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Abstract

Cone-Beam Computed Tomography (CBCT) has gar-
nered significant attention due to lower radiation dosage
and faster scanning time, which has been widely used in
clinical applications for decades. However, its poor image
quality is always challenging to clinical experts. To address
this problem, we propose our work DiffuCE, a Diffusion
model framework for CBCT Enhancement. The main con-
tributions of our work are three-fold: (1) Increased Gen-
eralizability: Our training data exclusively comprises pixel
space data, eliminating the necessity for additional imag-
ing machine settings. This emphasizes the model’s ability
to generalize effectively across diverse conditions. (2) Effi-
cient Training: Rather than starting from scratch, our ap-
proach fine-tunes from a well-established foundation model.
This illustrates the viability of efficient training strategies
for medical image restoration tasks, optimizing resource
utilization. (3) Competitive Performance: DiffuCE exhibits
outstanding performance, excelling in FID and LPIPS with
0.01 and 36.99 ahead of the second place in the private
set. In the public dataset, DiffuCE has a competitive per-
formance compared to other SOTAs. Moreover, in expert
assessments, DiffuCE achieves the highest score of 7.06
for overall satisfaction, which is 1.38 ahead of the sec-
ond place, affirming its performance from a clinical stand-
point. Codes are available at https://github.com/
lzh107u/DiffuCE

1. Introduction

Cone-Beam Computed Tomography (CBCT) is widely
employed in Image-Guided Radiotherapy (IGRT) due to its
rapid scanning capabilities, providing radiologists with the
latest patient information. However, the poor quality of
CBCT images often presents challenges in diagnosis. The
important details, such as the boundary between soft tissue
and organ, might be blurred by noise, making it difficult for
radiologists to use as a reference for IGRT planning. Thus,

enhancing CBCT image quality becomes crucial in ensur-
ing the accuracy and safety of IGRT procedures.

CT image reconstruction generally involves translating
information between the measurement and image domains.
Traditional CT image enhancement heavily relies on prior
information, such as imaging settings in the measurement
domain [20], and noise distributions like the Gaussian or
Poisson distribution [24]. These works focus on the noise
patterns that fit the assumptions, which lack generalizabil-
ity since the assumptions do not always align with practical
clinical situations. Additionally, techniques involving the
measurement domain often necessitate raw scanning data,
such as the raw sinogram or the exact imaging settings,
which might not always be available in every circumstance.

Recent works have showcased diffusion models’ com-
petitive performance, placing them on par with GANs and
establishing them as a new state-of-the-art approach. In line
with this, certain medical diffusion models have utilized
denoising diffusion probabilistic models [9] or stochastic
differential equations [22] on CT [26], MRI [4], and PET
images [19], highlighting the potential of diffusion mod-
els in restoring medical images. However, these methods
primarily operate at the pixel level and lack acceleration
in inference, resulting in exceedingly long inference times.
Additionally, training a diffusion model from scratch is a
resource-intensive process, demanding extensive datasets
and substantial GPU resources. These challenges heav-
ily affect the feasibility of deploying novel diffusion-based
methods in real clinical scenarios.

To address these challenges, we introduce a pioneering
Diffusion framework for CBCT image Enhancement (Dif-
fuCE). This framework effectively eliminates artifacts in the
latent space while preserving intricate details using multiple
conditional constraint modules. Furthermore, we bridge the
gap between the CT and CBCT images in the latent space
with an alignment module inspired by CLIP [17], which can
stabilize and improve the performance of our framework.

To summarize, our contributions are as follows:

• We have developed a novel framework named Dif-



fuCE, specifically designed to remove artifacts from
CBCT images without requiring raw data in the mea-
surement domain. This framework can be a general
postprocessing module in any existing CBCT image
enhancement pipeline.

• Our framework incorporates an alignment module to
bridge the gap between CT and CBCT images within
the latent space. This innovation allows our framework
to operate without the necessity of paired training data,
a rarity in CBCT image enhancement methodologies.

• In the private dataset, our framework gets the best
score in FID and LPIPS, demonstrating its ability
on par with other methods; In the public dataset,
our framework demonstrates competitive performance
compared to other SOTA methods, while showing its
generalizability across different datasets.

2. Related Works
CBCT Image Enhancement. CT image enhancement

involves practical clinical concerns such as radiation dosage
[3], scanning angles [2] [20], and so on. Each scanning con-
dition will result in different noise patterns. With enough
prior information, a noise pattern can be removed along
with digital signal processing or a statistical-based algo-
rithm. [24] propose a method based on digital signal pro-
cessing on the sinogram with statistical information. With
the huge success of CNN-based neural networks in natural
image tasks, various architectures [7] [15] [25] [14] [3] are
proposed, showing competitive ability of CNN networks in
medical image enhancement. However, these methods of-
ten lack generalizability, fitting only on a designated noise
pattern or imaging setting.

Diffusion Models. The diffusion model is a genera-
tive model based on diffusion and denoising processes. In
the diffusion process, the noise is gradually added to the
data sample, building a path that connects the data and
prior distribution. In the denoising process, the model
learns a proper way to gradually remove the noise from
the data sample. [9] proposes a diffusion process based
on the Markov Chain, and [22] proposes a method based
on Stochastic Differential Equation(SDE), known as score-
based diffusion models. [5] controls the generation process
with a classifier, and [10] later introduces a way to con-
trol the generation without a classifier. To speed up the
time-consuming inference of diffusion models, [21] adapts
fewer denoising steps, and [28] [16] propose new mathe-
matical solvers to boost up the inference speed without ex-
tra training. [18] utilizes an encoder to compress the image
into latent space for denoising, which reduces the compu-
tation cost of diffusion models for large image size. Along
with the rapid success of diffusion models in natural im-
age processing, several attempts [19] [4] [26] at medical

image enhancement have been proposed. However, these
networks are trained on pixel space instead of latent space,
which needs more computation resources during inference.
Moreover, these works are trained from scratch instead of
fine-tuned from a pre-trained foundation model, making it
hard to obtain for those clinical teams without help from
computer science experts. To overcome these challenges,
we propose a method based on a pre-trained latent diffusion
model, which reduces the computation costs during the in-
ference phase and provides a stable fine-tuning pipeline to
lower the difficulty of obtaining.

3. Method
The objective of this research is to generate high-quality

synthesized CT images based on the given low-quality
CBCT images. Assume li=1,2,...m indicates the i-th low-
quality CBCT image sampled from the CBCT image set L.
For each CBCT image, there is:

li ∼ L, i = 1, 2, ...,m; li ∈ Rc×h×w, (1)

, and the objective of our research is to train a framework f
that:

hi = f(li);hi ∈ Rc×h×w, (2)

where hi is the corresponding high-quality version of li, a
synthesized CT image.

3.1. Preliminary Study: DDPM

To address this problem, we choose the Denoising Diffu-
sion Probabilistic Model(DDPM) [9] as the backbone. The
DDPMs connect the data distribution to a simple distribu-
tion, like isotropic Gaussian distribution, with a diffusion
process, also known as the forward process. Given a high-
quality CT image xj sampled from the CT image set H . For
each CT image, there is:

xj ∼ H, j = 1, 2, ..., n;xj ∈ Rc×h×w, (3)

, and the data distribution H can be connected to the Gaus-
sian distribution with the forward process that:

q(xj,t|xj,t−1) := N(xj,t;
√
1− βtxj,t−1, βtI) (4)

where t ∼ [1, T ] is timestep and β1, ..., βT , βt ∈ (0, 1)
are fixed variances, both belonging to the scheduler of the
DDPM. For a sample xj at each timestep t, there is:

q(xj,t|xj,0) := N(xj,t;
√
ᾱtxj,0, (1− ᾱt)I), (5)

xj,t =
√
ᾱtxj,0 +

√
1− ᾱtϵ, ϵ ∼ N(0, I) (6)

where αt := 1 − βt and ᾱt :=
∏t

k=1 αk. The forward
process can be viewed as a linear combination of the data



Figure 1. Overview of the DiffuCE framework.The DiffuCE framework has four components: 1) Constraints Preprocessing generates
conditions from the CBCT input for guidance; 2) Domain Bridging Encoder (DBE) encodes the CBCT image into a noisy-CT-like latent
embedding; 3) Conditional Diffusion Denoiser (CDD) removes noise while preserving detail with the help of constraints; 4) Conditional
Refinement Decoder (CRD) decodes the clean latent embedding and constraints back to pixel space for reconstruction. LoRA fine-tuning
optimizes all parameters. The final output is evaluated against CT ground truth, with loss terms detailed in Section 3.4.

sample xj and the random noise ϵ. These samples with dif-
ferent ratios of random noise form a path between the Gaus-
sian distribution and the data distribution in the latent space.

It is easy to generate a data sample by sampling a data
point from the Gaussian distribution and traversing along
the path from the Gaussian distribution to the data distribu-
tion, which is called the backward process. For a sample x
sampled from the Gaussian distribution N(0, I), there is:

pθ(xt−1|xt) := N(xt−1;µθ(xt, t),Σθ(xt, t)), (7)

where the µθ(xt, t) is substituted with a model to predict
the noise in the given timestep as follows:

µθ =
1

√
αt

(xt −
βt√
1− ᾱt

ϵθ(xj,t, t)), (8)

where the ϵθ(xt, t) is the model that predicts the noise in the
given timestep. To learn the backward process, the model
ϵθ(xt, t) is trained with the objective function as follows:

L := Et∼[1,T ],xj,0∼H,ϵ∼N(0,I)[∥ϵ− ϵθ(xt, t)∥2], (9)

which is an MSE loss that evaluates the prediction of the
added Gaussian noise.

Note that the notation of the data sample in the forward
process is different from the one in the backward process.
In the forward process, the sample xj is picked from a set

of existing CT images, which has its number j; In the back-
ward process, the data point x is sampled from a Gaussian
process, which is not an existing data point with specific
number.

3.2. Conditional Diffusion Denoiser

Derived from DDPM [9], the Conditional Diffusion
Denoiser (CDD) aims to generate high-quality CT images.
First, to ensure the quality and stability of diffusion
models for processing medical images, we plug LoRA [11]
modules into the pre-trained latent diffusion model and
fine-tune the entire framework with CT images. Second, to
avoid from losing any information, the low-quality CBCT
images are directly used in the generation process, leading
to an image-to-image generation. Third, inspired by Con-
trolNet [27], multiple guidance modules are also integrated
into the CDD to enable more sophisticated constraints dur-
ing the reverse process. With the help of the LoRA [11] and
guidance modules, details from the original input can be
preserved as much as possible during the denoising process.

Constraints Preprocessing. To provide solid guidance
during the denoising process, clear and deterministic condi-
tions are necessary. Based on clinical knowledge, features
such as the lucent area and bone in data can be extracted
with specific threshold values in the Hounsfield Unit (HU).
The theory beyond HU is the x-ray absorptivity of different



Figure 2. Case study of DiffuCE and SD.v2 [18]. The impact of condition guidance modules is evident in this figure. The regions outlined
by a red line and a yellow line are presented in the second and third rows, respectively. DiffuCE, employing additional conditions as inputs,
demonstrates the ability to preserve more structure and texture compared to SD.v2 [18], which solely utilizes pseudo-CBCT as its input.

types of tissue, and it is a general attribute irrelated to the
imaging machine, indicating that features extracted by HU
values are machine-independent. We use bone, lucent area,
and the low-frequency part of input by wavelet transform
as a constraint. Unlike the features extracted by HU values
that highlight specific parts of an image, the low-frequency
feature provides a general view of the given CT image,
preventing the CDD from producing incorrect patterns.

Conditional Guidance. Conditional guidance in diffu-
sion models refers to providing additional guidance during
denoising iterations to suppress the diversity of the model.
The concept of classifier-free conditional guidance in diffu-
sion models is proposed in [10], indicating that the output
of diffusion models θdiff can be guided by the given input
x and condition c with the combination,

ϵ̂θ(x, c) = (1 + w)ϵθ(x, c)− wϵθ(x) (10)

, where the ϵ̂θ is the score prediction with conditional
guidance with ϵθ being a score estimator and w being a
scalar for adjusting the combination between conditional
and unconditional score estimation. In DiffuCE, we use the
constraints preprocessing conditions to guide the CDD.

In short, with conditional guidance, the CDD can gen-
erate high-quality synthesized CT images close enough to
the input low-quality CBCT images. The complete training
algorithm is shown in Algorithm 2 of supplementary mate-
rials.

3.3. Domain Bridging Encoder

In Equation 8 and 9, the diffusion model can eventually
build a trajectory from the Gaussian distribution to the data
distribution. In this research, the trajectory we create in the
CDD is between the Gaussian and data distribution. How-
ever, the image used in the forward process is the CBCT
image instead of the CT image, which makes two distinct



trajectories in one generation task, one for CBCT-Gaussian
and one for CT-Gaussian. We name this challenge Distri-
bution Gap and discuss it in the supplementary materials.

To address the challenge, we propose the Domain
Bridging Encoder (DBE) bridges the CBCT and CT image
distribution, transforming samples from one to the other.
Aside from streak artifacts, the basic layout and contour of
a CT image and its corresponding pseudo-CBCT image are
the same, indicating that the low-frequency components of
these two modalities are alike. Based on this finding, we
assume that removing different high-frequency components
can partially compensate for the gap between the CT and
CBCT image distribution. We validate this assumption in
the Experiment Section. In training, we add the Gaussian
noise to both CT and pseudo-CBCT images and then train
a learnable projector θDBE that maps noisy CBCT samples
to noisy CT distribution.

Alignment Loss. The Alignment Loss is applied to mea-
sure the distance between the fixed CT distribution and pro-
jected CBCT distribution during training, calculating the
distance based on auto-correlation matrices from these two
distributions. Given a pair of CT and pseudo-CBCT latent
embeddings ϵct, ϵcbct ∈ Rn×n, the auto-correlation matrix
can be computed as the following:

Rct = E((ϵct − µct)(ϵct − µct)
T ), (11)

Rcbct = E((ϵcbct − µcbct)(ϵcbct − µcbct)
T ). (12)

with µct, µcbct ∈ Rn×n calculated from all elements in
ϵct, ϵcbct and extended to the same shape. The Alignment
Loss can be further computed by

Lalign = (H(ϵct, target) +H(ϵcbct, target))/2, (13)

with target = (Rct +Rcbct)/2, and the H is referred as
cross entropy.

In brief, the DBE encodes the CBCT image to the latent
space and transforms it into the CT distribution to maintain
domain consistency between the encoder and latent diffu-
sion models. The complete training algorithm is shown in
Algorithm 3 of supplementary materials.

3.4. Conditional Refinement Decoder

In Equation 9, the loss of diffusion model mainly fo-
cuses on latent embeddings, which can’t directly evaluate
the pixel-level accuracy in the image domain. In the realm
of clinical, every pixel matters. Any mis-generation will
lead to serious consequences. To address this issue, we pro-
pose the Conditional Refinement Decoder(CRD) to control
the details of the synthesized images within the pixel level.

Conditional Branch. To accurately control the decod-
ing sequence, the information obtained from constraints is
integrated into the reconstructed latent embedding by the

conditional branch. Although the control modules in CDD
perform similar functions, the constraints from these mod-
ules are applied in the latent space rather than pixel space.
This often results in less accurate details in the outputs when
evaluated at the pixel level.

In detail, the CRD integrates the information from condi-
tions to the reconstructed CT image in every network block
as follows:

ϵ̂c = θbranch(ϵc, ∅), (14)
ˆϵrecon = θmain(ϵrecon, ϵ̂c) (15)

where θbranch provides embedding ϵ̂c from condition ϵc
and θmain decodes the latent embedding ϵrecon into recon-
structed CT image ˆϵrecon with the help of ϵ̂c.

Adaptive DualScope Loss. To evaluate the performance
of the CRD during training, we propose using the Adaptive
DualScope Loss (ADL) to catch the reconstruction quality
on both large and small scales. In the following part, the
H denotes the high-quality CT image ground truth dataset,
and the Ĥ denotes the reconstructed image dataset. First of
all, the region-wise loss Lreg evaluates the reconstruction
of bone and lucent area. For each condition ci, there is a
mask operator Mi blocking out the irrelevant area

Lreg = Ex∼H,x̂∼Ĥ

k∑
i=1

∥Mi(x)−Mi(x̂)∥2, (16)

enabling the evaluation can focus on the designated area in-
stead of the whole image. Secondly, the perceptual loss [13]
aims for the evaluation of the whole image. In comparison
to the traditional loss being sensitive to the pixel value, the
perceptual loss [13] evaluates the reconstruction quality by
calculating the similarity of embeddings obtained from the
CT and reconstructed image with the CNN-based network
N

Lpercept = Ex∼H,x̂∼Ĥ∥N (x)−N (x̂)∥2, (17)

being closer to human visual recognition. Last but not least,
we utilize a discriminator D to distinguish xct and xrecon.
With the participation of D, the training procedure of the
CRD can be in a GAN-based style

Ladv = Ex∼H [logD(x)] + Ex̂∼Ĥ [log(1−D(x̂))] (18)

adversarially improving the ability of the CRD. In particu-
lar, we adaptively scale the Lreg, Lpercept to the value as
the largest one at every optimization step, balancing the
contribution of each objective.

In summary, the CRD decodes samples from latent space
to pixel space with constraints for pixel-level detail preser-
vation. The training algorithm is shown in Algorithm 4 of
supplementary materials.



Figure 3. FID of CT and Pseudo-CBCT image dataset with
different timesteps.

Figure 4. Case Study: Real CBCT processed by DiffuCE.

4. Experiments

4.1. Dataset Evaluation

Datasets. We evaluate DiffuCE on two datasets: Syn-
thRAD2023 CBCT-to-CT Pelvis Dataset [12] [23](Syn-
thRAD set) and a private dataset from the collaborated

Figure 5. Experts’ Assessment. The answers from different sets
of chest CBCT images and the experts are averaged in this figure.

medical center(Private set). SynthRAD set is a pair-wise
dataset mainly focusing on medical image translation, in-
cluding MRI-to-CT and CBCT-to-CT. We pick the pelvis
dataset from the CBCT-to-CT task, containing 180 3D
CBCT and CT image pairs collected from three different
centers. We split 150 pairs as the training set and 30 pairs
as the validation set.

In the private dataset, the interval between the CT and
CBCT scanning is about one month, containing 4177 2D
CT images and 2816 2D CBCT Chest images. We use 3000
CT images as the training set for the CDD and 343 CT im-
ages for the training of the DBE and CRD. We evaluate our
model on the rest of 1177 CT images and randomly pick
CBCT images to conduct qualitative research.

Metrics. There are five metrics used in our research:
MAE, PSNR, SSIM, LPIPS [29], and FID [8]. MAE,
PSNR and SSIM are used for traditional pixel-level eval-
uation, while LPIPS [29] is used for human visual recogni-
tion similarity. The FID [8] is used to evaluate data sample
distribution.

Quantitative Result of the Private Set. The results
of the private set are shown in Table 1, revealing that our
method, DiffuCE, has a competitive ability in the CBCT
enhancement task. Specifically, DiffuCE gets the first place
on LPIPS [29] and FID [8], indicating that the reconstructed
CT image from DiffuCE not only has a higher quality in hu-
man visual perception but also well capture the distribution
of training dataset compared to other competitors. However,
conventional pixel-level metrics such as PSNR and SSIM
only get second place, indicating that pixel-level diversity
is still a critical challenge in our research. It’s worth noting
that the Stable Diffusion V2 (SD.v2) [18] attains the sec-
ond place in the FID [8], showcasing that diffusion models
can effectively match the distribution of the training dataset.
However, it is observed that during denoising, the recon-
struction samples lack control, leading to highly distorted
outcomes. We will discuss this finding in Section 4.3. A
case study is shown in Figure 2.

Quantitative Result of the SynthRAD Set. The re-



Model PSNR↑ SSIM↑ LPIPS↓ FID↓

Baseline 33.43 0.74 0.05 88.89
GAN [6] 15.75± 1.57 0.75± 0.028 0.02± 0.012 275.09
RegGAN 22.32± 1.71 0.88± 0.024 0.12± 0.024 142.11
CycleGAN [30] 27.01± 2.04 0.93± 0.018 0.07± 0.015 100.16
CDGAN [1] 28.97± 0.99 0.88± 0.037 0.11± 0.01 104.17
SD.v2 [18] 27.49± 1.21 0.70± 0.25 0.094± 0.021 92.55
Ours 27.78± 1.40 0.90± 0.022 0.06± 0.015 55.56

Table 1. Pseudo-CBCT dataset Quantitative Results. The best performance on each metric has been marked with bold letters, and the
second place has been underlined. The baseline is the direct comparison between CT and pseudo-CBCT raw images, and note that the
baseline has been excluded from the comparison.

Model MAE(HU,↓) PSNR(dB,↑) SSIM(↑)

GEneRaTion 55.50± 11.00 30.48± 1.72 0.897± 0.033
KoalAI 56.13± 12.06 30.11± 1.89 0.897± 0.034
SMU-MedVision 49.95± 11.78 30.79± 2.00 0.906± 0.036
FGZ Medical Research 60.65± 12.56 29.67± 1.71 0.879± 0.039
Stratified baseline 69.99± 18.93 28.65± 2.25 0.837± 0.057
Water baseline 344.26± 125.32 17.97± 2.08 0.546± 0.149
Ours† 132.73± 50.49 23.66± 1.47 0.82± 0.038
Ours 132.31± 50.13 23.67± 1.46 0.82± 0.038

Table 2. SynthRAD2023 Task2 Pelvis Dataset Quantitative Results. Among all the works, the FGZ Medical Research is also a
diffusion-based approach directly trained on pixel-level data. Further information on works listed in the table can be found in [12]. †
indicates our framework with CRD trained on a private dataset.

sults of the SynthRAD2023 CBCT-to-CT pelvis dataset are
shown in Table 2, with mean value and one standard de-
viation. Besides our work, we provide part of competitors
in [12] on task2, which are the best works on different back-
bones. Our work outperforms the Water baseline, and al-
most reaches the Stratified baseline on SSIM, showing that
our work still has a competitive ability compared to the best
works on the leaderboard. Interestingly, the ability of our
framework with CRD trained on the private set, marked
with †, is close to the one trained on the SynthRAD set.
It might indicate that the different data distributions, caused
by different machines and noise patterns, are bridged to the
same distribution, representing that DiffuCE can capture the
general features of high-quality medical images across dif-
ferent tasks. We will discuss this finding in supplementary
materials.

Distribution Gap The results in Figure 3 support our
assumption about the Distribution Gap. In early timesteps,
the FID between two types of CT images is large, which
means the trajectories created by these two datasets are dif-
ferent. With stronger Gaussian noise in larger timesteps,
the FID of two datasets is reduced. With a moderate level
of noise, the complexity of distribution mapping is lower
enough to be achieved by minimal training parameters like
LoRA, and meanwhile, the information hasn’t been dis-
torted too much. In the implementation, we choose 300 as

the setting of timestep in the DBE.
Qualitative Result. Conventional metrics such as MSE

and PSNR, commonly used in computer vision tasks, pro-
vide an objective measure of performance primarily focus-
ing on pixel space. However, these metrics have been shown
to inadequately capture image quality from a clinical stand-
point. Clinical experts prioritize structural or semantic fea-
tures, such as the shape of organs within task-dependent
regions of interest (ROI), often disregarding content out-
side the ROI. As a result, ordinary metrics based solely on
pixel values may fail to accurately reflect the effectiveness
of our framework. To vividly illustrate our advancements,
we have presented some case studies across various exper-
imental scenarios in Figure 4 and supplementary materials.
Moreover, we go ahead and introduce the expert assessment
with questionnaires in the next section.

Experts’ Assessment. To assess our reconstruction ca-
pability from a clinical perspective, we engage five radiol-
ogists from the local medical center in an evaluation. The
assessment involves chest CBCT images from 10 patients,
each CBCT image accompanied by several reconstructed
samples generated from various models, including GAN-
based and diffusion-based methods. The questionnaire, ar-
ranged with the CBCT images and their corresponding re-
constructions, aims to evaluate nine different metrics using
a Likert scale. Results in Figure 5 indicate that the DiffuCE



Model PSNR↑ SSIM↑ LPIPS↓ FID↓

w/o DBE 28.80± 1.43 0.91± 0.023 0.055± 0.013 53.33
w/o CDD 27.70± 1.43 0.89± 0.024 0.069± 0.018 78.66
w/o CRD 26.42± 0.70 0.44± 0.058 0.088± 0.020 52.57
Ours 27.78± 1.40 0.90± 0.022 0.06± 0.015 55.56

Table 3. Ablation study. All of the settings in the ablation study are evaluated on the pseudo-CBCT and CT image dataset without
additional training. The best performance on each metric has been marked with bold letters, and the second place has been underlined. See
Section 4.2 for more details.

framework outperforms other models in all metrics except
for ”Tissue,” which assesses the correctness of tissue recon-
struction. This outcome aligns with our experimental obser-
vations, highlighting challenges in accurately reconstruct-
ing tissue boundaries, especially soft tissue, which tends to
distort during the reconstruction process. Conversely, the
RegGAN model showcases its proficiency in tissue preser-
vation, suggesting that GAN-based approaches effectively
mitigate variations during generation. Understanding the
underlying mechanisms driving this phenomenon could po-
tentially enhance our framework in the future. Further de-
tails of the experts’ assessments can be found in supplemen-
tary materials.

4.2. Ablation Study

In our ablation studies, we systematically assess the ef-
fectiveness of the DiffuCE framework by sequentially re-
moving its components, and we present the results in Table
2. Case studies are shown in supplementary materials.

Initially, we analyze by removing the DBE to evaluate
the impact on domain bridging. Surprisingly, the perfor-
mance doesn’t decrease without the latent alignment mod-
ule; instead, there is even a slight improvement in the met-
rics. However, a case study reveals that removing the DBE
results in a reconstructed image with low contrast between
soft tissue and the background.

Subsequently, we remove the CDD to assess the signif-
icance of the latent guidance modules. Without the CDD,
the soft tissue representation is distorted, showing tissue-
like patterns unrelated to the actual input CBCT image. No-
tably, the bone and lucent area are well-preserved, credited
to the assistance from the CRD. The conditions are again
utilized to guide the reconstruction of CT images.

Lastly, the CRD is removed to validate the efficacy of
conditional refinement. The majority of metrics experience
a significant drop compared to our baseline, highlighting
the essential role of conditional refinement. Without it, the
incorrect content produced by the CDD remains unchanged,
resulting in poorer performance.

4.3. Limitation

Although our framework achieves the best performance
in expert assessments, we acknowledge certain limitations
in its current design. As mentioned in Sections 3.2 and 3.4,
DiffuCE leverages conditional controls to influence the ap-
pearance of the output images, yielding satisfactory results.
However, without conditional control, preserving intricate
details becomes challenging, often resulting in distortions
and lower performance on conventional pixel-level evalua-
tions such as MAE and PSNR. We believe this limitation
can be addressed by adding more condition-specific mod-
ules, such as those for muscle, soft tissue, or even tumors.
Additionally, our framework’s inference speed lags behind
that of GAN-based algorithms, presenting a hurdle for de-
ployment in real-world applications.

5. Conclusion
Addressing the critical clinical need for high-quality CT

images while minimizing radiation dosage, we present Dif-
fuCE, an efficient and effective framework designed to re-
construct detailed CT images from low-quality inputs.

To substantiate our framework’s effectiveness, we con-
ducted comprehensive validation. Our experiments encom-
passed quantitative analyses using pseudo-CBCT and CT
datasets, complemented by experts’ assessments employing
the Likert scale. Moreover, the results on the public dataset
show that our work has a competitive ability compared to
SOTAs.

Furthermore, the introduction of latent alignment used
in the encoder allows data from diverse domains to be
mapped to the task domain using the respective align-
ment module, all while keeping the denoising UNet and
its conditional guidance modules unaltered. This flex-
ible design has the potential to evolve into more ad-
vanced frameworks for domain adaptation in latent diffu-
sion models, making it a promising avenue for future re-
search.
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