospector Experiment

While the retrospector has several components, the core idea is to efficiently combine f(x) and h(x) to rectify
the representation using soft gating and linear layers for dimension mapping. Therefore, the components
are tightly integrated and cannot be easily decomposed for individual testing. We cannot remove h:(x) as
we cannot recover f;_1 with f; alone due to catastrophic forgetting. However, we can study the overall
effectiveness of the retrospector by visualizing the representation of the “catastrophic forgetting” network
and the rectified result by the retrospector. In Fig. 5, we utilize Principal Component Analysis (PCA)
to visualize the latent space. The new representations of past data (red) after learning new tasks change
significantly from the original representation (blue), which explains catastrophic forgetting. With RFE,
the rectified representations (green) align with the ‘true’ representations (blue), supporting the empirical
effectiveness of our framework. The RMSE between representations is also computed. Additional ablation
on alternative retrospector designs is in the supplementary materials.

5 Limitations

We have shown the potential and high utility of RFE’s continual learning mechanism in this paper. Neverthe-
less, RFE also has some limitations. Despite being lightweight, RFE still maintains additional parameters,
i.e., the retrospector module, which incurs an additional overhead as the number of tasks increases. Infer-
ence cost for a significantly long chain would be considerable, which can be improved with modified chaining
methods such as skipping (i.e., building a retrospector every two tasks). Additionally, since RFE relies on
the task identity to reconstruct the retrospector sequence, application to class-incremental learning requires
either inferring task identity or averaging predictions. The current approach might suffer from over-confident
classifiers. Class-incremental learning is still an open research area, where more effective adaptations of RFE
can be discovered.

6 Conclusion

This work proposes a new CL direction. RFE tackles catastrophic forgetting through its novel Retrospective
Feature Estimation mechanism that learns to align the newly learned representation of past data to their
past representations. Unlike existing CL methods, RFE can operate as a data-free method while achieving
comparable performance to rehearsal-based methods. Additional past data is optional and can be used to
improve performance. Furthermore, RFE imposes minimal modification to task learning, as most of the
training for rectification occurs after main task training.

11

Under review as submission to TMLR

References

Hongjoon Ahn, Sungmin Cha, Donggyu Lee, and Taesup Moon. Uncertainty-based continual learning with
adaptive regularization. In Advances in Neural Information Processing Systems, pp. 4394-4404, 2019.

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars. Memory
aware synapses: Learning what (not) to forget. In Proceedings of the European conference on computer
vision (ECCYV), pp. 139-154, 2018.

Elahe Arani, Fahad Sarfraz, and Bahram Zonooz. Learning fast, learning slow: A general continual learning
method based on complementary learning system. In International Conference on Learning Representa-
tions, 2022.

Yogesh Balaji, Mehrdad Farajtabar, Dong Yin, Alex Mott, and Ang Li. The effectiveness of memory replay
in large scale continual learning, 2020. URL https://arxiv.org/abs/2010.02418.

Prashant Shivaram Bhat, Bahram Zonooz, and Elahe Arani. Task-aware information routing from com-
mon representation space in lifelong learning. In The Eleventh International Conference on Learning
Representations, 2023.

Matteo Boschini, Lorenzo Bonicelli, Pietro Buzzega, Angelo Porrello, and Simone Calderara. Class-
incremental continual learning into the extended der-verse. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2022.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark experience
for general continual learning: a strong, simple baseline. In H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 15920—
15930. Curran Associates, Inc., 2020.

Lucas Caccia, Rahaf Aljundi, Nader Asadi, Tinne Tuytelaars, Joelle Pineau, and Eugene Belilovsky. New
insights on reducing abrupt representation change in online continual learning. In International Conference
on Learning Representations, 2022.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient lifelong
learning with A-GEM. In International Conference on Learning Representations, 2019a.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, P Dokania, P Torr,
and M Ranzato. Continual learning with tiny episodic memories. In Workshop on Multi- Task and Lifelong
Reinforcement Learning, 2019b.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil
Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In International
Conference on Learning Representations, October 2020.

Sayna Ebrahimi, Mohamed Elhoseiny, Trevor Darrell, and Marcus Rohrbach. Uncertainty-guided continual
learning with bayesian neural networks. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=Hk1UCCVKDB.

Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for continual
learning. In International Conference on Artificial Intelligence and Statistics, pp. 3762-3773. PMLR,
2020.

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A. Rusu, Alexander
Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super neural networks, 2017.
URL https://arxiv.org/abs/1701.08734.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, 2016.

12

Under review as submission to TMLR

Huiyi Hu, Ang Li, Daniele Calandriello, and Dilan Gorur. One pass imagenet. In NeurIPS 2021 Workshop
on ImageNet: Past, Present, and Future, 2021. URL https://openreview.net/forum?id=mEgL92HSWES.

Ching-Yi Hung, Cheng-Hao Tu, Cheng-En Wu, Chien-Hung Chen, Yi-Ming Chan, and Chu-Song Chen.
Compacting, Picking and Growing for Unforgetting Continual Learning. In Advances in Neural Informa-
tion Processing Systems, volume 32. Curran Associates, Inc., 2019.

Ghassen Jerfel, Erin Grant, Thomas L. Griffiths, and Katherine A. Heller. Reconciling meta-learning and
continual learning with online mixtures of tasks. In NeurIPS, 2019.

Haeyong Kang, Rusty John Lloyd Mina, Sultan Rizky Hikmawan Madjid, Jachong Yoon, Mark Hasegawa-
Johnson, Sung Ju Hwang, and Chang D. Yoo. Forget-free Continual Learning with Winning Subnetworks.
In Proceedings of the 39th International Conference on Machine Learning, pp. 10734-10750. PMLR, June
2022.

Gyuhak Kim, Changnan Xiao, Tatsuya Konishi, Zixuan Ke, and Bing Liu. A Theoretical Study on Solving
Continual Learning, November 2022.

Polina Kirichenko, Mehrdad Farajtabar, Dushyant Rao, Balaji Lakshminarayanan, Nir Levine, Ang Li,
Huiyi Hu, Andrew Gordon Wilson, and Razvan Pascanu. Task-agnostic continual learning with hybrid
probabilistic models. 2021. URL https://openreview.net/forum?id=ZbSeZKdgNkm.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the National Academy of Sciences, 114(13):3521-3526, 2017.

Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. Learn to Grow: A Continual Struc-
ture Learning Framework for Overcoming Catastrophic Forgetting. In Proceedings of the 36th International
Conference on Machine Learning, pp. 3925-3934. PMLR, May 2019.

Zhizhong Li and Derek Hoiem. Learning without Forgetting. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 40(12):2935-2947, December 2018. ISSN 1939-3539. doi: 10.1109/TPAMI.2017.
2773081.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. In Advances
in Neural Information Processing Systems, pp. 6467—-6476, 2017.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative pruning.
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7T765-7773, 2017.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative pruning.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7765-7773, 2018.

Nicolas Y Masse, Gregory D Grant, and David J Freedman. Alleviating catastrophic forgetting using context-
dependent gating and synaptic stabilization. Proceedings of the National Academy of Sciences, 115(44):
10467-10475, 2018.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The sequential
learning problem. In Psychology of learning and motivation, volume 24, pp. 109-165. Elsevier, 1989.

Nicolas Michel, Maorong Wang, Ling Xiao, and Toshihiko Yamasaki. Rethinking momentum knowledge
distillation in online continual learning. In Proceedings of the 41st International Conference on Machine
Learning, volume 235 of ICML’24, pp. 35607-35622, Vienna, Austria, July 2024. JMLR.org.

Cuong V. Nguyen, Yingzhen Li, Thang D. Bui, and Richard E. Turner. Variational continual learning. In
International Conference on Learning Representations, 2018.

Ameya Prabhu, Philip H. S. Torr, and Puneet K. Dokania. GDumb: A Simple Approach that Questions Our
Progress in Continual Learning. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm
(eds.), Computer Vision — ECCV 2020, pp. 524-540, Cham, 2020. Springer International Publishing. doi:
10.1007/978-3-030-58536-5_ 31.

13

Under review as submission to TMLR

Qi Qin, Wenpeng Hu, Han Peng, Dongyan Zhao, and Bing Liu. Bns: Building network structures dynamically
for continual learning. Advances in Neural Information Processing Systems, 34:20608-20620, 2021.

Dushyant Rao, Francesco Visin, Andrei Rusu, Razvan Pascanu, Yee Whye Teh, and Raia Hadsell. Continual
unsupervised representation learning. In Advances in Neural Information Processing Systems, pp. 7645—
7655, 2019.

Bjorn Rasch and Jan Born. Maintaining memories by reactivation. Current Opinion in Neurobiology, 17(6):
698-703, 2007.

Roger Ratcliff. Connectionist models of recognition memory: Constraints imposed by learning and forgetting
functions. Psychology Review, 97(2):285-308, April 1990.

Sylvestre-Alvise Rebuffi, Alexander I Kolesnikov, Georg Sperl, and Christoph H. Lampert. iCaRL: Incre-
mental classifier and representation learning. 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 5533-5542, 2016.

Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and and Gerald Tesauro.
Learning to Learn without Forgetting by Maximizing Transfer and Minimizing Interference. In Interna-
tional Conference on Learning Representations, September 2018.

Amanda Rios and Laurent Itti. Closed-loop memory GAN for continual learning. In Proceedings of the 28th
International Joint Conference on Artificial Intelligence, IJCAT’'19, pp. 3332-3338, Macao, China, August
2019. AAAT Press.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive Neural Networks. August 2016.

Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska, Yee Whye Teh,
Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework for continual learning. In
International Conference on Machine Learning, pp. 4528-4537. PMLR, 2018.

Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming Catastrophic Forgetting
with Hard Attention to the Task. In Proceedings of the 35th International Conference on Machine Learning,
pp. 4548-4557. PMLR, July 2018.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative replay.
In Advances in Neural Information Processing Systems, pp. 2990-2999, 2017.

Shengyang Sun, Daniele Calandriello, Huiyi Hu, Ang Li, and Michalis Titsias. Information-theoretic online
memory selection for continual learning. In International Conference on Learning Representations (ICLR),
2022.

Linh Ngo Van, Nam Le Hai, Hoang Pham, and Khoat Than. Auxiliary local variables for improving regu-
larization/prior approach in continual learning. In Pacific-Asia Conference on Knowledge Discovery and
Data Mining, pp. 16-28. Springer, 2022.

Johannes von Oswald, Christian Henning, Benjamin F. Grewe, and Joao Sacramento. Continual learning
with hypernetworks. In International Conference on Learning Representations, 2020. URL https://
openreview.net/forum?id=SJgwNerKvB.

Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad Rastegari, Jason
Yosinski, and Ali Farhadi. Supermasks in Superposition. In Advances in Neural Information Processing
Systems, volume 33, pp. 15173-15184. Curran Associates, Inc., 2020.

Ju Xu and Zhanxing Zhu. Reinforced continual learning. Advances in Neural Information Processing Systems,
31, 2018.

14

Under review as submission to TMLR

Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynamically expandable representation for class incre-
mental learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp- 3014-3023, 2021.

Dong Yin, Mehrdad Farajtabar, Ang Li, Nir Levine, and Alex Mott. Optimization and generalization of
regularization-based continual learning: a loss approximation viewpoint, 2021. URL https://arxiv.org/
abs/2006.10974.

Jaehong Yoon, Eunho Yang, Jungtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically expand-
able networks. In Sizth International Conference on Learning Representations. ICLR, 2018.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence. In
International Conference on Machine Learning, pp. 3987-3995. PMLR, 2017.

Mengmi Zhang, Tao Wang, Joo Hwee Lim, Gabriel Kreiman, and Jiashi Feng. Variational prototype replays
for continual learning, 2020. URL https://arxiv.org/abs/1905.09447.

15

Under review as submission to TMLR

A Detailed Experimental Setup

A.1 Baselines

We evaluate RFE, RFE-P, RFE-B, ER, AGEM, DER++, ER-ACE, ER-MKD, CLS-ER, and TAMiL. More
specifically, ER, AGEM, DER++, and ER-ACE are common rehearsal baselines that utilize a simple buffer.
ER-MKD, TAMIL, and CLS-ER utilize additional exponential moving average (EMA) backbones for dis-
tillation. ER-MKD and TAMiL utilize 1 EMA backbone while CLS-ER, utilizes 2 EMA backbones during
training, which explains the high parameter usage in Table 2. TAMIL further uses task-specific auto-encoders
during training and inference, which is also reflected in Table 2. RFE, RFE-P, RFE-B utilizes 1 additional
backbone (training-only) and retrospectors (training and inference).

Due to the usage of additional EMA backbones and biology-inspired design, TAMiL. and CLS-ER are SOTA
rehearsal-based methods. Prior works that compare with CLS-ER and TAMiL often use the non-EMA
version, while we use the stronger EMA version for fair comparison against our methods.

For comparison, we provide RFE-B and rehearsal-based methods with a buffer B with a max capacity of
500 and 1,000 samples. For RFE-P, we also provide a set P consisting of task ¢ — 1 data with 500 and 1,000
samples for fair evaluation.

For RFE-B, ER, DER++, ER-ACE, TAMiL, and CLS-ER, we employ the reservoir sampling strategy to
remove the reliance on task boundaries as in the original implementation. On the other hand, RFE, RFE-P,
RFE-B, AGEM, and TAMiL rely on the task boundary to learn the retrospector module, modify the buffer,
or add a new task-attention module, respectively. For ER-MKD, we perform standard augmentation instead
of multi-view augmentation. For TAMIL, we use the best-reported task-attention architecture. For CLS-ER,
we perform inference using the stable backbone per the original formulation.

A.2 Datasets

To demonstrate the effectiveness of our method, we perform empirical evaluations on three standard con-
tinual learning benchmarks: Sequential CIFAR10 (S-CIFAR10), Sequential CIFAR100 (S-CIFAR100), and
Sequential Tiny ImageNet (S-TinyIlmg). The datasets are split into 5, 5, and 10 tasks containing 2, 20, and
20 classes, respectively. The dataset of S-CIFAR10 and S-CIFAR100 each includes 60,000 32 x 32 images
split into 50,000 training images and 10,000 test images, with each task occupying 10,000 training images
and 2,000 testing images. The dataset S-Tinylmg contains 110,000 64 x 64 images with 100,000 training
images and 10,000 test images divided into ten tasks with 10,000 training images and 1,000 test images
each. We augment the data using random horizontal flips and random image cropping for each training and
buffered image.

A.3 Training

We employ ResNet18 (He et al., 2016) as the feature extractor for all methods and benchmarks. By default,
the Resnet18’s output dimension is dim(f) = 512. For RFE’s retrospector, we set dim(h) = dim(af) =
dim(a”) = 128.

The training set of each task is divided into 90%-10% for training and validation. All methods are optimized
by the Adam optimizer available in PyTorch with a learning rate of 5 x 10~%. As the validation loss plateaus
for three epochs, we reduce the learning rate by 0.1 times. Each task is trained for 40 epochs. For RFE, we
train h; and r; using the same formulation with Adam optimizer at a learning rate of 5 x 10~ for 40 epochs.

A.4 Hyperparameter search

For all methods, experiments, and datasets, we perform a grid search over the following hyperparameters in
Table 4 using a validation set of 10% of the training data. Some hyperparameters are obtained directly from
their original paper or implementation to narrow the search range. The final results are the average over 3
runs with the best hyperparameter, with different random seeds.

16

Under review as submission to TMLR

For RFE, a single value hyperparameter search is already sufficient in most cases.

Table 4: Hyperparameter search. See the original paper for each specific hyperparameter.

Method Hyperparameters Implementation name
Search range
Joint, Finetuning,
ER, AGEM, ER-ACE))
a € {0.2,0.5} distill weight
DER++ B € {0.5,1.0} replay weight
rp € {0.5,0.8} plastic frequency
rs € {0.2,0.5} stable frequency
i o, € {0.999} plastic alpha
CLS-ER as € {0.999} stable alpha
A€ {0.2,0.5} distill weight
v € {1.0} replay weight
a€{0.5,1} replay weight
B €{0.2,0.5} distill weight
TAMIiL A e {0.1} pairwise weight
~ € {0.05} ema frequency
n € {0.999} ema alpha
Ao € {2,4} distill weight
ER-MKD Te{2,4} temperature
1—a€{0.99} ema alpha
RFE, RFE-P, RFE-B | ae {1} | regularize weight

A.5 Retrospector module

Parameters. The total number of parameters for each retrospector module is 0.35 million, with 0.08 million
parameters occupied by the auxiliary feature extractor.

Auxiliary feature extractor. We provide the architecture of the auxiliary feature extractor h; in Table 5.
We chose a simple design of two 3x3 convolution layers and two max-pooling layers. Depending on the use
cases, a more robust feature extractor design can be used to improve performance and serve as a lower bound
for the RFE. Nonetheless, to demonstrate that RFE depends on the rectification capability and not only the
auxiliary feature extractor’s performance, we opt to use a low-performance design.

Table 5: Architecture of the auxiliary feature extractor h;. We use ReLU activation after each convolution.

Layer Channel Kernel Stride Padding Output size

Input 3 16 x 16
Conv 1 64 3x3 2 1 8 x 8
MaxPool 2 4 x4
Conv 2 128 3x3 2 1 2 % 2
MaxPool 2 1x1

17

Under review as submission to TMLR

B Additional Experimental Results

B.1 Time complexity

We report the training and inference time of the class-incremental setting on the S-Tinylmg dataset in Table 6
to demonstrate the time overhead by the retrospector. For RFE, there is almost no overhead in training
compared to ER, while for RFE-P and RFE-B, the training time moderately increased. For inference,
the class-incremental setting represents the worst-case scenario for the RFE method, where features are
propagated through all 10 tasks. Nonetheless, the inference time only moderately increased compared to
other methods.

Table 6: Training and inference time for all 10 tasks on S-Tinylmg dataset with CIL setting.
ER TAMIL CLSER RFE RFE-P RFE-B

Training (hours) 2.06 2.51 2.59 1.94 3.17 3.32
Testing (second) 7.36 7.42 7.71 11.54

B.2 Space complexity

Combining the buffer size and the parameters in Table 2 in the main paper reflects the memory footprint
of each method. During training, both the images and the params are loaded in the same float32 format.

Consider S-Tinylmg, for buffer-only methods (AGEM, ER, ER-ACE, DER++), we save 1000 64 x 64 RGB
images, which is approximately equivalent to 12.28 M params. RFE (no data) adds slightly more at 14.36
M params for the previous backbone and retrospectors. However, RFE’s accuracy is 12.49%, higher than
buffer-only methods (DER++).

Similarly, RFE-P and RFE-B additionally utilize saved data, while ER-MKD, TAMiL, and CLS-ER ad-
ditionally utilize EMA backbone and/or auxiliary modules. Nonetheless, RFE-P outperforms TAMiL by
3.84% in average accuracy.

B.3 Ablation on alternative retrospector designs.

Table 7: TIL Average Accuracy across all tasks after CL training for retrospector variants on S-CIFAR100.

Type Average Accuracy Total Retrospectors’ Parameters
RFE 79.54+ o.27 1.42
MLP-Residual 78.53+ 0.62 2.66
MLP-Projection 52.78+ 6.20 2.66

A naive design is to map f; directly back to f;_1 by directly using an MLP without using h;. However,
due to catastrophic forgetting, there is no straightforward method to recover information loss of task ¢ — 1
without an external source (hy).

A simple but inefficient alternative of the retrospector is to concatenate both f;(x) and h:(x), which are
then forwarded through a simple MLP. We use a two-layer MLP with an output dimension of 512 for both
layer and ReLU activation. The retrospector can then be used to learn the projection from task ¢ back to
t — 1 (MLP-Projection):

ri(fi(@), x) = MLP([fi(), hi()]) 9)
or learn the residual of such projection (MLP-Residual):
ri(fi(®),) = MLP([fi(), hi(2)]) + fi(x) (10)

18

Under review as submission to TMLR

Nonetheless, this design results in very high parameter usage while only delivering similar or worse perfor-
mance than the gating design, as demonstrated in Table 7. The setting is similar to Table 2 in the main
paper, using the S-CIFAR100 dataset.

B.4 Generalization to other architectures

Table 8: TIL Average Accuracy across all tasks after CL training using VIT-S/16 backbone.

Method Exemplars S-CIFAR100
TIL P params ‘ accuracy
Oracle 96.93+ 0.04
Finetuning) 21.91/21.91 78.88+ 7.84
AGEM 92.73+ 0.15
ER 91.70+ o.62
DER-s | 21.91/2191 | g b0 0
ER-ACE o 93.26+ 1.26
ER-MKD 43.83/21.91 92.07+ o.88
TAMiL 44.16/21.91 93.87+ 0.23
CLS-ER 65.74/21.91 94.28+ 0.28
RFE-P |P| = 500 95.58+ o0.12
RFE-B | [Bl=500 | 19/2328 | g5 c0r oms
RFE | - | 45.19/23.28 | 95.54x 0.01

We repeat a subset of the experiment for task-incremental learning with S-CIFAR100, but replacing the
backbone from Resnetl8 to a ViT-S/16 (Dosovitskiy et al., 2020) pre-trained on ImageNet-21k and fine-
tuned on ImageNet-1k. The vision transformer backbone is followed by a linear layer with ReLLU activation
to ensure compatible dimensions with ResNet18 backbone. Table 8 demonstrates the result of RFE using a
vision transformer backbone to fine-tune 5 tasks of S-CIFAR100, which shares high similarity with results
using a convolution neural network backbone. Each task is trained for 30 epochs with a learning rate of
10~°. Other training details are kept the same as in Section A.3.

B.5 Comparison with non-rehearsal methods

RFE can be compared with existing works using Kim et al. (2022) and Bhat et al. (2023).

In Kim et al. (2022), the comparable setting is T-10T (similar to S-Tinylmg). We consider the following
methods: LwF (Li & Hoiem, 2018), HAT, (Serra et al., 2018), Sup (Wortsman et al., 2020), and HyperNet
(von Oswald et al., 2020). It should be noted that we use 0 (RFE) or 1000 (RFE-P, RFE-B) samples with
standard Resnet18, while methods in Kim et al. (2022) use 0 or 2000 samples with a larger Resnet18 that
has double the channels. Consider the task-incremental learning setting in Table 7 of [4], the best baselines
(both rehearsal and non-rehearsal) accuracy are 68.4, and the SOTA are HAT+CSI (72.4) and Sup+CSI
(74.1). RFE (69.66) without data outperforms all baselines. RFE-P (72.65) and RFE-B (71.92) are in the
same range of SOTA.

In Bhat et al. (2023), we consider PNN (Rusu et al., 2016), CPG (Hung et al., 2019), and PackNet (Mallya
& Lazebnik, 2017). In Figure 2 of Bhat et al. (2023), TAMiL is demonstrated to outperform all baseline
methods in task-incremental final average accuracy. In our experiments, RFE, RFE-B, and RFE-P out
performs TAMiL in both CIFAR100 and Tiny ImageNet dataset for the task-incremental setting.

C \Versatility of RFE Framework

In RFE, as the tasks arrive, conventional fine-tuning or training on the new task happens with minimal
CL’s intervention. RFE only augments or adds to this process with a separate training of the retrospective

19

Under review as submission to TMLR

feature estimation mechanism. The attractiveness of this framework is two-fold. First, RFE allows the
best adaptation on the new task to possibly achieve maximum plasticity, while the backward rectification
mechanism mitigates catastrophic forgetting. Second, unlike previous CL approaches that heavily modify
the sequential training process, RFE minimally changes the fine-tuning process, allowing the users to flexibly
incorporate this framework into their existing machine learning pipelines.

Relationship to Memory Linking. RFE’s process of mapping newly learned knowledge representa-
tion resembles the popular humans’ mnemonic memory-linking technique, which establishes associations of
fragments of information to enhance memory retention or recall. ! As the model learns a new task, the
retrospector module establishes a mnemonic link from the new representation of the sample from the past
task to its past task’s correct representation.

Thttps://en.wikipedia.org/wiki/Mnemonic_link_system

20

